EP0968413B1 - Appareil combinant la spectrophotometrie et la detection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse - Google Patents

Appareil combinant la spectrophotometrie et la detection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse Download PDF

Info

Publication number
EP0968413B1
EP0968413B1 EP99900965A EP99900965A EP0968413B1 EP 0968413 B1 EP0968413 B1 EP 0968413B1 EP 99900965 A EP99900965 A EP 99900965A EP 99900965 A EP99900965 A EP 99900965A EP 0968413 B1 EP0968413 B1 EP 0968413B1
Authority
EP
European Patent Office
Prior art keywords
combustion
sleeve
nozzle
tubular sleeve
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99900965A
Other languages
German (de)
English (en)
Other versions
EP0968413A1 (fr
Inventor
Henri Lancelin
Gilles Guene
Patrick Bleuse
Pierre Clausin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proengin SA
Original Assignee
Proengin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proengin SA filed Critical Proengin SA
Publication of EP0968413A1 publication Critical patent/EP0968413A1/fr
Application granted granted Critical
Publication of EP0968413B1 publication Critical patent/EP0968413B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners

Definitions

  • the present invention relates to an apparatus for the analysis of a gas composition combining spectrophotometry and the detection of the ionization of a flame.
  • the desired elements can include elements generating characteristic light emissions such as sulfur, phosphorus, or weakly emitting elements (even non-emissive) such as hydrocarbons.
  • flame spectrophotometry is a method of performing the spectrographic analysis of the radiation produced by the flame of a gaseous mixture including the elements to be analyzed and an oxidizing gas such as hydrogen. This analysis is carried out by isolating the characteristic radiations of the elements sought and by measuring, by photometric means, these radiations. This method is particularly suitable for the detection of elements such as sulfur, phosphorus, sodium or lithium.
  • the preliminary reaction which is then intended to generate metal chlorides, is carried out by carrying out a first combustion in a reducing medium, in the presence of a reactive metal such as copper or copper.
  • a reactive metal such as copper or copper.
  • Indium a gaseous mixture comprising hydrogen and the gas to be analyzed.
  • the gas mixture resulting from this first combustion is subjected to a second combustion, but this time in an oxidizing medium, which produces a light emission which is also carried out spectrophotometric analysis.
  • Patent FR 2 743 883 in the name of the applicant describes a burner of this type.
  • the methods of analysis by detection of the ionization of a flame involve a burner in which is carried out in an oxidizing medium, the combustion of the sample to be analyzed in an oxidizing gas such as hydrogen. Electrodes are then arranged at the combustion chamber of the burner so as to measure the conductivity of the area where combustion occurs.
  • This measurement makes it possible to detect the presence of combustible constituents in the sample and, in particular, of organic materials such as hydrocarbons or hydrocarbon derivatives: the combustion of this organic material produces, in effect, between the measurement electrodes, a current of ionization in relation to the concentration of organic matter.
  • This process can be extended to a wider range of compounds by flame-adding an additive such as an alkaline salt which reacts with these compounds to produce an ionization of the gases to be analyzed.
  • this analyzer also comprises a focusing optic coaxial with said sleeves and designed so as to focus the image of the flames and generated in the two combustion chambers, on the inlet orifice of said spectrophotometric assembly, and a processor able to process the information delivered by the measurement circuit and the assembly spectrophotometrically to deduce the composition and concentration of desired elements of the sample.
  • the aforesaid pair of electrodes may comprise an annular electrode secured to the second tubular sleeve so as to at least partially surround the second combustion chamber: in this case, the first electrode may consist of the first tubular sleeve.
  • the first tubular sleeve may comprise, at least at its outer surface a coating of a material capable of emitting a reactive gas under the effect of the heat generated in the first combustion chamber:
  • This coating may be achieved by example in Indium so as to perform the detection of chlorine.
  • the burner may comprise a third coaxial tubular sleeve which delimits with the first sleeve an annular chamber opening into the second combustion chamber and for the admission of a stream of hydrogen from the said source.
  • this annular chamber is connected to this source through an intake circuit controlled by a valve.
  • the tubular sleeve 4 is made of an electrically conductive material and constitutes a second electrode which cooperates with the electrode 14 in order to allow the measurement of the conductivity of the zone of the second chamber 9 in which the second flame (flame F 2 ).
  • resistance measuring means 21 which comprise a voltage source 22 connected in series with a voltmeter 23, this assembly being shunted by a resistor 24.
  • the information delivered by the spectrophotometric assembly 20 and by the voltmeter 23 are transmitted to a processor / display unit programmed so as to determine the concentration of elements and / or desired substances of the gaseous sample supplied by the nozzle 2.
  • the outer surface of the sleeve 4 may be covered by a coating 26 of a material capable of emitting a reactive gas at the temperature at which this sleeve 4 is brought under the effect of the combustion generated in the first combustion chamber 8.
  • this reactive material may consist of Indium, the corresponding desired element then being chlorine.
  • the burner may comprise a third coaxial tubular sleeve 30 extending in the intermediate space between the sleeves 4 and 10.
  • This third sleeve 30 defines with the sleeve 4 an annular chamber opening into the second combustion chamber 9 and for the admission into this chamber 9 of a stream of hydrogen from the source 7.
  • the annular chamber 31 is connected to the source 7 via an intake circuit 32 controlled by a valve 33.
  • the assembly of the two chambers 8, 9 is depressurized by the turbine 18 so as to cause suction of the gas to be taken from the nozzle 2, through a nozzle provided in the intake circuit 3.
  • the suction gas stream (for example air) mixes with the hydrogen stream injected by the inlet chamber 5, in a proportion such that the combustion produced in the first chamber combustion 8 is reducing.
  • the light radiation generated by the flame F 1 present in the first chamber 8 makes it possible to detect by means of the spectrophotometric assembly 20 compounds such as phosphorus and sulfur and to deduce the presence of desired elements.
  • the temperature generated by this combustion causes heating of the sleeve 4 and, consequently, of the coating 26.
  • this coating 26 When it reaches or exceeds its vaporization temperature, this coating 26 emits a reactive vapor which mixes with the flow of hydrogen injected through the inlet chamber 31 and into the air coming from the inlet chamber 11.
  • the gaseous mixture reacts (oxidizing combustion) with the gas stream resulting from the partial combustion produced in the chamber 8 to produce a flame F 2 which emits a light characteristic of a component such as chlorine. who reacted with the reactive steam of Indium.
  • This light is focused by the lens 19 at the entrance of the spectrophotometric assembly 20.
  • the information supplied by the assembly 20 as well as by the ammeter 23 are transmitted to the processor 25, which is programmed to interpret these information and to derive concentrations of desired elements, whether compounds, chemicals or even biological substances (bacteria).
  • the gaseous sample to be analyzed contains particles in suspension (for example bacteria or dust)
  • these particles while burning generate light pulses (flash) of limited duration that it is possible to count to obtain the number of particles per unit volume of gas to be analyzed.
  • the burner may further comprise means for injecting into the second combustion chamber 9 an additive such as an alkaline salt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

  • La présente invention concerne un appareil pour l'analyse d'une composition gazeuse combinant la spectrophotométrie et la détection de l'ionisation d'une flamme.
  • Elle s'applique notamment, mais non exclusivement, à l'analyse d'une composition gazeuse dans laquelle les éléments recherchés peuvent comprendre aussi bien des éléments engendrant des émissions lumineuses caractéristiques tels que du soufre, du phosphore, que des éléments faiblement émissifs (voire non émissifs) tels que des hydrocarbures.
  • D'une façon générale, on sait que la spectrophotométrie de flamme est une méthode consistant à effectuer l'analyse spectrographique du rayonnement produit par la flamme d'un mélange gazeux incluant les éléments à analyser et un gaz comburant tel que de l'hydrogène. Cette analyse s'effectue en isolant les radiations caractéristiques des éléments recherchés et en effectuant la mesure, par voie photométrique, de ces radiations. Cette méthode convient notamment à la détection d'éléments tels que le soufre, le phosphore, le sodium ou le lithium.
  • Pour pouvoir appliquer ce processus à certains éléments qui n'engendrent pas d'émission lumineuse caractéristique, comme le chlore, il est nécessaire de provoquer, préalablement à la combustion, une réaction de ces éléments avec un élément réactif pour obtenir un composé produisant une émission lumineuse détectable et identifiable.
  • Ainsi, dans le cas du chlore, la réaction préalable, qui a alors pour but d'engendrer des chlorures métalliques, s'effectue en réalisant une première combustion en milieu réducteur, en présence d'un métal réactif tel que du cuivre ou de l'Indium, du mélange gazeux comprenant l'hydrogène et le gaz à analyser.
  • Le mélange gazeux issu de cette première combustion est soumis à une deuxième combustion, mais cette fois en milieu oxydant, qui produit une émission lumineuse dont on effectue également l'analyse spectrophotométrique.
  • Le brevet FR 2 743 883 au nom de la demanderesse décrit un brûleur de ce type.
  • D'une façon analogue, les procédés d'analyse par détection de l'ionisation d'une flamme (FID) font intervenir un brûleur dans lequel on réalise en milieu oxydant, la combustion de l'échantillon à analyser dans un gaz comburant tel que de l'hydrogène. Des électrodes sont alors disposées au niveau de la chambre de combustion du brûleur de manière à pouvoir mesurer la conductivité de la zone où se produit la combustion.
  • Cette mesure permet de détecter la présence de constituants combustibles dans l'échantillon et, en particulier, de matières organiques telles que des hydrocarbures ou des dérivés d'hydrocarbures : La combustion de cette matière organique produit en effet, entre les électrodes de mesure, un courant d'ionisation en relation avec la concentration en matière organique. Ce procédé peut être étendu à une plus large gamme de composés en soumettant à la flamme un additif tel qu'un sel alcalin qui réagit avec ces composés de manière à produire une ionisation des gaz à analyser.
  • La publication Sing H. et al "Correlation chromatograms from a triple-detector system", Journal of Chromatography A, vol. 737, n° 2, 21 juin 1996, pages 223-231, décrit un appareil à une seule chambre de combustion qui combine la spectrophotométrie de flamme et la détection de l'ionisation de cette flamme.
  • Il s'avère que les analyses effectuées par l'un ou l'autre de ces procédés peuvent être faussées par la présence de composés que l'on ne souhaite pas détecter. Ainsi, par exemple, la détection de compositions organiques chlorées risque d'être faussée dans le cas d'échantillons contenant de fortes concentrations en brouillard salin.
  • L'invention a donc plus particulièrement pour but de supprimer ces inconvénients à l'aide d'un analyseur performant réalisable sous la forme d'un appareil portatif et autonome de manière à permettre d'effectuer des analyses in situ pratiquement instantanées, cet appareil combinant la spectrophotométrie et la détection de l'ionisation d'une flamme pour l'analyse d'une composition gazeuse, cet appareil comprenant un brûleur tubulaire comportant au moins une buse d'admission en continu d'un échantillon gazeux que l'on désire analyser et, coaxialement à cette buse :
    • un premier manchon tubulaire présentant un fond traversé par ladite buse, ce manchon délimitant successivement avec ladite buse une chambre annulaire servant à l'admission d'un gaz comburant tel que de l'hydrogène, puis une première chambre de combustion s'étendant au-delà de l'extrémité de la buse,
    • une source de gaz comburant connectée à ladite chambre annulaire,
    • un second manchon tubulaire présentant un fond au travers duquel passe ladite buse, ce second manchon délimitant successivement avec le premier manchon une chambre annulaire servant à l'admission d'un gaz oxydant tel que de l'air, et une seconde chambre de combustion qui s'étend au-delà de l'extrémité du premier manchon tubulaire,ce deuxième manchon tubulaire comprenant un orifice d'évacuation des gaz issus de la combustion,
    • un couple d'électrodes circulaires associé à un circuit de mesure de la conductivité ou de la résistance d'une zone de combustion située dans la deuxième chambre de combustion, l'une desdites électrodes consistant en le premier manchon tubulaire,
    • un montage spectrophotométrique avec un orifice d'entrée, permettant d'effectuer une analyse spectrophotométrique du rayonnement lumineux engendré dans la deuxième chambre de combustion.
  • Selon l'invention, cet analyseur comprend aussi une optique focalisatrice coaxiale auxdits-manchons et conçue de manière à focaliser l'image des flammes et engendrées dans les deux chambres de combustion, sur l'orifice d'entrée dudit montage spectrophotométrique, et un processeur apte à traiter les informations délivrées par le circuit de mesure et par le montage spectrophotométrique pour en déduire la composition et la concentration en éléments recherchés de l'échantillon.
  • Avantageusement, le susdit couple d'électrodes pourra comprendre une électrode annulaire solidarisée au deuxième manchon tubulaire de manière à entourer au moins partiellement la deuxième chambre de combustion : dans ce cas, la première électrode pourra consister en le premier manchon tubulaire.
  • Bien entendu, le premier manchon tubulaire pourra comprendre, au moins au niveau de sa surface extérieure un revêtement en un matériau apte à émettre un gaz réactif sous l'effet dé la chaleur engendrée dans la première chambre de combustion : Ce revêtement pourra être réalisé par exemple en Indium de manière à pouvoir effectuer la détection de chlore.
  • Dans ce cas, le brûleur pourra comprendre un troisième manchon tubulaire coaxial qui délimite avec le premier manchon une chambre annulaire débouchant dans la deuxième chambre de combustion et servant à l'admission d'un courant d'hydrogène provenant de la susdite source. A cet effet, cette chambre annulaire est reliée à cette source par l'intermédiaire d'un circuit d'admission commandé par une vanne.
  • Grâce à ces dispositions, en combinant les informations délivrées par les deux moyens d'analyse (spectrophotométrie/ionisation de flamme), il devient possible de différencier considérablement le nombre d'éléments ou de substances recherchés et surtout, de s'affranchir des problèmes de chevauchement ou de masquage de raies spectrales caractéristiques d'éléments recherchés par d'autres, voire même par du bruit. Ainsi, il devient possible de résoudre le problème du masquage des composés chlorés hydrocarbonés par le brouillard salin : Il est en effet possible de déterminer la concentration du chlorure de sodium en relevant par spectrophotométrie la concentration en sodium. Pour obtenir ensuite la concentration des autres composés chlorés, on retranche cette concentration en sodium de la concentration totale de chlore déterminée grâce au gaz réactif émis par le revêtement du premier manchon tubulaire. La concentration en composés organiques chlorés peut être ensuite déterminée grâce aux informations détectées par le circuit de détection FID (qui détermine la concentration en composés hydrocarbonés).
  • Un mode d'exécution de l'invention sera décrit ci-après, à titre d'exemple non limitatif, avec référence au dessin annexé dans lequel :
    • La figure unique est un schéma de principe d'un appareil d'analyse selon l'invention.
  • Dans cet exemple, l'appareil d'analyse comprend un brûleur tubulaire 1 comprenant une buse tubulaire 2 connectée d'un côté à un conduit d'amenée de gaz à analyser 3 et ouverte de l'autre côté et, coaxialement à cette buse 2 :
    • un premier manchon tubulaire 4. de diamètre légèrement supérieur à celui de la buse 2 et axialement décalé par rapport à cette dernière, de manière à délimiter, d'une part, avec la buse 2, une première chambre annulaire d'admission 5 connectée à un circuit d'injection 6 d'hydrogène provenant d'une source 7 et, d'autre part, au-delà de la première buse 2, une chambre de combustion 8 dans laquelle la combustion partielle du gaz à analyser et de l'hydrogène engendre une première flamme F1 : ce premier manchon tubulaire 4 se referme d'un côté sur la buse 2 et débouche, de l'autre côté, dans une deuxième chambre de combustion 9 ;
    • un deuxième manchon tubulaire 10, de diamètre supérieur à celui du premier manchon tubulaire 4 et délimitant avec celui-ci, une deuxième chambre d'admission annulaire 11 connectée à un circuit d'admission 12 d'un gaz ou d'un mélange gazeux oxydant, par exemple de l'air : ce deuxième manchon 10 se referme d'un côté sur la buse 2 et/ou sur le premier manchon 4 et délimite, de l'autre côté, au-delà de celui-ci, la deuxième chambre de combustion 9, dans laquelle s'effectue une postcombustion en milieu oxydant des gaz issus de la première chambre de combustion 8 et de la chambre d'admission 11 ;
    • une électrode annulaire 14, de section sensiblement en forme de C inversé, solidarisée par sa face de plus grand diamètre 15 au deuxième manchon 10, et dont la face de plus petit diamètre 16, qui présente une longueur axiale plus petite que celle de la face 15, délimite un conduit de sortie S de la chambre de combustion 9 : au-delà de l'électrode 14 (du côté opposé au manchon 4), le manchon 11 comprend un orifice latéral 17 dans lequel débouche un conduit d'échappement, muni d'une turbine 18 actionnée par un moteur ;
    • une optique focalisatrice 19 telle qu'une lentille montée dans l'ouverture circulaire d'un opercule refermant le manchon 10, du côté opposé à la buse 2, cette optique focalisatrice 19 étant conçue de manière à focaliser le rayonnement lumineux émis dans les deux chambres de combustion 8, 9, en particulier la première chambre 8, sur l'orifice d'entrée d'un montage spectrophotométrique 20.
  • Dans cet exemple, le manchon tubulaire 4 est réalisé en un matériau électriquement conducteur et constitue une seconde électrode qui coopère avec l'électrode 14 en vue de permettre la mesure de la conductivité de la zone de la deuxième chambre 9 dans laquelle se développe la seconde flamme (flamme F2).
  • Ces deux électrodes sont électriquement reliées à des moyens de mesure de résistance 21 qui comprennent une source de tension 22 montée en série avec un voltmètre 23, cet ensemble étant shunté par une résistance 24.
  • Les informations délivrées par le montage spectrophotométrique 20 et par le voltmètre 23 sont transmises à un ensemble processeur/afficheur 25 programmé de manière à déterminer la concentration en éléments et/ou en substances recherchées de l'échantillon gazeux amené par la buse 2.
  • Comme précédemment mentionné, la surface extérieure du manchon 4 pourra être recouverte par un revêtement 26 en un matériau apte à émettre un gaz réactif à la température à laquelle ce manchon 4 est amené sous l'effet de la combustion engendrée dans la première chambre de combustion 8. A titre d'exemple, ce matériau réactif pourra consister en de l'Indium, l'élément recherché correspondant étant alors le chlore.
  • Dans ce cas, le brûleur pourra comprendre un troisième manchon tubulaire coaxial 30 s'étendant dans l'espace intercalaire compris entre les manchons 4 et 10. Ce troisième manchon 30 délimite avec le manchon 4 une chambre annulaire débouchant dans la deuxième chambre de combustion 9 et servant à l'admission dans cette chambre 9 d'un courant d'hydrogène provenant de la source 7. A cet effet, la chambre annulaire 31 est connectée à la source 7 par l'intermédiaire d'un circuit d'admission 32 commandé par une vanne 33.
  • Le fonctionnement du brûleur précédemment décrit est alors le suivant :
  • L'ensemble des deux chambres 8, 9 est mis en dépression par la turbine 18 de manière à provoquer une aspiration du gaz à prélever dans la buse 2, à travers un ajutage prévu dans le circuit d'admission 3.
  • A l'intérieur du manchon 4, le flux de gaz aspiré (par exemple de l'air) se mélange avec le courant d'hydrogène injecté par la chambre d'admission 5, dans une proportion telle que la combustion produite dans la première chambre de combustion 8 soit réductrice. Le rayonnement lumineux engendré par la flamme F1 présente dans la première chambre 8 permet de détecter grâce au montage spectrophotométrique 20 des composés tels que le phosphore et le soufre et à en déduire la présence en éléments recherchés.
  • La température engendrée par cette combustion provoque le chauffage du manchon 4 et, par conséquent, du revêtement 26.
  • Lorsqu'il atteint ou dépasse sa température de vaporisation, ce revêtement 26 émet une vapeur réactive qui se mélange au flux d'hydrogène injecté par la chambre d'admission 31 et à l'air provenant de la chambre d'admission 11.
  • Au sortir de ces chambres 11 et 31, le mélange gazeux réagit (combustion oxydante) avec le flux gazeux résultant de la combustion partielle produite dans la chambre 8 pour produire une flamme F2 qui émet une lumière caractéristique d'un composant tel que du chlore qui a réagi avec la vapeur réactive d'Indium. Cette lumière, de même que celle produite dans la chambre 8, se trouve focalisée par la lentille 19 à l'entrée du montage spectrophotométrique 20.
  • Les informations délivrées par le montage 20 ainsi que par l'ampèremètre 23 (qui sont représentatives des variations de conductibilité de la flamme (ionisation) présente dans la seconde chambre de combustion) sont transmises au processeur 25, lequel est programmé de manière à interpréter ces informations et à en déduire des concentrations en éléments recherchés, qu'il s'agisse de composés, de substances chimiques ou même de substances biologiques (bactéries).
  • Bien entendu, dans le cas où l'échantillon gazeux que l'on veut analyser contient des particules en suspension (par exemple des bactéries ou des poussières), ces particules en brûlant engendrent des impulsions lumineuses (flash) de durée limitée qu'il est possible de compter pour obtenir le nombre de particules par unité de volume de gaz à analyser.
  • De même, pour les raisons précédemment évoquées, le brûleur pourra en outre comprendre des moyens permettant d'injecter dans la seconde chambre de combustion 9 un additif tel qu'un sel alcalin.

Claims (8)

  1. Appareil combinant la spectrophotométrie et la détection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse, cet appareil comprenant un brûleur tubulaire comportant au moins une buse (2) d'admission en continu d'un échantillon gazeux que l'on désire analyser et, coaxialement à cette buse:
    - un premier manchon tubulaire (4) présentant un fond traversé par ladite buse (2), ce manchon (4) délimitant successivement avec ladite buse (2) une chambre annulaire (5) servant à l'admission d'un gaz comburant tel que de l'hydrogène, puis une première chambre de combustion (8) s'étendant au-delà de l'extrémité de la buse (2),
    - une source de gaz comburant (7) connectée à ladite chambre annulaire,
    - un second manchon tubulaire (10) présentant un fond au travers duquel passe ladite buse (2), ce second manchon (10) délimitant successivement avec le premier manchon (4) une chambre annulaire (11) servant à l'admission d'un gaz oxydant tel que de l'air, et une seconde chambre de combustion (9) qui s'étend au-delà de l'extrémité du premier manchon tubulaire (4), ce deuxième manchon tubulaire (10) comprenant un orifice d'évacuation (17) des gaz issus de la combustion,
    - un couple d'électrodes (14) circulaires associé à un circuit (21) de mesure de la conductivité ou de la résistance d'une zone de combustion située dans la deuxième chambre de combustion (9), l'une desdites électrodes consistant en le premier manchon tubulaire (4),
    - un montage spectrophotométrique (20) avec un orifice d'entrée, permettant d'effectuer une analyse spectrophotométrique du rayonnement lumineux engendré dans les chambres de combustion,
    - une optique focalisatrice (19) coaxiale auxdits manchons (4, 10) et conçue de manière à focaliser l'image des flammes (F1) et (F2) engendrées dans les deux chambres de combustion (8, 9) sur l'orifice d'entrée dudit montage spectrophotométrique (20),
    - un processeur (25) apte à traiter les informations délivrées par le circuit de mesure (21) et par le montage spectrophotométrique (20) pour en déduire la composition et la concentration en éléments recherchés de l'échantillon.
  2. Appareil selon la revendication 1,
    caractérisé en ce que le susdit couple d'électrodes comprend une électrode annulaire (14) solidarisée au deuxième manchon tubulaire (10) de manière à entourer au moins partiellement la deuxième chambre de combustion (9).
  3. Appareil selon l'une des revendications 1 et 2,
    caractérisé en ce que le premier manchon tubulaire (4) comprend, au moins au niveau de sa surface extérieure un revêtement (26) en un matériau apte à émettre un gaz réactif sous l'effet de la chaleur engendrée dans la première chambre de combustion (8).
  4. Appareil selon la revendication 3,
    caractérisé en ce que le revêtement est réalisé en Indium.
  5. Appareil selon l'une des revendications 3 et 4,
    caractérisé en ce que le brûleur comprend un troisième manchon tubulaire coaxial (30) qui délimite avec le premier manchon (4) une chambre annulaire (31) débouchant dans la deuxième chambre de combustion (9) et servant à l'admission d'un courant d'hydrogène.
  6. Appareil selon la revendication 5,
    caractérisé en ce qu'il comprend un circuit d'admission (32) commandé par une vanne (33) reliant la source d'hydrogène (7) à la chambre annulaire (31).
  7. Appareil selon l'une des revendications précédentes,
    caractérisé en ce qu'il comprend en outre des moyens permettant d'injecter dans la seconde chambre de combustion (9) un additif tel qu'un sel alcalin,
  8. Appareil selon l'une des revendications précédentes,
    caractérisé en ce qu'en vue de s'affranchir du signal de bruit engendré par un brouillard salin dans la détection de composés chlorés, le processeur est programmé de manière à déterminer à partir des données spectrophotométriques la concentration en sodium de l'échantillon, puis à retrancher cette concentration de la concentration totale de chlore.
EP99900965A 1998-01-22 1999-01-20 Appareil combinant la spectrophotometrie et la detection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse Expired - Lifetime EP0968413B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9800761 1998-01-22
FR9800761A FR2773884B1 (fr) 1998-01-22 1998-01-22 Appareil combinant la spectrophotometrie et la detection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse
PCT/FR1999/000107 WO1999038000A1 (fr) 1998-01-22 1999-01-20 Appareil combinant la spectrophotometrie et la detection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse

Publications (2)

Publication Number Publication Date
EP0968413A1 EP0968413A1 (fr) 2000-01-05
EP0968413B1 true EP0968413B1 (fr) 2006-02-22

Family

ID=9522128

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99900965A Expired - Lifetime EP0968413B1 (fr) 1998-01-22 1999-01-20 Appareil combinant la spectrophotometrie et la detection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse

Country Status (6)

Country Link
US (1) US6309604B1 (fr)
EP (1) EP0968413B1 (fr)
DE (1) DE69929955T2 (fr)
FR (1) FR2773884B1 (fr)
IL (1) IL131968A (fr)
WO (1) WO1999038000A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831665B1 (fr) * 2001-10-25 2007-06-01 Proengin Procede et dispositif pour la detection de la presence dans l'atmosphere de substances chimiques et/ou biologiques
DE20203999U1 (de) * 2002-03-13 2002-08-22 Solvay Fluor & Derivate Vorrichtung zur Bestimmung der physikalischen und chemischen Parameter von Aerosol-Formulierungen aus Dosieraerosolen
FR2846095B1 (fr) * 2002-10-18 2005-04-08 Proengin Procede et dispositif pour la detection de la presence dans l'atmosphere et l'analyse en temps reel de substances chimiques et/ou biologiques.
DE10324315A1 (de) * 2003-05-27 2004-12-16 Siemens Building Technologies Ag Verfahren zur Überwachung der Qualität eines von einem Reformer für den Betrieb von Brennstoffzellen gelieferten Gasgemisches
US7524672B2 (en) * 2004-09-22 2009-04-28 Sandia Corporation Microfluidic microarray systems and methods thereof
CN109030692B (zh) * 2018-08-29 2024-05-07 上海浦拓精密仪器有限公司 一种fid和fpd双检测器气体在线分析仪
CN114910602B (zh) * 2022-04-14 2024-03-22 中国船舶重工集团公司第七一三研究所 一种用于氢氧密闭爆发研究的高压燃烧室结构

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607096A (en) * 1969-06-25 1971-09-21 Charles H Hartmann Alkali flame ionization detector having cap means for changing the gas flow pattern
US3860345A (en) * 1972-07-06 1975-01-14 France Etat Method and apparatus for testing for phosphor particles contained in the atmosphere
US4097239A (en) * 1977-02-28 1978-06-27 Varian Associates, Inc. Two-flame burner for flame photometric detection
JPS59200954A (ja) * 1983-04-20 1984-11-14 バリアン・アソシエイツ・インコ−ポレイテツド Gc及びlc溶出物の検出のための2重炎イオン化検出器
DE3424843A1 (de) * 1983-07-11 1985-01-24 Varian Associates, Inc., Palo Alto, Calif. Zweiflammenphotometer und mit ihm durchzufuehrendes verfahren
US5244811A (en) * 1987-03-02 1993-09-14 Commonwealth Scientific And Industrial Research Organization Method and system for determining organic matter in an aqueous solution
US4968885A (en) * 1987-03-06 1990-11-06 Extrel Corporation Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
US5285064A (en) * 1987-03-06 1994-02-08 Extrel Corporation Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
US5473162A (en) * 1987-10-26 1995-12-05 Baylor University Infrared emission detection of a gas
CA1332204C (fr) * 1987-10-26 1994-10-04 Kenneth W. Busch Detection des rayons infrarouges
DE4107295A1 (de) * 1991-03-07 1992-09-10 Manfred Dr Rer Nat Ritschel Verfahren zur bestimmung von chemischen und/oder physikalischen eigenschaften einer gasatmosphaere
FR2743888B1 (fr) * 1996-01-19 1998-03-20 Proengin Bruleur pour la spectrophotometrie de flammes d'une composition gazeuse incluant au moins deux types d'elements recherches, tels que du chlore et du phosphore

Also Published As

Publication number Publication date
IL131968A (en) 2002-07-25
EP0968413A1 (fr) 2000-01-05
IL131968A0 (en) 2001-03-19
DE69929955T2 (de) 2006-08-24
FR2773884A1 (fr) 1999-07-23
DE69929955D1 (de) 2006-04-27
WO1999038000A1 (fr) 1999-07-29
US6309604B1 (en) 2001-10-30
FR2773884B1 (fr) 2000-03-24

Similar Documents

Publication Publication Date Title
CA2268901C (fr) Procede et appareil destines a une analyse in situ rapide de composants, selectionnes au prealable, de compositions solides homogenes, en particulier de compositions pharmaceutiques
Phuoc et al. Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture
Sgro et al. UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames
US5425916A (en) Apparatus for the detection and control of aromatic compounds in combustion effluent
US20030117619A1 (en) Monitoring of vapor phase polycyclic aromatic hydrocarbons
US20030003590A1 (en) Method for measuring concentrations of gases and vapors using controlled flames
Basile et al. Coagulation and carbonization processes in slightly sooting premixed flames
EP0968413B1 (fr) Appareil combinant la spectrophotometrie et la detection de l'ionisation d'une flamme, pour l'analyse d'une composition gazeuse
FR2712697A1 (fr) Procédé d'analyse élémentaire par spectrométrie d'émission optique sur plasma produit par laser en présence d'argon.
FR2472185A1 (fr) Spectrometre d'absorption atomique comportant differents dispositifs d'atomisation pouvant etre mis en service au choix
FR2831665A1 (fr) Procede et dispositif pour la detection de la presence dans l'atmosphere de substances chimiques et/ou biologiques
FR2823306A1 (fr) Procede et dispositif pour l'analyse d'un gaz susceptible de contenir des particules ou d'aerosols en suspension
Tripathi et al. An optical sensor for multi-species impurity monitoring in hydrogen fuel
Skinner et al. Axial Viewing and Modified Cup Design for Direct Sample InsertionInductively Coupled Plasma Atomic Emission Spectrometry
JP3975838B2 (ja) 内燃機関の筒内観察装置
Mirov et al. Novel laser breakdown spectrometer for environmental monitoring
Krishna et al. A simple in-house dry ashing chamber for the rapid determination of total mercury in organic-rich solid materials by oxidative pyrolysis followed by CVAAS and FI-ICPMS detection
Choi et al. Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy
EP0435731B1 (fr) Brûleur utilisable dans un appareil pour l'analyse d'une composition gazeuse par spectrophotométrie de flamme
CA2502393C (fr) Procede et dispositif pour la detection de la presence dans l'atmosphere et l'analyse en temps reel de substances chimiques et/ou biologiques
JP2716629B2 (ja) 原子吸光、発光分析装置
Loge Continuous Emission Monitor for Toxic Metals in the Off-Gases of Thermal Treatment Facilities
Clark Novel Multiple Flame Photometric Detection Methods for Gas Chromatography
JP2012184740A (ja) ガスエンジンシステム
JPS6267430A (ja) 溶鉄成分の分光分析方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PROENGIN

17Q First examination report despatched

Effective date: 20041021

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060403

REF Corresponds to:

Ref document number: 69929955

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061123

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET MOUTARD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: PROENGIN

Free format text: PROENGIN#3, RUE DE L'INDUSTRIE#78210 SAINT-CYR-L'ECOLE (FR) -TRANSFER TO- PROENGIN#3, RUE DE L'INDUSTRIE#78210 SAINT-CYR-L'ECOLE (FR)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: RUE DE LYON 75 - 4EME ETAGE, 1203 GENEVE (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BOULEVARD GEORGES-FAVON 3 (1ER ETAGE), 1204 GENEVE (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20171207

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180111

Year of fee payment: 20

Ref country code: GB

Payment date: 20180117

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69929955

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190119