EP0982976B1 - Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques - Google Patents
Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques Download PDFInfo
- Publication number
- EP0982976B1 EP0982976B1 EP99401981A EP99401981A EP0982976B1 EP 0982976 B1 EP0982976 B1 EP 0982976B1 EP 99401981 A EP99401981 A EP 99401981A EP 99401981 A EP99401981 A EP 99401981A EP 0982976 B1 EP0982976 B1 EP 0982976B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma thruster
- thruster according
- pole piece
- channel
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H1/00—Using plasma to produce a reactive propulsive thrust
- F03H1/0037—Electrostatic ion thrusters
- F03H1/0062—Electrostatic ion thrusters grid-less with an applied magnetic field
- F03H1/0075—Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H—PRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03H1/00—Using plasma to produce a reactive propulsive thrust
- F03H1/0006—Details applicable to different types of plasma thrusters
- F03H1/0031—Thermal management, heating or cooling parts of the thruster
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/54—Plasma accelerators
Definitions
- the subject of the present invention is a drift plasma thruster closed electron suitable for high thermal loads, including a main annular ionization and acceleration channel delimited by pieces of insulating material and open at its downstream end, at least one hollow cathode disposed outside the main annular channel on the side from the downstream part thereof, an annular anode concentric with the channel main annular and arranged at a distance from the open downstream end, a pipe and distributor to supply ionizable gas to the anode annular, and a magnetic circuit for creating a magnetic field in the main annular canal.
- a propellant of this type comprises a cathode 2, a distributor gas 1 forming an anode, an annular acceleration channel ( discharge) 3 delimited by internal walls 3a and external 3b, and a circuit magnetic comprising an external pole 6, an internal pole 7, a core central 12, a magnetic jacket 8, an internal coil 9 and a external coil 10.
- the annular acceleration channel 3 is located between a screen internal magnetic 4 and an external magnetic screen 5, which allow increase the radial magnetic field gradient in channel 3.
- the channel 3 is connected to the external pole piece 6 by a metal piece cylindrical 17.
- channel 3 is surrounded not only by magnetic screens 4, 5 but also by screens thermal radiation 13 towards the axis and the central coil as well as outwards.
- the only effective possibility of cooling by radiation is located at the downstream end of channel 3, open towards space. This results in a higher channel temperature than if the channel 3 had the possibility of radiating through its external lateral face.
- FIG. 14 is a view in elevation and in axial half-section of such a structure.
- the plasma thruster depicted in Figure 14 includes a channel main ring of ionization and acceleration 24 delimited by parts 22 of insulating material and open at its downstream end 25a, at least one hollow cathode 40 and an annular anode 25 concentric with the channel main 24.
- Des means 31 to 33, 34 to 38 for creating a magnetic field in the main channel 24 are suitable for producing in this main channel 24 an essentially radial magnetic field which has a gradient with maximum induction at the downstream end 25a of channel 24.
- These means of creating a magnetic field include essentially an external coil 31, surrounded by a shield magnetic, two external 34 and internal 35 pole pieces, a first axial coil 33, a second axial coil 32 surrounded by a shield magnetic and a magnetic yoke 36.
- the stilling chamber 23 which can radiate freely towards space, helps to cool channel 24.
- the external coil toric 31 is opposed to the cooling of the channel 24 in the most thermally charged.
- the first internal coil 33 must provide a very high number of ampere-turns for its volume allocated by the magnetic screen associated with the second axial coil 32. It this results in a relatively high temperature.
- Closed electron drift plasma thrusters currently known which can also be referred to as propellants with stationary plasma, are mainly used for North-South control geostationary satellites.
- closed electron drift plasma thrusters cannot have a power level high enough to allow primary propulsion missions such as an orbit transfer geostationary or a planetary mission, since the relationship between the surface and the dissipated power is lower for a large propellant, which means that the temperature of a large plasma thruster of the type known increases exaggeratedly, or that the mass of this large known plasma thruster becomes excessive if the heat flux is kept constant.
- the invention aims to remedy the aforementioned drawbacks and to to optimize the operation and evacuation of heat flow in closed electron drift plasma thrusters so that allow more powerful plasma thrusters important than that of closed drift plasma thrusters of currently known electrons.
- the invention thus aims to propose a new configuration of closed electron drift propellant whose thermal design and structural is improved compared to plasma thrusters already known.
- the presence of a plurality of external magnetic cores connecting the first and second external pole pieces allows to leave pass much of the radiation from the inner wall of the ceramic channel.
- the conical shape of the second pole piece external increases the volume available for the coils external and increase the solid angle of radiation.
- the conical shape of the second internal pole piece also increases the volume allocated to the first internal coil while ensuring channeling of the magnetic flux ensuring a shielding function for the second internal coil.
- the plasma thruster comprises a plurality of first radial arms connecting the axial magnetic core to the upstream part of the second internal conical pole piece and a plurality second radial arms extending the first radial arms and connected to said plurality of external magnetic cores as well as to the upstream part of the second conical outer pole piece.
- the number of the first radial arms and that of the second arms radial is equal to that of external magnetic cores.
- a small air gap can be left between the first radial arms and the second radial arms, so as to complete the effect of the second internal coil.
- the plasma thruster includes a structural base of good material conductor of heat which constitutes a mechanical support of the propellant, separate from the axial magnetic core, from the first and second external pole pieces and first and second pole pieces internal, and which ensures the conduction cooling of the first internal coil, second internal coil and external coils.
- the structural base is covered on its side faces of an emissive coating.
- the main annular channel present in a axial plane a frustoconical section at its upstream part and cylindrical at its downstream part and the annular anode present in a plane axial a profiled section in the shape of a truncated cone.
- the parts delimiting the channel annular ring define a monobloc annular channel and are connected to the base by a single support provided with expansion slots, said parts being made integral with the single support by screwing.
- the main channel annular has a downstream end delimited by two shaped parts ring made of insulating ceramic and each connected to the base by an individual support, and the upstream part of the main channel annular is materialized by the walls of the anode which is insulated electrically supports by vacuum. Individual supports are coaxial.
- the ratio between the axial length of parts in insulating ceramic and the width of the channel is between 0.25 and 0.5 and the distance between the walls of the anode and the supports of the workpieces insulating ceramic is between 0.8 mm and 5 mm.
- the anode is fixed relative to the base using a small column massive and flexible blades.
- Milling can be provided in the base to receive the second radial arms, the gas supply pipe ionizable provided with an insulator, a line of polarization of the anode and supply wires for external coils and first and second internal coils.
- the circuit magnetic can essentially perform the function of channeling the magnetic flux while the solid base in good conductive material heat, for example an anodized light alloy on its lateral face, or in carbon-carbon composite material coated on its face downstream of a copper deposit, ensures both cooling by conduction of the coils then evacuation of heat losses by radiation and the structural behavior of the propellant.
- good conductive material heat for example an anodized light alloy on its lateral face, or in carbon-carbon composite material coated on its face downstream of a copper deposit
- Plasma thruster includes sheets of material super-insulation placed upstream of the main annular channel and sheets of super-insulating material interposed between the annular channel main and first internal coil.
- the tip of the cone of the second internal conical pole piece upstream is directed downstream.
- the tip of the cone of the second conical upstream internal pole piece is directed upstream.
- the plasma thruster includes a common support to support the first internal coil, the second internal conical pole piece and the second internal coil fixed by brazing or diffusion welding on this common support, and this common support is assembled by screwing on the base with interposition of a thermally conductive sheet.
- the first internal coil is cooled by a heat pipe connected to the internal part of the common support and located in a recess in the magnetic core.
- the first internal coil is cooled by a plurality of heat pipes connected to the upstream part of the common support and passing through holes in the second pole piece internal.
- the second external conical pole piece is openwork.
- the first and second external pole pieces are connected mechanically by a non-magnetic structural part openwork.
- the external magnetic cores external coils are inclined at an angle ⁇ relative to the axis of the propellant so that the axis of these magnetic cores external is substantially perpendicular to the bisector of the angle formed by the generators of the cones of the first and second parts external polar.
- the annular anode comprises a dispenser with internal baffles and having a flat plate downstream delimiting with the walls of the main channel two diaphragms annulars, a back plate fitted on the walls of the main channel to limit gas leaks upstream and from cylindrical walls fitted with ionizable gas injection holes in the main channel.
- the closed electron drift plasma thruster of Figures 1 and 2 includes a main annular ionization and acceleration channel 124 delimited by insulating walls 122.
- the channel 124 is open to its downstream end 125a and has a section in an axial plane frustoconical at its upstream part and cylindrical at its downstream part.
- a hollow cathode 140 is arranged outside the channel main 124 and advantageously presents with the axis X'X of the propellant an angle ⁇ between 15 and 45 °.
- An annular anode 125 has a cross-section in an axial plane profiled in the shape of a truncated cone open downstream.
- the anode 125 may have slits increasing the surface of contact with plasma. Holes 120 for injecting an ionizable gas from a distributor 127 of ionizable gas are formed in the wall of the anode 125.
- the distributor 127 is supplied with ionizable gas by a line 126.
- the discharge between the anode 125 and the cathode 140 is controlled by a magnetic field distribution determined by a circuit magnetic.
- the magnetic circuit comprises a first, essentially radial, external pole piece 134.
- This external pole piece 134 may be planar or may have a low conicity defining an angle e 1 of between + 15 ° and -15 ° relative to the outlet plane S (FIG. 1).
- the external pole piece 134 is connected by a plurality of magnetic cores 137 surrounded by external coils 131 to a second external pole piece 311 of conical shape more marked than the possible slight conical shape of the first external pole piece 134.
- the half angle e 2 of the cone of the external pole piece 311 can be between 25 and 60 °.
- the external pole piece 311 is advantageously perforated in line with the passages of the external coils 131 in order to reduce the radial size and between the coils in order to improve the cooling by radiation of the ceramic constituting the walls 122 of the channel 124.
- a first internal pole piece 135 which is essentially radial may be planar or may have a low taper defining a angle il between -15 ° and + 15 ° relative to the exit plane S.
- the first internal pole piece 135 is extended by a central axial magnetic core 138 surrounded by a first internal coil 133.
- the axial magnetic core 138 is itself extended to the upstream part of the propellant by a plurality of radial arms 352 connected to a second internal conical pole piece 351 having a half angle i 2 from 15 to 45 ° with the axis X'X of the propellant.
- the tip of the cone of the second internal pole piece 351 is directed downstream.
- downstream means an area close to the exit plane S and the open end 125a of the channel 124 while the term upstream designates a zone remote from the exit plane S going in the direction of the closed part of the annular channel 124 equipped with the anode 125 and the distributor 127 for supplying ionizable gas.
- a second internal magnetic coil 132 is placed in the upstream part of the second internal pole piece 351, outside of it.
- the magnetic field of the second internal coil 132 is channeled by radial arms 136 placed in the extension of the arms radials 352, as well as by the external pole piece 311 and the pole piece internal 351.
- a small air gap for example of the order of 1 to 4 mm, can be formed between the radial arms 352 and the radial arms 136 for complete the effect of the second internal coil 132.
- the axial magnetic core 138 is connected to the magnetic cores 137 by the plurality of magnetic arms 136 placed in the extension of the radial arms 352.
- the radial arms 352, and the arms radial 136 are equal in number to that of the external coils 131 arranged on the external magnetic cores 137.
- the coils 133, 131, 132 are directly cooled by conduction on a base structural 175 in heat conductive material, this 175 base also serving as a mechanical support for the propellant.
- Base 175 is advantageously provided on its lateral faces with an emissive coating improving the radiation of heat losses to space.
- the base 175 can be made of light alloy, anodized on its lateral face so as to increase its emissivity.
- the base 175 can also be made of composite material carbon-carbon coated on its downstream face with a metallic deposit such as copper so as to maximize the emissivity of the side faces and to minimize the absorbency of the downstream face subjected to radiation from the ceramic from the canal.
- the magnetic circuit comprises four external coils 131, two of which are visible in FIG. 2.
- a number of external coils could be used 131 different from four.
- the external coils 131 and their magnetic cores 137 create a magnetic field channeled in part by the downstream 134 and upstream 311 external pole pieces.
- the rest of the field magnetic is taken up by the arms 136 grouped around the nucleus axial magnetic 138 itself provided with the downstream internal pole piece 135, of the first axial coil 133, of the second conical pole piece upstream 351 and the second coil 132.
- the magnetic flux supplied by the coil 132 is channeled by the pole piece 351, the core 138, the radial arms 136 and the pole piece 311, so this coil 132 does not need shielding particular magnetic.
- the coil 133, the pole piece 351 and the coil 132 can be made integral with the common support 332 by brazing or welding by diffusion.
- the support 332 can itself be assembled by screws on the base 175.
- a conductive sheet is interposed between the base 175 and the support 332 to reduce the thermal contact resistance.
- the inner bore of the pole piece 351 is adjusted to the core axial magnetic 138 so as to allow the assembly of the assembly of the two internal coils 133, 132 and of the pole piece 351 on the kernel 138.
- the structure 122 in ceramic material delimiting the annular channel 124 is held opposite of the outer pole piece by a metal support.
- the structure 122 of ceramic material delimiting the channel 124 is fixed to the rear (i.e. upstream) of the thruster by a metal support 162, so that the latter does not obstruct the radiation from the downstream part of part 122 which is free to radiate towards space.
- Some boron nitride ceramics are difficult to braze on metals. This problem can be eliminated by adopting a mechanical fixing.
- a thread with a semi-circular profile can be provided both in room 122 of ceramic material and in the support 162. It is then possible to slide a metallic wire 163 between the two pieces 122, 162 so as to secure these. Such a arrangement allows the ceramic part 122 to be placed on the support 162 previously mounted on the elements of the magnetic circuit.
- the metal support 162 can be provided with a rib 165 and notches 164 defining lamellae which compensate metal-ceramic differential expansion while ensuring tightening elastic.
- Figure 11 shows yet another alternative embodiment of the channel 124.
- the piece of material ceramic 122 is subdivided into two separate rings 122a, 122b mounted on separate supports 162a, 162b.
- the ratio between the length of the ceramic pieces 122a, 122b in shape of rings and the width of channel 124 can be typically understood between 0.25 and 0.5.
- the rest of channel 124 is materialized by the walls of the anode 125.
- the electrical insulation between the anode 125 and the two supports 162a, 162b is provided by the vacuum.
- the distance between the walls of the anode 125 and the supports 162a, 162b constitutes a reduced clearance included between 0.8 and 5 mm.
- the anode 125 illustrated in FIG. 11 is supported by insulators such as 151 fixed on the massive base 175 which constitutes a natural electrostatic screen for insulators such as 151.
- insulators 151 are extended by flexible blades 115a which protect from differential expansion efforts.
- external coils 131 the number of which can for example be between 3 and 8, provided with magnetic cores 137 arranged between the external pole pieces 134, 311, allows pass much of the radiation from the outer wall of the annular channel 124.
- the conical shape of the second pole piece external 311 increases the volume available for the coils 131 and increase the solid angle of radiation.
- the room tapered outer fleece 311 is also advantageously perforated to increase the view factor of ceramic pieces 122, so that we obtain a very compact and very ventilated magnetic circuit which allows the radiation of the entire lateral face of channel 124.
- the base 175 plays a role essential structural.
- This massive 175 base has a frequency high resonance. The same must apply to the pole pieces.
- the upstream external pole piece 311 is perforated, its resonant frequency becomes relatively low.
- the essentially planar shape of the downstream external pole piece 134 also gives a frequency of low resonance.
- a non-magnetic connection piece 341 (FIG. 9), of form essentially conical between the two pole pieces 311 and 134.
- the part 341 must itself be strongly openwork, but this does not affect its resonant frequency because the lattice-like elements that make it up, basically work in traction and compression.
- FIG. 10 we improves the relationship between the geometry of the pole pieces 134, 311 and the volume allocated to the external coils by tilting the axis of the latter.
- the axis of the external coils 131 forms an angle ⁇ with the axis X'X of the propellant, so that the axis of an external coil 131 is substantially perpendicular to the bisector of the angle u formed by the generators of the cones of the two pole pieces 134, 311, a coil external 131 may have a larger volume, and the bulk of base 175 can be reduced.
- the coils 133, 132 and pole piece 351 it is entirely possible to combine the implementation of inclined external coils 131 and a pole piece tapered external taper 311.
- the base 175 plays an essential role in conduction cooling, common support 332, coils 133, 132 and pole piece 351, which is itself advantageously provided with notches as shown in FIG. 2.
- Cooling of coil 133 can however be improved by the implementation of a or more heat pipes.
- a heat pipe 433 arranged in a recess 381 of the axial magnetic core 138, but without contact with the latter.
- Heat pipe 433 can be welded or brazed on the internal face of the internal support 332 of the coil 133, so as to make this support 332 insulated.
- FIG 3 there is shown a coil 133 cooled by several heat pipes 433a, 433b connected to the upstream part of the support of the coil 133, and passing through openings in the room upstream internal polar 351.
- sheets of super-insulating material forming a screen 130 are arranged in upstream of annular channel 124 and sheets of super-insulating material 301 forming a screen are also interposed between channel 124 and the first internal coil 133.
- the super-insulating screens 130, 301 eliminate thus most of the flux radiated through channel 124 towards the coils internal 133, 132 and 175 base.
- the parts 122 delimiting the channel 124 are free to radiate towards space by the angle solid between pole pieces 134 and 311.
- a screen electrostatic 302 is arranged upstream of the anode 125 to ensure the compliance with Paschen's law (vacuum insulation) while contributing to hold in place the sheets of super-insulating material 130. Furthermore, the external face of the external support 162a can receive a coating emissive to improve the cooling of the ceramic parts 122a, 122b.
- Figure 12 shows an example of a particular embodiment a plasma thruster according to the invention, in which the tip of the cone of the second upstream internal pole piece 351 is directed upstream.
- This arrangement is more particularly adapted to the thrusters of large diameter, but can also be used with a channel acceleration 124 delimited by a monobloc piece 122 of material ceramic, as shown in figure 12, that with a channel acceleration 124 delimited by two separate parts 122a, 122b in ceramic material, as already described with reference to FIG. 11.
- the various elements functionally equivalent to the elements already described with reference to the figures already described, in particular the figures 1 and 2 have the same reference numbers and will not be described in new.
- recesses or millings 751 are provided in the base 175 to receive the second radial arms 136, a line 145 of polarization of the anode 125 and supply wires 313, 323, 333 of the external coils 131 and first and second internal coils 133, 132 ( Figures 7 and 12).
- a recess can also be provided in the base 175 to receive the ionizable gas supply line 126 provided with an insulator 300 (shown for example in Figure 4).
- the external coils 131 as well as the first and second internal coils 133, 132 are made from a wire shielded with mineral insulation.
- the wires of the different turns of the coils 131, 132, 133 are joined by a solder metal with high conductivity thermal.
- the external coils 131, as well as the first and second internal coils 133, 132 are connected in series and electrically connected to cathode 140 and to a negative pole of the electrical supply of the anode-cathode discharge.
- annular buffer chamber 23 which has a dimension in the radial direction at least equal to that of the main annular channel 24 and extends upstream thereof beyond the zone in which the annular anode 25 is placed.
- a more compact arrangement is obtained by implementing a main annular channel 124 which has a cross-section in an axial plane frustoconical in its upstream part and cylindrical in its downstream part.
- the annular anode 125 then has in an axial plane a section shaped like a truncated cone.
- FIG. 4 There is shown in Figure 4 a possible embodiment for the annular anode 125.
- a series of circular slots 117 made in the massive part 116 of the anode 125 ensures a protection against contamination.
- the ionizable gas is introduced by a rigid pipe 126 in a distribution chamber 127 which communicates with the circular slots 117 by injection holes 120.
- An insulator 300 is interposed between the line 126 and the anode 125 which is connected by an electrical link 145 to the positive pole of the power supply anode-cathode discharge.
- FIG. 4 A possible solution has been shown in Figure 4.
- the anode 125 is supported at the same time by a massive baluster 114 with circular section and by at least two balusters 115 thinned into flexible blades, which achieves a satisfactory compromise from the point of view of dilations differential.
- FIG. 5 represents another possible embodiment for an anode 125 arranged in the frustoconical part of a channel acceleration 124.
- the annular anode 125 comprises a distributor 127 provided with internal baffles 271 and comprising a plate downstream plane 272 delimiting with the walls of the main channel 124 two annular diaphragms 273.
- a back plate 274 is fitted on the walls 122 of main channel 124 to limit gas leaks to upstream. Cylindrical walls provided with holes 120 allow injection ionizable gas in the main channel 124.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
Description
caractérisé en ce que le circuit magnétique comprend :
- une première pièce polaire externe essentiellement radiale,
- une deuxième pièce polaire externe conique,
- une première pièce polaire interne essentiellement radiale,
- une deuxième pièce polaire interne conique,
- une pluralité de noyaux magnétiques externes entourés de bobines externes pour relier entre elles les première et deuxième pièces polaires externes,
- un noyau magnétique axial entouré d'une première bobine interne et relié à la première pièce polaire interne, et
- une deuxième bobine interne placée en amont des bobines externes.
- la figure 1 est une vue en demi-coupe axiale, d'un premier mode particulier de réalisation d'un propulseur à plasma à dérive fermée d'électrons selon l'invention,
- la figure 2 est une vue en perspective, avec coupe partielle, du propulseur à plasma de la figure 1,
- la figure 3 est une vue en perspective de la partie centrale d'un propulseur à plasma selon l'invention, équipé de caloducs,
- la figure 4 est une vue en perspective avec coupe axiale, d'une anode pouvant être incorporée dans un propulseur à plasma selon l'invention,
- la figure 5 est une vue partielle en perspective avec demi-coupe axiale, d'une autre anode de structure simplifiée pouvant être incorporée dans un propulseur à plasma selon l'invention,
- la figure 6 est une vue en élévation avec demi-coupe d'un support de canal annulaire selon un mode particulier de réalisation d'un propulseur à plasma selon l'invention,
- la figure 7 est une vue éclatée de la partie centrale d'un propulseur à plasma selon l'invention,
- la figure 8 est une section montrant un caloduc associé à une première bobine interne d'un propulseur à plasma selon l'invention,
- la figure 9 est une vue en perspective montrant un renfort structural entre les pièces polaires externes du circuit magnétique d'un propulseur à plasma selon l'invention,
- la figure 10 est une vue schématique partielle montrant un mode particulier de réalisation d'un propulseur à plasma équipé de bobines externes inclinées, selon une variante de réalisation de l'invention,
- la figure 11 est une vue partielle en demi-coupe axiale montrant une anode formant une partie du corps d'un canal d'accélération selon un mode particulier de réalisation d'un propulseur à plasma selon l'invention,
- la figure 12 est une vue en demi-coupe axiale d'un autre mode particulier de réalisation d'un propulseur à plasma à dérive fermée d'électrons selon l'invention,
- la figure 13 est une vue en demi-coupe axiale d'un premier exemple de propulseur à plasma à dérive fermée d'électrons selon l'art antérieur, et
- la figure 14 est une vue en élévation et en demi-coupe axiale d'un deuxième exemple de propulseur à plasma à dérive fermée d'électrons selon l'art antérieur.
Claims (28)
- Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques, comprenant un canal annulaire principal d'ionisation et d'accélération (124) délimité par des pièces (122) en matériau isolant et ouvert à son extrémité aval (125a), au moins une cathode creuse (140) disposée à l'extérieur du canal annulaire principal (124) du côté de la partie aval de celui-ci, une anode annulaire (125) concentrique au canal annulaire principal (124) et disposée à distance de l'extrémité aval ouverte (125a), une canalisation (126) et un distributeur (127) pour alimenter en gaz ionisable l'anode annulaire (125), et un circuit magnétique de création d'un champ magnétique dans le canal annulaire principal (124),
caractérisé en ce que le circuit magnétique comprend :une première pièce polaire externe essentiellement radiale (134),une deuxième pièce polaire externe conique (311),une première pièce polaire interne essentiellement radiale (135),une deuxième pièce polaire interne conique (351),une pluralité de noyaux magnétiques externes (137) entourés de bobines externes (131) pour relier entre elles les première et deuxième pièces polaires externes (134, 311),un noyau magnétique axial (138) entouré d'une première bobine interne (133) et relié à la première pièce polaire interne (135), etune deuxième bobine interne (132) placée en amont des bobines externes (131). - Propulseur à plasma selon la revendication 1, caractérisé en ce qu'il comprend une pluralité de premiers bras radiaux (352) reliant le noyau magnétique axial (138) à la partie amont de la deuxième pièce polaire interne conique (351) et une pluralité de deuxièmes bras radiaux (136) prolongeant les premiers bras radiaux (352) et raccordés à ladite pluralité de noyaux magnétiques externes ainsi qu'à la partie amont de la deuxième pièce polaire externe conique (311 ).
- Propulseur à plasma selon la revendication 2, caractérisé en ce que le nombre des premiers bras radiaux (352) et celui des deuxièmes bras radiaux (136) est égal à celui des noyaux magnétiques externes (137).
- Propulseur à plasma selon la revendication 2 ou la revendication 3, caractérisé en ce qu'un faible entrefer est ménagé entre les premiers bras radiaux (352) et les deuxièmes bras radiaux (136).
- Propulseur à plasma selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le canal annulaire principal (124) présente dans un plan axial une section de forme tronconique à sa partie amont et cylindrique à sa partie aval et en ce que l'anode annulaire (125) présente dans un plan axial une section profilée en forme de tronc de cône.
- Propulseur à plasma selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend une embase structurale (175) en matériau bon conducteur de la chaleur qui constitue un support mécanique du propulseur, distinct du noyau magnétique axial (138), des première et deuxième pièces polaires externes (134, 311) et des première et deuxième pièces polaires internes (135, 351), et qui assure le refroidissement par conduction de la première bobine interne (133), de la deuxième bobine interne (132) et des bobines externes (131).
- Propulseur à plasma selon la revendication 6, caractérisé en ce que l'embase structurale (175) est recouverte sur ses faces latérales d'un revêtement émissif.
- Propulseur à plasma selon la revendication 6 ou la revendication 7, caractérisé en ce que les pièces (122) délimitant le canal annulaire principal (124) définissent un canal annulaire monobloc, sont reliées à l'embase (175) par un support unique (162) muni de fentes de dilatation (164) et sont rendues solidaires du support unique par vissage.
- Propulseur à plasma selon la revendication 6 ou la revendication 7, caractérisé en ce que le canal principal annulaire (124) présente une extrémité aval délimitée par deux pièces (122a, 122b) en forme d'anneau constituées de céramique isolante et reliées chacune à l'embase (175) par un support individuel (162a, 162b), et en ce que la partie amont du canal principal annulaire (124) est matérialisée par les parois de l'anode (125) qui est isolée électriquement des supports (162) par le vide.
- Propulseur à plasma selon la revendication 9, caractérisé en que le rapport entre la longueur axiale des pièces (122) en céramique isolante et la largeur du canal (124) est compris entre 0,25 et 0,5 et en ce que la distance entre les parois de l'anode (125) et les supports (162) des pièces (122) en céramique isolante est comprise entre 0,8 mm et 5 mm.
- Propulseur à plasma selon la revendication 9 ou la revendication 10, caractérisé en que l'anode (125) est fixée par rapport à l'embase (175) à l'aide d'une colonnette massive (114, 151) et de lames flexibles (115).
- Propulseur à plasma selon la revendication 2 et l'une quelconque des revendications 6 à 11, caractérisé en que des fraisages (751) sont ménagés dans l'embase (175) pour recevoir les deuxièmes bras radiaux (136), la canalisation (126) d'alimentation en gaz ionisable munie d'un isolateur (300), une ligne (145) de polarisation de l'anode (125) et des fils d'alimentation des bobines externes (131) et des première et deuxième bobines internes (133, 132).
- Propulseur à plasma selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comprend des feuilles de matériau superisolant (130) disposées en amont du canal annulaire principal (124) et des feuilles de matériau superisolant (301) interposées entre le canal annulaire principal (124) et la première bobine interne (133).
- Propulseur à plasma selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la pointe du cône de la deuxième pièce polaire interne amont conique (351) est dirigée vers l'aval.
- Propulseur à plasma selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la pointe du cône de la deuxième pièce polaire interne amont conique (351) est dirigée vers l'amont.
- Propulseur à plasma selon l'une quelconque des revendications 6 à 12, caractérisé en ce qu'il comprend un support commun (332) pour supporter la première bobine interne (133), la deuxième pièce polaire interne conique (351) et la deuxième bobine interne (132) fixées par brasage ou soudure par diffusion sur ce support commun (332), et en ce que ce support commun (332) est assemblé sur l'embase (175) au moyen de vis avec interposition d'une feuille conductrice thermiquement.
- Propulseur à plasma selon la revendication 16, caractérisé en ce que la première bobine interne (133) est refroidie par un caloduc (433) relié à la partie interne du support commun (332) et situé dans un évidement (381) du noyau magnétique (38).
- Propulseur à plasma selon la revendication 16, caractérisé en ce que la première bobine interne (133) est refroidie par une pluralité de caloducs (433a, 433b) reliés à la partie amont du support commun (332) et passant à travers des orifices ménagés dans la deuxième pièce polaire interne (351).
- Propulseur à plasma selon l'une quelconque des revendications 1 à 18, caractérisé en ce que la deuxième pièce polaire externe conique (311 ) est ajourée.
- Propulseur à plasma selon la revendication 19, caractérisé en ce que les première et deuxième pièces polaires externes (134, 311) sont reliées mécaniquement par une pièce structurale de liaison amagnétique ajourée (341).
- Propulseur à plasma selon l'une quelconque des revendications 1 à 20, caractérisé en ce que les noyaux magnétiques externes (137) des bobines externes (131) sont inclinés d'un angle β par rapport à l'axe du propulseur de telle manière que l'axe de ces noyaux magnétiques externes (137) soit sensiblement perpendiculaire à la bissectrice de l'angle formé par les génératrices des cônes des première et deuxième pièces polaires externes (34, 311).
- Propulseur à plasma selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'anode annulaire (125) comprend un distributeur (127) muni de chicanes internes (271) et comportant une plaque plane aval (272) délimitant avec les parois du canal principal (124) deux diaphragmes annulaires (273), une plaque arrière (274) ajustée sur les parois du canal principal (124) pour limiter les fuites de gaz vers l'amont et des parois cylindriques munies de trous (120) d'injection de gaz ionisable dans le canal principal (124).
- Propulseur à plasma selon l'une quelconque des revendications 6 à 12, caractérisé en ce que l'embase (175) est réalisée en alliage léger anodisé sur sa face latérale.
- Propulseur à plasma selon l'une quelconque des revendications 6 à 12, caractérisé en ce que l'embase (175) est réalisée en matériau composite carbone-carbone revêtu sur sa face aval d'un dépôt de cuivre.
- Propulseur à plasma selon l'une quelconque des revendications 1 à 24, caractérisé en ce que les bobines externes (131) ainsi que les première et deuxième bobines internes (133, 132) sont réalisées à partir d'un fil blindé à isolant minéral et en ce que les fils des différentes spires des bobines (131, 133, 132) sont solidarisés par un métal de brasure à forte conductivité thermique.
- Propulseur à plasma selon l'une quelconque des revendications 1 à 25, caractérisé en ce que les bobines externes (131) ainsi que les première et deuxième bobines internes (133, 132) sont montées en série et reliées électriquement à la cathode (140) et un pôle négatif de l'alimentation électrique de la décharge anode-cathode.
- Propulseur à plasma selon l'une quelconque des revendications 1 à 26, caractérisé en ce que la deuxième pièce polaire externe conique (311) présente un demi-angle de cône compris entre 25 et 60°.
- Propulseur à plasma selon l'une quelconque des revendications 1 à 27, caractérisé en ce que la deuxième pièce polaire interne conique (351) présente avec l'axe du propulseur un demi-angle compris entre 15 et 45°.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9810674 | 1998-08-25 | ||
FR9810674A FR2782884B1 (fr) | 1998-08-25 | 1998-08-25 | Propulseur a plasma a derive fermee d'electrons adapte a de fortes charges thermiques |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0982976A1 EP0982976A1 (fr) | 2000-03-01 |
EP0982976B1 true EP0982976B1 (fr) | 2004-02-25 |
Family
ID=9529859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99401981A Expired - Lifetime EP0982976B1 (fr) | 1998-08-25 | 1999-08-04 | Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques |
Country Status (9)
Country | Link |
---|---|
US (1) | US6281622B1 (fr) |
EP (1) | EP0982976B1 (fr) |
JP (1) | JP4347461B2 (fr) |
CA (1) | CA2280479C (fr) |
DE (1) | DE69914987T2 (fr) |
FR (1) | FR2782884B1 (fr) |
IL (1) | IL131182A (fr) |
RU (1) | RU2219371C2 (fr) |
UA (1) | UA57770C2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2211056A1 (fr) | 2009-01-27 | 2010-07-28 | Snecma | Propulseur à dérive fermée d'électrons |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10014033C2 (de) * | 2000-03-22 | 2002-01-24 | Thomson Tubes Electroniques Gm | Plasma-Beschleuniger-Anordnung |
US6448721B2 (en) * | 2000-04-14 | 2002-09-10 | General Plasma Technologies Llc | Cylindrical geometry hall thruster |
FR2842261A1 (fr) * | 2002-07-09 | 2004-01-16 | Centre Nat Etd Spatiales | Propulseur plasmique a effet hall |
US7461502B2 (en) | 2003-03-20 | 2008-12-09 | Elwing Llc | Spacecraft thruster |
JP2006147449A (ja) * | 2004-11-24 | 2006-06-08 | Japan Aerospace Exploration Agency | 高周波放電プラズマ生成型二段式ホール効果プラズマ加速器 |
US7624566B1 (en) | 2005-01-18 | 2009-12-01 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Magnetic circuit for hall effect plasma accelerator |
US7500350B1 (en) | 2005-01-28 | 2009-03-10 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Elimination of lifetime limiting mechanism of hall thrusters |
JP4816004B2 (ja) * | 2005-10-28 | 2011-11-16 | 三菱電機株式会社 | ホールスラスタ及び宇宙航行体 |
JP4816179B2 (ja) * | 2006-03-20 | 2011-11-16 | 三菱電機株式会社 | ホールスラスタ |
FR2919755B1 (fr) * | 2007-08-02 | 2017-05-05 | Centre Nat De La Rech Scient (C N R S ) | Dispositif d'ejection d'electrons a effet hall |
DE102007062150A1 (de) * | 2007-09-14 | 2009-04-02 | Thales Electron Devices Gmbh | Vorrichtung zur Ableitung von Verlustwärme sowie Ionenbeschleunigeranordnung und Wanderfeldröhrenanordnung mit einer Wärmeleitanordnung |
FR2950114B1 (fr) | 2009-09-17 | 2012-07-06 | Snecma | Moteur a effet hall avec refroidissement de la ceramique interne |
EP2543881B1 (fr) * | 2010-03-01 | 2019-09-18 | Mitsubishi Electric Corporation | Système comprenant un propulseur à effet hall, véhicule cosmonautique et procédé de propulsion |
RU2447625C2 (ru) * | 2010-03-22 | 2012-04-10 | Федеральное государственное унитарное предприятие "Опытное конструкторское бюро "Факел" | Плазменный ускоритель с замкнутым дрейфом электронов |
FR2976029B1 (fr) | 2011-05-30 | 2016-03-11 | Snecma | Propulseur a effet hall |
FR2979956B1 (fr) | 2011-09-09 | 2013-09-27 | Snecma | Systeme de propulsion electrique a propulseurs a plasma stationnaire |
US8575565B2 (en) * | 2011-10-10 | 2013-11-05 | Guardian Industries Corp. | Ion source apparatus and methods of using the same |
RU2504683C1 (ru) * | 2012-06-22 | 2014-01-20 | Михаил Никитович Алексенко | Способ управления вектором тяги реактивного двигателя летательного аппарата |
RU2527798C2 (ru) * | 2012-11-28 | 2014-09-10 | Михаил Никитович Алексенко | Устройство управления вектором тяги реактивного двигателя |
RU2523427C1 (ru) * | 2012-12-28 | 2014-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) | Способ формирования компактного плазмоида |
RU2524571C1 (ru) * | 2013-01-22 | 2014-07-27 | Объединенный Институт Ядерных Исследований | Индукционный циклический ускоритель электронов |
RU2527898C1 (ru) * | 2013-04-17 | 2014-09-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет радиотехники, электроники и автоматики" | Стационарный плазменный двигатель малой мощности |
US10273944B1 (en) | 2013-11-08 | 2019-04-30 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Propellant distributor for a thruster |
RU2568825C2 (ru) * | 2014-03-24 | 2015-11-20 | Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ") | Электрореактивная двигательная установка |
US9642239B2 (en) | 2015-04-17 | 2017-05-02 | Fermi Research Alliance, Llc | Conduction cooling systems for linear accelerator cavities |
RU2620442C2 (ru) * | 2015-05-29 | 2017-05-25 | Открытое акционерное общество "ОКБ-Планета" ОАО "ОКБ-Планета" | Источник ионов |
CN105163475A (zh) * | 2015-08-03 | 2015-12-16 | 兰州空间技术物理研究所 | 一种离子推力器放电室双向气体供给装置 |
US20180255632A1 (en) * | 2015-12-10 | 2018-09-06 | Halliburton Energy Services, Inc. | Downhole field ionization neutron generator |
RU167315U1 (ru) * | 2016-10-11 | 2017-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет" (МИРЭА) | Стационарный плазменный двигатель малой мощности |
CN107795445B (zh) * | 2017-09-01 | 2019-08-23 | 兰州空间技术物理研究所 | 一种环形磁钢环切场离子推力器结构和主支撑环 |
US10932355B2 (en) | 2017-09-26 | 2021-02-23 | Jefferson Science Associates, Llc | High-current conduction cooled superconducting radio-frequency cryomodule |
CN109779863B (zh) * | 2019-01-31 | 2020-06-23 | 哈尔滨工业大学 | 一种霍尔推力器安装支架 |
RU2724375C1 (ru) * | 2019-12-24 | 2020-06-23 | Николай Борисович Болотин | Ионный ракетный двигатель и способ его работы |
RU2735043C1 (ru) * | 2020-05-20 | 2020-10-27 | Николай Борисович Болотин | Плазменно-ионный ракетный двигатель |
CN112017840B (zh) * | 2020-08-11 | 2021-12-07 | 北京控制工程研究所 | 一种低功率霍尔推力器用磁屏及固定结构 |
WO2023038611A1 (fr) * | 2021-09-13 | 2023-03-16 | Частное Акционерное Общество "Фэд" | Moteur ionique-plasmique stationnaire |
CN114352831A (zh) * | 2021-12-21 | 2022-04-15 | 上海空间推进研究所 | 气体分配器 |
WO2023244857A1 (fr) * | 2022-06-17 | 2023-12-21 | The Regents Of The University Of Michigan | Propulseur à effet hall |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69207720T2 (de) * | 1991-11-04 | 1996-05-30 | Fakel Enterprise | Plasmabeschleuniger mit geschlossener Elektronenlaufbahn |
FR2693770B1 (fr) * | 1992-07-15 | 1994-10-14 | Europ Propulsion | Moteur à plasma à dérive fermée d'électrons. |
US5763989A (en) * | 1995-03-16 | 1998-06-09 | Front Range Fakel, Inc. | Closed drift ion source with improved magnetic field |
FR2743191B1 (fr) * | 1995-12-29 | 1998-03-27 | Europ Propulsion | Source d'ions a derive fermee d'electrons |
JP2001506337A (ja) * | 1997-05-23 | 2001-05-15 | ソシエテ ナシオナル デチュード エ ドゥ コンストリュクシオン ドゥ モター ダビアシオン“エスエヌウセエムア” | 磁気流体力学的推進手段のためのイオンビーム集中化装置および該装置を装着した磁気流体力学的推進手段 |
US6208080B1 (en) * | 1998-06-05 | 2001-03-27 | Primex Aerospace Company | Magnetic flux shaping in ion accelerators with closed electron drift |
-
1998
- 1998-08-25 FR FR9810674A patent/FR2782884B1/fr not_active Expired - Lifetime
-
1999
- 1999-07-30 IL IL13118299A patent/IL131182A/xx not_active IP Right Cessation
- 1999-08-04 DE DE69914987T patent/DE69914987T2/de not_active Expired - Lifetime
- 1999-08-04 EP EP99401981A patent/EP0982976B1/fr not_active Expired - Lifetime
- 1999-08-18 CA CA002280479A patent/CA2280479C/fr not_active Expired - Lifetime
- 1999-08-23 US US09/378,795 patent/US6281622B1/en not_active Expired - Lifetime
- 1999-08-24 RU RU99118517/06A patent/RU2219371C2/ru active
- 1999-08-24 JP JP23720299A patent/JP4347461B2/ja not_active Expired - Lifetime
- 1999-08-25 UA UA99084808A patent/UA57770C2/uk unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2211056A1 (fr) | 2009-01-27 | 2010-07-28 | Snecma | Propulseur à dérive fermée d'électrons |
Also Published As
Publication number | Publication date |
---|---|
IL131182A (en) | 2003-06-24 |
JP2000073937A (ja) | 2000-03-07 |
EP0982976A1 (fr) | 2000-03-01 |
FR2782884B1 (fr) | 2000-11-24 |
CA2280479A1 (fr) | 2000-02-25 |
RU2219371C2 (ru) | 2003-12-20 |
US6281622B1 (en) | 2001-08-28 |
FR2782884A1 (fr) | 2000-03-03 |
UA57770C2 (uk) | 2003-07-15 |
IL131182A0 (en) | 2001-01-28 |
JP4347461B2 (ja) | 2009-10-21 |
DE69914987T2 (de) | 2004-12-16 |
DE69914987D1 (de) | 2004-04-01 |
CA2280479C (fr) | 2007-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0982976B1 (fr) | Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques | |
EP0650557B1 (fr) | Moteur a plasma a derive fermee d'electrons | |
EP2433002B1 (fr) | Propulseur a plasma a effet hall | |
EP0781921B1 (fr) | Source d'ions à dérive fermée d'électrons | |
EP0662195B1 (fr) | Moteur a plasma de longueur reduite a derive fermee d'electrons | |
EP2211056B1 (fr) | Propulseur à dérive fermée d'électrons | |
EP0914560B1 (fr) | PROPULSEUR A PLASMA avec DISPOSITIF DE CONCENTRATION DE FAISCEAU D'IONS | |
EP2179435B1 (fr) | Dispositif d'ejection d'ions a effet hall | |
EP0995345B1 (fr) | Dispositif d'excitation d'un gaz par plasma d'onde de surface | |
FR3018316A1 (fr) | Propulseur plasmique a effet hall | |
FR2764730A1 (fr) | Canon electronique pour tube electronique multifaisceau et tube electronique multifaisceau equipe de ce canon | |
EP2079096B1 (fr) | Source d'ions à décharge électrique par filament | |
EP0048690B1 (fr) | Tube à gaz à décharge pour émission laser de puissance à très haute stabilité | |
EP1292963A1 (fr) | Cathode a rendement thermique optimise | |
FR3032325A1 (fr) | Propulseur a effet hall et engin spatial comprenant un tel propulseur | |
WO2009083534A1 (fr) | Refroidissement d'un tube générateur de rayons x | |
CA2139581A1 (fr) | Moteur a plasma a derive fermee d'electrons | |
FR2467480A1 (fr) | Appareil a hyperfrequences du type magnetron | |
CA2179654A1 (fr) | Torche a plasma a bobine electromagnetique de deplacement du pied d'arc independante et integree | |
FR2775118A1 (fr) | Grille pour tube electronique a faisceau axial a performances ameliorees | |
FR2669771A1 (fr) | Cathode amelioree pour tubes hyperfrequence. | |
FR3132411A1 (fr) | Torche de coupage plasma munie d'un empilement de consommables | |
FR2721790A3 (fr) | Torche à plasma modulaire. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000627 |
|
AKX | Designation fees paid |
Free format text: DE GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69914987 Country of ref document: DE Date of ref document: 20040401 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040617 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041126 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120517 AND 20120523 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69914987 Country of ref document: DE Representative=s name: KLUNKER, SCHMITT-NILSON, HIRSCH, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69914987 Country of ref document: DE Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE Effective date: 20121005 Ref country code: DE Ref legal event code: R082 Ref document number: 69914987 Country of ref document: DE Representative=s name: KLUNKER, SCHMITT-NILSON, HIRSCH, DE Effective date: 20121005 Ref country code: DE Ref legal event code: R081 Ref document number: 69914987 Country of ref document: DE Owner name: SNECMA, FR Free format text: FORMER OWNER: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION "S.N.E.C.M.A.", PARIS, FR Effective date: 20121005 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69914987 Country of ref document: DE Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180719 Year of fee payment: 20 Ref country code: IT Payment date: 20180719 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180720 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69914987 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20190803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20190803 |