EP0985891B1 - Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen - Google Patents

Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen Download PDF

Info

Publication number
EP0985891B1
EP0985891B1 EP98117338A EP98117338A EP0985891B1 EP 0985891 B1 EP0985891 B1 EP 0985891B1 EP 98117338 A EP98117338 A EP 98117338A EP 98117338 A EP98117338 A EP 98117338A EP 0985891 B1 EP0985891 B1 EP 0985891B1
Authority
EP
European Patent Office
Prior art keywords
heating
cooling
room
return
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98117338A
Other languages
English (en)
French (fr)
Other versions
EP0985891A1 (de
Inventor
Rolf Bredeman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Best GmbH
Original Assignee
Supellex AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supellex AG filed Critical Supellex AG
Priority to DE59806545T priority Critical patent/DE59806545D1/de
Priority to DK98117338T priority patent/DK0985891T3/da
Priority to AT98117338T priority patent/ATE229161T1/de
Priority to EP98117338A priority patent/EP0985891B1/de
Publication of EP0985891A1 publication Critical patent/EP0985891A1/de
Application granted granted Critical
Publication of EP0985891B1 publication Critical patent/EP0985891B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0089Systems using radiation from walls or panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/10Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with separate supply lines and common return line for hot and cold heat-exchange fluids i.e. so-called "3-conduit" system

Definitions

  • the invention relates to a method and a device for heating and / or Cooling of separate ones located in at least one building Rooms and / or of at least one large area with zones different heating or cooling requirements using Area beam elements.
  • Such methods and devices are available in different versions known, e.g. B. from US 3,176,759.
  • Those in the floor, on the walls and / or surface jet elements preferably arranged on the ceiling of the rooms are from a common heat transfer medium, preferably water, flows through, which is heated in a heat source and / or in a cold source is cooled and that after flowing through the surface beam elements through a common return if necessary to the heat source and / or cold source is returned.
  • a common heat transfer medium preferably water
  • the invention has for its object to provide a method and a device of the type described above, in which the excess energy present in the rooms of the building or generated by internal or external heat sources is used for heating or cooling and the destruction of energy is avoided ,
  • the solution to this problem by the method according to the invention is characterized in that the return temperature of the cooling circuit is set to a value above the return temperature with simultaneous heating and cooling, all of the surface jet elements (F) always being given the full predetermined regardless of the respective heating or cooling requirement Flows through the heat transfer medium and the respective heating or cooling requirements of the individual rooms (R1-R4) or room zones (R5a, R5b, R5c) are covered by regulating the temperature of the heat transfer medium supplied to the corresponding surface jet elements (F) by means of mixing valves.
  • This configuration of the method according to the invention results in Advantage that a temperature when mixing the heating and cooling circuit return of the heat transfer medium, which is lower for the cooling circuit and for the heating circuit is higher than without mixing the returns, so that the amount of primary energy required for reheating or cooling is reduced in both cases.
  • a temperature when mixing the heating and cooling circuit return of the heat transfer medium which is lower for the cooling circuit and for the heating circuit is higher than without mixing the returns, so that the amount of primary energy required for reheating or cooling is reduced in both cases.
  • a full utilization Excess heat due to heat transfer between the Rooms or room zones with different heating or cooling requirements. Just if the overall energy balance is not balanced, additional will Primary energy needed for heating or cooling.
  • a device for Heating and / or cooling of at least one building separate rooms and / or at least one large room with zones with different heating or cooling requirements defined in that the flow line the surface beam elements belonging to a room or a room zone via a controlled by the respective room or room zone temperature Mixing valve with both the heating flow coming from the heat source and also connected to the cooling flow coming from the cold source and the Return line of all surface jet elements via a common Hydraulic return with both the heat source and the cold source are decoupled, the common return via one Bypass line to the heat or cold source using one each Premix valve is connected to the heating flow or the cooling flow.
  • the Premix valves used according to the invention are dependent on by the temperature sensors in the individual rooms or room zones determined requirements for heating or cooling output controlled, the Regulation is designed so that a consumption of primary energy, i.e. on The premix valves for heating or cooling flow only open when if the recovered energy contained in the common return is not is sufficient to meet the needs of the warmest or coldest room cover.
  • the position of Mixing valves are monitored to determine the heating or cooling requirements of the respective room or the respective room zone for the control of the premix valves determine.
  • At least one is included constant power driven circulation pump arranged in the return.
  • From the schematic arrangement of arranged in a building 1 shows that the building has a total of five rooms R1 to R5 comprises, wherein the spaces R1 to R4 are from each other separate rooms and for room R5 around a large room with room zones R5a up to R5c deals with different heating or cooling requirements.
  • the hatched Area of the arrangement shown in the manner of a floor plan For example, an unheated and uncooled hallway to access the Clear R1 to R5.
  • a plurality of surface beam elements F are shown, each are assigned to one of the rooms R1 to R5.
  • an area beam element F1 is located in space R1 and a surface beam element F3 in room R3, whereas two in room R2 Surface beam elements F2 are arranged.
  • Also located in the greater R5 area a total of three surface beam elements F5a, F5b and F5c, one each these surface beam elements of a spatial zone R5a or R5b or R5c assigned.
  • Each area beam element F1 to F4 and F5a, F5b and F5c is over one Flow line 1 connected to the heating flow HV of a heat source W, and with the interposition of a so-called hydraulic switch HW for hydraulic decoupling of the surface beam elements F containing hydraulic circuit from the hydraulic circuit of the heat source W.
  • a motor-driven mixing valve 3 Between the heating flow HV and the flow line 1, to which each a room R1 to R4 or to a room zone R5a, R5b and R5c belonging area jet elements F are connected, is located in each case a motor-driven mixing valve 3. These mixing valves 3 are around 3-way valves to which the cooling flow KV of a cooling source K is connected, the primary circuit also by means of a hydraulic Switch HW from the circuit containing the area beam elements F. is hydraulically decoupled.
  • Each area jet element F is also connected via a return line 2 a return R common to all of the surface beam elements F.
  • This return R is both on the respective hydraulic switch HW with the heating return HR of the heat source W as well as with the cooling return KR of the cold source K in connection.
  • circulation pumps PW and PK are arranged in the primary circuits between the respective hydraulic switch HW and the heat source W or the Cooling sources K.
  • Fig. 2 shows a circulation pump P for the area jet elements F containing Circulation. This circulation pump P is arranged in the return R.
  • the associated mixing valve 3 becomes such controlled that there is only heat transfer medium from the heating flow HV feed line 1. If the area beam element F3 in space R3 at the same time has an increased cooling requirement, the mixing valve 3 connects the associated flow line 1 essentially with the cooling flow KV. Requirements lying between these two extremes are met by Appropriate mixing of the one hand from the heating flow HV and on the other hand, heat transfer medium coming from the cooling flow KV Fulfills. If a surface jet element F should neither heat nor cool, it with heat transfer medium with a temperature corresponding to the room temperature Temperature charged.
  • FIG. 3 shows three heating and cooling temperature curves, H 1 , H 2 , H 3 and K 1 , K 2 , K 3, which are shown as the temperature of the heat transfer medium over the outside temperature for surface jet elements under different operating loads.
  • Curve H 1 represents the heating temperature curve of a room for a full heating operation, that is, its heat requirement to maintain a predetermined room temperature without internal or external heat sources.
  • the required temperature of the heat transfer medium in the heating flow HV which emits its heat via at least one surface radiation element, is plotted above the outside temperature in the upper, dash-dotted part of curve H 1 .
  • the lower part of the curve H 1 marked by dashes and two points, shows the temperature of the heat transfer medium when it leaves the surface jet element in the heating return HR.
  • a heat transfer medium is therefore required to heat the room, which enters the surface radiation element at 27.5 ° C and which leaves this surface radiation element at 24.3 ° C.
  • a temperature of the heat transfer medium of 23.4 ° C is required in the heating flow HV, whereby HR 22.2 ° C is set in the heating return.
  • Curve K 1 shows the cooling temperature curve of the same room in order to maintain the same assumed room temperature using the same area jet element.
  • Curve K 1 shows the temperature of the heat transfer medium in the cooling flow KV with the lower part, symbolized by lines and a cross, above the outside temperature, whereas the upper part of curve K 1, marked by lines and two crosses, shows the temperature of the heat transfer medium in the cooling return KR reproduces.
  • a temperature of the heat transfer medium in the cooling flow KV of 19.5 ° C is required to cool the room to the specified room temperature, with a temperature of the heat transfer medium in the cooling return KR of 22.4 ° C established.
  • the heating temperature curve H 2 and the cooling temperature curve K 2 show the corresponding temperatures of the heat transfer medium for the same room and the same predetermined room temperature above the outside temperature when normal use of the room takes place, in particular by presence of the assumed number of people and installation of the devices intended for the normal case , especially lighting fixtures and office machines.
  • Curves H 2 and K 2 show, in comparison to curves H 1 and K 1 , that the heat demand for heating decreases due to these additional internal heat sources (lower temperature in the heating flow HV and heating return HR), but that the cooling demand increases, ie lower temperature especially in the cooling flow KV.
  • the curves explained above show an overlap of the heating and Cooling temperature curves in a range from approximately + 6 ° C to + 20 ° C Outside temperature. In this temperature range, there can be several Rooms simultaneous heating and cooling of some rooms or room zones occur.
  • the diagram in FIG. 3 shows that the average temperature of the cooling return according to the curve KR m is always higher than the average temperature of the heating return according to the curve HR m .
  • a temperature of the heat transfer medium is thus achieved which always leads to a reduction in the temperature in the cooling return KR and to an increase in the temperature in the heating return HR. This means that less primary energy has to be used on the one hand for heating and on the other hand for cooling the rooms, because the necessary heating or cooling requirements are made available to a large extent by energy shift between the individual rooms or room zones.
  • An embodiment ranges between + 16 ° C and + 28 ° C Temperature of the heat transfer medium, i.e. a temperature difference of 12 ° C to the rooms and room zones in the area of an outside temperature from -14 ° C to + 36 ° C at the specified room temperature. For an outside air difference of 10 ° C is sufficient for a temperature difference of Heat transfer medium of only 2.4 ° C, due to the energy shift to maintain the specified room temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Central Heating Systems (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Einrichtung zur Beheizung und/oder Kühlung von in mindestens einem Gebäude befindlichen, voneinander getrennten Räumen und/oder von mindestens einem Großraum mit Zonen mit unterschiedlichem Heiz- bzw. Kühbedarf unter Verwendung von Flächenstrahlelementen.
Derartige Verfahren und Einrichtungen sind in verschiedenen Ausführungen bekannt, so z. B. aus der US 3,176,759. Die im Boden, an den Wänden und/oder vorzugsweise an der Decke der Räume angeordneten Flächenstrahlelemente werden von einem gemeinsamen Wärmeträgermedium, vorzugsweise Wasser, durchströmt, das in einer Wärmequelle erwärmt und/oder in einer Kältequelle gekühlt wird und das nach Durchströmen der Flächenstrahlelemente durch einen gemeinsamen Rücklauf bedarfsweise zur Wärmequelle und/oder Kältequelle zurückgeführt wird.
Die bekannteste Art derartiger Einrichtungen sind die sogenannten Deckenstrahlheizungen, deren Flächenstrahlelemente unterhalb der Decke der zu beheizenden Räume aufgehängt sind. Ein derartiges Flächenstrahlelement sowie ein Verfahren und eine Vorrichtung zu seiner Herstellung sind in der europäischen Patentanmeldung 98 103 537.1 beschrieben.
Unter Verwendung von Flächenstrahlelementen lassen sich Räume bzw. Raumzonen nicht nur beheizen, sondern auch kühlen. Während bei der Beheizung das eine oberhalb der Raumlufttemperatur liegende Temperatur aufweisende Flächenstrahlelement hauptsächlich durch Strahlung Wärme an die Begrenzungwände des Raumes und an die im Raum befindlichen Gegenstände und Lebewesen abgibt (ohne die Raumluft unmittelbar zu erwärmen), nimmt bei der Kühlung das Flächenstrahlelement, dessen Temperatur unterhalb der Raumlufttemperatur liegt, die durch Strahlung abgegebene Wärme der Begrenzungswände sowie der im Raum befindlichen Gegenstände und Lebewesen auf, so daß diese abgekühlt werden. Diese Beheizung und Kühlung kann nicht nur für getrennte Räume, sondern auch für einzelne Zonen eines Großraumes unabhängig voneinander erfolgen. Der Strahlungsanteil liegt bei einem Beheizen mittels an der Decke angeordneter Flächenstrahlelemente bei etwa 80 % der gesamten Wärmeabgabe, bei einem Kühlen bei etwa 50 %. Die restliche Wärme wird durch Konvektion bzw. Wärmeleitung übertragen.
Bei der Installation derartiger Flächenstrahlelemente, die nicht nur zur Beheizung, sondern auch zur Kühlung von Räumen mittels Strahlung eingesetzt werden, ist es bekannt, zur Verringerung des Installationsaufwandes ein sogenanntes Dreirohrsystem zu verwenden, bei dem die Rückläufe aus dem Heizkreis und die Rückläufe aus dem Kühlkreis zu einem gemeinsamen Rücklauf zusammengeführt werden. Hierdurch ergibt sich zwar eine Materialeinsparung an Rohren und Installationsmaterial; da die Rücklauftemperatur des Heizkreislaufes aber in der Regel oberhalb der Rücklauftemperatur des Kühlkreislaufes liegt, ergeben sich sowohl für die Wiederaufheizung als auch für die Abkühlung des Wärmeträgermediums zusätzliche Energieaufwendungen aufgrund der sich im gemeinsamen Rücklauf einstellenden Mischtemperatur, die gegenüber einem getrennten Heizkreisrücklauf niedriger und gegenüber einem getrennten Kühlkreisrücklauf höher ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Einrichtung der eingangs beschriebenen Art zu schaffen, bei denen die in den Räumen des Gebäudes vorhandene bzw. durch interne oder externe Wärmequellen erzeugte Überschußenergie zur Beheizung bzw. Kühlung ausgenutzt und die Vernichtung von Energie vermieden wird.
Die Lösung dieser Aufgabenstellung durch das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß die Rücklauftemperatur des Kühlkreislaufes bei zeitgleichem Heizen und Kühlen auf einen Wert oberhalb der Rücklauftemperatur eingestellt wird, wobei sämtliche Flächenstrahlelemente (F) unabhängig vom jeweiligen Heiz- bzw. Kühlbedarf stets mit der vollen vorgegebenen Menge des Wärmeträgermediums durchströmt und der jeweilige Heiz- bzw. Kühlbedarf der einzelnen Räume (R1-R4) bzw. Raumzonen (R5a, R5b, R5c) durch eine Regelung der Temperatur des den entsprechenden Flächenstrahlelementen (F) zugeführten Wärmeträgermediums mittels Mischventilen gedeckt wird.
Durch diese erfindungsgemäße Ausgestaltung des Verfahrens ergibt sich der Vorteil, daß beim Mischen von Heiz- und Kühlkreisrücklauf eine Temperatur des Wärmeträgermediums erzielt wird, die für den Kühlkreislauf niedriger und für den Heizkreislauf höher als ohne Vermischung der Rückläufe ist, so daß die zur Wiederaufheizung bzw. Abkühlung benötigte Primärenergiemenge in beiden Fällen verringert wird. Anstelle der Zufuhr zusätzlicher Primärenergie erfolgt beim erfindungsgemäßen Verfahren bei gleichzeitiger Heizung und Kühlung der Räume bzw. Großräume eine vollständige Ausnutzung vorhandener Überschußwärme durch Wärmeverschiebung zwischen den Räumen bzw. Raumzonen mit unterschiedlichem Heiz- bzw. Kühlbedarf. Nur wenn die gesamte Energiebilanz nicht ausgeglichen ist, wird zusätzliche Primärenergie zur Heizung oder Kühlung benötigt.
Gemäß einem weiteren Merkmal des erfindungsgemäßen Verfahrens werden sämtliche Flächenstrahlelemente unabhängig vom jeweiligen Heiz- bzw. Kühlbedarf stets mit der vollen vorgegebenen Menge des Wärmeträgermediums durchströmt; der jeweilige Heiz- bzw. Kühlbedarf der einzelnen Räume bzw. Raumzonen wird durch eine Regelung der Temperatur des den entsprechenden Flächenstrahlelementen zugeführten Wärmeträgermediums gedeckt.
Hierdurch ergibt sich für das erfindungsgemäße Verfahren der Vorteil, daß sämtliche Flächenstrahlelemente stets mit derselben Strömungsgeschwindigkeit bzw. einem konstanten Volumenstrom beaufschlagt werden, so daß mit konstanter Leistung und Drehzahl laufende Pumpen vorzugsweise im Rücklauf des Heiz- und Kühlkreislaufes angeordnet werden können. Durch die sich hierdurch ergebenden konstanten hydraulischen Verhältnisse ergeben sich minimale Strömungsverluste. Die Regelung der jeweils benötigten Temperatur des Wärmeträgermediums erfolgt über Mischventile, die in Abhängigkeit von der im jeweiligen Raum bzw. in der jeweiligen Raumzone gemessenen Temperatur gesteuert werden.
Bei den bekannten Einrichtungen zur Beheizung und/oder Kühlung unter Verwendung von Flächenstrahlelementen sind diese jeweils mittels einer Vorlaufleitung und einer Rücklaufleitung mit einer Wärmequelle bzw. einer Kältequelle verbunden und von einem gemeinsamen Wärmeträgermedium durchströmt, das im geschlossenen Kreislauf durch mindestens eine Pumpe umgewälzt wird.
Ausgehend von einer derartigen bekannten Ausbildung einer Einrichtung zur Beheizung und/oder Kühlung von in mindestens einem Gebäude befindlichen, voneinander getrennten Räumen und/oder von mindestens einem Großraum mit Zonen mit unterschiedlichem Heiz- bzw. Kühlbedarf ist die erfindungsgemäße Einrichtung dadurch definiert, daß die Vorlaufleitung der zu einem Raum bzw. einer Raumzone gehörenden Flächenstrahlelemente über ein von der jeweiligen Raum- bzw. Raumzonentemperatur gesteuertes Mischventil sowohl mit dem von der Wärmequelle kommenden Heizvorlauf als auch mit dem von der Kältequelle kommenden Kühlvorlauf verbunden und die Rücklaufleitung sämtlicher Flächenstrahlelemente über einen gemeinsamen Rücklauf sowohl mit der Wärmequelle als auch mit der Kältequelle hydraulisch entkoppelt verbunden sind, wobei der gemeinsame Rücklauf über jeweils eine Bypassleitung zur Wärme- bzw. Kältequelle mittels jeweils eines Vormischventils mit dem Heizvorlauf bzw. dem Kühlvorlauf verbunden ist.
Durch diese erfindungsgemäße Weiterbildung der bekannten Einrichtung wird die Möglichkeit geschaffen, die in den unterschiedlichen Räumen bzw. Raumzonen anfallende Überschußwärme durch Wärmeverschiebung zu den einen höheren Heiz- bzw. Kühlbedarf aufweisenden Räumen bzw. Raumzonen auszunutzen, so daß hierfür keine Primärenergie eingesetzt werden muß. Die erfindungsgemäß verwendeten Vormischventile werden in Abhängigkeit von den durch die Temperaturfühler in den einzelnen Räumen bzw. Raumzonen festgestellten Anforderungen an Heiz- bzw. Kühlleistung gesteuert, wobei die Regelung derart ausgelegt ist, daß ein Verbrauch an Primärenergie, d.h. ein Öffnen der Vormischventile zum Heiz- bzw. Kühlvorlauf erst dann stattfindet, wenn die im gemeinsamen Rücklauf enthaltene, rückgewonnene Energie nicht mehr ausreicht, den Bedarf des jeweils wärmsten bzw. kältesten Raumes zu decken. Bei einer praktischen Ausführung wird hierbei die Stellung der Mischventile überwacht, um den Heiz- bzw. Kühlbedarf des jeweiligen Raumes bzw. der jeweiligen Raumzone für die Steuerung der Vormischventile festzustellen.
Gemäß einem weiteren Merkmal der Erfindung ist mindestens eine mit konstanter Leistung angetriebene Umwälzpumpe im Rücklauf angeordnet.
Die erfindungsgemäße Einrichtung und das erfindungsgemäße Verfahren werden anschließend anhand eines Ausführungsbeispieles unter Verwendung von Zeichnungen erläutert. Von den Zeichnungen zeigt:
Fig. 1
schematisch eine Anordnung von zu beheizenden bzw. zu kühlenden Räumen,
Fig. 2
ein Schaltbild einer zugehörigen Einrichtung gemäß der Erfindung und
Fig. 3
ein Diagramm mit einem Beispiel der zugehörigen Heiz- und Kühlkurven des erfindungsgemäßen Verfahrens.
Aus der schematischen Anordnung von in einem Gebäude angeordneten Räumen gemäß Fig. 1 geht hervor, daß das Gebäude insgesamt fünf Räume R1 bis R5 umfaßt, wobei es sich bei den Räumen R1 bis R4 um voneinander getrennte Räume und beim Raum R5 um einen Großraum mit Raumzonen R5a bis R5c mit unterschiedlichem Heiz- bzw. Kühlbedarf handelt. Der schraffierte Bereich der in der Art eines Grundrisses dargestellten Anordnung kennzeichnet beispielsweise einen unbeheizten und ungekühlten Flur als Zugang zu den Räumen R1 bis R5.
Trotz identischer Auslegung des von der jeweiligen Außentemperatur abhängenden Heiz- bzw. Kühlbedarfes ergeben sich in Abhängigkeit von der Belegung der einzelnen Räume R1 bis R5 mit Personen und Maschinen sowie in Abhängigkeit von einer über den Tagesverlauf sich ändernden Sonneneinstrahlung für die einzelnen Räume R1 bis R5 zu jedem Zeitpunkt unterschiedliche Anforderungen an die Beheizung bzw. Kühlung. Insbesondere bei einem gut isolierten Gebäude wird es Räume geben, die aufgrund einer starken Belegung mit Personen und Maschinen sowie ggf. starker Sonneneinstrahlung gekühlt werden müssen, um die vorgegebene Raumtemperatur einzuhalten, wogegen von der Sonnenseite abgewandte, mit nur einer Person besetzte und keine Maschinen enthaltende Räume gleichzeitig beheizt werden müssen.
In dem Schaltbild gemäß Fig. 2, das ein Ausführungsbeispiel einer Einrichtung zeigt, sind eine Mehrzahl von Flächenstrahlelementen F gezeigt, die jeweils einem der Räume R1 bis R5 zugeordnet sind. Beim gewählten Ausführungsbeispiel befindet sich ein Flächenstrahlelement F1 im Raum R1 und ein Flächenstrahlelement F3 im Raum R3, wogegen im Raum R2 zwei Flächenstrahlelemente F2 angeordnet sind. Im Raum R4 sind drei Flächenstrahlelemente F4 angeordnet. Auch im Großraum R5 befinden sich insgesamt drei Flächenstrahlelemente F5a, F5b und F5c, wobei jeweils eines dieser Flächenstrahlelemente einer Raumzone R5a bzw. R5b bzw. R5c zugeordnet ist.
Jedes Flächenstrahlelement F1 bis F4 sowie F5a, F5b und F5c ist über eine Vorlaufleitung 1 mit dem Heizvorlauf HV einer Wärmequelle W verbunden, und zwar unter Zwischenschaltung einer sogenannten hydraulischen Weiche HW zur hydraulischen Entkopplung des die Flächenstrahlelemente F enthaltenden hydraulischen Kreislaufes von dem hydraulischen Kreislauf der Wärmequelle W.
Zwischen dem Heizvorlauf HV und der Vorlaufleitung 1, an die jeweils die zu einem Raum R1 bis R4 bzw. zu einer Raumzone R5a, R5b und R5c gehörenden Flächenstrahlelemente F angeschlossen sind, befindet sich jeweils ein motorgetriebenes Mischventil 3. Bei diesen Mischventilen 3 handelt es sich um 3-Wege-Ventile, an die zusätzlich der Kühlvorlauf KV einer Kältequelle K angeschlossen ist, deren Primärkreislauf ebenfalls mittels einer hydraulischen Weiche HW von dem die Flächenstrahlelemente F enthaltenden Kreislauf hydraulisch entkoppelt ist.
Jedes Flächenstrahlelement F ist weiterhin über eine Rücklaufleitung 2 mit einem für alle Flächenstrahlelemente F gemeinsamen Rücklauf R verbunden. Dieser Rücklauf R steht über die jeweilige hydraulische Weiche HW sowohl mit dem Heizrücklauf HR der Wärmequelle W als auch mit dem Kühlrücklauf KR der Kältequelle K in Verbindung. In den Primärkreisläufen zwischen der jeweiligen hydraulischen Weiche HW und der Wärmequelle W bzw. der Kältequelle K sind Umwälzpumpen PW bzw. PK angeordnet. Außerdem zeigt Fig. 2 eine Umwälzpumpe P für den die Flächenstrahlelemente F enthaltenden Kreislauf. Diese Umwälzpumpe P ist im Rücklauf R angeordnet.
Zwischen dieser Umwälzpumpe P und dem Anschluß des Rücklaufes R einerseits an den Heizrücklauf HR und andererseits an den Kühlrücklauf KR sind zwei Bypassleitungen 4 bzw. 5 an den Rücklauf R angeschlossen, die diesen über ein ebenfalls als motorbetriebenes 3-Wege-Ventil ausgebildetes Vormischventil 6 mit dem Heizvorlauf HV bzw. dem Kühlvorlauf KV verbinden. Durch diese Vormischventile 6 ist es möglich, das im Rücklauf R rückströmende Wärmeträgermedium unter Umgehung der Wärmequelle W bzw. Kältequelle K unmittelbar dem Heizvorlauf HV bzw. dem Kühlvorlauf KV zuzuführen.
Durch die im Rücklauf R angeordnete Umwälzpumpe P wird das Wärmeträgermedium mit konstantem Volumenstrom über den Heizvorlauf HV und/oder Kühlvorlauf KV sowie über die Vorlaufleitungen 1 und Rücklaufleitungen 2 sowie den Rücklauf R im geschlossenen Kreislauf durch die Flächenstrahlelemente F umgewälzt. Der jeweilige Heiz- bzw. Kühlbedarf der zu einem Raum R1 bis R4 bzw. einer Raumzone R5a, R5b und R5c gehörenden Flächenstrahlelemente F wird hierbei durch die Regelung der Temperatur des Wärmeträgermediums in der jeweiligen Vorlaufleitung 1 gedeckt. Zu diesem Zweck steuern in den einzelnen Räumen R1 bis R4 bzw. in den Raumzonen 5a, 5b und 5c angeordnete Temperaturfühler die Stellung der Mischventile 3. Hat beispielsweise das Flächenstrahlelement F1 im Raum R1 einen hohen Heizungsbedarf, wird das zugehörige Mischventil 3 derart gesteuert, daß es ausschließlich Wärmeträgermedium aus dem Heizvorlauf HV der Vorlaufleitung 1 zuführt. Sofern das Flächenstrahlelement F3 im Raum R3 gleichzeitig einen erhöhten Kühlbedarf hat, verbindet das Mischventil 3 die zugehörige Vorlaufleitung 1 im wesentlichen mit dem Kühlvorlauf KV. Zwischen diesen beiden Extremen liegende Anforderungen werden durch entsprechendes Mischen des einerseits aus dem Heizvorlauf HV und andererseits aus dem Kühlvorlauf KV kommenden Wärmeträgermediums erfüllt. Sofern ein Flächenstrahlelement F weder heizen noch kühlen soll, wird es mit Wärmeträgermedium mit einer der Raumtemperatur entsprechenden Temperatur beschickt.
Das Diagramm in Fig. 3 zeigt jeweils drei Heiz- bzw. Kühltemperaturkurven, H1, H2, H3 bzw. K1, K2, K3, die als Temperatur des Wärmeträgermediums über der Außentemperatur für Flächenstrahlelemente bei unterschiedlichen Betriebsbelastungen dargestellt sind.
Die Kurve H1 stellt die Heiztemperaturkurve eines Raumes für einen vollen Heizbetrieb dar, das heißt dessen Wärmebedarf zur Einhaltung einer vorgegebenen Raumtemperatur ohne interne oder externe Wärmequellen. Über der Außentemperatur ist im oberen, strichpunktierten Teil der Kurve H1 die notwendige Temperatur des Wärmeträgermediums im Heizvorlauf HV aufgetragen, das seine Wärme über mindestens ein Flächenstrahlelement abgibt. Der untere, durch Striche und zwei Punkte gekennzeichnete Teil der Kurve H1 zeigt die Temperatur des Wärmeträgermediums, wenn dieses das Flächenstrahlelement im Heizrücklauf HR verläßt. Bei einer Außentemperatur von -10°C wird demgemäß zu einer Beheizung des Raumes Wärmeträgermedium benötigt, das mit 27,5°C in das Flächenstrahlelement eintritt und das dieses Flächenstrahlelement mit 24,3°C verläßt. Bei einer Außentemperatur von +8°C wird dagegen eine Temperatur des Wärmeträgermediums von 23,4°C im Heizvorlauf HV benötigt, wobei sich im Heizrücklauf HR 22,2°C einstellen.
Die Kurve K1 zeigt die Kühltemperaturkurve desselben Raumes zur Einhaltung derselben angenommenen Raumtemperatur unter Verwendung desselben Flächenstrahlelements. Die Kurve K1 zeigt hierbei mit dem unteren, durch Striche und jeweils ein Kreuz symbolisierten Teil über der Außentemperatur die Temperatur des Wärmeträgermediums im Kühlvorlauf KV, wogegen der obere, durch Striche und zwei Kreuze gekennzeichnete Teil der Kurve K1 die Temperatur des Wärmeträgermediums im Kühlrücklauf KR wiedergibt. Bei einer Außentemperatur von +30°C ist demgemäß eine Temperatur des Wärmeträgermediums im Kühlvorlauf KV von 19,5°C erforderlich, um den Raum auf die vorgegebene Raumtemperatur zu kühlen, wobei sich eine Temperatur des Wärmeträgermediums im Kühlrücklauf KR von 22,4°C einstellt.
Die Heiztemperaturkurve H2 und die Kühltemperaturkurve K2 zeigen über der Außentemperatur die entsprechenden Temperaturen des Wärmeträgermediums für denselben Raum und dieselbe vorgegebene Raumtemperatur, wenn eine normale Nutzung des Raumes stattfindet, insbesondere durch Anwesenheit der angenommenen Anzahl von Personen und Aufstellen der für den Normalfall vorgesehenen Geräte, insbesondere Beleuchtungskörper und Büromaschinen.
Die Kurven H2 und K2 zeigen im Vergleich zu den Kurven H1 und K1, daß durch diese zusätzlichen internen Wärmequellen der Wärmebedarf zum Heizen sinkt (niedrigere Temperatur im Heizvorlauf HV und Heizrücklauf HR), daß aber der Kühlbedarf steigt, d. h. niedrigere Temperatur insbesondere im Kühlvorlauf KV.
Wird derselbe Raum einer stärkeren Belastung durch weitere Personen und Geräte und weiterhin zusätzlich durch Sonneneinstrahlung ausgesetzt, ergibt sich zur Einhaltung der vorgegebenen Raumtemperatur die durch die Kurven H3 und K3 dargestellte Situation. Hier ist beispielsweise für eine Beheizung bei einer Außentemperatur von -10°C nur eine Temperatur des Wärmeträgermediums im Heizvorlauf HV von 23,8°C erforderlich, die zu einer Temperatur im Heizrücklauf HR von 22,2°C führt. Bei einer Außentemperatur von +8°C ist dagegen keine Heizung, sondern eine geringe Kühlung des Raumes erforderlich, und zwar mit einer Temperatur des Wärmeträgermediums im Kühlvorlauf KV von 22°C, woraus sich eine Temperatur im Kühlrücklauf KR von 22,4°C ergibt. Bei einer Außentemperatur von 30°C muß das Wärmeträgermedium eine Temperatur im Kühlvorlauf KV von 16,9°C haben, wobei sich eine Kühlmittelrücklauftemperatur von 22,5°C ergibt.
Die voranstehend erläuterten Kurven zeigen eine Überschneidung der Heizund Kühltemperaturkurven in einem Bereich von etwa +6°C bis +20°C Außentemperatur. In diesem Temperaturbereich kann somit bei mehreren Räumen ein zeitgleiches Heizen und Kühlen einiger Räume bzw. Raumzonen stattfinden.
Wird eine mittlere Belastung der in Fig. 1 dargestellten Räume R1 bis R4 und Raumzonen R5a, R5b und R5c gemäß den Kurven H2 und K2 angenommen, ergibt sich für die gemäß Fig. 2 zusammengeführten Heizrückläufe HR eine mittlere Temperatur gemäß der mit einer ausgezogenen Linie dargestellten Kurve HRm und für die Kühlrückläufe KR die mit KRm gekennzeichnete Kurve, die etwa der Kühlrücklauftemperatur der Kühlkurve K2 entspricht.
Das Diagramm in Fig. 3 zeigt, daß die mittlere Temperatur des Kühlrücklaufs gemäß der Kurve KRm stets höher ist als die mittlere Temperatur des Heizrücklaufes gemäß der Kurve HRm. Bei einer Mischung der aus den Rücklaufleitungen 2 kommenden Wärmeträgerströme im gemeinsamen Rücklauf R gemäß Fig. 2 wird somit eine Temperatur des Wärmeträgermediums erreicht, die stets zu einer Herabsetzung der Temperatur im Kühlrücklauf KR und zu einer Anhebung der Temperatur im Heizrücklauf HR führt. Dies bedeutet, daß weniger Primärenergie einerseits für die Beheizung und andererseits für die Kühlung der Räume aufgewendet werden muß, weil der notwendige Heiz- bzw. Kühlbedarf zu einem erheblichen Teil durch Energieverschiebung zwischen den einzelnen Räumen bzw. Raumzonen zur Verfügung gestellt wird.
Aus den voranstehenden Darlegungen geht schließlich hervor, daß es sich bei den verwendeten Flächenstrahlelementen um Hochleistungselemente handelt, bei denen geringe Temperaturdifferenzen zwischen Vorlauf und Rücklauf sowohl zur Heizung als auch zur Kühlung ausreichen. Beim gewählten Ausführungsbeispiel reicht eine zwischen +16°C und +28°C liegende Temperatur des Wärmeträgermediums, d.h. eine Temperaturdifferenz von 12°C aus, um die Räume und Raumzonen im Bereich einer Außentemperatur von -14°C bis +36°C auf der vorgegebenen Raumtemperatur zu halten. Für eine Außenluftdifferenz von 10°C genügt somit eine Temperaturdifferenz des Wärmeträgermediums von nur 2,4°C, um aufgrund der Energieverschiebung die vorgegebenen Raumtemperaturen einzuhalten.
Bezugszeichenliste
F
Flächenstrahlelement
H1
Heizkurve
H2
Heizkurve
H3
Heizkurve
HR
Heizrücklauf
HV
Heizvorlauf
HW
hydraulische Weiche
K
Kältequelle
K1
Kühlkurve
K2
Kühlkurve
K3
Kühlkurve
KR
Kühlrücklauf
KV
Kühlvorlauf
P
Umwälzpumpe
PW
Umwälzpumpe
PK
Umwälzpumpe
R
Rücklauf
R1
Raum
R2
Raum
R3
Raum
R4
Raum
R5
Großraum
R5a
Raumzone
R5b
Raumzone
R5c
Raumzone
W
Wärmequelle
1
Vorlaufleitung
2
Rücklaufleitung
3
Mischventil
4
Bypassleitung
5
Bypassleitung
6
Vormischventil

Claims (4)

  1. Verfahren zur Beheizung und/oder Kühlung von in mindestens einem Gebäude befindlichen, voneinander getrennten Räumen (R1-R4) und/oder von mindestens einem Großraum (R5) mit Zonen (R5a, R5b, R5c) mit unterschiedlichem Heiz- bzw. Kühlbedarf unter Verwendung von Flächenstrahlelementen (F), die von einem gemeinsamen Wärmeträgermedium durchströmt werden, das in einer Wärmequelle (W) erwärmt und/oder in einer Kältequelle (K) gekühlt wird und das nach Durchströmen der Flächenstrahlelemente (F) durch einen gemeinsamen Rücklauf (R) bedarfsweise zur Wärmequelle (W) und/oder Kältequelle (K) zurückgeführt wird,
    dadurch gekennzeichnet, daß die Rücklauftemperatur des Kühlkreislaufes bei zeitgleichem Heizen und Kühlen auf einen Wert oberhalb der Rücklauftemperatur des Heizkreislaufes eingestellt wird, wobei sämtliche Flächenstrahlelemente (F) unabhängig vom jeweiligen Heiz- bzw. Kühlbedarf stets mit der vollen vorgegebenen Menge des Wärmeträgermediums durchströmt und der jeweilige Heiz- bzw. Kühlbedarf der einzelnen Räume (R1-R4) bzw. Raumzonen (R5a, R5b, R5c) durch eine Regelung der Temperatur des den entsprechenden Flächenstrahlelementen (F) zugeführten Wärmeträgermediums mittels Mischventilen gedeckt wird.
  2. Einrichtung zur Beheizung und/oder Kühlung von in mindestens einem Gebäude befindlichen, voneinander getrennten Räumen (R1-R4) und/oder von mindestens einem Großraum (R5) mit Zonen (R5a, R5b, R5c) mit unterschiedlichem Heiz- bzw. Kühlbedarf, wobei die Einrichtung Flächenstrahlelemente (F) aufweist, die jeweils mittels einer Vorlaufleitung (1) und einer Rücklaufleitung (2) mit einer Wärmequelle (W) bzw. einer Kältequelle (K) verbunden und von einem gemeinsamen Wärmeträgermedium durchströmt sind, das im geschlossenen Kreislauf durch mindestens eine Pumpe (P) umgewälzt wird, wobei
    die Vorlaufleitung (1) der zu einem Raum (R1-R4) bzw. einer Raumzone (R5a, R5b, R5c) gehörenden Flächenstrahlelemente (F) über ein von der jeweiligen Raum- bzw. Raumzonentemperatur gesteuertes Mischventil (3) sowohl mit dem von der Wärmequelle (W) kommenden Heizvorlauf (HV) als auch mit dem von der Kältequelle (K) kommenden Kühlvorlauf (KV) verbunden und die Rücklaufleitung (2) sämtlicher Flächenstrahlelemente (F) über einen gemeinsamen Rücklauf (R) sowohl mit der Wärmequelle (W) als auch mit der Kältequelle (K) hydraulisch entkoppelt verbunden sind, wobei der gemeinsame Rücklauf (R) über jeweils eine Bypassleitung (4, 5) zur Wärmequelle (W) bzw. Kältequelle (K) mittels jeweils eines Vormischventils (6) mit dem Heizvorlauf (HV) bzw. dem Kühlvorlauf (KV) verbunden ist.
  3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß zur Steuerung der Vormischventile (6) die Stellung der Mischventile (3) überwacht wird.
  4. Einrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß mindestens eine mit konstanter Leistung angetriebene Umwälzpumpe (P) im Rücklauf (R) angeordnet ist.
EP98117338A 1998-09-12 1998-09-12 Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen Expired - Lifetime EP0985891B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59806545T DE59806545D1 (de) 1998-09-12 1998-09-12 Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen
DK98117338T DK0985891T3 (da) 1998-09-12 1998-09-12 Fremgangsmåde og indretning til opvarmning og/eller afkøling af rum
AT98117338T ATE229161T1 (de) 1998-09-12 1998-09-12 Verfahren und einrichtung zur beheizung und/oder kühlung von räumen
EP98117338A EP0985891B1 (de) 1998-09-12 1998-09-12 Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98117338A EP0985891B1 (de) 1998-09-12 1998-09-12 Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen

Publications (2)

Publication Number Publication Date
EP0985891A1 EP0985891A1 (de) 2000-03-15
EP0985891B1 true EP0985891B1 (de) 2002-12-04

Family

ID=8232622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98117338A Expired - Lifetime EP0985891B1 (de) 1998-09-12 1998-09-12 Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen

Country Status (4)

Country Link
EP (1) EP0985891B1 (de)
AT (1) ATE229161T1 (de)
DE (1) DE59806545D1 (de)
DK (1) DK0985891T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002258087A1 (en) 2001-06-21 2003-01-08 Alstom Technology Ltd Method for operating an internal combustion engine
NL1030257C2 (nl) * 2005-10-24 2007-04-25 Nathan Imp Exp B V Warmtedistributie-inrichting, alsmede systeem voorzien van ten minste één dergelijke inrichting.
WO2010094282A2 (de) * 2009-02-18 2010-08-26 Hans-Georg Baunach Heizungs- oder kühlungsanlage und verfahren zum betrieb einer heizungs- oder kühlungsanlage
ITMI20090527A1 (it) * 2009-04-01 2010-10-02 Gruppo Imar S P A Modulo di collegamento idraulico alle utenze termiche di un impianto di climatizzazione bivalente ed impianto di climatizzazione includente tale modulo
IT202000003386A1 (it) * 2020-02-19 2021-08-19 Aermec Spa Impianto di climatizzazione centralizzato

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176759A (en) * 1960-06-03 1965-04-06 Elwood A Windham Air conditioning systems
DE1269318B (de) * 1964-02-20 1968-05-30 Meyer Fa Rud Otto Hochdruck-Klima- oder Lueftungsanlage mit einem in mehrere Zonen unterteilten Dreileiter-Wassernetz und gemeinsamen Waerme- und Kaelteerzeugern fuer alle Zonen
DE1454561B2 (de) * 1964-03-05 1972-06-22 Frenger International Corp , Bern Klimaanlage mit einer als ventialtionsanlage ausgebildeten strahlungsunterdecke

Also Published As

Publication number Publication date
DK0985891T3 (da) 2003-03-24
ATE229161T1 (de) 2002-12-15
EP0985891A1 (de) 2000-03-15
DE59806545D1 (de) 2003-01-16

Similar Documents

Publication Publication Date Title
DE9017650U1 (de) Vorrichtung zum Speichern von Kälte und Wärme in einem elektrisch betriebenen Kühl- und Heizsystem
DE102010016343A1 (de) Vorrichtung zur Wärmeversorgung von Gebäuden
DE19827511A1 (de) Vorrichtung und Verfahren zur Lüftung und Wärmeenergieversorgung für Niedrig-Energie-Gebäude oder Passivhäuser
DE2945364A1 (de) Verfahren und anordnung zur regelung der aufheizung eines waermespeichers
DE2606072A1 (de) Verfahren und anlage zur steuerung der temperatur in mehreren raeumen, die wechselseitig unterschiedlichen und sich veraendernden waermebedarf haben, wobei einige der raeume normalerweise einen kuehlbedarf haben
DE2145437A1 (de) Klimatisierungssystem
EP0985891B1 (de) Verfahren und Einrichtung zur Beheizung und/oder Kühlung von Räumen
DE2614118C2 (de) Heiz- oder Kühlanlage
DE202010015516U1 (de) Regelungsvorrichtung für eine Heizungsanlage und Heizungsanlage
DE102010014431B4 (de) Verfahren und Vorrichtung zur Nutzung der Wärmeenergieresourcen eines Gebäudes
DE2754301A1 (de) Heizeinrichtung
DE2756860C3 (de) Steuersystem fur die Heizungsanlage eines Mehrfamilienhauses
EP1020687B1 (de) Vorrichtung zum Verteilen und Mischen eines im geschlossenen Kreislauf umgewälzten Wärmeträgermediums
EP1003089A1 (de) Bedarfsgerechte Wärmeübertragerregelung
DE2323141A1 (de) Verfahren und vorrichtung zum regeln der temperatur mittels eines stromes untertemperierter luft
EP0352401B1 (de) Verfahren zur Regelung der den Verbrauchern in einem Heizungssystem zugeführten Wärmemenge und Regler.
DE2910513A1 (de) Sonnenenergie-heizanlage
DE19855594C1 (de) Verfahren und Vorrichtung zum Homogenisieren von Temperaturen in gekühlten oder beheizten Baukörpern
DE3019475A1 (de) System zur waermegewinnung aus solar- bzw. umgebungsenergie
DE3246995A1 (de) Raumheizanlage mit mehreren zonen
DE9414055U1 (de) Zentralheizsystem für Gebäude
DE961386C (de) Verfahren zum Betrieb von Fernheizanlagen
DE9310030U1 (de) Anlage zum Kühlen und Heizen von Räumen mit einem einzigen Verteilersystem
DE102015102676A1 (de) Verfahren zur Regelung von kühl- und/oder heiztechnischen Anlagen für umschlossene Gesamtobjekte
EP0177656A1 (de) System zur Deckung des für Beleuchtung und Heizung benötigten Energiebedarfes eines Gebäudes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FI FR GB IT LI LU NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT BE CH DE DK FI FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 20010326

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FI FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 229161

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59806545

Country of ref document: DE

Date of ref document: 20030116

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030117

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ZEHNDER VERKAUFS- UND VERWALTUNGS-AG

Free format text: SUPELLEX AG#BAHNHOFSTRASSE 49#8500 FRAUENFELD (CH) -TRANSFER TO- ZEHNDER VERKAUFS- UND VERWALTUNGS-AG#MOORTALSTRASSE 1#5722 GRAENICHEN (CH)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ZEHNDER VERKAUFS- UND VERWALTUNGS AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ZEHNDER VERKAUFS- UND VERWALTUNGS-AG

Free format text: ZEHNDER VERKAUFS- UND VERWALTUNGS-AG#MOORTALSTRASSE 1#5722 GRAENICHEN (CH) -TRANSFER TO- ZEHNDER VERKAUFS- UND VERWALTUNGS-AG#MOORTALSTRASSE 1#5722 GRAENICHEN (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090910

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20091015 AND 20091021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090915

Year of fee payment: 12

Ref country code: LU

Payment date: 20090916

Year of fee payment: 12

Ref country code: FI

Payment date: 20090915

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: BEST GMBH

Free format text: ZEHNDER VERKAUFS- UND VERWALTUNGS-AG#MOORTALSTRASSE 1#5722 GRAENICHEN (CH) -TRANSFER TO- BEST GMBH#TISCHLERSTRASSE 11#30916 ISERNHAGEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: BEST GMBH

Effective date: 20091215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090925

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091023

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100921

Year of fee payment: 13

BERE Be: lapsed

Owner name: BEST G.M.B.H.

Effective date: 20100930

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100912

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100913

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 229161

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140922

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140923

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140917

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151127

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150912

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150912

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59806545

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401