EP0968379B1 - Abgestimmter tilgerdämpfer - Google Patents

Abgestimmter tilgerdämpfer Download PDF

Info

Publication number
EP0968379B1
EP0968379B1 EP98911829A EP98911829A EP0968379B1 EP 0968379 B1 EP0968379 B1 EP 0968379B1 EP 98911829 A EP98911829 A EP 98911829A EP 98911829 A EP98911829 A EP 98911829A EP 0968379 B1 EP0968379 B1 EP 0968379B1
Authority
EP
European Patent Office
Prior art keywords
mass
compressible fluid
cylinder
damper
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98911829A
Other languages
English (en)
French (fr)
Other versions
EP0968379A2 (de
Inventor
David A. Osterberg
Toren S. Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Inc
Original Assignee
Honeywell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Inc filed Critical Honeywell Inc
Publication of EP0968379A2 publication Critical patent/EP0968379A2/de
Application granted granted Critical
Publication of EP0968379B1 publication Critical patent/EP0968379B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1017Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by fluid means

Definitions

  • the present invention relates to tuned mass damping devices and more particularly to a pneumatic tuned mass damper utilizing a compressible fluid such as gas so as to obtain better damping under varying temperature conditions, to provide lower damping at low amplitude vibration and higher damping at high amplitude vibrations and to do so with a smaller, lighter structure.
  • tuned mass dampers are known. Such dampers usually contain a mass mounted for movement in a container of non-compressible fluid and positioned by a spring. A passage through or around the mass allows the non-compressible fluid to move from one side of the mass to the other as the mass moves in the container. An expandable chamber such as a bellows is also connected to the container to allow for expansion of the non-compressible fluid with temperature changes.
  • the mass may be made so that it will oscillate at a desired frequency, for example, the same as the natural frequency of a structure such as a boom to which the damper is attached.
  • the proper damping may be obtained so that when the boom experiences shock and begins to sway in a direction, the mass begins to vibrate or oscillate in the same direction and at the same frequency.
  • the damper vibrates 180 degrees out of phase with the boom, which motion tends to cancel the boom motion. Since the boom is now vibrating at an off-resonant frequency and the damper has absorbed a substantial portion of its energy, the boom displacement is much smaller and is effectively damped out by the fluid in the damper.
  • Tuned mass dampers are very sensitive to changes in damping which varies with viscosity changes, and since even the most stable of non-compressible fluids still has rather large changes in viscosity with temperature changes, the performance of the tuned mass damper of the prior art is reduced when operated over a varying temperature range.
  • heaters can be used to stabilize temperatures, they add size and weight to the system and, in space applications it is very difficult to add heaters at the end of a boom. With no heater available for maintaining the temperature of the tuned mass damper the damping is not stable.
  • Another disadvantage of the prior art dampers is the additional size and weight which accompanies the requirement to have the expandable chamber or bellows for receiving and transmitting the incompressible fluid with temperature changes.
  • US-A-4,530,518 shows a vehicle stabilizer.
  • the stabilizer according to US-A-4,530,518 comprises a cylinder and a mass positioned inside said cylinder. Furthermore, a spring is mounting said mass in said cylinder.
  • US-A-3,259,212 and GB-A-1,367,285 disclose other prior art dampers.
  • the present invention overcomes the problems in the prior art by providing a damper which utilizes a compressible or pneumatic fluid such as a gas in place of the non-compressible fluid of the prior art. Since the gas is compressible, the requirement for the additional expandable chamber is obviated. The size of the mass and the stiffness of the spring are chosen to provide the desired damping frequency. The pressure of the gas is selected so that the gas density in combination with the restriction geometry of the passage through the mass provides the desired damping. Although the kinematic viscosity of a gas varies with its density and temperature, once the gas is sealed in the container, its volume cannot change and so its density remains constant. Only the pressure and viscosity of the gas can now change with temperature and variations in pressure do not significantly effect the damping. Viscosity changes in an ideal gas vary with the square root of the absolute temperature and most common gasses differ from the ideal by only about five percent. This produces far less damping variation than a non-compressible fluid.
  • the compressibility of the gas does add a spring force to the system which must be taken into account.
  • the compressibility of the gas produces a spring force that causes the damping to increase with the amplitude of the oscillations but this nonlinearity is an advantage since it provides higher damping for larger amplitude oscillations and lower damping for smaller amplitude oscillations.
  • Higher damping dissipates more energy and thus decreases the settling time for large amplitude vibration which is desired.
  • Lower damping at smaller amplitudes is desirable because high damping at low amplitude oscillations can cause the mass to not move and the damper to cease functioning.
  • a tuned mass damper 8 like that described and claimed in our copending application 08/591,922 filed January 25, 1996 and assigned to the assignee of the present invention, is shown comprising a hollow moveable mass 10, slideably mounted in a cylindrical container, or cylinder 12, having a first end piece 14 fastened to cylinder 12 by conventional means and sealed to prevent fluid loss by a grommet 16.
  • a second end piece 18 is fastened at a second end in a recess 20 of cylinder 12.
  • the cylinder 12 and end pieces 14 and 18 form a chamber 22 within which mass 10 may move back and forth.
  • a spring 30 of predetermined stiffness is fastened at one end thereof to a protrusion 32 of end piece 14 and at the other end thereof to a recess 34 in mass 10 so that mass 10 will be positioned by spring 30 until subjected to a force allowing mass 10 to oscillate horizontally in chamber 22 at a frequency determined by the size of mass 10 and stiffness of spring 30.
  • the first end piece 14 has a filling port 36 therethrough which allows the introduction of an incompressible damping fluid, shown by arrow 38, into the chamber 22. After filling, port 36 is sealed in a conventional manner.
  • a thermal expansion bellows 40 is connected at one end thereof to a protrusion 42 in end piece 18 and at the other end thereof to a sealing member 44.
  • End piece 18 has a small opening 48 therethrough connecting the interior of bellows 40 to chamber 22. This allows transfer of fluid from chamber 22 to the interior of bellows 40 to accommodate expansion and contraction of the non-compressible fluid under temperature variations.
  • the damper may be used to compensate for unwanted vibrations of, for example, a boom shown in Figure 1 by reference numeral 50.
  • the unwanted oscillations will be transverse to the length of the boom and accordingly it is desired that the mass 10 move in the same direction, i.e. from right to left in Figure 1.
  • damper 8 is shown mounted to boom 59 horizontally as indicated by dashed lines 52 and 54 and, as explained above, mass 10 will vibrate 180 degrees out of phase with the boom to help cancel the boom motion.
  • Figure 3 shows the variation of absolute viscosity of several incompressible fluids with temperature and, as seen by curve 60 (for castor oil), curve 61 (for SAE 30 oil), curve 62 (for water), and curve 64 for gasoline), these variations are relatively large. This causes undesirable changes in the damping of the tuned mass damper when incompressible fluids are used.
  • a tuned mass damper 108 (which may also be attached to a beam as in Figure 1 but not shown in Figure 2 for simplicity) is shown comprising a moveable mass 110, slideably mounted in a cylindrical container, or cylinder 112, having a first cylindrical end piece 114 fastened to the right end of cylinder 112 by conventional means.
  • a spring 116 has a first end fastened in a recess 118 of mass 112 and a second end fastened in a recess 119 of end piece 114.
  • End piece 114 has a port 122 therethrough for use in filling the damper with a compressible gas as shown by arrow 126. After filling port 126 is sealed in a conventional manner.
  • Cylindrical container 112 has a second cylindrical end piece 130 fastened to the left end of cylinder 112 by conventional means, and a spring 134 has a first end fastened in a recess 136 of mass 110 and a second end fastened in a recess 138 of end piece 130.
  • mass 110 could be attached to a single spring as in Figure 1 without effecting the function of the tuned mass damper.
  • Mass 110 is shown having a restrictive orifice 150 extending between its left and right sides in Figure 2 so as to permit restricted passage of the gas therethrough.
  • the mass 110 and the stiffnesses of springs 116 and 134 are chosen to have the frequency of oscillation matching the particular use to which it is to be put e.g.
  • the stiffness of the gas is a function of the area of the mass in contact with the gas and the volume and pressure of the gas which can be calculated for various amplitudes of vibration. Because, with delicate instruments used in space applications it is usually desirable to provide the best damping at low boom vibration amplitudes, the variables (mass, spring stiffness and gas stiffness) will be chosen to produce the best damping at these low amplitudes. At higher amplitudes, the damping will increase which, as mentioned above, is a desirable feature.
  • a gas such as air or nitrogen
  • the volume of air in the cylinder 112 cannot change and thus the density of the gas cannot change.
  • the only change in damping characteristics with temperature will occur when the temperature causes a change in viscosity of the gas since pressure changes do not significantly effect the damping.
  • curve 160 in Figure 3 the variation of viscosity of air (or nitrogen which is the principle constituent of air) is very small with temperature changes as compared to the compressible fluids represented by curves 60-63. Thus very little change in damping occurs even though the apparatus is exposed to wide temperature variations.
  • Other gases may have different viscosities but will generally have a flat curve similar to curve 160.
  • Helium has a very low viscosity and might be used where very low damping was desired.
  • the gas is compressible, however, and as such will produce a spring force when the mass 110 moves in the cylinder 112. As mentioned above, this force is predictable and can be taken into account when the system is designed. Also, the damping will increase with the amplitude of the movement of mass 110 but this is desirable since at large amplitudes, increased damping is desired and at small amplitudes the damping is desirably less.
  • a plurality of balls 170 in a plurality of troughs 174 are employed with one ball per trough.
  • the device is completely self centering so that when the motion decreases to the expected limits, the balls will move to the center and at rest assume the position shown in Figure 2. This feature assures the device will remove the maximum amount of energy from the system by minimizing mass friction. Using the balls eliminates the sliding friction between the mass 110 and the cylinder 112 and there is no friction between balls.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Claims (10)

  1. Dämpfer (108) mit abstimmbarer Masse, der Folgendes umfasst: einen hohlen Zylinder (112) mit einer Innenfläche, einem ersten Ende (114) mit einem Füllkanal (122), um die Einleitung eines komprimierbaren Fluids in das Innere des Zylinders (112) zu gestatten, und einem zweiten Ende (130), das das Innere des Zylinders verschließt;
    eine Masse (110) mit einem ersten und einem zweiten Ende und einer Außenfläche, die etwas kleiner ist als die Innenfläche des Zylinders (112), wobei die Masse im Inneren des Zylinders angeordnet ist, um eine erste und eine zweite Kammer zur Aufnahme des komprimierbaren Fluids bereitzustellen;
    eine Feder (116, 134), die die Masse im Zylinder befestigt, so dass eine Schwingungsbewegung der Masse in die erste und die entgegengesetzte Richtung gestattet wird; und
    Drosselleitungsmittel (150), die die erste und die zweite Kammer miteinander verbinden, um eine gedrosselte Strömung des komprimierbaren Fluids zwischen der ersten und der zweiten Kammer zu gestatten; gekennzeichnet durch
    einen ersten Satz von mindestens drei Nuten (174) vorbestimmter Länge in der Nähe eines ersten Endes der Masse (110), die um deren Außenfläche herum beabstandet sind, und einen zweiten Satz von mindestens drei Nuten vorbestimmter Länge in der Nähe eines zweiten Endes der Masse (110), die um deren Außenfläche herum beabstandet sind;
    eine einzige Kugel (170), die in jeder Nut des ersten und des zweiten Satzes angeordnet ist und an der Innenfläche des Zylinders anliegt, um eine im Wesentlichen reibungsfreie und selbstzentrierende Bewegung der Masse im Zylinder zu gestatten.
  2. Vorrichtung nach Anspruch 1, die weiterhin Befestigungsmittel enthält, die den Dämpfer (108) an einer Konstruktion befestigen, die unerwünschten Schwingungen ausgesetzt sein kann, wobei die Befestigungsmittel den Dämpfer so anordnen, dass die unerwünschten Schwingungen der Konstruktion eine Schwingungsbewegung der Masse mit im Wesentlichen der gleichen Frequenz, aber im Wesentlichen um 180 Grad phasenverschoben, erzeugen, um eine Dämpfung der unerwünschten Schwingungen zu erzeugen.
  3. Vorrichtung nach Anspruch 1, bei der das komprimierbare Fluid Luft ist.
  4. Vorrichtung nach Anspruch 1, bei der die Bewegung der Masse (110) eine Komprimierung des Gases verursacht, wodurch einer Bewegung der Masse (110) ein Widerstand entgegengesetzt wird, der sich mit der Amplitude der Bewegung ändert, und bei der die Größe der Masse, die Federsteife und die durch die Komprimierung des Gases hinzugefügte Steifheit zur Bestimmung der Schwingungsfrequenz der Masse gewählt sind.
  5. Vorrichtung nach Anspruch 4, bei der die Schwingungsfrequenz der Masse (110) so ausgelegt ist, dass sie die unerwünschten Schwingungen bei geringen Amplituden am besten dämpft.
  6. Dämpfer (108) mit abstimmbarer Masse zur Verwendung bei der Dämpfung von Schwingungsbewegungen eines Glieds, an dem der Dämpfer (108) angebracht ist, mit Folgendem:
    einem Behälter (112) mit Seitenteilen und Endteilen;
    einer Masse (110) mit einer Außenfläche nahe den Seitenteilen des Behälters und mit einem ersten und einem zweiten Ende, wobei die Masse (110) zur Ausführung einer Schwingungsbewegung zwischen den Endteilen im Behälter angeordnet ist;
    einem mit dem ersten Endteil und der Masse verbundenen ersten Federmittel (116);
    einem mit dem zweiten Endteil und der Masse verbundenen zweiten Federmittel (134);
    einem komprimierbaren Fluid im Inneren des Zylinders, das die Masse (110) umgibt, um für Dämpfung zu sorgen, wenn sich die Masse im Inneren des Zylinders bewegt, wobei das komprimierbare Fluid der Bewegung der Masse einen nichtlinearen Widerstand entgegensetzt und wobei die Größe des nichtlinearen Widerstands, die Steife des ersten und des zweiten Federmittels (116, 134) und die Größe der Masse (110) so ausgewählt werden, dass sie eine Schwingungsbewegung mit einer gewünschten vorbestimmten Frequenz bereitstellen; und
    einem Drosseldurchgang (150), der die Endteile miteinander verbindet, um eine gedrosselte Strömung des komprimierbaren Fluids dazwischen zu gestatten, wobei die Viskosität des komprimierbaren Fluids und die Drosselung des Durchgangsmittels so gewählt werden, dass sie die ordnungsgemäße Dämpfung bereitstellen; gekennzeichnet durch
    einen ersten Satz von mindestens drei Nuten (174) vorbestimmter Länge nahe dem ersten Ende der Masse, die um deren Außenfläche herum beabstandet sind, und einen zweiten Satz von mindestens drei Nuten vorbestimmter Länge nahe dem zweiten Ende der Masse (110), die um deren Außenfläche herum beabstandet sind;
    eine in jeder Nut des ersten und des zweiten Satzes angeordnete einzige Kugel (170), die an den Seitenteilen des Behälters anliegt, um eine im Wesentlichen reibungsfreie und selbstzentrierende Bewegung der Masse im Zylinder bereitzustellen.
  7. Vorrichtung nach Anspruch 6, bei der der Dämpfer (108) mit einem Glied verbunden ist, um beim Dämpfen von Schwingungsbewegungen des Glieds, an dem der Dämpfer angebracht ist, verwendet zu werden.
  8. Vorrichtung nach Anspruch 7, bei der das komprimierbare Fluid ein Gas ist und bei der das Gas Luft ist.
  9. Verfahren zur Änderung der Dämpfung eines Dämpfers mit abstimmbarer Masse, der eine Masse aufweist, die durch eine Feder in einem Behälter angeordnet ist, so dass die Masse zwischen einem ersten und einem zweiten Behälterende schwingen kann, bei dem man:
    A. mehrere um die Enden der Masse beabstandete Nuten mit einer einzigen Kugel in jeder Nut bereitstellt, die mit der Innenfläche des Behälters in Berührung steht, um eine im Wesentlichen reibungsfreie und selbstzentrierende Bewegung der Masse im Behälter zu gestatten;
    B. den Behälter mit einem komprimierbaren Fluid füllt, so dass das Fluid bei Schwingung der Masse der Bewegung in Abhängigkeit von der Amplitude der Schwingung einen unterschiedlichen Widerstand entgegensetzt; und
    C. einen Drosseldurchgang für das komprimierbare Fluid durch die Masse bereitstellt.
  10. Verfahren nach Anspruch 9, bei dem man weiterhin:
    das komprimierbare Fluid so auswählt, dass die Schwingungsfrequenz der Masse bei einer ersten Amplitude einen ersten vorbestimmten Wert aufweist und bei einer zweiten Amplitude, die größer ist als die erste Amplitude, einen zweiten vorbestimmten Wert aufweist, der über dem ersten vorbestimmten Wert liegt.
EP98911829A 1997-03-21 1998-03-19 Abgestimmter tilgerdämpfer Expired - Lifetime EP0968379B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US822970 1997-03-21
US08/822,970 US5816373A (en) 1997-03-21 1997-03-21 Pneumatic tuned mass damper
PCT/US1998/005409 WO1998042998A2 (en) 1997-03-21 1998-03-19 Pneumatic tuned mass damper

Publications (2)

Publication Number Publication Date
EP0968379A2 EP0968379A2 (de) 2000-01-05
EP0968379B1 true EP0968379B1 (de) 2003-05-21

Family

ID=25237441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98911829A Expired - Lifetime EP0968379B1 (de) 1997-03-21 1998-03-19 Abgestimmter tilgerdämpfer

Country Status (6)

Country Link
US (1) US5816373A (de)
EP (1) EP0968379B1 (de)
JP (1) JP4191262B2 (de)
CA (1) CA2284282A1 (de)
DE (1) DE69814832T2 (de)
WO (1) WO1998042998A2 (de)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202960B1 (en) * 1998-11-06 2001-03-20 The Boeing Company Aircraft landing gear absorber
US6292967B1 (en) 1999-09-14 2001-09-25 Construction Technology Laboratories, Inc. TMD-damped stay cable and method and TMD
US20020170793A1 (en) * 2001-05-15 2002-11-21 Kemeny Zoltan A. Nonlinear mass damper with active centerband control
US6681908B2 (en) 2002-01-08 2004-01-27 Honeywell International, Inc. Adjustable tuned mass damper
DE20204321U1 (de) * 2002-03-19 2002-05-29 Leica Microsystems Federelement
US6634472B1 (en) 2002-04-03 2003-10-21 Toren S. Davis Tuned mass damper with translational axis damping
TWI225452B (en) * 2003-05-26 2004-12-21 Yi-Hsung Pang Braking buffer and turning balance apparatus for motor car
FI119655B (fi) * 2003-10-20 2009-01-30 Waertsilae Finland Oy Värähtelyn vaimennin ja moottorin värähtelyn vaimennusjärjestely
US6955250B2 (en) * 2003-12-03 2005-10-18 Honeywell International Inc. Apparatus for damping vibration using macro particulates
US7121729B2 (en) * 2004-03-15 2006-10-17 Honeywell International, Inc. Damped bearing cage
US7881420B2 (en) 2004-06-04 2011-02-01 General Electric Company Method and apparatus for reducing vibration in component of a nuclear reactor
US7568565B2 (en) * 2004-08-17 2009-08-04 Nes Technologies, Inc Device, a system and a method for transferring vibrational energy
CN100411895C (zh) * 2005-09-15 2008-08-20 合肥工业大学 钢缆弹簧式汽车后桥减振器
US20070238597A1 (en) * 2006-03-29 2007-10-11 Michler James R Interfolder with mass damper
US8002094B2 (en) * 2007-01-09 2011-08-23 Honeywell International Inc. Vibration isolation apparatus and methods of manufacture
JP4922775B2 (ja) * 2007-01-29 2012-04-25 株式会社フジキン 流体制御器
NO328887B1 (no) * 2007-02-27 2010-06-07 Teeness Asa Demper for demping av vibrasjoner med et dempelegeme som promoterer skumdannelse
US8044373B2 (en) * 2007-06-14 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8261896B2 (en) * 2008-09-18 2012-09-11 Honeywell International Inc. Tuned mass dampers and vibration isolation apparatus
US8256750B2 (en) * 2009-02-18 2012-09-04 Honeywell International Inc. Vibration isolation mounting assembly
US8272786B2 (en) 2009-02-18 2012-09-25 Honeywell International Inc. Vibration isolation mounting assembly
FI121484B (fi) 2009-03-30 2010-11-30 Waertsilae Finland Oy Sovitelma ja menetelmä mäntämoottorin värähtelyn vaimentamiseksi sekä mäntämoottori
US8702377B2 (en) 2010-06-23 2014-04-22 Honeywell International Inc. Gas turbine engine rotor tip clearance and shaft dynamics system and method
US9388875B2 (en) * 2011-10-18 2016-07-12 The Boeing Company Aeroelastic tuned mass damper
RU2496214C2 (ru) * 2012-01-10 2013-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Синхронный электромагнитный двигатель возвратно-поступательного движения
RU2496215C1 (ru) * 2012-02-20 2013-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Электромагнитный двигатель возвратно-поступательного движения
CN103486180A (zh) * 2013-08-12 2014-01-01 上海卫星工程研究所 卫星敏感载荷用微振动防碰撞动力吸振器
US9470288B2 (en) * 2013-09-15 2016-10-18 Valmont Industries, Inc. Vibration mitigation device
US9897162B2 (en) 2014-01-09 2018-02-20 Honeywell International Inc. Two-dimensional vibration isolator
US9541149B2 (en) 2014-09-04 2017-01-10 The Boeing Company Translational tuned mass damper with continuously adjustable damping characteristics for application to high speed wind tunnel testing
US10060823B2 (en) * 2016-02-19 2018-08-28 The Boeing Company Miniaturized tuned mass damper for application to high speed wind tunnel testing
DE102016203116A1 (de) * 2016-02-26 2017-08-31 Deckel Maho Pfronten Gmbh Bearbeitungseinheit für eine Werkzeugmaschine und Werkzeugmaschine mit einer derartigen Bearbeitungseinheit
WO2017172720A1 (en) 2016-03-28 2017-10-05 Robert Berry Disruptive tuned mass system and method
US10309867B2 (en) 2016-08-15 2019-06-04 The Boeing Company Variable spring-constant tuned mass damper
DE102016115782B4 (de) 2016-08-25 2019-06-19 Vibracoustic Gmbh Schwingungstilger
US10533921B2 (en) 2016-12-02 2020-01-14 The Boeing Company Tunable mass damper characterization test stand
US9992890B1 (en) * 2016-12-07 2018-06-05 Raytheon Company Modules and systems for damping excitations within fluid-filled structures
US10414234B2 (en) * 2017-01-26 2019-09-17 GM Global Technology Operations LLC Damper with tuned vibration absorber
US10539201B2 (en) * 2017-11-13 2020-01-21 The Boeing Company Semi-active tuned mass damper to eliminate limit-cycle oscillation
US10443670B2 (en) * 2018-03-05 2019-10-15 Nhk International Corporation Damping device
WO2019200426A1 (en) * 2018-04-20 2019-10-24 S and V Brown Holdings Pty Ltd Mountings for vibrating machines and methods of isolating vibrations
EP3719248B8 (de) * 2019-04-02 2023-03-22 Grant Prideco, Inc. System und verfahren zur verbesserten tauchbewegungskompensation
US11125295B2 (en) * 2019-08-30 2021-09-21 Nhk International Corporation Damping device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1737048A (en) * 1925-03-13 1929-11-26 Gen Motors Res Corp Steering mechanism
DE1303088B (de) * 1963-07-05 Sumitomo Metal Industries Ltd
GB1367285A (en) * 1971-08-26 1974-09-18 Girling Ltd Inertia dampers
US3911199A (en) * 1974-04-26 1975-10-07 Westinghouse Electric Corp Seismic motion-damper for upstanding electrical equipment
US4530518A (en) * 1982-01-18 1985-07-23 Newton Alan R Vehicle stabilizer
SU1184989A1 (ru) * 1983-07-15 1985-10-15 Savin Eduard Антивибратор
GB8610350D0 (en) * 1986-04-28 1986-06-04 Secr Defence Self tuning vibration absorber
US5263560A (en) * 1991-03-23 1993-11-23 Dr. Ing. H.C.F. Porsche Ag Vibration damping supporting strut for a motor vehicle
US5471969A (en) * 1993-09-28 1995-12-05 Mcdonald, Jr.; Norman J. Stabilizers adapted to be connected to a bow
US5873438A (en) * 1996-01-25 1999-02-23 Honeywell Inc. Tuned mass damper with tunable damping and anti friction rolling mass

Also Published As

Publication number Publication date
WO1998042998A2 (en) 1998-10-01
JP4191262B2 (ja) 2008-12-03
EP0968379A2 (de) 2000-01-05
JP2001524189A (ja) 2001-11-27
DE69814832D1 (de) 2003-06-26
WO1998042998A3 (en) 1999-02-25
CA2284282A1 (en) 1998-10-01
US5816373A (en) 1998-10-06
DE69814832T2 (de) 2004-03-11

Similar Documents

Publication Publication Date Title
EP0968379B1 (de) Abgestimmter tilgerdämpfer
EP0871826B1 (de) Adaptierter, dynamischer dämpfer mit abstimmbarer dämpfung und reibungsfrei rollendem gewicht
US5219051A (en) Folded viscous damper
US5775472A (en) Multi-axis tuned mass damper
EP1848899B1 (de) Verbesserter isolator mit aussendruckdichtungsbalg
US6634472B1 (en) Tuned mass damper with translational axis damping
US6082508A (en) Pneumatic damping strut
EP1000272B1 (de) Flüssigkeits- und elastomerseinrichtung
US4974819A (en) Mount for controlling or isolating vibration
EP2166249B1 (de) Abgestimmter Schwingungstilger und Schwingungsisoliervorrichtung
EP1571369B1 (de) Flüssigkeits- und Elastomereinrichtung mit diskretem Volumenkompensator und sekündärem Angleichselement
JP3085164B2 (ja) 同調マスダンパ装置
JP3071548B2 (ja) 液体封入型防振装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990911

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20020703

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69814832

Country of ref document: DE

Date of ref document: 20030626

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040224

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060206

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100322

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110319

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69814832

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525