EP0980264A2 - Säugetierzelltransduktion zur verwendung in gentherapie - Google Patents
Säugetierzelltransduktion zur verwendung in gentherapieInfo
- Publication number
- EP0980264A2 EP0980264A2 EP98930718A EP98930718A EP0980264A2 EP 0980264 A2 EP0980264 A2 EP 0980264A2 EP 98930718 A EP98930718 A EP 98930718A EP 98930718 A EP98930718 A EP 98930718A EP 0980264 A2 EP0980264 A2 EP 0980264A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cells
- vector
- bone marrow
- transduction
- optionally
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010361 transduction Methods 0.000 title claims abstract description 117
- 230000026683 transduction Effects 0.000 title claims abstract description 117
- 210000004962 mammalian cell Anatomy 0.000 title claims abstract description 17
- 238000001415 gene therapy Methods 0.000 title claims description 18
- 210000004027 cell Anatomy 0.000 claims abstract description 179
- 239000013598 vector Substances 0.000 claims abstract description 148
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 59
- 230000001177 retroviral effect Effects 0.000 claims abstract description 55
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 40
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 40
- 239000010452 phosphate Substances 0.000 claims abstract description 40
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 claims abstract description 39
- 241000713813 Gibbon ape leukemia virus Species 0.000 claims abstract description 38
- 210000004271 bone marrow stromal cell Anatomy 0.000 claims abstract description 33
- 239000006228 supernatant Substances 0.000 claims abstract description 22
- 239000002299 complementary DNA Substances 0.000 claims abstract description 21
- 102000057593 human F8 Human genes 0.000 claims abstract description 21
- 208000009292 Hemophilia A Diseases 0.000 claims abstract description 19
- 230000002463 transducing effect Effects 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 102100026735 Coagulation factor VIII Human genes 0.000 claims abstract description 16
- 201000003542 Factor VIII deficiency Diseases 0.000 claims abstract description 16
- 239000000654 additive Substances 0.000 claims abstract description 15
- 239000006143 cell culture medium Substances 0.000 claims abstract description 15
- 229960000900 human factor viii Drugs 0.000 claims abstract description 9
- 108010054218 Factor VIII Proteins 0.000 claims description 130
- 102000001690 Factor VIII Human genes 0.000 claims description 126
- 229960000301 factor viii Drugs 0.000 claims description 124
- 210000002536 stromal cell Anatomy 0.000 claims description 96
- 238000005119 centrifugation Methods 0.000 claims description 25
- 235000003642 hunger Nutrition 0.000 claims description 20
- 230000037351 starvation Effects 0.000 claims description 20
- 230000001225 therapeutic effect Effects 0.000 claims description 19
- 210000001185 bone marrow Anatomy 0.000 claims description 14
- 241000713869 Moloney murine leukemia virus Species 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 13
- 239000002243 precursor Substances 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- 238000011282 treatment Methods 0.000 claims description 9
- 210000004369 blood Anatomy 0.000 claims description 8
- 239000008280 blood Substances 0.000 claims description 8
- 230000023555 blood coagulation Effects 0.000 claims description 8
- 210000000130 stem cell Anatomy 0.000 claims description 8
- 238000002560 therapeutic procedure Methods 0.000 claims description 8
- 210000002889 endothelial cell Anatomy 0.000 claims description 7
- 210000002950 fibroblast Anatomy 0.000 claims description 7
- 210000002798 bone marrow cell Anatomy 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 206010053567 Coagulopathies Diseases 0.000 claims description 5
- 108010014173 Factor X Proteins 0.000 claims description 5
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 5
- 208000015294 blood coagulation disease Diseases 0.000 claims description 5
- 230000009852 coagulant defect Effects 0.000 claims description 5
- 229960004222 factor ix Drugs 0.000 claims description 5
- 229940012426 factor x Drugs 0.000 claims description 5
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 5
- 241000714266 Bovine leukemia virus Species 0.000 claims description 4
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 4
- 108010076282 Factor IX Proteins 0.000 claims description 4
- 241000713311 Simian immunodeficiency virus Species 0.000 claims description 4
- 108010000499 Thromboplastin Proteins 0.000 claims description 4
- 102000002262 Thromboplastin Human genes 0.000 claims description 4
- 210000001612 chondrocyte Anatomy 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 108010047303 von Willebrand Factor Proteins 0.000 claims description 4
- 208000031220 Hemophilia Diseases 0.000 claims description 3
- 208000032843 Hemorrhage Diseases 0.000 claims description 3
- 206010031243 Osteogenesis imperfecta Diseases 0.000 claims description 3
- 102100029797 Sodium-dependent phosphate transporter 1 Human genes 0.000 claims description 3
- 230000000740 bleeding effect Effects 0.000 claims description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 3
- 208000035475 disorder Diseases 0.000 claims description 3
- 230000000998 lymphohematopoietic effect Effects 0.000 claims description 3
- 102100023804 Coagulation factor VII Human genes 0.000 claims description 2
- 108010014172 Factor V Proteins 0.000 claims description 2
- 108010023321 Factor VII Proteins 0.000 claims description 2
- 108010080865 Factor XII Proteins 0.000 claims description 2
- 102000000429 Factor XII Human genes 0.000 claims description 2
- 108010071289 Factor XIII Proteins 0.000 claims description 2
- 241000713673 Human foamy virus Species 0.000 claims description 2
- 241000713666 Lentivirus Species 0.000 claims description 2
- 241000713883 Myeloproliferative sarcoma virus Species 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 208000001132 Osteoporosis Diseases 0.000 claims description 2
- 241000714474 Rous sarcoma virus Species 0.000 claims description 2
- 206010003246 arthritis Diseases 0.000 claims description 2
- 201000011510 cancer Diseases 0.000 claims description 2
- 208000017568 chondrodysplasia Diseases 0.000 claims description 2
- 210000002919 epithelial cell Anatomy 0.000 claims description 2
- 229940012413 factor vii Drugs 0.000 claims description 2
- 229940012444 factor xiii Drugs 0.000 claims description 2
- 210000003494 hepatocyte Anatomy 0.000 claims description 2
- 210000002510 keratinocyte Anatomy 0.000 claims description 2
- 210000003098 myoblast Anatomy 0.000 claims description 2
- 210000000107 myocyte Anatomy 0.000 claims description 2
- 210000000963 osteoblast Anatomy 0.000 claims description 2
- 230000007502 viral entry Effects 0.000 claims description 2
- 102100036537 von Willebrand factor Human genes 0.000 claims 2
- 229960001134 von willebrand factor Drugs 0.000 claims 2
- 101710116331 Sodium-dependent phosphate transporter 1 Proteins 0.000 claims 1
- 230000004221 bone function Effects 0.000 claims 1
- 208000015322 bone marrow disease Diseases 0.000 claims 1
- 230000001400 myeloablative effect Effects 0.000 claims 1
- 230000014509 gene expression Effects 0.000 description 54
- 108010084724 gibbon ape leukemia virus receptor Proteins 0.000 description 24
- 101100118916 Gibbon ape leukemia virus env gene Proteins 0.000 description 22
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 17
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- 230000001464 adherent effect Effects 0.000 description 15
- 238000001727 in vivo Methods 0.000 description 15
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 14
- 239000002609 medium Substances 0.000 description 14
- 241000699670 Mus sp. Species 0.000 description 13
- 238000002105 Southern blotting Methods 0.000 description 12
- 239000012634 fragment Substances 0.000 description 12
- 230000003612 virological effect Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000003556 assay Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 230000007774 longterm Effects 0.000 description 8
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 241001529936 Murinae Species 0.000 description 7
- 238000010240 RT-PCR analysis Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 229960000890 hydrocortisone Drugs 0.000 description 7
- 238000012744 immunostaining Methods 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 108010085238 Actins Proteins 0.000 description 6
- 102000007469 Actins Human genes 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 230000001566 pro-viral effect Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 208000033375 Moderate hemophilia A Diseases 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- 102000004079 Prolyl Hydroxylases Human genes 0.000 description 4
- 108010043005 Prolyl Hydroxylases Proteins 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 229940049954 penicillin Drugs 0.000 description 4
- 238000003753 real-time PCR Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229960005322 streptomycin Drugs 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 102000007327 Protamines Human genes 0.000 description 3
- 108010007568 Protamines Proteins 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 238000002679 ablation Methods 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 3
- 229960003942 amphotericin b Drugs 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003636 conditioned culture medium Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 210000003743 erythrocyte Anatomy 0.000 description 3
- 238000001502 gel electrophoresis Methods 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- VWQWXZAWFPZJDA-CGVGKPPMSA-N hydrocortisone succinate Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)COC(=O)CCC(O)=O)[C@@H]4[C@@H]3CCC2=C1 VWQWXZAWFPZJDA-CGVGKPPMSA-N 0.000 description 3
- 229950006240 hydrocortisone succinate Drugs 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 229940048914 protamine Drugs 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 229910021653 sulphate ion Inorganic materials 0.000 description 3
- 238000002054 transplantation Methods 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010074860 Factor Xa Proteins 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 239000007760 Iscove's Modified Dulbecco's Medium Substances 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 108010025815 Kanamycin Kinase Proteins 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 238000011789 NOD SCID mouse Methods 0.000 description 2
- 238000010222 PCR analysis Methods 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 2
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 2
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002981 blocking agent Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000002991 immunohistochemical analysis Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 101150059999 pro gene Proteins 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 210000002303 tibia Anatomy 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 108010048049 Factor IXa Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000028782 Hereditary disease Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 101100005713 Homo sapiens CD4 gene Proteins 0.000 description 1
- 101100340751 Homo sapiens IL3 gene Proteins 0.000 description 1
- 101000869719 Homo sapiens Sodium-dependent phosphate transporter 2 Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 1
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 1
- 241000577979 Peromyscus spicilegus Species 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- 102100032419 Sodium-dependent phosphate transporter 2 Human genes 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229940019700 blood coagulation factors Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229940105778 coagulation factor viii Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229940096422 collagen type i Drugs 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000002089 crippling effect Effects 0.000 description 1
- 238000012303 cytoplasmic staining Methods 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 238000012758 nuclear staining Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 108091006024 signal transducing proteins Proteins 0.000 description 1
- 102000034285 signal transducing proteins Human genes 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000001562 sternum Anatomy 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/36—Blood coagulation or fibrinolysis factors
- A61K38/37—Factors VIII
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0669—Bone marrow stromal cells; Whole bone marrow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13041—Use of virus, viral particle or viral elements as a vector
- C12N2740/13043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
Definitions
- the present invention relates to a new method for the ex vivo transduction of mammalian cells.
- the invention further relates to genetically engineered cells thus obtained and to the use of these cells in gene therapy.
- the invention in particular relates to the transduction of human bone marrow stromal cells with a vector expressing a blood coagulation factor, in particular factor VIII.
- Somatic gene therapy involves the genetic engineering of somatic cells and the administration of these cells to a subject in need of therapy. Through genetically engineering the cells, they will acquire one or more desirable properties they did not or did no longer possess, for example the ability to express a particular protein. As an alternative a cell may be genetically engineered to loose an unwanted property.
- the first important step in genetically engineering cells for use in gene therapy is being capable of efficiently transducing the cells with a vector harboring the gene of interest and to obtain stable expression of that gene in the cells.
- the present invention has for its general object to provide such a method of efficiently transducing cells ex vivo . It is a more specific object of the present invention to provide such a method for obtaining cells for treating hemophilia A by means of gene therapy.
- Hemophilia A is a congenital X-chromosome- linked coagulation disorder characterized by uncontrolled crippling hemorrhagic episodes which occurs in approximately 1/10000 males. Hemophilia A is due to a deficiency of coagulation factor VIII (FVIII) , which accelerates the activation of factor X by activated factor IX in the presence of calcium and phospholipids . Ultimately the coagulation cascade leads to the localized generation of thrombin and the conversion of fibrinogen to insoluble fibrin polymers, which in conjunction with platelet aggregation maintains hemostasis .
- FVIII coagulation factor VIII
- Hemophilia A is particularly suitable for gene therapy since expression of FVIII does not require precise metabolic regulation and since a slight increase in plasma FVIII levels can potentially convert severe [FVIII: 1-2 ng/ml] to mild hemophilia [FVIII: 2-60 ng/ml] .
- Gene therapy for hemophilia A should provide constant, sustained synthesis within the patient, thereby obviating the risk of spontaneous bleeding, the need for repeated FVIII infusion and the risk of viral infections associated with plasma-derived FVIII.
- Retroviral vector- mediated gene transfer offers the potential for long-term gene expression by virtue of its stable chromosomal integration and lack of viral gene expression. Retroviral vectors for the transfer and expression of a B-domain deleted FVIII gene have been described before.
- Another problem encountered in attempts at achieving long-term human FVIII expression by ex vivo gene therapy approaches using a variety of primary cells is that access of the engineered cells to the bloodstream (such as by intrasplenic or intravenous injection) is a prerequisite to obtain detectable FVIII levels in the circulation.
- Cells belonging to the lympho-hematopoietic lineage which can be stably transduced with retroviral vectors ex vivo do, however, not secrete FVIII protein.
- high retroviral transduction efficiency and FVIII expression are needed for gene therapy to be successful.
- human BM stromal cells can be transduced with an intron-based Moloney murine leukemiavirus (MoMLV) retroviral vector expressing a B-domain deleted human factor VIII cDNA (designated as MFG-FVIII ⁇ B) .
- MoMLV Moloney murine leukemiavirus
- Transduction efficiencies were increased 10 to 15-fold by phosphate depletion and centrifugation which obviated the need for selective enrichment of the transduced BM stromal cells. This resulted in high FVIII expression levels in transduced human (180 + 4 ng FVIII/10 6 cells per 24 hr) and mouse (900 ⁇ 130 ng FVIII/10 6 cells per 24 hr) BM stromal cells.
- Human BM stromal cells transduced with GALV-env pseudotyped PG13-F8 vectors using the optimized transduction method as presented in this invention were subsequently infused into immunodeficient SCID NOD mice.
- Therapeutic human FVIII expression levels were detected in the plasma of these mice well above the levels needed to convert a severe to a moderate hemophilia A patient and persisted for at least more than a week in vivo. This represents the first protocol showing therapeutic levels of FVIII in vivo using BM stromal cells.
- the invention in a specific embodiment thus relates to a method for the ex vivo transduction of mammalian cells, in particular bone marrow cells, more in particular bone marrow stromal cells, which method comprises the steps of: a) providing an intron-based retroviral vector comprising a B-domain deleted human factor VIII cDNA; b) pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope; c) transducing bone marrow stromal cells with the said pseudotyped vector by optionally pre- incubating the cells for a suitable period of time in cell culture medium without phosphate and subsequently adding a vector solution, optionally supplemented with transduction additives, to the cells, followed by centrifugation of the mixture thus obtained; and d) optionally repeating step c) .
- the vector is the MFG-FVIII ⁇ B vector as described in Dwarki et al . (1995). Information on the MFG-vector is attainable from Riviere et al . (Proc. Natl . Acad. Sci. USA 92:6733-6737, 1995). Details on the nucleotide sequence of the full-length FVIII gene are described in Truett et al . , DNA 4:333-349, 1985) .
- the MFG-FVIII ⁇ B vector can be pseudotyped with GALV-env by successively transducing PG13 cells (ATCC CRL 10686) therewith.
- pseudotyping with GALV- env has been described before for primary human T-cells (Bunnell et al . , Proc. Natl. Acad. Sci. USA 92:7739-7743 (1995) ) .
- Bunnell et al . did not use the FVIII- containing vector of the invention. Details of the pseudotyping according to the invention are given in example 1. It has been found that in an optimal embodiment of the invention, the transduction protocol comprises both a phosphate starvation and a centrifugation step.
- the invention is described in detail referring to the transduction of bone marrow stromal cells for expression of factor VIII.
- the specific steps of ex vivo transduction method can also be used in any combination for the transduction of the same or other cells with the same or other genes. It is for example possible to use other genes of interest, for example other genes encoding factors secreted into the circulation, in particular factor IX, erythropoietin (EPO) , etc..
- genes may be used that restore stromal function, e.g. for repair of irradiated bone marrow stromal cells after cancer therapy.
- Alternative cells to be transduced by the method of the invention are for example BM stromal precursor or BM stromal stem cells which are an integral part of the BM stroma.
- precursor cells for example BM stromal precursor or BM stromal stem cells which are an integral part of the BM stroma.
- the advantage of using precursor cells is that the progeny of each transduced stromal precursor cell would also contain the transgene in analogy with transduction of BM hematopoietic stem/progenitor cells. This increases the total number of transduced cells in comparison to the number of transduced cells that arises when terminally differentiated cells are transduced.
- transduction of self-renewing precursor stromal cells may lead to prolonged persistence of engineered cells in vivo as compared to transduction of terminally differentiated cells. In principle any cell type can be used, whereas primary cells are preferred.
- a vector should contain an expression cassette consisting of either a promoter and an intron or a strong promoter, either one together with the gene of interest.
- the intron may be located upstream or downstream from the gene.
- Suitable promoters are viral promoters, e.g. retroviral long terminal repeat (LTR) , cytomegalovirus promoter (CMV) , simian virus 40 promoter (SV40) , adenovirus Major Late Promoter (MLP) , etc. or cellular promoters of either housekeeping genes, e.g. mouse or human small nuclear RNA promoter, elongation factor lc- promoter, etc. or tissue-specific promoters that are highly expressed in target tissue.
- LTR retroviral long terminal repeat
- CMV cytomegalovirus promoter
- SV40 simian virus 40 promoter
- MLP adenovirus Major Late Promoter
- cellular promoters of either housekeeping genes, e.g. mouse or human small nuclear
- Suitable introns for use with these promoters are introns from viral genes, e.g. Moloney murine leukemia virus intron etc., from cellular genes, e.g. ⁇ - globin intron, Factor VIII or Factor IX intron, ApoAl intron, c-1-antitrypsin intron, etc..
- the transduction protocol of the invention is in particular useful for transduction with retroviral vectors.
- Each step in the transduction protocol provides for an additional increase in the transduction efficiency. Incorporation of all steps in the method is thus preferred.
- the general object of the invention of providing an efficient method for ex vivo transduction of mammalian cells is thus achieved according to the invention by the ex vivo transduction by means of a transduction protocol, which method comprises the following elements: a) the mammalian cell is transduced with a gene of interest; b) the transduction is effected by means of a retroviral vector; c) the vector comprises an intron; d) the transduction protocol comprises pseudotyping of the vector; e) the transduction protocol comprises a centrif gation step; f) the transduction protocol comprises phosphate starvation of the cells to be transduced, wherein steps c) to f) are optional and can occur in any possible combination
- the above method is suitable for transducing genes encoding proteins which can be of importance for gene therapy, i.e. all genes associated with hereditary disorders or acquired and complex disorders (such as cancer, cardiovascular disease, diabetes etc.) wherein therapeutic effects can be achieved by introducing an intact version of the gene into somatic cells, in particular genes encoding proteins that can be secreted into the circulation (hormones, growth factors, lymphokines and cytokines, interferons, antibodies, complement factors, coagulation factors, enzymes etc.) or genes whose products are not secreted and which may have a direct therapeutic effect on the cell in which they are expressed (enzymes, growth factors or growth factor receptors, signal transducing proteins, cytoskeletal components and other structural proteins, etc.) .
- these genes also include genes encoding proteins that are involved in wound healing, bone formation and repair (such as collagen type I which is defective in osteogenesis imperfecta patients) or proteins that influence osteoporosis, arthritis, osteogenesis imperfecta, chondrodysplasia, and hematopoiesis .
- Other genes also include genes involved in the protection of the BM stroma form the detrimental side-effects on BM stromal function of (i) cancer therapy (such as by chemo- or radiotherapy) or (ii) viral infections (e.g. HIV) .
- the invention relates in particular to a method in which the gene of interest encodes a gene encoding a factor secreted into the circulation, more in particular a gene encoding a factor involved in blood coagulation.
- the mammalian cell is transduced with a gene encoding factor VIII, factor IX, factor X, factor V, factor VII, factor XII, factor XIII, Von illebrand factor (v F) , tissue factor (TF) and all other proteins directly or indirectly influencing blood coagulation.
- the mammalian cell is preferably a primary cell, in particular a primary bone marrow cell.
- the mammalian cell can also be a bone marrow cell selected from the group consisting of bone marrow stromal stem cells, bone marrow stromal stem cells, bone marrow stromal precursor cells, bone marrow mesenchymal cells, bone marrow hematopoietic stem cells, bone marrow hematopoietic progenitor cells, cells belonging to the lymphohematopoietic lineage, fibroblasts, endothelial cells, chondroblasts, chondrocytes, myoblasts, myocytes, osteoblasts, epithelial cells.
- mesenthelial cells Other cells that can be transduced are mesenthelial cells, keratinocytes, hepatocytes .
- Suitable retroviral vectors are Moloney murine leukemia virus, Gibbon ape leukemia virus, Rous sarcoma virus, myeloproliferative sarcoma virus, lentivirus, human foamy virus, human immunodeficiency virus (HIV), simian immunodeficiency virus (SIV) , bovine leukemia virus (BLV) .
- the vector can be pseudotyped with other envelopes that utilize the GLVR-1 receptor for viral entry, in particular the 10A1 envelope.
- the method comprises: a) providing an intron-based retroviral vector comprising any gene, in particular a gene that is secretable in the blood stream, more in particular a blood coagulation gene; b) pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope; c) transducing bone marrow stromal cells with the said pseudotyped vector by optionally pre-incubating the cells for a suitable period of time in cell culture medium without phosphate and subsequently adding a vector solution, optionally supplemented with transduction additives to the cells, followed by centrifugation of the mixture thus obtained; and d) optionally repeating step c) .
- GLV Gibbon ape leukemia virus
- the invention in another embodiment relates to a method for the ex vivo transduction of cells, comprising: a) providing an intron-based retroviral vector comprising any gene, in particular a gene that is secretable in the blood stream, more in particular a blood coagulation gene; b) pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope; c) transducing cells to be transduced, in particular bone marrow stromal precursor cells, with the said pseudotyped vector by optionally pre-incubating the cells for a suitable period of time in cell culture medium without phosphate and subsequently adding a vector solution, optionally supplemented with transduction additives to the cells, followed by centrifugation of the mixture thus obtained; and d) optionally repeating step c) .
- GLV Gibbon ape leukemia virus
- a further embodiment of the invention relates to a method for the ex vivo transduction of bone marrow stromal cells, comprising the steps of: a) providing an intron-based retroviral vector comprising a B-domain deleted human factor VIII cDNA
- MFG-FVIII ⁇ B (designated as MFG-FVIII ⁇ B) ; b) optionally pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope; and/or c) optionally transducing bone marrow stromal cells with the said pseudotyped vector by pre-incubating the cells for a suitable period of time in cell culture medium without phosphate and subsequently adding a vector-containing solution, optionally supplemented with transduction additives to the cell; and/or d) optionally centrifuging the mixture thus obtained; and/or e) optionally repeating step c) and d) .
- GLV Gibbon ape leukemia virus
- Still a further embodiment of the invention relates to a method for the ex vivo transduction of bone marrow stromal cells, comprising the steps of: a) providing a retroviral vector comprising a B-domain deleted human factor VIII cDNA; b) optionally pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope; and/or c) optionally transducing bone marrow stromal cells with the said pseudotyped vector by pre-incubating the cells for a suitable period of time in cell culture medium without phosphate and subsequently adding a vector-containing solution, optionally supplemented with transduction additives to the cell; and/or d) optionally centrifuging the mixture thus obtained; and/or e) optionally repeating step c) and d) .
- a retroviral vector comprising a B-domain deleted human factor VIII cDNA
- b) optionally pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope
- An alternative embodiment of the invention relates to a method for the ex vivo transduction of bone marrow stromal cells, comprising the steps of: a) providing an intron-based retroviral vector comprising a gene of interest; b) optionally pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope; and/or c) optionally transducing bone marrow stromal cells with the said pseudotyped vector by pre-incubating the cells for a suitable period of time in cell culture medium without phosphate and subsequently adding a vector-containing solution, optionally supplemented with transduction additives to the cell; and/or d) optionally centrifuging the mixture thus obtained; and/or e) optionally repeating step c) and d) .
- GLV Gibbon ape leukemia virus
- the invention also provides a method for the ex vivo transduction of bone marrow stromal cells, comprising the steps of: a) providing a retroviral vector comprising a gene of interest; b) optionally pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope; and/or c) optionally transducing bone marrow stromal cells with the said pseudotyped vector by pre-incubating the cells for a suitable period of time in cell culture medium without phosphate and subsequently adding a vector-containing solution, optionally supplemented with transduction additives to the cell; and/or d) optionally centrifuging the mixture thus obtained; and/or e) optionally repeating step c) and d) .
- a retroviral vector comprising a gene of interest
- b) optionally pseudotyping the said vector with the Gibbon ape leukemia virus (GALV) envelope
- GLV Gibbon ape leukemia virus
- the present invention further relates to the transduced cells thus obtained.
- the invention in particular relates to bone marrow stromal cells being transduced with an intron-based retroviral vector comprising a B-domain deleted human factor VIII cDNA, which vector has been pseudotyped with the Gibbon ape leukemia virus (GALV) envelope.
- GALV Gibbon ape leukemia virus
- the invention according to a further aspect thereof relates to these cells for use in the therapeutical treatment of coagulation disorders, in particular hemophilia A.
- the therapy of hemophilia A consists for example of returning bone marrow stromal cells, that have been genetically engineered with the gene for factor VIII by the method of the invention to a subject in need of therapy. This type of therapy is called gene therapy.
- gene therapy For other types of treatment other types of genes can be transduced to the genetically engineered cells.
- the invention also relates to the use of the cells for the preparation of a therapeutic composition for the treatment by means of gene therapy of disorders of the blood, in particular coagulation disorders, more in particular hemophilia A.
- BM stroma Clinical application for hemophilia A using BM stroma requires injection or infusion of about 10 8 autologous BM stromal cells prepared with the method of the invention to convert a severe to a mild hemophiliac based on an in vitro production of 400 ng/10 6 cells per 24 hr, assuming that all the engineered cells engraft j-n vivo and continue to produce these high levels of FVIII. To completely correct the bleeding phenotype, an infusion of at least 7xl0 8 BM stromal cells will be required. At least 10 10 BM stromal cells can be enriched from 1 liter of total BM, which can routinely be obtained from a single BM isolation without any adverse side effects to the donor.
- FIG. 1 Development of an adherent stromal layer after long-term BM culture. Photomicrographs were taken after 5 days (A) , 10 days (B) and 14 days (C) under phase-contrast . A confluent monolayer of subcultured cells at the time of transduction is also shown (D) . Adherent stromal cells, suspension cells and erythrocytes are indicated as A, S and E, respectively.
- FIG. 2 Immunohistochemical staining of human BM stromal cells. Human BM stromal cells were stained for human prolyl 4-hydroxylase, as a fibroblast-specific marker .
- FIG. 3 Determination of GLVR-1 versus GLVR-2 mRNA expression by quantitative RT-PCR.
- Purified total RNA (1, 2.5 and 5 ⁇ g) from adherent human BM stromal cells was reverse transcribed.
- Two ⁇ l of the reaction mixture containing the cDNA obtained form either 1 ⁇ g RNA (1) (lanes 1-8) , 2.5 ⁇ g RNA (11) (lanes 9-16) or 5 ⁇ g RNA (111) (lanes 18-22) was serially diluted and subjected to PCR with GLVR-1 and GLVR-2 specific primers as described in Materials and Methods.
- Quantification was performed using a Phosphorimager after background subtraction (B) using experimental samples that fell within the linear range of the assay corresponding to (lanes 13-16) (A) for GLVR-1 (cDNA obtained from 2.5 ⁇ g RNA was diluted 16-128-fold) and (lanes 9-14) (A) for GLVR-2 (cDNA obtained from 2.5 ⁇ g RNA was diluted 132 -fold) .
- FIG. 4 FVIII production (A), Southern blot analysis (B) and titration (C) of FVIII-retroviral vectors pseudotyped with GALV-env (PG13-F8) .
- FVIII production in the PG13-F8 clone #5 compared to the MFG- FVIII ⁇ B clone #XF2 was quantified with a functional chromogenic FVIII assay (A) .
- Genomic DNA of the MFG- FVIII ⁇ B producer clone #XF2 (lanes 1,2), the PG 13-F8 producer clone #5 (lanes 3,4) and the control plasmid pMFG-FVIIl ⁇ B (lanes 5,6) were digested with Sma I (lanes 1, 3, 5) or Nhe I (lanes 2, 4, 6) and subjected to Southern blot analysis with a FVIII-specific probe (B) . Bands corresponding to proviruses containing only non- deleted FVIII sequences were indicated by arrows; molecular weight markers (in kb) were indicated on the right.
- Relative viral titer of the MFG-FVIII ⁇ B and PG13- F8 producer cell clones was determined in function of cell number by RNA dot blot analysis of PEG-precipitated viral vector particles using a FVIII-specific probe as described in the Materials and Methods (C) . Quantification was performed using a Phosphorimager after background subtraction.
- FIG. 6 Analysis of transduction efficiency by quantitative PCR/Southern blot analysis. Genomic DNA of the transduced human BM stromal cells was subjected to PCR/Southern blot analysis using primers specific for the FVIII-retroviral vector and ⁇ -actin specific primers for normalization. Bands corresponding to the amplified FVIII or ⁇ -actin-specific fragments were indicated by arrows (A) . The intensities of the PCR-amplified fragments relative to the maximum transduction efficiency (i.e.
- mice were injected as indicated intrasplenically (i.s.) with l-3xl0 6 human BM stromal cells transduced with PG13/F8 under optimized conditions. FVIII expression was measured over time with a human FVIII-specific ELISA. The experiment was repeated with BM stroma from unrelated donors and the results of one representative experiment were given.
- the present example demonstrates the expression of factor VIII in human BM stromal cells and compares the transduction efficiency and expression levels when using various vectors and different transduction protocols.
- BM stromal cells were obtained from the iliac crest and/or sternum of healthy BM donors since large amounts of enriched bone marrow could be isolated relatively easily by needle aspiration from these sites. BM donors provided their informed consent to participate in the procedure. BM was collected in an equal volume of MyeloCult H5100 medium (StemCell Technologies, Vancouver, Canada) supplemented with 250 U/ml heparin. Erythrocytes were removed by sedimentation for 30 min at room temperature using Plasmasteril
- mice After expanding the BM stromal cells for an additional 7 days, the non-adherent suspension cells were decanted while the adherent stromal layer was trypsinized for transduction or further characterization.
- the mouse BM stroma was isolated by sacrificing bnx mice (Harlan, Zeist, the Netherlands) and flushing the femur and tibia with MyeloCult M5300 medium (StemCell Technologies) .
- BM cells harvested either from one femur or two tibiae were cultured in a 10 cm petri dish containing 10 ml of MyeloCult M5300 long-term culture medium supplemented with freshly prepared hydrocor isone hemisuccinate (10 "6 M, Sigma) , 100 IU/ml penicillin, 100 ⁇ g/ml streptomycin and 250 ng/ml amphotericin B (Life Technologies) (designated as MBM medium) .
- Adherent mouse BM stromal cells were obtained by growing the cells for 3-7 days. After expanding the BM stromal cells for 7 days, the non-adherent suspension cells were decanted while the adherent stromal layer was trypsinized for transduction.
- the MFG-FVIII ⁇ B and the GCsamENF ⁇ splicing vectors were described previously (Dwarki et al . , 1995, supra ; Chuah et al . , 1995, supra) and can be reconstructed quite easily from these descriptions.
- the B-domain deleted FVIII gene was driven from the 5 ' MoMLV LTR and was cloned downstream of the MoMLV intron used to generate subgenomic env mRNA.
- a Kozak consensus sequence for translational initiation was introduced in the MFG-FVIII ⁇ B vector and the 3' untranslated region (UTR) of the FVIII gene was deleted.
- the MFG-FVIII ⁇ B vector lacked a neo R selectable marker, whereas the GCsamF ⁇ EN vector expressed FVIII and the neomycin phosphotransferase II (NPTII) proteins from a single polycistronic transcript that was driven from the 5 ' MoMLV LTR by virtue of the internal ribosome entry site (IRES) .
- NPTII neomycin phosphotransferase II
- Viral supernatant was first collected over 24 hr from a confluent plate of MFG-FVIII ⁇ B producer cells (clone #XF2) and filtered through a 0.45 ⁇ m filter to remove residual producer cells.
- 8xl0 6 PG13 cells were subjected to successive daily transductions with 5 ml of MFG-FVIII ⁇ B viral vector-containing conditioned medium in the presence of polybrene (8 ⁇ g/ml, Sigma) .
- the resulting producer cells were designated as PG13-F8 and individual clones were obtained by limiting dilution.
- FVIII production by each of the individual PG13-F8 clones was quantified using a functional chromogenic assay as described below. Clones that expressed the highest levels of FVIII were further screened for viral production by RNA dot blot analysis (see below) and subsequently subjected to Southern blot analysis as described previously (Sambrook et al . , Molecular Cloning 16-32 (1989), Chuah et al . , 1995, supra) to exclude the presence of rearranged proviral sequences. Briefly, genomic DNA was extracted with the high pure PCR template preparation kit (Boehringer, Mannheim, Germany) and 23 ⁇ g of DNA was restricted with Sma I or Nhe I.
- Hybridizations were performed by probing the Southern blot membrane with a FVIII-specific probe corresponding to a random primed 1095 bp Bgl II - Spe I restriction fragment of plasmid pMT2LA.
- the membranes were washed stringently at 65°C in 2xSSC and 0.1% SDS for 30 min, followed by 0.5xSSC and 0.2% SDS for an additional 30 min.
- FVIII activity in the transduced stromal cells and the viral producer cell clones was quantified by measuring the FVIII-dependent generation of factor Xa from factor X using a chromogenic assay (Coatest FVIII, Chromogenix, Molndal, Sweden) as described previously (Chuah et al . , 1995, supra) . Briefly, 24 hr-conditioned culture medium was harvested in phenol-red free media to avoid calorimetric interference in the FVIII chromogenic assay. Human plasma purified FVIII (Octapharma,
- Supernatant containing retroviral vector particles was obtained by seeding 4xl0 6 producer MFG- FVIII ⁇ B and 30xl0 6 producer PG13-F8 in 10 ml of D10 per 75 cm 2 flask, unless indicated otherwise. These cells were grown at 32 °C and the supernatant was harvested after 24 hr. Supernatants were aliquoted and immediately frozen on dry ice prior to storing at -80°C until use. Vector titer in the culture medium was determined by RNA dot blot analysis as described previously (Yang et al, Hum. Gene Ther. 6:1203-1213 (1995)).
- Hybridizations were performed by probing the membrane with a FVIII-specific probe corresponding to a random primed 1095 bp Bgl II - Spe I restriction fragment of pMT2LA.
- the membranes were washed stringently at 65°C in 2xSSC for 30 min followed by 0.5xSSC for an additional 30 min. After background subtraction, signal intensities were quantified using a Phosphorimager (Molecular Dynamics, Sunnyvale, CA) .
- Additional controls consisted of serially diluted viral vector supernatants with known functional titer based on vectors containing a neo R gene (GCsamF8EN) .
- Functional titers expressed as G418 R cfu/ml were determined by transduction of NIH-3T3 cells as described previously (Chuah et al . , 1994 and Chuah et al . , 1995, supra) .
- BM stromal cells were seeded at a concentration of 10 4 cells per well in 0.4 ml Iscove's modified Dulbecco ' s medium (IMDM) supplemented with freshly prepared hydrocortisone (10 "6 M, Sigma) , 10% heat- inactivated FBS, 2 mM L-glutamine, 100 IU/ml penicillin, 100 ⁇ g/ml streptomycin and 250 ng/ml amphotericin B (designated as 110 medium) in 8-chamber slides (Life Technologies) and incubated at 37 °C. Medium was removed from chamber slides containing confluent cells followed by fixation with acetone at -20°C for 5 min.
- IMDM Iscove's modified Dulbecco ' s medium
- TSA Tris saline buffer
- Immunostaining was performed by first incubating the cells for 30 min in 100 ⁇ l 5-fold diluted pre-immune rabbit serum (Dako, Glostrup, Denmark) for the fibroblast-specific immunostaining or pre-immune swine serum for the endothelial cell-specific immunostaining (Dako), after which supernatant was removed.
- the fibroblast-specific immunostaining the cells were incubated overnight with a monoclonal mouse antibody that reacted with human prolyl 4-hydroxylase (clone 5B5, 155 ⁇ g/ml Dako) diluted 1/50-1/100 in TSB.
- RNA expression levels in the human BM stromal cells were determined by reverse transcriptase-polymerase chain reaction (RT-PCR) .
- Total RNA was first purified using the chaotropic Trizol method followed by phenol-chloroform extraction and isopropanol precipitation (Chomczynski , P., Biotechniques 15:532-534, 536-537 (1993)). The precipitated RNA was then redissolved in H 2 0 and spectrophotometrically quantified. The first strand cDNA was synthesized starting from 1, 2.5 and 5 ⁇ g purified total RNA using a Superscript II reverse transcriptase kit (Life Technologies) .
- the cDNA was subsequently amplified directly by PCR using 2 ⁇ l of the reaction mixture, that was subjected to serial 2-fold dilutions.
- PCR was performed with a Techne/Progene thermocycler using Taq polymerase and oligonucleotide pairs that discriminated specifically between GLVR-1 ( 5 ' -GCAGTTTTCTGTGCCCTTATCGTC-3 ' and 5 ' -GGAGTTTATTTGGTTGCTGACGG-3 ' ) and GLVR-2 ( 5 ' -TTCAGGAAGCAGAGTCCCCAGT-3 ' and 5' -TGTCGATGTGGATTTTGCAG-3 ' ) .
- PCR was performed by denaturation for 5 min at 94 °C, followed by 26 cycles of 45 sec at 94°C, 1 min at 60°C, 2 min at 72°C and a final extension for 7 min at 72°C.
- the RT-PCR reaction products obtained from 1 ⁇ g, 2.5 ⁇ g and 5 ⁇ g RNA were subjected to serial 2-fold dilution (ranging from 2- to 128-fold dilution) to ensure that detection of the PCR amplified fragments fell within the linear range of the quantitative PCR.
- BM stromal cells Human and murine BM stromal cells were seeded at a density of 10 5 cells/ml per well in a 6-well plate containing 1 ml 110 medium supplemented with freshly prepared hydrocortisone (10 ⁇ 6 M, Sigma) for human stroma or hydrocortisone-hemisuccinate (10 ⁇ 6 M, Sigma) for mouse stroma. The next day, the 110 medium was aspirated and BM stromal cells were washed once with 5 ml of PBS followed by transduction with the amphotropic MFG-FVIII ⁇ B vector (for murine and human stroma) or the GALV-env pseudotyped PG13-F8 vector (for human stroma) under standard or optimized conditions.
- Standard conditions involved overnight incubation of the stromal cells with vector- containing supernatant at 32 °C by virtue of the increased stability of retroviral vectors at 32°C versus 37°C.
- Vector-containing supernatants were supplemented with 4 ⁇ g/ml protamine sulphate and hydrocortisone (or hydrocortisone-hemisuccinate) .
- vector-containing supernatant with protamine sulphate and hydrocortisone (or hydrocortisone- hemisuccinate) was added to the cells followed by a centrifugation step at 32°C for 1 hr at 1400 g and an overnight incubation at 32°. Cells were returned to 37°C the next day.
- a phosphate starvation step was included that involved a 9-10 hr incubation of the stromal cells in 110 medium containing IMEM without phosphate. A total of 4 rounds of transductions were performed successively under the same conditions over the next 4 days followed by two washings with PBS.
- High molecular weight genomic DNA was isolated from the transduced BM stromal cells using the high pure PCR template preparation kit (Boehringer, Mannheim, Germany) . To determine transduction efficiency, PCR was performed with a Techne/Progene thermocycler using Taq polymerase and oligonucleotide pairs specific for the FVIII cDNA in the MFG-FVIII ⁇ B or GCsamF ⁇ EN retroviral vectors (5 ' -GAGCTCTCCACCTGCTTCTTTCTG-3 ' and 5 'CCCTTCTCTACATACTAGTAGGGC-3 ' ) yielding a specific 594 bp PCR product.
- ⁇ -actin-specific primers 5 « -CATTGTGATGGACTCCGGAGACGG-3 ' and 5' -CATCTCCTGCTCGAAGTCTAGAGC-3 ' ) were added to the PCR reaction mixture yielding a 232 bp ⁇ -actin specific PCR product .
- a producer clone transduced with GCsamF8EN and containing 6 integrated proviral copies was used as a control .
- PCR was performed by denaturation for 8 min at 95°C, followed by 28 cycles of 1 min at 95°C, 1 min at 59°C, 2 min at 72°C and a final extension for 5 min at 72 °C.
- Fig. 1A The kinetics of the development of an adherent BM stromal cell layer of different BM donors did not vary significantly and a representative example is given is Fig. 1.
- Fig. 1A During the first 5 days (Fig. 1A) , most BM cells remained in suspension except for the presence of adherent macrophage-like cells. Less than 5% of the suspension cells were erythrocytes . Cells with a spindle- like morphology started to adhere between day 6-10 (Fig. IB) whereas suspension cells gradually disappeared from the cultures. The adherent cells continued to proliferate and formed cell aggregates that extended to generate patchy areas of an adherent layer (Fig. IC) . The hemopoietic foci and residual suspension cells were removed from the cultures (Figs.
- IC, ID IC, ID
- adherent cells were trypsinized and expanded to generate an adherent stromal layer (Fig. ID) . More than 95% of the adherent stromal cells exhibited the distinctive spindle- like morphology that was retained even after long-term culture (at least 4 weeks) .
- BM contains endothelial and fibroblast- like cells
- the identity of the spindle-like stromal cell layers was confirmed by immunohistochemical analysis. Immunostaining for fibroblasts was performed using a murine monoclonal antibody against the ⁇ -subunit of human prolyl 4-hydroxylase which catalyses the hydroxylation of proline residues in collagens to hydroxyproline .
- the majority of the stromal cells (84 ⁇ 8.0 %) stained for the prolyl 4-hydroxylase antigen indicating that they are fibroblastic (Fig. 2A) whereas no staining was observed when the primary or secondary antibody was omitted and when using the NIH-3T3 mouse cell fine as a negative control, as expected (data not shown).
- Detection of GLVR-1 and GLVR-2 specific PCR- amplified fragments from the BM stromal cells fell within the linear range of the assay for the RT-PCR reaction products obtained from 1 ⁇ g RNA (Fig. 3A, lanes 1-8) and 2.5 ⁇ g RNA (Fig. 3A, lanes 9-16) (r 2 0.97-0.99). No PCR amplified product could be detected in the negative controls that did not contain RT (Fig.
- GALV-env pseudotyped FVIII- retroviral vectors were generated (designated as PG13-F8) in an attempt to obtain high transduction efficiencies.
- PG13-F8 clones Six out of the 23 PG13-F8 clones that were screened, expressed functional FVIII ranging from 5 to 200 ng
- RNA dot blot analysis yielded an equivalent average functional titer for MFG-FVIII ⁇ B of 6 ⁇ 3xl0 4 G418 R cfu/ml based on 23 independent batches of viral supernatant.
- the titer of the PG 13-F8 clone #5 was equivalent to (1.8 ⁇ 0.6)xl0 5 cfu/ml based on 17 independent batches of viral supernatant.
- the optimized transduction protocol with the MFG-FVIII ⁇ B vector also yielded significantly higher FVIII expression levels (p ⁇ 0.001) (900 ⁇ 130 ng FVIII/10 6 cells per 24 hr) as compared to the standard protocol (140 ⁇ 14 ng FVIII/10 6 cells per 24 hr) (Fig. 5B) .
- the FVIII expression levels in mouse BM stromal cells transduced with the MFG-FVIII ⁇ B vector were consistently higher than in human BM stroma transduced with the same vector possibly due to the higher proliferative capacity of the mouse BM stroma at the inception of transduction, resulting in higher transduction efficiencies and FVIII expression levels.
- FVIII expression was significantly higher (p ⁇ 0.001) with centrifugation (320 ⁇ 37 ng FVIII/10 6 cells per 24 hr) than without (110 ⁇ 13 ng FVIII/10 6 cells per 24 hr) (Fig.5A).
- centrifugation step alone strongly increased FVIII expression levels in transduced human BM stromal cells.
- FVIII expression without phosphate starvation corresponded to 320 ⁇ 37 ng FVIII/10 6 cells per 24 hr whereas significantly higher (p ⁇ 0.05) levels were obtained after phosphate starvation (390 ⁇ 12 ng FVIII/10 6 cells per 24 hr) (Fig. 5A) .
- phosphate starvation had contributed to a significant but only moderate increase in FVIII expression levels in transduced human BM stromal cells.
- human or mouse BM stromal cells can be exploited as an alternative BM-derived target cell for hemophilia A gene therapy since they could express relatively high levels of human FVIII (400-900 ng/10 6 cells per 24 h) when transduced with FVIII retroviral vectors.
- the high levels of FVIII could be attributed to the use of an intron- based vector, the development of an optimized transduction protocol and the generation of a GALV-env pseudotyped FVIII retroviral vector.
- Human BM stromal cells were first transduced with FVIII retroviral vectors in vitro using the optimized transduction method with GALV-env pseudotyped MFG-FVIII ⁇ B vectors as presented in this invention and were subsequently infused into immunodeficient SCID NOD mice.
- Therapeutic human FVIII expression levels were detected in the plasma of these mice well above the levels needed to convert a severe to a moderate hemophilia A patient and persisted for at least 1 week in vivo . This represents the first in vivo study showing therapeutic levels of FVIII using BM stromal cells.
- engraftment of the FVIII-engineered cells could be achieved even in the absence of myelo-ablation and without having to seed the cells into artificial fibers or neo-organs.
- One advantage of the present method is that no myeloablation is required. Because of this, the gene therapeutic method described herein is clinically acceptable for hemophilia patients. Furthermore, the in vivo expression levels and kinetics are comparable to what has been reported previously using neo-organs (Dwarki et al . , 1995, supra) . 2. Materials and methods
- Human BM stromal cells were seeded at a density of 10 5 cells/ml per well in a 6-well plate containing 1 ml 5 110 medium supplemented with freshly prepared hydrocortisone (10 ⁇ 6 M, Sigma) for human stroma. The next day, the 110 medium was aspirated and BM stromal cells were washed once with 5 ml of PBS followed by transduction with the GALV-env pseudotyped PG13-F6 vector 0 under optimized conditions. Vector-containing supernatant was collected at 32 °C.
- Vector containing supernatants were supplemented with 4 ⁇ g/ml protamine sulphate and hydrocortisone and added to the cells followed by a centrifugation step at 32°C for 1 hr at 1400 g and an 5 overnight incubation at 32°C. Cells were returned to 37°C the next day.
- a phosphate starvation step was included that involved a 9-10 hr incubation of the stromal cells in 110 medium containing IMEM without phosphate.
- a total of ⁇ rounds of transductions were performed successively 0 under the same conditions over the next 2 weeks followed by two washings with PBS.
- BM stromal cells that were stably transduced 5 with the PG13-F6 retroviral vector were trypsinized, washed with PBS and resuspended at a cell density of 7.5 to 15xl0 6 per ml of PBS.
- Four to 5 weeks old male NOD-SCID recipient mice were injected intra-splenically through a small incision using a 27G needle with 1.5 to 3xl0 6 BM 0 stromal cells per 200 ⁇ l . Control mice received an intrasplenic injection of 200 ⁇ l PBS.
- FVIII in vitro activity in the transduced 5 stromal cells and the viral producer cell clones was quantified by measuring the FVIII -dependent generation of factor Xa from factor X using a chromogenic assay (Coatest FVIII, Chromogenix, Molndal, Sweden) as described previously (Chuah et al . , 1995, supra) . Briefly, 24 hr-conditioned culture medium was harvested in phenol-red free media to avoid colorimetric interference in the FVIII chromogenic assay. Human plasma purified FVIII (Octopharma, Langenfeld, Germany) of known activity was used as a FVIII standard and 1 U was defined as 200 ng FVIII/ml.
- FVIII in vivo expression was determined by collecting mouse plasma at regular intervals and performing a human FVIII-specific ELISA. A 96-well microtite plate was coated with 2 monoclonal antibodies to human FVIII which do not cross-react with mouse FVIII: N77110M (Biodesign, Kennebunkport, ME) and ESH2 (American Diagnostica, Greenwich, CT) at a concentration of 25 ⁇ g/ml. After incubation overnight at 4°C, the plate was washed three times with PBS.
- Blocking agent PBS, 10% horse serum, 1 mM CaCl 2
- PBS 10% horse serum
- 1 mM CaCl 2 a blocking agent
- Plasma samples were diluted 1:5 in TNTC buffer (50 mM Tris pH 7.2, 5 mM CaCl 2 , 0.1% Tween 20, 0.5 M NaCl) and 100 ⁇ l was added into each well.
- Mouse plasma spiked with known concentrations of serially diluted purified human FVIII was used to generate a standard curve.
- the plate was incubated for 1 hr at 37°C, the wells were washed 3 times with PBS, 0.05% Tween 20 and 100 ⁇ l of the second antibody was added.
- the second antibody was serum from a hemophiliac with a high inhibitor titer, diluted 1:1000 in blocking agent PBS + 10% horse serum + 1 mM CaCl 2 .
- the wells were washed and 100 ⁇ l of TMB was added to the well.
- the reaction was stopped by adding 100 ⁇ l H 2 S0 4 1.5 M.
- the absorbance at 450 nm was determined using a microplate reader. Normal mouse plasma did not interfere with the assay and the limit of sensitivity was 1 ng/ml for purified plasma-derived human FVIII added to normal mouse plasma .
- GALV-env pseudotyped PG13-F6 retroviral vector yielded an in vitro production of 490 ⁇ 40 ng FVIII ng/10 6 cells per 24 hr.
- One to 3xl0 6 transduced BM stromal cells were injected intrasplenically into NOD-SCID mice and FVIII expression was measured with a human FVIII-specific ELISA (Fig. 7C) .
- Therapeutic levels of FVIII could be detected that were at least 10 -fold higher than the therapeutic levels needed to convert severe to moderate hemophilia A (2 ng/ml) .
- Therapeutic levels persisted for at least one to two weeks after which animals were sacrificed for PCR analysis to determine the homing pattern of the injected cells. Control animals that received PBS only did not produce human FVIII, as expected.
- Therapeutic human FVIII expression levels were detected in vivo in the plasma of these mice well above the levels needed to convert a severe to a moderate hemophilia A patient. This is the first demonstration that transduced BM stromal cells can be used to achieve therapeutic levels of a protein in vivo . More in particular, this represents the first protocol showing therapeutic levels of FVIII in vivo using BM stromal cells. Engraftment of the FVIII-engineered cells was relatively efficient since only a single injection of 1- 3xl0 6 cells was needed to obtain FVIII expression.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmacology & Pharmacy (AREA)
- Developmental Biology & Embryology (AREA)
- Rheumatology (AREA)
- Cell Biology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98930718A EP0980264A2 (de) | 1997-05-16 | 1998-05-18 | Säugetierzelltransduktion zur verwendung in gentherapie |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97201480 | 1997-05-16 | ||
EP97201480 | 1997-05-16 | ||
EP98200382 | 1998-02-09 | ||
EP98200382A EP0938904A1 (de) | 1998-02-09 | 1998-02-09 | Säugetierzelltransduktion zur Verwendung in Gentherapie |
EP98930718A EP0980264A2 (de) | 1997-05-16 | 1998-05-18 | Säugetierzelltransduktion zur verwendung in gentherapie |
PCT/EP1998/003013 WO1998053063A2 (en) | 1997-05-16 | 1998-05-18 | Mammalian cell transduction for use in gene therapy |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0980264A2 true EP0980264A2 (de) | 2000-02-23 |
Family
ID=26146488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98930718A Withdrawn EP0980264A2 (de) | 1997-05-16 | 1998-05-18 | Säugetierzelltransduktion zur verwendung in gentherapie |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0980264A2 (de) |
AU (1) | AU8105798A (de) |
CA (1) | CA2289918A1 (de) |
WO (1) | WO1998053063A2 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000017375A2 (en) * | 1998-09-23 | 2000-03-30 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Method to treat haemophilia by in vivo gene therapy with retroviral vectors |
AU1685201A (en) * | 1999-12-01 | 2001-06-12 | Centre For Translational Research In Cancer | Drug inducible system and use thereof |
GB0325379D0 (en) * | 2003-10-30 | 2003-12-03 | Oxford Biomedica Ltd | Vectors |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69232438T2 (de) * | 1991-08-07 | 2002-10-10 | W. French Anderson | Interne ribosom eintrittsstellen enthaltene retrovirale vektoren |
WO1996009400A1 (en) * | 1994-09-19 | 1996-03-28 | Systemix, Inc. | Methods for genetically modifying hematopoietic stem cells |
US5681746A (en) * | 1994-12-30 | 1997-10-28 | Chiron Viagene, Inc. | Retroviral delivery of full length factor VIII |
DE69612660T2 (de) * | 1995-03-29 | 2002-04-18 | Austrian Nordic Biotherapeutics Ag, Wien | Pseudotypisierte retrovirale vektoren |
JPH11507244A (ja) * | 1995-10-05 | 1999-06-29 | カイロン コーポレイション | Srv−3エンベロープ糖タンパク質配列で偽型化したレトロウイルスベクター |
US5766945A (en) * | 1996-02-13 | 1998-06-16 | Fred Hutchinson Cancer Research Center | 10A1 Retroviral packaging cells and uses thereof |
-
1998
- 1998-05-18 WO PCT/EP1998/003013 patent/WO1998053063A2/en not_active Application Discontinuation
- 1998-05-18 EP EP98930718A patent/EP0980264A2/de not_active Withdrawn
- 1998-05-18 CA CA002289918A patent/CA2289918A1/en not_active Abandoned
- 1998-05-18 AU AU81057/98A patent/AU8105798A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9853063A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO1998053063A3 (en) | 1999-03-18 |
WO1998053063A2 (en) | 1998-11-26 |
CA2289918A1 (en) | 1998-11-26 |
AU8105798A (en) | 1998-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chuah et al. | Bone marrow stromal cells as targets for gene therapy of hemophilia A | |
US5591625A (en) | Transduced mesenchymal stem cells | |
AU2018202200B2 (en) | Improved gene therapy methods | |
Marx et al. | High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells | |
US5460959A (en) | Transduced fibroblasts | |
AU690667B2 (en) | Enhanced virus-mediated DNA transfer | |
Matsui et al. | Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors | |
Naffakh et al. | Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts. | |
WO1992015676A1 (en) | Somatic cell gene therapy | |
Nolta et al. | Retroviral-mediated transfer of the human glucocerebrosidase gene into cultured Gaucher bone marrow. | |
JPH11503602A (ja) | 全長第viii因子のレトロウイルス送達 | |
US6140111A (en) | Retroviral gene therapy vectors and therapeutic methods based thereon | |
Cherington et al. | Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion | |
US6544771B1 (en) | Retroviral gene therapy vectors and therapeutic methods based thereon | |
Hafenrichter et al. | Liver-directed gene therapy: evaluation of liver specific promoter elements | |
EP0938904A1 (de) | Säugetierzelltransduktion zur Verwendung in Gentherapie | |
EP0980264A2 (de) | Säugetierzelltransduktion zur verwendung in gentherapie | |
JPH10508187A (ja) | 移植および炎症または血栓症のための遺伝子療法 | |
WO2008136656A1 (en) | Improved methods and means for lentiviral gene delivery | |
JP2006501829A (ja) | Hoxで誘導される増殖を制限する遺伝子をブロックする幹細胞増殖因子およびその方法 | |
JP2005528912A (ja) | 幹細胞におけるスプライセオソーム介在rnaトランススプライシング | |
WO2020177618A1 (en) | Recombinant vectors comprising arylsulfatase a and their uses in stem cell therapy for the treatment of metachromatic leukodystrophy | |
US6645942B1 (en) | Somatic cell gene therapy | |
CA1341246C (en) | Somatic cell gene therapy | |
AU709477C (en) | Retroviral gene therapy vectors and therapeutic methods based thereon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991215 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20011201 |