EP0967268A1 - Enceinte de travail thermostatée - Google Patents

Enceinte de travail thermostatée Download PDF

Info

Publication number
EP0967268A1
EP0967268A1 EP99401525A EP99401525A EP0967268A1 EP 0967268 A1 EP0967268 A1 EP 0967268A1 EP 99401525 A EP99401525 A EP 99401525A EP 99401525 A EP99401525 A EP 99401525A EP 0967268 A1 EP0967268 A1 EP 0967268A1
Authority
EP
European Patent Office
Prior art keywords
bypass loop
chamber
temperature
sensor
thermostatically controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99401525A
Other languages
German (de)
English (en)
Inventor
Norbert Marchal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jouan SA
Original Assignee
Jouan SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jouan SA filed Critical Jouan SA
Publication of EP0967268A1 publication Critical patent/EP0967268A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/02Water baths; Sand baths; Air baths
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties

Definitions

  • the present invention relates to a thermostatically controlled working enclosure of the type type comprising a working chamber delimiting a space for confinement specific to the implementation of work, means of maintenance a regulated temperature in a defined main thermostat zone around the working chamber, and a bypass loop for circulation part of the atmosphere prevailing in said confinement space, the two ends of the bypass loop opening into the space of confinement, which bypass loop includes at least one measurement of a variable characteristic of the atmosphere prevailing in said containment space.
  • thermostatically controlled working enclosure constitutes, for example, a carbon dioxide incubator.
  • the latter is commonly used for incubation of human cells or embryos.
  • the means of maintaining the regulated temperature in the thermostatically controlled area a heat transfer fluid in which the working chamber is immersed.
  • This heat transfer fluid is water or air, heated to maintain a temperature constant and in particular equal to 37 ° C.
  • the carbon dioxide content of the atmosphere inside the containment space is maintained by injecting carbon dioxide substantially equal to 5%.
  • the water content of the atmosphere is generally regulated so that it is substantially equal to 97%.
  • the oxygen content can also be controlled.
  • the characteristics of the atmosphere in the containment space are modified by the heat given off by the sensors.
  • the sensors to be used are arranged successively along the bypass loop.
  • bypass loop carrying the sensors runs out of the thermostatically controlled area.
  • the sensors carry out their measurement at the temperature room environment in which the thermostatically controlled working enclosure is installed.
  • the ambient temperature is generally lower than the temperature imposed in the containment space, there are risks of condensation in the sensors, the humidity of the atmosphere being Student.
  • the object of the invention is to provide a solution to the problems mentioned previously, by allowing the sensors to be offset on a loop bypass which is stuck on the working chamber and in which circulates part of the atmosphere of the containment space, without requiring the implementation of means for reducing the humidity, this solution being little sensitive to temperature differences with the ambient environment.
  • the subject of the invention is a thermostatically controlled working enclosure, of the aforementioned type, characterized in that the or each sensor is arranged in a secondary thermostat zone defined around at least one section of the bypass loop comprising the or each sensor, and what it includes means for maintaining the secondary thermostatically controlled zone at a temperature equal to the temperature of the thermostat zone main.
  • the thermostatically controlled working enclosure shown in FIG. 1 comprises a working chamber 10 disposed completely in a tank thermostatically controlled 12.
  • a bypass loop 14 is inserted on the thermostatically controlled tank 12.
  • the loop includes a set 16 of sensors adapted for the measurement of variables characteristic of the atmosphere circulating in it.
  • the working chamber 10 consists of a box provided with an opening access. It delimits a containment space 17 suitable for placing in work, such as the incubation of human cells or embryos.
  • the working chamber 10 is completely bathed inside a heat transfer fluid, such as water, contained inside the thermostatically controlled tank 12.
  • a heat transfer fluid such as water
  • Chamber 10 is associated with means 18 for regulating the temperature of the heat transfer fluid.
  • These means consist for example heating resistors 22 installed in the thermostatically controlled tank 12. The heating resistors are controlled by a temperature regulator 24.
  • the thermostatically controlled tank 12 maintains a regulated temperature, for example constantly equal to 37 ° C, throughout the area filled with coolant. This zone defines a thermostatically controlled zone 25 around the working chamber 10.
  • the bypass loop 14 opens at its two ends into the working chamber 10. It travels partially through the area thermostatically controlled 25 and partially outside of it, that is to say in the ambient environment in which the working enclosure is installed.
  • the bypass loop 14 comprises, on a section disposed outside of the thermostatically controlled zone 20, a pump 26 for circulating a part of the atmosphere taken from the containment space.
  • the sampled atmosphere then travels in the bypass loop 14 from an input 28 from the bypass to an output 30.
  • a measurement chamber 32 Downstream of the entry 28 is provided, on the bypass loop 14, a measurement chamber 32 on which the assembly 16 of sensors is mounted.
  • the measuring chamber 32 is separate and distinct from working chamber 10. It is linked to this by connecting sections of the bypass loop.
  • the connecting sections are formed by pipes of reduced section by relation to the sections of chambers 10 and 32.
  • Each of the sensors has its part measuring active suitable for working in the measuring chamber 32.
  • a first sensor 34 constitutes a temperature probe. lt is connected to regulator 24 for controlling the heating resistors 22.
  • the other three sensors 36, 38, 40 are adapted respectively for measurement of the water, carbon dioxide and oxygen content of the atmosphere present in the measurement chamber 32.
  • the measurement chamber 32 is arranged in the area thermostatically controlled 25, so that the sensors 34, 36, 38 and 40 perform measurements of the characteristic variables of the atmosphere under conditions of temperature similar to those prevailing in containment space 17.
  • the measurement chamber 32 includes means access to the set 16 of sensors, directly from the ambient environment, without it being necessary to enter the tank 12 after having drained it.
  • These access means comprise for example a removable panel 47 carrying the sensors and forming a wall insulating the interior of the measures 32 of the ambient environment.
  • the working enclosure 10 comprises three modules 42, 44, 46 for controlling the water content, respectively, of carbon dioxide and oxygen from the atmosphere in the confinement space 25.
  • control modules 42, 44, 46 are connected to a central unit control 48 itself connected to sensors 36, 38, 40 for measuring water, carbon dioxide and oxygen contents.
  • the central control unit 48 is adapted to control the modules 42, 44, 46 so that they inject or withdraw water, carbon dioxide or oxygen in the containment space 17.
  • the input 28 of the bypass loop is advantageously fitted with a filter 50 suitable for removing possible contaminants present in the working chamber 10.
  • This filter is for example of the type HEPA (high efficiency air particles) with a sieve whose size mesh is equal to 0.2 ⁇ m. This filter is suitable to protect all of sensors placed downstream on the bypass loop 14 vis-à-vis any contaminants encountered in the containment space 17.
  • the filter 50 includes activated carbon.
  • the thermostatically controlled working enclosure works as follows.
  • the means 18 for maintaining the regulated temperature ensures that the temperature in the thermostatically controlled area 25 is maintained at the set temperature.
  • the regulator 24 controls the heating resistors 22 according to the values read by the temperature sensor 34.
  • the pump 26 ensures the permanent circulation of part of the atmosphere of the containment space through the bypass loop 14.
  • the sampled atmosphere circulates through the measure 32 where it is brought into contact with all of the sensors 16.
  • the chamber being arranged in the thermostatically controlled zone 25, the atmosphere which there reign is at a temperature analogous to the temperature of the containment space 17.
  • the temperature values recorded by the temperature sensor 34 corresponds exactly to the temperature values which would be detected by a probe placed directly in the working chamber 10.
  • the characteristic values recorded by the sensors 36, 38 and 40 concerning the content of different gases in the atmosphere of the chamber of measurement 32 correspond exactly to the contents of the atmosphere in the containment space, since the temperature in the measurement and in the working chamber 10 are identical.
  • control unit 48 controls the modules 42, 44, 46 for guarantee controlled contents of oxygen, carbon dioxide and atmospheric water contained in the working chamber 10.
  • the sensors can function satisfactorily without the need to modify the composition of the atmosphere with which they are put in contact.
  • FIGS 2 and 3 show alternative embodiments of the thermostatically controlled working enclosure in Figure 1.
  • the thermostatically controlled working enclosure differs only in that the single measurement chamber 32 of the figure 1 is replaced by four separate measurement chambers, denoted 54, 56, 58, 60, in each of which is arranged a single sensor.
  • the chambers 54, 56, 58, 60 are arranged in series on the loop of bypass 14 downstream of entrance 28. Each room is bathed by the heat transfer fluid, so that the chambers are all arranged in the thermostatically controlled zone 25 thus ensuring work of the sensors 34, 36, 38, 40 to a temperature identical to that of the containment space 17.
  • Each measuring chamber 54 to 60 has its own means direct access to the sensor installed there from the ambient environment.
  • the working chamber 10 and the measurement chamber 12 are arranged in two thermostatically controlled zones separate and independent.
  • the working enclosure 10 is arranged in a thermostatically controlled zone main 66A while the measurement chamber 32 is arranged in a secondary thermostatically controlled enclosure 66B.
  • the main and secondary thermostat zones 66A, 66B are defined each by a thermostated tank 68A, 68B associated with resistors electrics 70A, 70B each supplied by a regulation unit 72A, 72B.
  • the two control units 72A, 72B are connected to the temperature sensor 34.
  • the two control units 72A, 72B are adapted to impose strictly identical temperatures in the thermostatically controlled area main 66A and in the secondary thermostat zone 66B.
  • the sensors perform measurements of the atmosphere flowing in the bypass loop 14, while the latter is rigorously at the same temperature as the atmosphere of the containment space 17.
  • the means for maintaining the temperature comprising, in the examples described, water heated by electrical resistors, include, alternatively, heating resistors applied directly to the working room. They can also include a solid heat transfer fluid in which the working chamber is integrated, heating resistors being associated with this solid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Thermal Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Air Conditioning Control Device (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

L'enceinte de travail thermostatée comporte une chambre de travail (10) délimitant un espace de confinement (17) propre à la mise en oeuvre d'un travail, des moyens (68A, 70A, 72A) de maintien d'une température régulée dans une zone thermostatée principale (66A) définie autour de la chambre de travail (10), et une boucle de dérivation (14) dont les deux extrémités (28, 30) débouchent dans l'espace de confinement (17), laquelle boucle de dérivation (14) comporte au moins un capteur (34, 36, 38, 40) de mesure d'une variable caractéristique de l'atmosphère régnant dans ledit espace de confinement (17). Chaque capteur (34, 36, 38, 40) est disposé dans une zone thermostatée secondaire (66B) définie autour d'un tronçon de la boucle de dérivation (14) comportant le ou chaque capteur (34, 36, 38, 40). Elle comporte des moyens (68B, 70B, 728) de maintien de la zone thermostatée secondaire (66B) à une température égale à la température de la zone thermostatée principale (25 ; 66A).
Application aux incubateurs à dioxyde de carbone.

Description

La présente invention concerne une enceinte de travail thermostatée du type type comportant une chambre de travail délimitant un espace de confinement propre à la mise en oeuvre d'un travail, des moyens de maintien d'une température régulée dans une zone thermostatée principale définie autour de la chambre de travail, et une boucle de dérivation pour la circulation d'une partie de l'atmosphère régnant dans ledit espace de confinement, les deux extrémités de la boucle de dérivation débouchant dans l'espace de confinement, laquelle boucle de dérivation comporte au moins un capteur de mesure d'une variable caractéristique de l'atmosphère régnant dans ledit espace de confinement.
Une telle enceinte de travail thermostatée constitue par exemple un incubateur à dioxyde de carbone. Ce dernier est couramment utilisé pour l'incubation de cellules humaines ou encore d'embryons.
Dans les incubateurs à dioxyde de carbone connus, les moyens de maintien de la température régulée dans la zone thermostatée comportent un fluide caloporteur dans lequel baigne la chambre de travail. Ce fluide caloporteur est de l'eau ou de l'air, chauffé pour être maintenu à une température constante et notamment égale à 37°C.
La teneur en dioxyde de carbone de l'atmosphère à l'intérieur de l'espace de confinement est maintenue par injection de dioxyde de carbone sensiblement égale à 5 %. De même, la teneur en eau de l'atmosphère est généralement régulée pour que celle-ci soit sensiblement égale à 97 %. La teneur en oxygène peut également être contrôlée.
Afin d'assurer une régulation satisfaisante de la température, de la teneur en dioxyde de carbone, de l'hygrométrie ou encore d'autres valeurs caractéristiques de l'atmosphère, plusieurs capteurs sont mis en contact avec l'atmosphère régnant dans l'espace de confinement.
Du fait des expériences pratiquées dans l'espace de confinement, celui-ci peut être contaminé. Ainsi, si les capteurs sont implantés directement dans la chambre de travail, il convient de nettoyer et de décontaminer ceux-ci, ce qui constitue une opération délicate.
De plus, les caractéristiques de l'atmosphère dans l'espace de confinement sont modifiées par la chaleur dégagée par les capteurs.
Afin de remédier à ces problèmes, il est connu de prévoir une boucle de dérivation dans laquelle circule une partie de l'atmosphère contenue dans l'espace de confinement. Cette boucle est piquée à ses deux extrémités sur la chambre de travail.
Les capteurs devant être mis en oeuvre, à l'exception des sondes de température, sont disposés successivement le long de la boucle de dérivation.
Cette solution permet de séparer les capteurs de la chambre de travail, remédiant ainsi à certains des inconvénients mentionnés précédemment.
Toutefois, la boucle de dérivation portant les capteurs chemine hors de la zone thermostatée. Ainsi, les capteurs effectuent leur mesure à la température ambiante du local dans lequel l'enceinte de travail thermostatée est installée.
Du fait que la température ambiante est généralement inférieure à la température imposée dans l'espace de confinement, il existe des risques de condensation dans les capteurs, le taux d'humidité de l'atmosphère étant élevé.
Pour prévenir une telle condensation, il est nécessaire de prévoir, en amont des capteurs, des moyens de réduction du taux d'humidité, par exemple par déshumidification ou chauffage de l'atmosphère.
Quels que soient les moyens utilisés pour prévenir la condensation, ceux-ci peuvent provoquer un vieillissement prématuré des capteurs ou engendrer des mesures erronées.
De plus, afin d'analyser le taux d'humidité, il convient de connaítre la température dans l'espace de confinement et la température à l'entrée des capteurs. Ainsi, le calcul du taux d'humidité nécessite des moyens complexes et notamment la présence d'un capteur de température dans l'espace de travail.
L'invention a pour but d'apporter une solution aux problèmes mentionnés précédemment, en permettant le déport des capteurs sur une boucle de dérivation qui est piquée sur la chambre de travail et dans laquelle circule une partie de l'atmosphère de l'espace de confinement, sans nécessiter la mise en oeuvre de moyens de réduction du taux d'humidité, cette solution étant peu sensible aux différences de température avec le milieu ambiant. A cet effet, l'invention a pour objet une enceinte de travail thermostatée, du type précité, caractérisée en ce que le ou chaque capteur est disposé dans une zone thermostatée secondaire définie autour d'au moins un tronçon de la boucle de dérivation comportant le ou chaque capteur, et en ce qu'elle comporte des moyens de maintien de la zone thermostatée secondaire à une température égale à la température de la zone thermostatée principale.
Suivant des modes particuliers de réalisation, l'enceinte de travail thermostatée comporte l'une ou plusieurs des caractéristiques suivantes :
  • les zones thermostatées principale et secondaire sont en communication et forment une zone thermostatée unique, et les moyens de maintien d'une température régulée de la zone thermostatée unique comporte une unité unique de régulation de la température dans la zone thermostatée unique ;
  • les zones thermostatées principale et secondaire sont indépendantes, et sont chacune associées à des moyens propres de maintien de ladite température régulée commune ;
  • ladite boucle de dérivation comporte une chambre de mesure traversée par une partie de l'atmosphère régnant dans l'espace de confinement, le ou chaque capteur ayant une partie active de mesure adaptée pour travailler dans ladite chambre de mesure ;
  • elle comporte au moins deux capteurs, et ladite boucle de dérivation comporte, pour chaque capteur, une chambre de mesure distincte traversée par une partie de l'atmosphère régnant dans ledit espace de confinement, chaque capteur ayant une partie active de mesure adaptée pour travailler dans la chambre de mesure propre au capteur considéré ;
  • ladite boucle de dérivation comporte, en entrée, un filtre d'arrêt d'au moins certains contaminants présent dans l'espace de confinement ;
  • ladite boucle de dérivation comporte une pompe de mise en circulation d'une partie de l'atmosphère, suivant un trajet défini par ladite boucle de dérivation, et ladite pompe est disposée en dehors de l'une et l'autre des zones thermostatées principale et secondaire ;
  • la zone thermostatée secondaire est munie de moyens d'accès direct aux capteurs depuis le milieu ambiant ; et
  • elle comporte des moyens de régulation d'au moins une variable caractéristique de l'atmosphère de l'espace de confinement, à partir d'au moins une valeur caractéristique relevée par au moins un capteur.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins, sur lesquels :
  • La figure 1 est une vue schématique d'un premier mode de réalisation d'une enceinte de travail thermostatée selon l'invention ; et
  • Les figures 2 et 3 sont des vues schématiques de variantes de réalisation de l'enceinte de travail thermostatée de la figure 1.
  • L'enceinte de travail thermostatée représentée sur la figure 1 comporte une chambre de travail 10 disposée complètement dans une cuve thermostatée 12. Une boucle de dérivation 14 est piquée sur la cuve thermostatée 12. La boucle comporte un ensemble 16 de capteurs adaptés pour la mesure de variables caractéristiques de l'atmosphère circulant dans celle-ci.
    La chambre de travail 10 est constituée d'un caisson muni d'une ouverture d'accès. Elle délimite un espace de confinement 17 propre à la mise en oeuvre d'un travail, tel que l'incubation de cellules ou d'embryons humains.
    La chambre de travail 10 est totalement baignée à l'intérieur d'un fluide caloporteur, tel que de l'eau, contenu à l'intérieur de la cuve thermostatée 12.
    La chambre 10 est associée à des moyens 18 de régulation de la température du fluide caloporteur. Ces moyens sont constitués par exemple de résistances chauffantes 22 installées dans la cuve thermostatée 12. Les résistances chauffantes sont pilotées par un régulateur de température 24.
    La cuve thermostatée 12 assure le maintien d'une température régulée, par exemple constamment égale à 37°C, dans toute la zone emplie du fluide caloporteur. Cette zone définit une zone thermostatée 25 autour de la chambre de travail 10.
    La boucle de dérivation 14 débouche à ses deux extrémités dans la chambre de travail 10. Elle chemine partiellement au travers de la zone thermostatée 25 et partiellement au dehors de celle-ci, c'est-à-dire dans le milieu ambiant dans lequel est installée l'enceinte de travail.
    La boucle de dérivation 14 comporte, sur un tronçon disposé hors de la zone thermostatée 20, une pompe 26 pour la mise en circulation d'une partie de l'atmosphère prélevée dans l'espace de confinement. L'atmosphère prélevée chemine alors dans la boucle de dérivation 14 depuis une entrée 28 de la dérivation jusqu'à une sortie 30.
    En aval de l'entrée 28 est prévue, sur la boucle de dérivation 14, une chambre de mesure 32 sur laquelle est monté l'ensemble 16 de capteurs. La chambre de mesure 32 est disjointe et distincte de la chambre de travail 10. Elle est liée à celle-ci par des tronçons de liaison de la boucle de dérivation. Les tronçons de liaison sont formés par des conduites de section réduite par rapport aux sections des chambres 10 et 32. Chacun des capteurs a sa partie active de mesure adaptée pour travailler dans la chambre de mesure 32.
    Dans le mode de réalisation représenté, quatre capteurs sont implantés dans la chambre de mesure 32.
    Un premier capteur 34 constitue une sonde de température. ll est relié au régulateur 24 pour la commande des résistances chauffantes 22.
    Les trois autres capteurs 36, 38, 40 sont adaptés respectivement pour la mesure de teneur en eau, en dioxyde de carbone et en oxygène de l'atmosphère présente dans la chambre de mesure 32.
    Selon l'invention, la chambre de mesure 32 est disposée dans la zone thermostatée 25, de sorte que les capteurs 34, 36, 38 et 40 effectuent des mesures des variables caractéristiques de l'atmosphère dans des conditions de température analogues à celles régnant dans de l'espace de confinement 17.
    Avantageusement, la chambre de mesure 32 comporte des moyens d'accès à l'ensemble 16 de capteurs, directement depuis le milieu ambiant, sans qu'il soit nécessaire de pénétrer dans la cuve 12 après l'avoir vidangée. Ces moyens d'accès comportent par exemple un panneau amovible 47 portant les capteurs et formant une paroi isolant l'intérieur de la chambre de mesure 32 du milieu ambiant.
    Par ailleurs, l'enceinte de travail 10 comporte trois modules 42, 44, 46 de commande de la teneur respectivement en eau, en dioxyde de carbone et en oxygène de l'atmosphère dans l'espace de confinement 25.
    Ces modules de commande 42, 44, 46 sont reliés à une unité centrale de pilotage 48 elle-même reliée aux capteurs 36, 38, 40 de mesure des teneurs en eau, en dioxyde de carbone et en oxygène.
    L'unité centrale de pilotage 48 est adaptée pour piloter les modules de commande 42, 44, 46 afin que ceux-ci injectent ou prélèvent de l'eau, du dioxyde de carbone ou de l'oxygène dans l'espace de confinement 17.
    Ces trois modules sont disposés au dehors de la zone thermostatée 25 et sont reliés à la chambre de travail 10 par des conduites traversant la cuve thermostatée 12.
    Enfin, l'entrée 28 de la boucle de dérivation est avantageusement équipée d'un filtre 50 adapté pour l'élimination de contaminants éventuels présents dans la chambre de travail 10. Ce filtre est par exemple de type HEPA (haute efficacité particules air) comportant un tamis dont la taille des mailles est égale à 0,2 µm. Ce filtre est adapté pour protéger l'ensemble de capteurs disposé en aval sur la boucle de dérivation 14 vis-à-vis d'éventuels contaminants rencontrés dans l'espace de confinement 17.
    Dans le cas de contaminants radioactifs, le filtre 50 comporte des charbons actifs.
    L'enceinte de travail thermostatée fonctionne de la manière suivante.
    Pendant toute l'utilisation de l'enceinte, les moyens 18 de maintien de la température régulée assurent que la température dans la zone thermostatée 25 soit maintenue à la température de consigne.
    A cet effet, le régulateur 24 commande les résistances chauffantes 22 en fonction des valeurs relevées par la sonde de température 34.
    La pompe 26 assure la circulation permanente d'une partie de l'atmosphère de l'espace de confinement au travers de la boucle de dérivation 14. Ainsi, l'atmosphère prélevée circule au travers de la chambre de mesure 32 où elle est mise en contact avec l'ensemble 16 des capteurs. La chambre étant disposée dans la zone thermostatée 25, l'atmosphère qui y règne est à une température analogue à la température de l'espace de confinement 17.
    Dans ces conditions, les valeurs de température relevées par la sonde de température 34 correspondent exactement aux valeurs de température qui seraient relevées par une sonde placée directement dans la chambre de travail 10.
    De même, les valeurs caractéristiques relevées par les capteurs 36, 38 et 40 concernant la teneur en différents gaz de l'atmosphère de la chambre de mesure 32 correspondent exactement aux teneurs de l'atmosphère dans l'espace de confinement, puisque la température dans la chambre de mesure et dans la chambre de travail 10 sont identiques.
    A partir des valeurs caractéristiques relevées par les capteurs 36, 38 et 40, l'unité de pilotage 48 assure le pilotage des modules 42, 44, 46 pour garantir des teneurs contrôlées, en oxygène, en dioxyde de carbone et en eau de l'atmosphère contenue dans la chambre de travail 10.
    On comprend qu'avec un tel agencement, les mesures étant effectuées alors que l'atmosphère est maintenue à la même température que celle de la chambre de travail, ces mesures sont fiables.
    De plus, les capteurs peuvent fonctionner de manière satisfaisante sans qu'il soit nécessaire de modifier la composition de l'atmosphère avec laquelle ils sont mis en contact.
    Sur les figures 2 et 3, sont représentées des variantes de réalisation de l'enceinte de travail thermostatée de la figure 1.
    Sur ces figures, les éléments identiques ou analogues sont désignés par les mêmes numéros de référence que sur la figure 1.
    Dans le mode de réalisation de la figure 2, l'enceinte de travail thermostatée ne diffère qu'en ce que la chambre de mesure unique 32 de la figure 1 est remplacée par quatre chambres de mesure distinctes, notées 54, 56, 58, 60, dans chacune desquelles est disposé un capteur unique.
    Les chambres 54, 56, 58, 60 sont disposées en série sur la boucle de dérivation 14 en aval de l'entrée 28. Chaque chambre est baignée par le fluide caloporteur, de sorte que les chambres sont toutes disposées dans la zone thermostatée 25 assurant ainsi un travail des capteurs 34, 36, 38, 40 à une température identique à celle de l'espace de confinement 17.
    Chaque chambre de mesure 54 à 60 comporte des moyens propres d'accès direct au capteur qui y est implanté depuis le milieu ambiant.
    Dans le mode de réalisation de la figure 3, la chambre de travail 10 et la chambre de mesure 12 sont disposées dans deux zones thermostatées distinctes et indépendantes.
    Ainsi, l'enceinte de travail 10 est disposée dans une zone thermostatée principale 66A alors que la chambre de mesure 32 est disposée dans une enceinte thermostatée secondaire 66B.
    Les zones thermostatées principale et secondaire 66A, 66B sont définies chacune par une cuve thermostée 68A, 68B associée à des résistances électriques 70A, 70B alimentées chacune par une unité de régulation 72A, 72B. Les deux unités de régulation 72A, 72B sont reliées à la sonde de température 34.
    Les deux unités de régulation 72A, 72B sont adaptées pour imposer des températures rigoureusement identiques dans la zone thermostatée principale 66A et dans la zone thermostatée secondaire 66B.
    Les tronçons de la boucle de dérivation 14 immédiatement en aval de l'entrée 28 et immédiatement en amont de la sortie 30 traversent le milieu ambiant pour rejoindre les deux zones thermostatées 66A, 66B. Sur ces tronçons de liaison dans le milieu ambiant, la boucle de dérivation est recouverte d'un revêtement réalisé dans un matériau calorifuge.
    Comme dans les modes de réalisation précédents, les capteurs effectuent des mesures sur l'atmosphère circulant dans la boucle de dérivation 14, alors que celle-ci est rigoureusement à la même température que l'atmosphère de l'espace de confinement 17.
    Les moyens de maintien de la température comportant, dans les exemples décrits, de l'eau chauffée par des résistances électriques, comportent, en variante, des résistances chauffantes appliquées directement sur la chambre de travail. Ils peuvent également comporter un solide caloporteur dans lequel est intégrée la chambre de travail, des résistances chauffantes étant associées à ce solide.

    Claims (9)

    1. Enceinte de travail thermostatée, du type comportant une chambre de travail (10) délimitant un espace de confinement (17) propre à la mise en oeuvre d'un travail, des moyens (12, 18 ; 68A, 70A, 72A) de maintien d'une température régulée dans une zone thermostatée principale (25 ; 66A) définie autour de la chambre de travail (10), et une boucle de dérivation (14) pour la circulation d'une partie de l'atmosphère régnant dans ledit espace de confinement (17), les deux extrémités (28, 30) de la boucle de dérivation (14) débouchant dans l'espace de confinement (17), laquelle boucle de dérivation (14) comporte au moins un capteur (34, 36, 38, 40) de mesure d'une variable caractéristique de l'atmosphère régnant dans ledit espace de confinement (17), caractérisée en ce que le ou chaque capteur (34, 36, 38, 40) est disposé dans une zone thermostatée secondaire (25; 66B) définie autour d'au moins un tronçon de la boucle de dérivation (14) comportant le ou chaque capteur (34, 36, 38, 40), et en ce qu'elle comporte des moyens (12, 18; 68B, 70B, 72B) de maintien de la zone thermostatée secondaire (25; 66B) à une température égale à la température de la zone thermostatée principale (25 ; 66A).
    2. Enceinte de travail thermostatée selon la revendication 1, caractérisée en ce que les zones thermostatées principale (25) et secondaire (25) sont en communication et forment une zone thermostatée unique, et les moyens de maintien d'une température régulée de la zone thermostatée unique (25) comporte une unité unique (18) de régulation de la température dans la zone thermostatée unique.
    3. Enceinte de travail selon la revendication 1, caractérisée en ce que les zones thermostatées principale (66A) et secondaire (66B) sont indépendantes, et sont chacune associées à des moyens propres (68A, 70A, 72A ; 68B, 70B, 72B) de maintien de ladite température régulée commune.
    4. Enceinte de travail thermostatée selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite boucle de dérivation (14) comporte au moins une chambre de mesure (32 ; 54, 56, 58, 60) traversée par une partie de l'atmosphère régnant dans l'espace de confinement (17), le ou chaque capteur (34, 36, 38, 40) ayant une partie active de mesure adaptée pour travailler dans ladite chambre de mesure (32, 54, 56, 58, 60), et en ce que la ou chaque chambre de mesure (32, 54, 56, 58, 60) est disjointe de la chambre de travail (10), la chambre de travail (10) étant reliée à la ou chaque chambre de mesure par des tronçons de liaison de la boucle de dérivation.
    5. Enceinte de travail thermostatée selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comporte au moins deux capteurs (34, 36, 38, 40), et ladite boucle de dérivation (14) comporte, pour chaque capteur, une chambre de mesure distincte (54, 56, 58, 60) traversée par une partie de l'atmosphère régnant dans ledit espace de confinement (17), chaque capteur (34, 36, 38, 40) ayant une partie active de mesure adaptée pour travailler dans la chambre de mesure (54, 56, 58, 60) propre au capteur considéré.
    6. Enceinte de travail thermostatée selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite boucle de dérivation (14) comporte, en entrée (28), un filtre (50) d'arrêt d'au moins certains contaminants présent dans l'espace de confinement (17).
    7. Enceinte de travail thermostatée selon l'une quelconque des revendications précédentes, caractérisée en ce que ladite boucle de dérivation (14) comporte une pompe (26) de mise en circulation d'une partie de l'atmosphère, suivant un trajet défini par ladite boucle de dérivation (14), et en ce que ladite pompe (26) est disposée en dehors de l'une et l'autre des zones thermostatées principale (25 ; 66A) et secondaire (25 ; 66B).
    8. Enceinte de travail thermostatée selon l'une quelconque des revendications précédentes, caractérisée en ce que la zone thermostatée secondaire (25; 66B) est munie de moyens (47) d'accès direct aux capteurs (34, 36, 38, 40) depuis le milieu ambiant.
    9. Enceinte de travail thermostatée selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte des moyens (42, 44, 46, 48) de régulation d'au moins une variable caractéristique de l'atmosphère de l'espace de confinement (17), à partir d'au moins une valeur caractéristique relevée par au moins un capteur (34, 36, 38, 40).
    EP99401525A 1998-06-24 1999-06-18 Enceinte de travail thermostatée Withdrawn EP0967268A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9808013A FR2780525B1 (fr) 1998-06-24 1998-06-24 Enceinte de travail thermostatee
    FR9808013 1998-06-24

    Publications (1)

    Publication Number Publication Date
    EP0967268A1 true EP0967268A1 (fr) 1999-12-29

    Family

    ID=9527811

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99401525A Withdrawn EP0967268A1 (fr) 1998-06-24 1999-06-18 Enceinte de travail thermostatée

    Country Status (3)

    Country Link
    EP (1) EP0967268A1 (fr)
    JP (1) JP2000069956A (fr)
    FR (1) FR2780525B1 (fr)

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1308504A1 (fr) * 2001-11-01 2003-05-07 KENDRO Laboratory Products GmbH Appareil pour l'incubation et le stockage, spécialement pour des échantillons de matière organique
    FR2856699A1 (fr) * 2003-06-27 2004-12-31 Air Liquide Dispositif pour l'etude de la survie des microorganismes dans les gaz
    EP2096162A3 (fr) * 2008-01-30 2011-12-21 Sanyo Electric Co., Ltd. Appareil thermostatique et capot
    US20140120610A1 (en) * 2011-06-14 2014-05-01 Seishi Yamashita Sensor unit and constant-temperature device
    CN105300766A (zh) * 2015-11-04 2016-02-03 浙江大学 一种食品检测电子舌专用的循环水浴恒温槽
    CN107597225A (zh) * 2017-07-31 2018-01-19 浙江泰林生物技术股份有限公司 一种非接触式水浴装置
    CN108369172A (zh) * 2015-12-28 2018-08-03 普和希控股公司 气中微粒测量仪以及清洁环境设备

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN111530519A (zh) * 2020-04-27 2020-08-14 安徽昊森新材料科技有限公司 一种新型智能恒温水浴锅

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3775256A (en) * 1971-10-14 1973-11-27 M Risinger Anaerobic bacteria laboratory
    US3873423A (en) * 1971-06-09 1975-03-25 Max Planck Gesellschaft Method for culturing cells
    US3929584A (en) * 1975-01-23 1975-12-30 Fisher Scientific Co Automatic carbon dioxide incubator
    US4336329A (en) * 1979-06-18 1982-06-22 W. C. Heraeus Gmbh Method and apparatus for treatment of biological substances, particularly for cultivation of biological cells and tissues, or of microorganisms

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3873423A (en) * 1971-06-09 1975-03-25 Max Planck Gesellschaft Method for culturing cells
    US3775256A (en) * 1971-10-14 1973-11-27 M Risinger Anaerobic bacteria laboratory
    US3929584A (en) * 1975-01-23 1975-12-30 Fisher Scientific Co Automatic carbon dioxide incubator
    US4336329A (en) * 1979-06-18 1982-06-22 W. C. Heraeus Gmbh Method and apparatus for treatment of biological substances, particularly for cultivation of biological cells and tissues, or of microorganisms

    Cited By (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7152664B2 (en) 2001-11-01 2006-12-26 Kendro Laboratory Products Incubation and storage device, in particular for specimens of organic material
    EP1308504A1 (fr) * 2001-11-01 2003-05-07 KENDRO Laboratory Products GmbH Appareil pour l'incubation et le stockage, spécialement pour des échantillons de matière organique
    FR2856699A1 (fr) * 2003-06-27 2004-12-31 Air Liquide Dispositif pour l'etude de la survie des microorganismes dans les gaz
    EP2096162A3 (fr) * 2008-01-30 2011-12-21 Sanyo Electric Co., Ltd. Appareil thermostatique et capot
    US9464266B2 (en) * 2011-06-14 2016-10-11 Rorze Corporation Sensor unit and constant-temperature device
    US20140120610A1 (en) * 2011-06-14 2014-05-01 Seishi Yamashita Sensor unit and constant-temperature device
    EP2692851A4 (fr) * 2011-06-14 2015-03-11 Rorze Corp Unité de capteur et dispositif à température constante utilisant l'unité de capteur
    CN105300766A (zh) * 2015-11-04 2016-02-03 浙江大学 一种食品检测电子舌专用的循环水浴恒温槽
    CN105300766B (zh) * 2015-11-04 2018-04-10 浙江大学 一种食品检测电子舌专用的循环水浴恒温槽
    CN108369172A (zh) * 2015-12-28 2018-08-03 普和希控股公司 气中微粒测量仪以及清洁环境设备
    EP3372984A4 (fr) * 2015-12-28 2018-12-26 PHC Holdings Corporation Instrument de mesure de particules fines en suspension dans un gaz et dispositif environnemental propre
    CN107597225A (zh) * 2017-07-31 2018-01-19 浙江泰林生物技术股份有限公司 一种非接触式水浴装置
    CN107597225B (zh) * 2017-07-31 2019-09-03 浙江泰林生物技术股份有限公司 一种非接触式水浴装置

    Also Published As

    Publication number Publication date
    FR2780525B1 (fr) 2001-04-13
    JP2000069956A (ja) 2000-03-07
    FR2780525A1 (fr) 1999-12-31

    Similar Documents

    Publication Publication Date Title
    EP0967268A1 (fr) Enceinte de travail thermostatée
    FR2648228A1 (fr) Ensemble de capteur pour la mesure optique de composants gazeux
    CH618265A5 (fr)
    EP0620946B1 (fr) Procédé et dispositif de détection de fuites de traversées de couverele de cuve de réeacteur nucléaire en fonctionnement
    EP0321350A1 (fr) Dispositif de détection d'un phénomène thermique intervenant dans un produit
    US6255653B1 (en) Diffusion-type NDIR gas analyzer with improved response time due to convection flow
    CA1303384C (fr) Sonde pour la determination des temperatures des parois des carneauxde four a coke
    US3969626A (en) Method and apparatus for detecting total reduced sulfur
    EP3123142B1 (fr) Dispositif de prelevement d'aerosols et d'iode gazeux
    Greenberg et al. Techniques for measuring the infrared absorption spectra of fused salts
    EP1032815A1 (fr) Procede, dispositif et installation pour l'analyse d'un effluent gazeux avec determination d'un taux de poussieres
    US4627284A (en) Ultraviolet absorption hygrometer
    EP0633461A2 (fr) Procédé et dispositif pour mesurer l'humidité d'un air chaud et installation de séchage à air chaud comportant ce dispositif
    IT8921912A1 (it) Metodo per misurare l'efficienza di una combustione e apparecchio per attuare il metodo.
    EP1066880A1 (fr) Enceinte de travail munie de moyens de recyclage de l'atmosphère
    WO1997012224A1 (fr) Procede et dispositif de controle des caracteristiques d'une couche superficielle d'un element en alliage de zirconium et utilisation pour le controle de crayons de combustible pour un reacteur nucleaire
    FR2714464A1 (fr) Procédé de contrôle de la contamination surfacique d'un solide et dispositif de mise en Óoeuvre.
    FR2695473A1 (fr) Dispositif de mesure pour déterminer le trouble des gaz.
    FR3087267A1 (fr) Enceinte de sous-ventilation pour l'etude de la decomposition thermique en atmosphere controlee
    FR2594149A1 (fr) Procede permettant de controler le salissement du solvant sur les installations de nettoyage a sec et appareil de controle comportant de nouveaux types de capteurs permettant sa mise en oeuvre.
    FR2683632A1 (fr) Capteur a reactif biologique pour le controle in situ de la toxicite des effluents hydriques.
    FR2738063A1 (fr) Installation d'essais de fatigue, en ambiance hygrothermique
    USRE31438E (en) Infrared ray gas analyzing apparatus
    EP1073395A1 (fr) Procede de controle de fonctionnement d'un dispositif de maintien du corps d'un etre vivant a au moins une temperature determinee
    EP1137819A1 (fr) Installation de controle de l'etancheite d'echangeurs de chaleur eau-gaz pour fours industriels

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991115

    AKX Designation fees paid

    Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT

    17Q First examination report despatched

    Effective date: 20031204

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

    18W Application withdrawn

    Effective date: 20040521