EP0984839B1 - Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique - Google Patents
Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique Download PDFInfo
- Publication number
- EP0984839B1 EP0984839B1 EP98934822A EP98934822A EP0984839B1 EP 0984839 B1 EP0984839 B1 EP 0984839B1 EP 98934822 A EP98934822 A EP 98934822A EP 98934822 A EP98934822 A EP 98934822A EP 0984839 B1 EP0984839 B1 EP 0984839B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ceramic
- metal
- concentration
- additive
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 90
- 239000000463 material Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 59
- 239000002184 metal Substances 0.000 claims abstract description 59
- 239000000654 additive Substances 0.000 claims abstract description 43
- 230000003647 oxidation Effects 0.000 claims abstract description 41
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 41
- 230000000996 additive effect Effects 0.000 claims abstract description 39
- 239000000203 mixture Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 9
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052863 mullite Inorganic materials 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 230000002902 bimodal effect Effects 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 229940001007 aluminium phosphate Drugs 0.000 claims 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims 3
- 230000003247 decreasing effect Effects 0.000 claims 3
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 3
- 229910006501 ZrSiO Inorganic materials 0.000 description 37
- 239000010410 layer Substances 0.000 description 24
- 238000005245 sintering Methods 0.000 description 14
- 238000009413 insulation Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- -1 oxygen ion Chemical class 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910052845 zircon Inorganic materials 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000012720 thermal barrier coating Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000005285 non-oxidic glass Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000005284 oxidic glass Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- 125000005402 stannate group Chemical group 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1109—Inhomogenous pore distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12611—Oxide-containing component
- Y10T428/12618—Plural oxides
Definitions
- the invention relates to a metal-ceramic gradient material, a product of it, in particular a heat shield or a gas turbine blade, and on a process for the production of a metal-ceramic gradient material.
- the high porosity of the layers between 40% and 79% is used to introduce molten metal into the cavities of the fiber ceramic body by means of pressure casting in order to produce a defect-free composite.
- a piston crown can be produced which has a strongly abruptly changing gradient of metal and ceramic. Due to the low thermal conductivity of the ceramic components, a thermal barrier is formed and the piston is thus insulated. In addition, the ceramic fiber reinforces the coblen and thus improves the thermal shock resistance of the piston.
- FGM Functional Gradient Material
- the object of the invention is a metal-ceramic material for use at high temperatures over a long period of time specify. Further objects of the invention are the disclosure a method of manufacturing a metal-ceramic material as well as a product for a high operating temperature.
- the invention is based on the knowledge of a functional Gradient material (FGM) regarding the function of the oxidation resistance train.
- FGM functional Gradient material
- the gradient of the composition about the functional cross section of a component from 100% ceramic to 100% metal are enough, but gradients can also other limit concentrations or "partial gradients" be used for certain purposes.
- An FGM can also be seen as a link between classic layer systems and typical ceramic matrix systems with 2D or 3D reinforcement elements, whereby in the structure between the pure ceramic and metal components there is a transition from the dispersion material with a ceramic matrix to interpenetrating networks of ceramic and metal towards a dispersion material with a metal matrix.
- further material classes eg organic polymers or amorphous materials such as oxidic and non-oxidic glasses, is possible to achieve special combinations of properties.
- the property profile can be modified by introducing several ceramic or metallic materials.
- Ceramic-metal FGM which consist of 8Y-ZrO 2 -NiCr8020, for example, can be interesting as thermal insulation systems, since the composition gradient is suitable for minimizing thermomechanical stresses and thus increasing the thickness of the thermal insulation layer.
- a decisive criterion for the application of such FGM for thermal insulation is, however, the oxidation resistance, which cannot be guaranteed with the help of metallic intermediate layers due to the special microstructure.
- a gradient of the composition results in a spatially “smeared” and enlarged ceramic-metal interface compared to a layer composite.
- the oxidation-inhibiting intermediate layer eg NiCrAlY
- the oxidation-inhibiting intermediate layer eg NiCrAlY
- WDS thermal insulation layer system
- the ceramic-rich zones of an FGM should have a higher density compared to plasma-sprayed WDS, which means a high oxygen ion conductivity of the 8Y-ZrO 2 , an increased heat conduction and has a low resistance to temperature changes.
- the invention therefore provides the use of an additive for high-temperature oxidation protection with a concentration gradient in front.
- an FGM as thermal insulation material can adjust the setting depending on the requirement a special microstructure in the field of ceramics, so that good thermal insulation with the lowest possible porosity and resistance to temperature changes and stability against shrinkage caused by re-sintering.
- the metal-ceramic gradient material does not consist of a layer system, but of a penetration structure in which the ceramic phase interpenetrates to the metallic base material via an additive (here: ZrSiO 4 ).
- This additive not only brings about a dramatic reduction in oxygen diffusion, but preferably also ensures that the metallic surface is covered with thermodynamically stable oxides and silicates.
- the additive preferably has low thermal expansion and good adhesion to both the ceramic and the metal. It is preferably thermally stable and preferably does not form low-melting eutectics with the ceramic, in particular a ZrO 2 layer, or with the metal or its corrosion products. This improves the long-term oxidation resistance compared to classic layer systems comprising a metallic base material, a metal-based adhesive layer and a ceramic, as well as the prevention of flaking.
- the additive preferably forms a stable network strongly branching microcracks and closed porosity. This results in a low modulus of elasticity module of the ceramic-rich Areas and a reduction in thermal conductivity. Both are for use at high temperatures desired effects, since they have a direct influence on the thermal cycling resistance and the thermal insulation properties of the system have. This is both an improvement in Oxidation stability as well as system stability and this given even with improved thermal insulation properties. The has an effect when used in a hot gas Product z. B. a gas turbine, directly on the Availability (reliability) and the possible turbine inlet temperatures, i.e. on cooling air consumption or increase of efficiency.
- the metallic base material is preferably a chromium-nickel alloy, for example NiCr8020, and the ceramic comprises zirconium oxide, which can be partially stabilized, for example, with yttrium (8Y-ZrO 2 ).
- This FGM e.g. 8Y-ZrO 2 -NiCr8020-FGM
- This additive enables the FGM to be highly stable to oxidation.
- the chemical effect means a reduction in the oxygen ion conductivity of the ceramic, in particular 8Y-ZrO 2 , as well as a high solvency for Cr oxide and other bunoxides, which result from the oxidation of the metals.
- the additive preferably has good wetting and adhesion both to metals and to the ceramic, in particular ZrO 2 .
- the additive therefore preferably causes the grain boundaries of the ceramic, in particular the 8Y-ZrO 2 , to be covered with precipitates, e.g. B. of SiO 2 . cause.
- a reduction in the oxygen conductivity of the ceramic is preferably achieved even at high temperatures of over 800 ° C.
- the metal oxidation can also be slowed down if the evaporation of the oxides formed and an oxygen understoichiometry, which could lead to the formation of volatile suboxides, are prevented by the additive.
- a silicate or phosphate, stannate, titanate is also suitable for this purpose, which prevents the evaporation by dissolving the resulting oxides and ensures good coverage of the metal surfaces with thermodynamically stable oxides and silicates.
- thermomechanical properties is preferably an additive that is targeted Introduction of highly branching microcracks and / or the Formation of metastable, closed pores enables the one hand the elasticity module of the ceramic-rich zones of the Reduce FGM and on the other hand in the metal-containing zones the local tensile stresses around the metal grains.
- the porosity and the crack network also have an effect a deterioration in heat conduction.
- the use of unstabilized ZrO 2 as a microcrack trigger is due to the t ⁇ m conversion z. B. effective with densely sintered ceramic materials.
- the additive is preferably ceramic itself and has a very low linear thermal expansion and / or a strong anisotropy of thermal expansion. Good adhesion to both the actual ceramic, e.g. B. to 8Y-ZrO 2 , as well as to the metal, the additive is able to absorb tensile stresses between these two components of an FGM or to reduce them by microcracking.
- the density and extent of the crack network can be influenced by the grain size and the volume fraction of the additive.
- the additive is also thermally stable and preferably does not form extremely low-melting eutectics with the oxidation products or the components of the FGM.
- ZrSiO 4 is preferably suitable as an additive.
- Other possible additives are mullite, zirconyl or aluminum phosphates, glass ceramics. With such an additive, the advantages of the FGM in terms of increasing the thickness of the WDS can be exploited by providing protection against oxidation at the metal-ceramic interface in the dimensions of the structural components, that is to say the metal-ceramic agglomerates and grains also has the required microstructure features.
- the metal-ceramic gradient material is preferably used to produce a product which is exposed to a hot, possibly aggressive gas, such as a component of a gas turbine, an oven or the like.
- a hot, possibly aggressive gas such as a component of a gas turbine, an oven or the like.
- gradient systems containing ZrSiO 4 can be used as materials for thermal protection systems in the hot gas path of gas turbines. These can preferably be heat shields of simple geometries. Apart from this, use as thermal protection systems is possible in all areas where use under high temperatures in oxidizing gases is required.
- the metallic-ceramic functional gradient materials are manufactured by powder metallurgy. 8Y-ZrO2-NiCr8020-FGM, 8Y-ZrO2-ZrSiO4-NiCr8020-FGM, (as well as 8Y-ZrO 2 -ZrPO 4 -NiCr8020-FGM and with the same ceramic composition - steel, -TiAl- or NiAl -Intermetallic compounds, -Mo and all material combinations with Al 2 O 3 ceramic instead of ZrO 2 ).
- the FGM green bodies consist of 8Y-ZrO 2 powder (d50 0.3 ⁇ m, commercially available from Tosoh) and ⁇ 25 ⁇ m NiCr8020 powder (Ampersint, commercially available from HC Starck GmbH, Germany) and ZrSiO4 powder (commercial, 99%).
- 8Y-ZrO 2 powder d50 0.3 ⁇ m, commercially available from Tosoh
- NiCr8020 powder Ampersint, commercially available from HC Starck GmbH, Germany
- ZrSiO4 powder commercial, 99%.
- silicone molds dry samples of up to 12 individual mixtures, the volume fraction of which ceramic (including 20% ZrSiO 4 ) increases from layer to layer, are used to form cylindrical samples measuring ⁇ 35 mm x 15 mm.
- the ZrSiO 4 is first ground with the metal powder in a planetary mill and then mixed with the corresponding amount of 8Y-ZrO 2 .
- 1a shows a linear gradient course between the metal and ZrO 2 .
- the gradient course between the metallic component and the assembled ceramic is also linear, but the proportion of the individual ceramic components (ZrO 2 and ZrSiO 4 ) changes non-linearly.
- the portion of ZrSiO 4 has a high portion with a maximum in the area of a small portion of metal and drops to zero towards larger portions of the metal before the portion of ZrO 2 drops to zero.
- Other gradients for example linear, exponential or periodic, are also possible.
- the concentration gradient of the additive can be essentially continuous.
- the concentration gradient of the additive extends from the ceramic-rich zone to the metal-rich zone, the concentration of the additive increasing from approx. 5 vol.% In the metal-rich zone to approx. 30 vol.% And in the ceramic-rich zone up to approx. 5 Vol.% Decreases.
- the grain size distribution of the additive can be bimodal, in particular has a fine grain fraction with a grain diameter of less than 10 ⁇ m and a coarse grain fraction with a grain diameter greater than 100 ⁇ m.
- the additive can form pores, in particular with a diameter between 0.1 ⁇ m and 5 ⁇ m, preferably between 1.0 ⁇ m and 2.0 ⁇ m, reduced by the thermal conductivity and hinders re-sintering and the thermal shock resistance is increased.
- the silicone matrices loaded with powder are evacuated and pressed isostatically at 300 MPa.
- the sintering is carried out without pressure by means of microwaves, by means of a combined conventional microwave heating or by conventional heating in a resistance-heated oven.
- Ar, Ar-H 2 , H 2 , N 2 , He or combinations of these gases are used as sintering gases. Sintering takes place depending on the material composition and sintering activity of the powders and mixtures used, with or without a temperature gradient (for example T (ZrO 2 )> T (NiCr)).
- the hardness, linear thermal expansion, the modulus of elasticity and the mechanical losses were determined with the aid of Vickers impressions, with a TMA and a DMA.
- the slow crack propagation was examined on notched 3 PB samples (SENB).
- the structure is characterized by REM-EDX.
- the linear thermal expansion and the thermal conductivity of the 8Y-ZrO 2 -ZrSiO 4 -NiCr8020-FGM were estimated by means of limit value curves from tabulated data of the pure substances and the structural features.
- the oxidation tests up to 1160 ° C on the ceramic side - metal side only cooled by radiation - done in one Tube furnace. Try at 1200 ° C on the ceramic side with active Chilled metal side were rebuilt in a high temperature furnace performed with Kanthal heating elements. With these The metal side was subjected to oxidation tests by blowing cooled to 500 ° C with compressed air. The temperature of the ceramic side was measured with a thermocouple on the side. The temperature in the furnace room was approx. 1340 - 1380 ° C.
- a brittle fracture occurs with a deflection of approximately 180 ⁇ m, although the load deflection characteristic already kinks significantly with a deflection of about 120 ⁇ m.
- the FGM undergoes a slight sintering.
- Fig. 7a, b thermalally etched
- Fig. 8a, b after 300h / 1200 ° C
- the crack opening of the isotropic crack network which starts from the large ZrSiO 4 grains, increases.
- the 8Y-ZrO 2 agglomerates show compression and grain growth, from ⁇ 2 ⁇ m to approx. 5 ⁇ m.
- the ceramic zones of the FGM are extremely fine-grained compared to sprayed thermal bond coats (TBC).
- the mechanical resistance of the FGM is supported by small ZrSiO 4 bridge grains, as shown in Fig. 9. These bridges are not degraded by oxidation and can be found between both ceramic and metal grains, as shown in Fig. 10.
- the large ZrSiO 4 grains (50-100 ⁇ m) cause a mesh-like spreading of the shrinkage cracks, as a result of which the 8Y-ZrO 2 agglomerates sintered together maintain good clinging.
- ZrSiO 4 acts as an oxidation inhibitor, with segregation of SiO 2 at the grain boundaries of densely sintered 8Y-ZrSiO 4, among other things, significantly reducing the oxygen ion conductivity of ZrO 2 .
- Crystalline ZrSiO 4 should have a similar effect.
- the thermal expansion of ZrSiO 4 is significantly lower than that of 8Y-ZrO 2 (4.5 • 10 -6 Wm -1 K -1 compared to 8-10 • 10 -6 Wm -1 K -1 ) and NiCr8020, which means that the Cooling down from sintering temperature creates a network of fine cracks.
- the adhesion between metal and ZrSiO 4 and 8Y-ZrO 2 and ZrSiO 4 is better than between metal and oxide, so that the cracks run in ZrSiO 4 and therefore there is no direct contact between the metal and the oxygen-containing atmosphere.
- ZrSiO 4 has good solubility for other oxides and is thermodynamically stable up to 1650 ° C. Any oxidation products could thus have an improved adhesion to the metal and protect the metal against further oxidative attack.
- disintegrated ZrSiO 4 is likely to reassociate to crystalline ZrSiO 4 at 1200 ° C., so that the formation of pores can be prevented by evaporation of SiO or other volatile oxides.
- the crack network should significantly reduce the thermal conductivity and the modulus of elasticity of the ceramic-rich zones of the FGM, which leads to improved resistance to temperature changes (TWB).
- TWB temperature changes
- the type of introduction of ZrSiO 4 is therefore important for the delicacy of the ZrSiO 4 distribution and the resulting crack network.
- ZrSiO 4 may not be stable under the conditions of plasma spraying and may dissociate in t-ZrO 2 and SiO 2 glass depending on the cooling conditions. SiO frequently escapes. The decomposition takes place above 1650 ° C. A reassociation takes place within a few hours at temperatures between 1200-1400 ° C. The regression of ZrSiO 4 is accelerated by ZrO 2 and by grinding the PDZ (Plasma Dissociated Zircon). Severe cracking may occur during reassociation. By sintering at 1700 ° C in air, ZrSiO 4 can also be obtained as a single-phase ceramic.
- a powder metallurgical production route is therefore advantageous for 8Y-ZrO 2 -ZrSiO 4 -NiCr8020- FGM. There is then a uniform distribution of SiO 2 throughout the FGM, which takes place, among other things, through dissociation-reassociation of the silicate.
- the time and the oxygen-containing atmosphere are jointly responsible for the re-sintering.
- 7a, 8a show an FGM sample of the same composition and microstructure as the samples used for oxidation, but which was thermally etched to make the grain boundaries visible in the ceramic area, in air at 1459 ° C./0.5 h. Compared to the unetched sample, the porosity and agglomerate structure and grain size (approx. 2 ⁇ m) are comparable. Due to the sintering of the FGM under an Ar / H 2 atmosphere, the ZrO 2 obtained is not optimally compressed since the oxygen is missing in the sintering atmosphere.
- ZrSiO 4 or comparable additives such as phosphates etc. is not limited to a gradient material of the type 8Y-ZrO 2 -NiCr8020.
- ZrSiO 4 can also be used as oxidation protection against the active oxidation of porous SiC.
- the SiC-ZrO 2 composite material is preferably sintered without pressure when a sufficiently thick ZrSiO 4 layer is formed around the SiC grains. Sintering is also carried out using microwaves. Because of the porosity of the body, the weight changes (increase and decrease) are related to the specific surface. In this case, no increase in the specific surface area was found, which should occur in a competition reaction between passive and active oxidation.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Claims (8)
- Matériau à gradient de type métal-céramique, en particulier pour un bouclier thermique ou une aube de turbine à gaz, comportant un matériau métallique de base, une céramique et un additif choisis dans l'ensemble comprenant le silicate de zirconium, la mullite, le phosphate de zirconyle, le phosphate d'AI, la vitrocéramique, pour une protection contre l'oxydation à haute température, la concentration du matériau métallique de base diminuant d'une zone riche en métal à une zone riche en céramique, la concentration de l'additif présentant un gradient de concentration, la concentration de l'additif présentant un maximum, la concentration de l'additif augmentant d'environ 5 % en volume dans la zone riche en métal à environ 30 % en volume et diminuant dans la zone riche en céramique jusqu'à environ 5 % en volume.
- Matériau à gradient selon la revendication 1, caractérisé en ce que le gradient de concentration de l'additif est essentiellement continu.
- Matériau à gradient selon la revendication 1 ou 2, caractérisé en ce que le gradient de concentration de l'additif s'étend depuis la zone riche en céramique jusqu'à la zone riche en métal.
- Matériau à gradient selon l'une des revendications précédentes, caractérisé en ce que la distribution de la grosseur des grains de l'additif est bimodale, avec en particulier une fraction à fine granulométrie ayant un diamètre des grains inférieur à 10 µm et une fraction à grosse granulométrie ayant un diamètre des grains supérieur à 100 µm.
- Matériau à gradient selon l'une des revendications précédentes, caractérisé par des pores formés par l'additif, ayant en particulier un diamètre de 0,1 à 5 µm et de préférence de 1,0 à 2,0 µm.
- Matériau à gradient selon l'une des revendications précédentes, caractérisé en ce que le matériau métallique de base est un alliage nickelchrome, et la céramique comporte de l'oxyde de zirconium.
- Produit, en particulier aube pour turbine à gaz ou élément de protection thermique d'une turbine à gaz ayant un matériau à gradient comportant un matériau métallique de base, une céramique et un additif choisi dans l'ensemble comprenant le silicate de zirconium, la mullite, le phosphate de zirconyle, le phosphate d'AI, la vitrocéramique, pour une protection contre l'oxydation à haute température, la concentration du matériau métallique de base diminuant d'une zone riche en métal à une zone riche en céramique, la concentration de l'additif présentant un gradient de concentration, la concentration de l'additif présentant un maximum, la concentration de l'additif augmentant d'environ 5 % en volume dans la zone riche en métal à environ 30 % en volume et diminuant dans la zone céramique jusqu'à environ 5 % en volume.
- Procédé de fabrication d'un matériau à gradient, dans lequel on verse l'une sur l'autre pour obtenir une masse déversée des poudres constituées chacune d'un mélange différent d'un matériau métallique de base et d'une céramique, et avec un additif choisi dans l'ensemble comprenant le silicate de zirconium, la mullite, le phosphate de zirconyle, le phosphate d'AI, la vitrocéramique, puis on comprime la masse déversée et on la fritte pour obtenir le matériau à gradient, la concentration du matériau métallique de base diminuant d'une zone riche en métal à une zone riche en céramique, et la concentration de l'additif présentant un gradient de concentration, la concentration de l'additif présentant un maximum, la concentration de l'additif augmentant d'environ 5 % en volume dans la zone riche en métal à environ 30 % en volume et diminuant dans la zone riche en céramique jusqu'à environ 5 % en volume.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19722390 | 1997-05-28 | ||
DE19722390 | 1997-05-28 | ||
PCT/DE1998/001465 WO1998053940A1 (fr) | 1997-05-28 | 1998-05-28 | Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0984839A1 EP0984839A1 (fr) | 2000-03-15 |
EP0984839B1 true EP0984839B1 (fr) | 2002-03-20 |
Family
ID=7830783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98934822A Expired - Lifetime EP0984839B1 (fr) | 1997-05-28 | 1998-05-28 | Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique |
Country Status (5)
Country | Link |
---|---|
US (1) | US6322897B1 (fr) |
EP (1) | EP0984839B1 (fr) |
JP (1) | JP2002502462A (fr) |
DE (1) | DE59803436D1 (fr) |
WO (1) | WO1998053940A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014113083A1 (de) | 2014-09-11 | 2016-03-17 | Endress + Hauser Gmbh + Co. Kg | Drucksensor |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6087022A (en) * | 1996-06-05 | 2000-07-11 | Caterpillar Inc. | Component having a functionally graded material coating for improved performance |
NL1016112C2 (nl) * | 2000-09-06 | 2002-03-07 | Tno | Lichaam van gradueel hardmetaal zoals stansgereedschap en werkwijze voor het produceren daarvan. |
EP1199520A1 (fr) * | 2000-10-16 | 2002-04-24 | Siemens Aktiengesellschaft | Bouclier thermique pour parois de chambre de combustion, chambre de combustion et turbine à gaz |
GB0027357D0 (en) | 2000-11-09 | 2000-12-27 | Bradford Particle Design Plc | Particle formation methods and their products |
DE10150948C1 (de) * | 2001-10-11 | 2003-05-28 | Fraunhofer Ges Forschung | Verfahren zur Herstellung gesinterter poröser Körper |
GB0216562D0 (en) | 2002-04-25 | 2002-08-28 | Bradford Particle Design Ltd | Particulate materials |
US9339459B2 (en) | 2003-04-24 | 2016-05-17 | Nektar Therapeutics | Particulate materials |
ITMI20022676A1 (it) * | 2002-12-18 | 2004-06-19 | Nuovo Pignone Spa | Metodo di fabbricazione per ottenere componenti ad alte |
US6916529B2 (en) * | 2003-01-09 | 2005-07-12 | General Electric Company | High temperature, oxidation-resistant abradable coatings containing microballoons and method for applying same |
US7118114B2 (en) * | 2003-05-15 | 2006-10-10 | Woodward Governor Company | Dynamic sealing arrangement for movable shaft |
US7090894B2 (en) * | 2004-02-10 | 2006-08-15 | General Electric Company | Bondcoat for the application of TBC's and wear coatings to oxide ceramic matrix |
US7279230B1 (en) * | 2004-02-23 | 2007-10-09 | United States Of America As Represented By The Secretary Of The Air Force | Hybrid composite materials |
CA2653270C (fr) * | 2006-05-26 | 2013-10-01 | Praxair Technology, Inc. | Revetements de pointes de pale a l'aide de poudres de grande purete |
SE537113C2 (sv) * | 2010-03-01 | 2015-01-20 | Westinghouse Electric Sweden | Bränslekomponent och förfarande för framställning av en bränslekomponent |
SE536814C2 (sv) * | 2010-03-01 | 2014-09-16 | Westinghouse Electric Sweden | Neutronabsorberande komponent och förfarande för framställning av en neutronabsorberande komponent |
SE536815C2 (sv) * | 2010-03-01 | 2014-09-16 | Westinghouse Electric Sweden | Reaktorkomponent |
DE102010028535A1 (de) * | 2010-05-04 | 2011-11-10 | Robert Bosch Gmbh | Thermoelektrische Module |
US8347636B2 (en) | 2010-09-24 | 2013-01-08 | General Electric Company | Turbomachine including a ceramic matrix composite (CMC) bridge |
WO2012054784A1 (fr) | 2010-10-20 | 2012-04-26 | Li-Cor, Inc. | Imagerie de fluorescence à colorants à base de cyanine substituée |
US9808030B2 (en) | 2011-02-11 | 2017-11-07 | Grain Processing Corporation | Salt composition |
US9388086B2 (en) | 2011-03-04 | 2016-07-12 | Raytheon Company | Method of fabricating optical ceramics containing compositionally tailored regions in three dimension |
WO2012133800A1 (fr) * | 2011-03-31 | 2012-10-04 | 京セラ株式会社 | Élément chauffant en céramique |
EP2781616A1 (fr) | 2013-03-19 | 2014-09-24 | ALSTOM Technology Ltd | Procédé de revêtement d'un composant d'une turbomachine et composant revêtu pour une turbomachine |
US20150030871A1 (en) | 2013-07-26 | 2015-01-29 | Gerald J. Bruck | Functionally graded thermal barrier coating system |
EP2839905A1 (fr) * | 2013-08-22 | 2015-02-25 | Astrium GmbH | Fabrication de composants à partir de pièces fabriquées à partir de différents matériaux, notamment de composants de transport spatial tels que des chambres de combustion pour propulseurs |
US10197323B1 (en) * | 2015-01-14 | 2019-02-05 | Lockheed Martin Corporation | Emissive composite materials and methods for use thereof |
US10208955B2 (en) * | 2015-04-07 | 2019-02-19 | United Technologies Corporation | Ceramic and metal engine components with gradient transition from metal to ceramic |
US9683901B2 (en) | 2015-07-16 | 2017-06-20 | Siemens Energy, Inc. | Acoustic measurement system incorporating a temperature controlled waveguide |
US10031032B2 (en) | 2015-07-16 | 2018-07-24 | Siemens Energy, Inc. | Acoustic measurement system incorporating a hybrid waveguide providing thermal isolation |
US20190072365A1 (en) * | 2017-09-05 | 2019-03-07 | The Boeing Company | Compositionally-graded metal-ceramic structure and method for manufacturing the same |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
US11969796B2 (en) * | 2020-01-03 | 2024-04-30 | The Boeing Company | Tuned multilayered material systems and methods for manufacturing |
DE102023203166A1 (de) | 2022-09-20 | 2024-03-21 | Siemens Healthcare Gmbh | Vakuumgehäuse mit einem urgeformten Werkstoffverbund |
CN116872573B (zh) * | 2023-06-02 | 2024-03-19 | 华中科技大学 | 一种隔热承载一体化材料及其制备方法与应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321311A (en) | 1980-01-07 | 1982-03-23 | United Technologies Corporation | Columnar grain ceramic thermal barrier coatings |
SE442487B (sv) * | 1984-05-24 | 1986-01-13 | Hoeganaes Ab | Forfarande for framstellning av en sintrad kompositkropp |
JPS62156938A (ja) * | 1985-12-28 | 1987-07-11 | 航空宇宙技術研究所 | 傾斜機能材料の製造方法 |
WO1993024672A1 (fr) * | 1992-05-29 | 1993-12-09 | United Technologies Corporation | Revetement en ceramique formant une barriere thermique pour pieces soumises a des cycles thermiques rapides |
US5577424A (en) * | 1993-02-05 | 1996-11-26 | Sumitomo Electric Industries, Ltd. | Nitrogen-containing sintered hard alloy |
CN1074689C (zh) * | 1996-04-04 | 2001-11-14 | E·O·帕通电子焊接研究院电子束工艺国际中心 | 基体上制备有跨厚度化学组成和结构梯度并陶瓷外层方法 |
US5912087A (en) * | 1997-08-04 | 1999-06-15 | General Electric Company | Graded bond coat for a thermal barrier coating system |
-
1998
- 1998-05-28 WO PCT/DE1998/001465 patent/WO1998053940A1/fr active IP Right Grant
- 1998-05-28 DE DE59803436T patent/DE59803436D1/de not_active Expired - Fee Related
- 1998-05-28 JP JP50010099A patent/JP2002502462A/ja active Pending
- 1998-05-28 EP EP98934822A patent/EP0984839B1/fr not_active Expired - Lifetime
-
1999
- 1999-11-29 US US09/450,400 patent/US6322897B1/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
J.Am. Ceram. Soc. 79(1996)12, S. 3003-3010 * |
MPR (1996)12, S. 28-32 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014113083A1 (de) | 2014-09-11 | 2016-03-17 | Endress + Hauser Gmbh + Co. Kg | Drucksensor |
Also Published As
Publication number | Publication date |
---|---|
EP0984839A1 (fr) | 2000-03-15 |
US6322897B1 (en) | 2001-11-27 |
JP2002502462A (ja) | 2002-01-22 |
DE59803436D1 (de) | 2002-04-25 |
WO1998053940A1 (fr) | 1998-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0984839B1 (fr) | Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique | |
EP0944746B1 (fr) | Produit pouvant etre expose a un gaz chaud, pourvu d'une couche calorifuge, et son procede de production | |
EP1029115B1 (fr) | Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique | |
DE69719701T2 (de) | Wärmesperrschichtsysteme und -materialien | |
EP1386017B1 (fr) | Couche calorifuge a base de la2 zr2 o7 pour hautes temperatures | |
DE3638658C1 (de) | Waermedaemmende Auskleidung fuer eine Gasturbine | |
DE112007000923B4 (de) | Verbundwerkstoff aus Metall und Keramik, Verfahren zu dessen Herstellung, seine Verwendung sowie Energieabsorptionsbauteil | |
EP1373685B1 (fr) | Aube de turbine a gaz | |
DE2744700A1 (de) | Sinterwerkstoff | |
DE3421922C2 (de) | Verbundgebilde aus einem keramischen Material und einer Aluminiumlegierung | |
DE4433514C2 (de) | Produkt mit einer selbstregenerierenden Schutzschicht zur Verwendung in einer reaktiven Umgebung | |
EP3030528A1 (fr) | Poudre d'émaillage, composant métallique possédant une portion de surface dotée d'un revêtement émaillé et procédé de fabrication d'un tel composant métallique | |
DE69903858T2 (de) | Metallkeramischer schichtverbundwerkstoff | |
EP1334220A1 (fr) | Materiau pour substrats soumis a des contraintes thermiques | |
EP3472366A1 (fr) | Couches d'isolation thermique autorégénératrices et procédé de production de celles-ci | |
DE102004053959B4 (de) | Keramikmaterial und seine Verwendung sowie Verfahren zur Herstellung von Beschichtungen mit dem Keramikmaterial | |
WO1999028274A1 (fr) | PROCEDE PERMETTANT DE FABRIQUER UN COMPOSANT A PARTIR D'UN MATERIAU COMPOSITE Al2O3/ALUMINURE DE TITANE | |
DE10200803A1 (de) | Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht | |
DE102006030235B4 (de) | Verfahren zum Schutz von Heißgaskorrosion von keramischen Oberflächen oder eines Körpers, hochtemperaturbeständiger Körper und deren Verwendung | |
EP1900708B1 (fr) | Matériau calorifuge doté d'une résistance à la température cyclique élevée | |
EP3960329A1 (fr) | Composant de technique de fonderie pourvu de structure de couche de protection contre la corrosion | |
DE19516790A1 (de) | Keramisches Bauteil | |
EP1464716B1 (fr) | Alliage quasi-cristalline de Ti-Cr-Al-Si-O et son utilisation comme revêtement | |
WO1991018847A1 (fr) | Corps ceramique composite, son procede de production et son utilisation | |
DE10342580A1 (de) | Flüssigphasenverdichtete Siliciumcarbidkeramiken mit hoher Oxidationsbeständigkeit an feuchter Atmosphäre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 20000621 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REF | Corresponds to: |
Ref document number: 59803436 Country of ref document: DE Date of ref document: 20020425 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020515 Year of fee payment: 5 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020812 Year of fee payment: 5 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20021223 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030513 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030531 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040525 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20041201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090527 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090515 Year of fee payment: 12 Ref country code: DE Payment date: 20090720 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100528 |