EP0979596B9 - Electrode de type söderberg destinee a la fabrication d'alliages de silicium et de metaux a base de silicium - Google Patents

Electrode de type söderberg destinee a la fabrication d'alliages de silicium et de metaux a base de silicium Download PDF

Info

Publication number
EP0979596B9
EP0979596B9 EP98916756A EP98916756A EP0979596B9 EP 0979596 B9 EP0979596 B9 EP 0979596B9 EP 98916756 A EP98916756 A EP 98916756A EP 98916756 A EP98916756 A EP 98916756A EP 0979596 B9 EP0979596 B9 EP 0979596B9
Authority
EP
European Patent Office
Prior art keywords
casing
central core
electrode
furnace
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916756A
Other languages
German (de)
English (en)
Other versions
EP0979596B1 (fr
EP0979596A1 (fr
Inventor
René BOISVERT
Jacques Dostaler
Jacques Dubois
Dieter W. Ksinsik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becancour Silicon Inc
Original Assignee
Becancour Silicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002204425A external-priority patent/CA2204425A1/fr
Application filed by Becancour Silicon Inc filed Critical Becancour Silicon Inc
Priority to SI9830264T priority Critical patent/SI0979596T1/xx
Publication of EP0979596A1 publication Critical patent/EP0979596A1/fr
Application granted granted Critical
Publication of EP0979596B1 publication Critical patent/EP0979596B1/fr
Publication of EP0979596B9 publication Critical patent/EP0979596B9/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/10Mountings, supports, terminals or arrangements for feeding or guiding electrodes
    • H05B7/107Mountings, supports, terminals or arrangements for feeding or guiding electrodes specially adapted for self-baking electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • H05B7/09Self-baking electrodes, e.g. Söderberg type electrodes

Definitions

  • This invention relates to a self-baking electrode and an electric arc furnace for the production of silicon alloys and silicon metal.
  • the invention furthermore relates to a process for forming in situ a self-baking electrode for the production of silicon metal and silicon alloys in an electric arc furnace.
  • Self-baking electrodes also called “Söderberg electrodes”
  • Self-baking electrodes basically consist of a carbon-containing material such as anthracite, pet coke, tar and pitch, which is filled into a steel casing held in position within an electric arc furnace by means of contact shoes and a suspension/slipping device.
  • the application of high electric currents plus the heat of the arc struck by the electrode during the furnace operation develops sufficient heat to melt the material filled into the casing and form a paste, then cokify the so-formed paste, and finally bake the electrode.
  • the steel casings of the Söderberg electrodes presently in use are in majority round in shape and provided with a series of inwardly projecting fins extending radially towards the center of the electrode in order to provide mechanical strength to the electrode, heat penetration within the electrode through the conductivity of the fins and act as current conductor.
  • the fins and the casing are typically made of regular steel, and their amount, length and physical shape depend on what is considered optimum for thorough baking as per each geometric design.
  • both the paste and casing have to be replaced. This is done high on top of the electrode column so that there is sufficient static pressure for compaction, and for running through the various stages of the temperature pattern from softening of the paste up to the heat generated by current flow.
  • the iron pick-up is of such a magnitude that the Söderberg technology cannot be applied to produce commercial grade silicon metal where, depending on the quality grade for Si, the Fe content has to be below 1%, below 0.5%, below 0.35% or even below 0.2%.
  • pre-baked electrode which is an amorphous carbon or semi-graphitized electrode produced in specific manufacturing units and then supplied in sections of typically 2 to 2.5 m length.
  • pre-baked electrodes which are usually 4 to 6 times more expensive than Söderberg electrodes, are to be connected to each other by specific devices, which can be nipples and sockets or a system of male/female design cuts at the ends of each section of the electrode. In operation in a silicon metal furnace, these connections between pieces of electrodes are limiting factors for energy transfer from one electrode to the other underneath the contact shoe.
  • Another object of the present invention is to provide a new electrode system which allows the production of silicon metal in a Söderberg-type furnace without any modification to the existing slipping system or addition of another slipping system. Thanks to the electrode according to the invention, the same furnace can produce both FeSi of any grade and Si metal without any downtime between the gradual change from one product to the other and each time at the lowest electrode cost.
  • the electrode according to the invention overcomes the problems associated with prior art: silicon metal contamination, core breakages as a result of extrusion forces, casing deformation, loss of production and capital expense for installation of new slipping systems. It also provides a way to convert bigger and more efficient ferro-silicon Söderberg-type furnaces instead of existing silicon metal furnaces with pre-baked electrode technology.
  • the present invention relates to an in situ self-baking electrode for the production of silicon metal and silicon alloys for use in an electric arc furnace according to claim 1.
  • the present invention also relates to an electric arc furnace for the production of silicon metal and silicon metal alloys according to claim 6.
  • a further object of the present invention is to propose a process for forming in situ a self-baking electrode for the production of silicon metal and silicon alloys in an electric arc furnace according to claim 11.
  • such a core in the form of bars or rods can be hollowed to allow inside cooling through injection of di-atomic or inert gases. Such is particularly useful to control and influence the arc at the lip of the electrode and the baking of the electrode.
  • the material forming the casing is selected so as to he electrically conductive to transfer electric power from the contact shoes into the Söderberg paste while preventing undesired metallic contamination by either Ti, V, Ta, Cr, Zr or Ni.
  • the casing can be made of Cu or brass, or of an aluminum alloy or aluminum of sufficient strength to support the pressure of the filling of Söderberg paste without deformation or dents.
  • Such a possible selection makes the invention particularly useful to produce silicon metal of suitable quality for application in the Rochow-direct synthesis. Indeed, one has only to select the material forming the conductive core and supporting casing so that the resulting metallic additions to die melting contains suitable amounts of Al and/or Cu and/or zinc and/or tin as are required in the silicon thus produced.
  • the electrode according to the invention allows a user to switch from the production of ferrosilicon using regular Söderberg electrodes to the production of silicon metal using the technology described hereinabove, without any downtime, and since no additional devices to guide the graphite core are required, switch-back to Söderberg technology is possible and only with this technology.
  • an important improvement in the electrode according to the invention lies in that the central core of the electrode which is secured to the casing is "released" from its function of transferring compression forces for the extrusion as for the electrode described in prior art as indicated above. Consequently, it does not expose the core material to the risk of buckling when compressed, and thereby of breaking. It furthermore eliminates the need for a separate slipping device to perform the functions of the central core, and thereby the substantial costs for irreversible retro-fitting of existing furnaces from the pre-baked carbon-electrode design to the extruded concept as described hereinabove.
  • an electric arc furnace (2) in which an electrode (4) according to the present invention may be employed is illustrated.
  • the furnace (2) is of a conventional design and may be used for smelting for example, ferrosilicon and silicon metal.
  • the furnace (2) comprises a furnace body (6) formed of an outer steel shell and a suitable refractory material.
  • a curtain (8) is extending upwardly from the furnace body (6) and it has an upper end engaged by the hood (10) or cover of the furnace body (6).
  • the electrode (4) extends vertically within the furnace body (6) through an opening (12) in the hood (10).
  • the furnace (2) comprises electric means for providing an electric arc in the furnace (2) for smelting a charge (14) in the furnace body (6).
  • the electric means comprises a contact, such as a contact shoe (16), connected to the electrode (4).
  • the contact shoe (16) is mounted on the electrode (4) with a conventional half-ring (18).
  • the furnace (2) may also be provided with a water-cooled jacket (20) for cooling the electrode (4) above the contact shoe (16).
  • Retaining means are provided for retaining the electrode (4) vertically within the furnace (2).
  • the retaining means preferably comprises regulation cylinders (22) and two slipping bands (24) mounted on an upper floor (26) of the furnace building and supporting the electrode (4).
  • the self- baking electrode (4) comprises an elongated open ended electrically conductive metal casing (30) for extending generally vertically within the furnace (2) in use.
  • This casing (30) has an upper end (31) and a bottom end (33).
  • a central core (32) made of a heat conductive material, made of a carbonaceous material, is disposed within and spaced from the casing (30).
  • the casing (30) and the central core (32) define an annular channel (34) in which a carbonaceous electrode paste (36), preferably Söderberg paste, can be fed, molten and baked.
  • a carbonaceous electrode paste (36) is surrounding the central core (32), the paste (36) being devised to cure into a solid electrode upon heating and to bond to the central core (32).
  • the central core (32) can be shaped as a bar or other defined shapes and is held centrally within the casing (30) by at least one framework (37) which prevents relative movement of the central core (32) with respect to the casing (30) due to the paste movement between the core (32) and the casing (30).
  • the casing (30) is made of a thin-walled ordinary steel or a thicker-walled Dural® so that the rigidity of the walls can stand the radial pressure of the filled-in Söderberg paste (36).
  • the filling of the Söderberg paste (36) into the electrode casing (30) is done in a quasi continuous manner so as to minimize the "falling" height and also the total length above the contact shoes.
  • the metal casing (30) is made of a material unalloyed with a metal selected from the group consisting of titanium, vanadium, tantalum, chrome, zirconium and nickel, for preventing contamination of the silicon metal to be produced in the furnace (2) with one of said metal upon an ongoing consumption of the casing in the furnace (2).
  • the casing (30) is made of a metal selected from the group consisting of copper, brass and aluminum.
  • the framework (37) securing the central core (32) to an inner surface of the casing (30) preferably comprises a pair of opposite rods (38), each rod (38) extending generally horizontally and having a first end (40) driven into the central core (32) and a second end (42) secured to an inner surface of the casing (30).
  • a bar (44) is extending through the central core (32) below the pair of rods (38), the bar (44) having its opposite outer ends (46) projecting out from the central core (32).
  • the framework (37) further comprises two lateral frame members (48), each connecting together the second end (42) of each rod (38) to a corresponding outer end (46) of the bar (44).
  • two further rods (60) may preferably be provided for preventing the central core (32) from twisting or rotating within the casing (30).
  • Each of said rods (60) comprises a first end (62) secured to the central core (32) and a second end (64) secured to the inner wall of the casing (30), the two rods (60) being tangent with the central core (32).
  • spread-out sheets (47) may be fixed to the inner surface of the casing (30) to better prevent an extrusion of the baked paste (36) downward.
  • the framework (37) alone prevents very well any extrusion of the baked electrode (36) downward, the baked electrode (36) bonding against the framework (37).
  • a conventional Söderberg electrode (49) is illustrated below the electrode (4) according to the present invention.
  • This conventional Söderberg electrode (49) comprises a casing (50) and fins (52) mounted on the inner wall of the casing (50).
  • a self-baked electrode (54) is formed within the casing (50) and both the electrode (54) and casing (50) moved down in unison. This type of electrode is well known in the art and does not need further description.
  • this conventional Söderberg electrode (49) may have the same diameter as the diameter of the electrode (4) according to the invention, showing that it is possible to easily switch from the production of ferrosilicon using a regular Söderberg electrode (49) to the production of a silicon metal using an electrode according to the invention without any downtime or shutdown of the whole furnace.
  • the particular structure of the electrode according to the invention allows for a great reduction in the volume of metal, such as steel, that is normally used for preventing the extrusion of the self-baked electrode downwards.
  • metal such as steel
  • the present invention uses, in a well balanced system, the heat conductivity of the central core (32) to bake the surrounding Söderberg paste (36). It does not necessitate a relative movement of the baked electrode (36) with respect to its surrounding casing (30) as is the case with the compound electrodes known in prior art and for use in the silicon metal production.
  • the process for forming in situ a self-baking electrode (4) in an electric arc furnace (2) comprises the following sequence of steps.
  • the central core (32) is secured to the casing (30) by driving respectively into two opposite sides of the central core (30), a first end (40) of a corresponding rod (38) of a pair of opposite rods (38) and then securing a second end (42) of each of said opposite rods (38) to an inner surface of the casing (30) such that each rod (38) is extending generally horizontally within the casing (30).
  • a bar (44) is inserted through the central core (32) below the two rods (38) such that the opposite outer ends (46) of the bar (44) are projecting out from the central core (32).
  • the second end (42) of each rod (38) is respectively connected to a corresponding outer end (46) of the bar (44) with a lateral frame member (48).
  • the casing (30), in step d), may preferably be slid on top of a previous Söderberg-type self-baking electrode (49) used for the production of ferrosilicon, as shown in figure 2.
  • the casing (30) used for the production of silicon may have substantially the same diameter as the outer casing (50) of the Söderberg electrode (49).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Furnace Details (AREA)
  • Silicon Compounds (AREA)
  • Discharge Heating (AREA)
  • Ceramic Products (AREA)

Claims (13)

  1. Electrode (4) à autocuisson in situ convenant à la production de silicium métallique et d'alliages de silicium pour une utilisation dans un four à arc (2), l'électrode (4) étant caractérisée en ce qu'elle comporte :
    une enveloppe métallique (30) électriquement conductrice, allongée, ouverte aux extrémités, destinée à s'étendre à peu près verticalement à l'intérieur du four (2) lors de l'utilisation, l'enveloppe étant formée d'une matière non alliée avec un métal choisi dans le groupe constitué du titane, du vanadium, du tantale, du chrome, du zirconium et du nickel, grâce à quoi une contamination du silicium métallique et des alliages de silicium devant être produits dans le four par l'un quelconque desdits métaux lors d'une consommation progressive de l'enveloppe (30) dans le four (2) est évitée ;
    une âme centrale (32) disposée à l'intérieur et à distance de l'enveloppe (30), l'âme centrale (32) étant formée d'une matière carbonée conductrice de la chaleur ;
    au moins une armature (37) à l'intérieur de l'enveloppe (30), l'armature (37) fixant l'âme centrale (32) à une surface intérieure de l'enveloppe (30) pour maintenir centralement l'âme centrale (32) à l'intérieur de l'enveloppe (30) et pour empêcher une extrusion de l'âme centrale (32) vers le bas ; et
    une pâte d'électrode carbonée (36) entourant l'âme centrale (32), la pâte (36) étant conçue pour durcir en une électrode solide en étant chauffée et pour se lier à l'âme centrale (32).
  2. Electrode (4) à autocuisson in situ selon la revendication 1, caractérisée en ce que l'âme centrale (32) est formée de barres de carbone reliées entre elles.
  3. Electrode (4) à autocuisson in situ selon l'une des revendications 1 et 2, caractérisée en ce que l'enveloppe (30) est formée d'un métal choisi dans le groupe constitué du cuivre, du laiton et de l'aluminium.
  4. Electrode (4) à autocuisson in situ selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'au moins une armature (37) comporte :
    deux tiges opposées (38), chaque tige (38) s'étendant à peu près horizontalement et ayant une première extrémité (40) enfoncée dans l'âme centrale (32) et une seconde extrémité (42) fixée à une surface intérieure de l'enveloppe (30) ;
    une barre (44) s'étendant à travers l'âme centrale (32) en dessous des deux tiges (38) et ayant des extrémités extérieures opposées (46) faisant saillie à l'extérieur de l'âme centrale (32) ; et
    deux éléments latéraux (48) d'armature, reliant chacun la seconde extrémité (42) de chaque tige (38) à une extrémité extérieure correspondante (46) de la barre (44).
  5. Electrode (4) à autocuisson in situ selon l'une quelconque des revendications 1 à 4, caractérisée en ce que l'âme (32) est creusée de façon à permettre un refroidissement intérieur par injection de gaz de refroidissement.
  6. Four à arc pour la production de silicium métallique et d'alliages de silicium (2), comportant :
    un corps (6) de four contenant une charge (14) devant être chauffée ;
    une électrode (4) à autocuisson in situ comportant :
    une enveloppe métallique (30) électriquement conductrice, allongée, ouverte aux extrémités, ayant une extrémité supérieure (31) et une extrémité inférieure (33), ladite enveloppe (30) s'étendant à peu près verticalement à l'intérieur du corps (6) du four et pouvant coulisser librement verticalement à travers un mécanisme de coulissement (24), et dans lequel ladite enveloppe (30) est formée d'une matière non alliée avec un métal choisi dans le groupe constitué du titane, du vanadium, du tantale, du chrome, du zirconium et du nickel pour empêcher une contamination du silicium métallique et des alliages de silicium devant être produits dans le four par l'un quelconque desdits métaux lors d'une consommation progressive de l'enveloppe (30) dans le four (2) ;
    une âme centrale (32) disposée à l'intérieur et à distance de l'enveloppe (30), l'âme centrale (32) étant formée d'une matière carbonée conductrice de la chaleur ;
    au moins une armature (37) à l'intérieur de l'enveloppe (30), l'armature (37) fixant l'âme centrale (32) à une surface intérieure de l'enveloppe (30) pour maintenir centralement l'âme centrale (32) à l'intérieur de l'enveloppe (30) et pour empêcher une extrusion de l'âme centrale (32) vers le bas à travers l'extrémité inférieure (33) de l'enveloppe (30) ;
    une pâte d'électrode carbonée (36) entourant l'âme centrale (32), la pâte (36) étant conçue pour durcir en une électrode solide lors d'un chauffage et pour se lier à l'âme centrale (32) ;
    des moyens (22, 24) de retenue de l'enveloppe (30) dans une position à peu près verticale à l'intérieur du corps (6) du four ; et
    des moyens électriques destinés à générer un arc électrique dans le four, les moyens électriques comprenant un contact (16) sur l'enveloppe (30).
  7. Four à arc (2) selon la revendication 6, caractérisé en ce que l'âme centrale (32) est formée de barres de carbone reliées entre elles.
  8. Four à arc (2) selon l'une des revendications 6 et 7, caractérisé en ce que l'enveloppe (30) est formée d'un métal choisi dans le groupe constitué du cuivre, du laiton et de l'aluminium.
  9. Four à arc (2) selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'au moins une armature (37) comporte :
    deux tiges opposées (38), chaque tige (38) s'étendant à peu près horizontalement et ayant une première extrémité (40) enfoncée dans l'âme centrale (32) et une seconde extrémité (42) fixée à une surface intérieure de l'enveloppe (30) ;
    une barre (44) s'étendant à travers l'âme centrale (32) en dessous des deux tiges (38) et ayant des extrémités extérieures opposées (46) faisant saillie à l'extérieur de l'âme centrale (32) ; et
    deux éléments latéraux (48) d'armature, reliant chacun la seconde extrémité (42) de chaque tige (38) à une extrémité extérieure correspondante (46) de la barre (44).
  10. Four à arc (2) selon l'une quelconque des revendications 6 à 9, caractérisé en ce que l'âme centrale (32) est creusée de façon à permettre un refroidissement intérieur par une injection de gaz de refroidissement.
  11. Procédé pour former in situ une électrode (4) à autocuisson pour la production de silicium métallique et d'alliages de silicium dans un four à arc (2), le procédé comprenant les étapes qui consistent :
    a) à utiliser une enveloppe métallique (30) électriquement conductrice, allongée, ouverte aux extrémités, formée d'une matière non alliée avec un métal choisi dans le groupe constitué du titane, du vanadium, du tantale, du chrome, du zirconium et du nickel pour empêcher une contamination du silicium métallique et des alliages de silicium devant être produits dans le four par l'un quelconque desdits métaux lors d'une consommation progressive de l'enveloppe (30) dans le four (2) ;
    b) à disposer une âme centrale (32) en matière carbonée, conductrice de la chaleur, à l'intérieur et à distance de l'enveloppe (30) ;
    c) à fixer l'âme centrale (32) à une surface intérieure de l'enveloppe (30) et à la maintenir centralement à l'intérieur de l'enveloppe (30) ;
    d) à faire coulisser à peu près verticalement l'enveloppe allongée (30), électriquement conductrice, à l'intérieur du four (2) ;
    e) à introduire une quantité de pâte d'électrode carbonée (36) dans l'enveloppe (30) afin que ladite pâte (36) entoure l'âme centrale (32), la pâte (36) étant conçue pour durcir en une électrode solide en étant chauffée et pour se lier à l'âme centrale (32) ; et
    f) à mettre en contact l'enveloppe (30) avec une source d'énergie électrique ; et
    g) à générer à l'aide de ladite source d'énergie électrique un arc électrique dans le four (2).
  12. Procédé selon la revendication 11, dans lequel l'étape c) comprend les étapes qui consistent :
    à enfoncer, respectivement, dans deux côtés opposés de l'âme centrale (32) une première extrémité (40) d'une tige correspondante (38) de deux tiges opposées (38) et à fixer une seconde extrémité (42) de chacune desdites tiges opposées (38) à une surface intérieure de l'enveloppe (30) de manière que chaque tige (38) s'étende à peu près horizontalement à l'intérieur de l'enveloppe (30) ;
    à introduire une barre (44) à travers l'âme centrale (32) en dessous desdites deux tiges (38) et de façon que des extrémités extérieures opposées (46) de ladite barre (44) fassent saillie à l'extérieur de l'âme centrale (32) ; et
    à relier entre elles à l'aide d'un élément latéral respectif (48) la seconde extrémité (42) de chaque tige (38) et une extrémité extérieure correspondante (46) de la barre (44).
  13. Procédé selon la revendication 12, dans lequel :
    dans l'étape d), l'enveloppe (30) est reliée à l'extrémité supérieure d'une électrode (49) à autocuisson de type Söderberg antérieur utilisée pour la production de ferrosilicium, ladite électrode Söderberg (49) comportant une enveloppe extérieure (50) ; et en ce que
    l'enveloppe (30) de l'électrode (4) qui est formée a sensiblement le même diamètre que ladite enveloppe extérieure (50) de l'électrode Söderberg (49).
EP98916756A 1997-05-02 1998-04-27 Electrode de type söderberg destinee a la fabrication d'alliages de silicium et de metaux a base de silicium Expired - Lifetime EP0979596B9 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9830264T SI0979596T1 (en) 1997-05-02 1998-04-27 Söderberg electrode for making silicon alloys and silicon metal

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CA002204425A CA2204425A1 (fr) 1997-05-02 1997-05-02 Electrode pour alliages de silicone et de metal de silicone
CA2204425 1997-05-02
US958323 1997-10-27
US08/958,323 US5854807A (en) 1997-05-02 1997-10-27 Electrode for silicon alloys and silicon metal
PCT/CA1998/000409 WO1998051129A1 (fr) 1997-05-02 1998-04-27 Electrode de type söderberg destinee a la fabrication d'alliages de silicium et de metaux a base de silicium

Publications (3)

Publication Number Publication Date
EP0979596A1 EP0979596A1 (fr) 2000-02-16
EP0979596B1 EP0979596B1 (fr) 2002-07-17
EP0979596B9 true EP0979596B9 (fr) 2003-01-02

Family

ID=25679299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98916756A Expired - Lifetime EP0979596B9 (fr) 1997-05-02 1998-04-27 Electrode de type söderberg destinee a la fabrication d'alliages de silicium et de metaux a base de silicium

Country Status (9)

Country Link
EP (1) EP0979596B9 (fr)
AU (1) AU7024998A (fr)
BR (1) BR9809347B1 (fr)
ES (1) ES2177000T3 (fr)
IS (1) IS1955B (fr)
NO (1) NO315630B1 (fr)
PL (1) PL189321B1 (fr)
SK (1) SK286447B6 (fr)
WO (1) WO1998051129A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5382699A (en) * 1998-08-25 2000-03-14 Pyromet (Proprietary) Limited Soderberg-type composite electrode for arc smelting furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB227822A (en) * 1924-01-17 1925-08-13 Norske Elektrokemisk Ind As Improvements in or relating to electrodes for electric furnaces
US4133968A (en) * 1977-05-26 1979-01-09 Frolov Jury F Apparatus for forming self-sintering electrodes
DE3840827A1 (de) * 1988-12-03 1990-06-07 Hoechst Ag Elektrothermischer reduktionsofen
DE4010353A1 (de) * 1990-03-28 1991-10-02 Mannesmann Ag Verfahren und vorrichtung zum betreiben eines metallurgischen ofens mit selbstbackender elektrode
FR2724219B1 (fr) * 1994-09-05 1996-10-25 Pechiney Electrometallurgie Dispositif de montage d'une electrode composite a autocuisson pour four electrique a arc

Also Published As

Publication number Publication date
SK149399A3 (en) 2000-08-14
IS5219A (is) 1999-10-15
WO1998051129A1 (fr) 1998-11-12
AU7024998A (en) 1998-11-27
PL336590A1 (en) 2000-07-03
NO995254D0 (no) 1999-10-27
EP0979596B1 (fr) 2002-07-17
PL189321B1 (pl) 2005-07-29
NO995254L (no) 1999-12-29
NO315630B1 (no) 2003-09-29
SK286447B6 (sk) 2008-10-07
BR9809347B1 (pt) 2011-11-16
BR9809347A (pt) 2000-07-04
IS1955B (is) 2004-11-15
ES2177000T3 (es) 2002-12-01
EP0979596A1 (fr) 2000-02-16

Similar Documents

Publication Publication Date Title
NO143498B (no) Fremgangsmaate for alkylering av aromatiske hydrokarboner
US5854807A (en) Electrode for silicon alloys and silicon metal
US4145564A (en) Non-consumable electrode with replaceable graphite tip
JPS6349152B2 (fr)
EP0979596B9 (fr) Electrode de type söderberg destinee a la fabrication d'alliages de silicium et de metaux a base de silicium
EP0179164B1 (fr) Electrode à auto-cuisson pour fours électriques à arc et analogues
CA2286658C (fr) Electrode de type soderberg destinee a la fabrication d'alliages de silicium et de metaux a base de silicium
EP0327741B1 (fr) Electrode à autocuisson
AU655683B2 (en) An improved process for the continuous manufacture of impurity and iron-free electrodes for electric arc furnaces
IE832345L (en) Graphitisation process and furnace therefor
AU683182B2 (en) Self-baking carbon electrode
CN1108757A (zh) 用于熔化金属的直流电炉
CA2341749C (fr) Electrode composite de type soderberg pour four de fusion a arc
EP0682463B1 (fr) Electrode de fond refroidie pour four électrique à courant continu
CA2564646A1 (fr) Conteneur pour former des electrodes a auto-cuisson
US4532633A (en) DC arc furnace improved hearth construction
EP1153529B1 (fr) Conteneur fait d'aluminium et d'acier inoxydable servant a la formation d'electrodes a autocuisson utilisees dans des fours electriques a basse reduction
CA1310047C (fr) Electrode a auto-cuisson
CN217499371U (zh) 一种自耗电极的烘烤装置
AU2272000A (en) Container made of stainless steel for forming self-baking electrodes for use in low electric reduction furnaces
WO1997032047A1 (fr) Four de fusion/affinage ferme hermetiquement
CN2345931Y (zh) 直流电弧钢包炉底部电极
HU186006B (en) Elctrode for arc furnace
SU732645A1 (ru) Руднотермическа электропечь
ITMI20001685A1 (it) Elettrodo estruso per forno elettrico ad arco sommerso

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR

AX Request for extension of the european patent

Free format text: RO PAYMENT 19991106;SI PAYMENT 19991106

RTI1 Title (correction)

Free format text: SOEDERBERG ELECTRODE FOR MAKING SILICON ALLOYS AND SILICON METAL

RTI1 Title (correction)

Free format text: SOEDERBERG ELECTRODE FOR MAKING SILICON ALLOYS AND SILICON METAL

RTI1 Title (correction)

Free format text: SOEDERBERG ELECTRODE FOR MAKING SILICON ALLOYS AND SILICON METAL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010403

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR

AX Request for extension of the european patent

Free format text: RO PAYMENT 19991106;SI PAYMENT 19991106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2177000

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030422

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: QSIP CANADA ULC; CA

Effective date: 20130513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160318

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160504

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170428