EP0955509A1 - Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff - Google Patents

Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff Download PDF

Info

Publication number
EP0955509A1
EP0955509A1 EP98116041A EP98116041A EP0955509A1 EP 0955509 A1 EP0955509 A1 EP 0955509A1 EP 98116041 A EP98116041 A EP 98116041A EP 98116041 A EP98116041 A EP 98116041A EP 0955509 A1 EP0955509 A1 EP 0955509A1
Authority
EP
European Patent Office
Prior art keywords
pressure column
low
pressure
liquid
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98116041A
Other languages
English (en)
French (fr)
Other versions
EP0955509B1 (de
Inventor
Dietrich Dipl.-Ing. Rottmann
Horst Dipl.-Ing. Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19819338A external-priority patent/DE19819338A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0955509A1 publication Critical patent/EP0955509A1/de
Application granted granted Critical
Publication of EP0955509B1 publication Critical patent/EP0955509B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • F25J3/04212Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product and simultaneously condensing vapor from a column serving as reflux within the or another column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen

Definitions

  • part of the liquid flowing down in the low-pressure column 5 is removed as nitrogen fraction 20, brought to pressure in the liquid state (14 bar in the example) (pump 21) and via line 22 through the subcooler 15 to a product evaporator 23.
  • the nitrogen 24 evaporated under a pressure of 13.4 bar is heated in the main heat exchanger 2 and discharged as a high-purity pressure product 25. If necessary, it can be further compressed in the gaseous state.
  • the high purity pressurized nitrogen product 25 has a total contamination of 10 ppb (including carbon monoxide).

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung von hochreinem Sauerstoff durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (4) und eine Niederdrucksäule (5) aufweist. Einsatzluft (1, 3) wird in die Drucksäule (4) eingeleitet. Eine sauerstoffhaltige flüssige Fraktion (411) wird aus der Drucksäule (4) entnommen und in die Niederdrucksäule (5) eingespeist. Gasförmiger Stickstoff (18) aus der Niederdrucksäule (5) wird in einem Kopfkondensator (17) durch indirekten Wärmeaustausch mit einer verdampfenden Flüssigkeit (457) mindestens teilweise kondensiert. Die sauerstoffhaltige flüssige Fraktion (411) wird mindestens einen theoretischen oder praktischen Boden oberhalb des Sumpfs der Drucksäule (4) entnommen. Mindestens ein Teil der Sumpfflüssigkeit (457) der Drucksäule (4) wird in den Verdampfungsraum des Kopfkondensators (17) der Niederdrucksäule (5) geleitet. Aus dem unteren Bereich der Niederdrucksäule (5) wird ein hochreines Sauerstoffprodukt (459, 460, 461, 563, 564) entnommen. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zur Gewinnung von hochreinem Sauerstoff gemäß dem Oberbegriff von Patentanspruch 1.
  • Ein Verfahren mit diesen Schritten ist aus DE 3528374 A1 bekannt. Bei diesem Zweisäulenprozeß weist die Niederdrucksäule einen Kopfkondensator auf, in dem gasförmiger Kopfstickstoff kondensiert und als Rücklauf auf die Niederdrucksäule aufgegeben wird. Diese Art der Erzeugung von Rücklauf für die Niederdrucksäule ermöglicht es, einen Teil des in der Doppelsäule erzeugten Stickstoffs als Druckprodukt abzuführen. Die an Sauerstoff angereicherte Flüssigkeit, die als Sumpfprodukt der Niederdrucksäule anfällt, wird vollständig auf die Verdampfungsseite des Kopfkondensators der Niederdrucksäule geleitet und als Restgas abgeführt.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren der eingangs genannten Art ein hochreines Sauerstoffprodukt zu gewinnen, insbesondere zusätzlich zu einem Druckstickstoffprodukt.
  • Diese Aufgabe wird dadurch gelöst, daß die sauerstoffhaltige flüssige Fraktion, die in die Niederdrucksäule eingespeist wird, mindestens einen theoretischen oder praktischen Boden oberhalb des Sumpfs der Drucksäule entnommen wird, daß Sumpfflüssigkeit der Drucksäule in den Verdampfungsraum des Kopfkondensators der Niederdrucksäule geleitet wird und daß aus dem unteren Bereich der Niederdrucksäule ein hochreines Sauerstoffprodukt entnommen wird.
  • Bei der Produktion von hochreinem Sauerstoff ist die Verringerung des Stickstoff- und Argongehalts im Sauerstoffprodukt relativ unkritisch; diese kann durch eine entsprechend hohe Anzahl von Böden im unteren Abschnitt der Niederdrucksäule erzielt werden. Diese übliche Maßnahme verhindert jedoch nicht, daß sich sämtliche schwererflüchtigen Verunreinigungen im Sauerstoffprodukt ansammeln, also Luftbestandteile, deren Siedepunkt höher als derjenige von Sauerstoff ist und die durch die Vorreinigung stromaufwärts der Einleitung in das Rektifiziersystem nicht entfernt wurden. Solche schwererflüchtigen Luftbestandteile werden beispielsweise durch Krypton, Xenon und Kohlenwasserstoffe gebildet. Es ist bekannt, derartige Verunreinigungen in einem oder mehreren nachfolgenden Rektifizierschritten zu entfernen (siehe beispielsweise EP-299364-B1.
  • Die erfindungsgemäße Lösung kommt ohne zusätzliche Rektifiziersäulen aus und nutzt den unteren Teil der Drucksäule beziehungsweise einen zusätzlichen Stoffaustauschabschnitt im unteren Abschnitt der Drucksäule für die Abtrennung der schwererflüchtigen Verunreinigungen. Dazu wird die sauerstoffhaltige flüssige Fraktion, die in die Niederdrucksäule geleitet wird, nicht aus dem Sumpf der Drucksäule abgezogen, sondern von einer oberhalb des Sumpfs, insbesondere oberhalb der Zuspeisung der Einsatzluft, gelegenen Zwischenstelle. Dazwischen befindet sich ein Stoffaustauschabschnitt im Umfang mindestens eines theoretischen oder praktischen Bodens. Vorzugsweise umfaßt er 1 bis 10, höchst vorzugsweise 2 bis 5 theoretische oder praktische Böden, die zwischen Luftzuspeisung beziehungsweise Drucksäulensumpf einerseits und Entnahmestelle der sauerstoffhaltigen flüssigen Fraktion andererseits angeordnet sind. (Für den Fall, daß in diesem Abschnitt ausschließlich praktische Böden als Stoffaustauschelemente verwendet werden, gelten die Angaben in praktischen Bodenzahlen; falls Packung, Füllkörper oder Kombinationen verschiedener Typen von Stoffaustauschelementen eingesetzt werden, sind die Angaben in theoretischen Bodenzahlen anzuwenden.)
  • Durch die Entnahme des Einsatzes oberhalb der Luftzuspeisung werden schwererflüchtige Bestandteile der Luft wie Kohlenwasserstoffe, Krypton und Xenon aus der Niederdrucksäule ferngehalten. An deren Sumpf wird ein hochreines Sauerstoffprodukt entnommen (Gesamtreinheit 99,5 bis 99,999 vol%, vorzugsweise 99,8 bis 99,999 vol%; Anteil an schwererflüchtigen Komponenten 1 bis 10 ppm, vorzugsweise 3 bis 5 ppm). Der hochreine Sauerstoff kann flüssig und/oder gasförmig direkt am Sumpf der Niederdrucksäule abgezogen werden.
  • Die Betriebsdrücke der Säulen können bei dem erfindungsgemäßen Verfahren beispielsweise 6 bis 20, vorzugsweise 7 bis 16 bar in der Drucksäule und beispielsweise 3 bis 8, vorzugsweise 3 bis 6 bar in der Niederdrucksäule betragen. Der Kopfkondensator der Niederdrucksäule wird mindestens teilweise mit Sumpfflüssigkeit der Drucksäule als Kältemittel betrieben. Rücklauf für die Drucksäule wird üblicherweise durch einen Kondensator-Verdampfer erzeugt, über den der Kopf der Drucksäule und der Sumpf der Niederdrucksäule in wärmetauschender Verbindung stehen.
  • Insbesondere zur Entfernung von Argon kann eine Restfraktion von einer Zwischenstelle der Niederdrucksäule abgezogen werden. Die Restfraktion wird vorzugsweise durch eine Unreinstickstofffraktion gebildet und oberhalb der Stelle der Einspeisung der sauerstoffhaltigen flüssigen Fraktion aus der Drucksäule entnommen.
  • Verfahrenskälte kann durch arbeitsleistende Entspannung einer oder mehrerer der folgenden Fraktionen erzeugt werden:
    • Restgas aus dem Verdampfungsraum des Kopfkondensators der Niederdrucksäule
    • Dampf aus dem mittleren Bereich der Niederdrucksäule (beispielsweise obige Restfraktion)
    • Teilstrom der Einsatzluft
    • Stickstoff aus der Drucksäule oder aus der Niederdrucksäule
  • Im Falle der arbeitsleistenden Entspannung von Luft wird das Turbinenabgas vorzugsweise der Drucksäule zugeführt oder aus dem Verfahren entfernt, beispielsweise durch Vermischen mit einem anderen Reststrom. Die entspannte Luft darf jedenfalls nicht in die Niederdrucksäule eingespeist werden, da dies eine erneute Verunreinreingung durch schwererflüchtige Komponenten bewirken würde.
  • Mittels Innenverdichtung kann das hochreine Sauerstoffprodukt auf einen Druck gebracht werden, der höher als der Niederdrucksäulendruck ist, indem mindestens ein Teil des Sauerstoffprodukts flüssig aus der Niederdrucksäule herausgeführt und unter einem Druck, der höher als der Betriebsdruck der Niederdrucksäule ist, verdampft wird. Als Heizmittel beim Verdampfen kann beispielsweise entsprechend hoch verdichtete Luft verwendet werden.
  • Zur Druckstickstoffgewinnung ist es günstig, wenn eine Stickstofffraktion flüssig aus der Niederdrucksäule oder deren Kopfkondensator entnommen wird und der Druck der Stickstofffraktion in flüssigem Zustand auf einen Wert erhöht wird, der höher als der Betriebsdruck der Niederdrucksäule ist. Auf diese Weise kann - gegebenenfalls zusätzlich zur Direktentnahme von Stickstoff aus der Drucksäule - gasförmiger Stickstoff unter einem Druck gewonnen werden, der höher als der Betriebsdruck der Niederdrucksäule ist. Der flüssig auf Druck gebrachte Stickstoff kann in die Drucksäule zurückgeleitet oder unter Umgehung der Drucksäule in indirektem Wärmeaustausch verdampft werden.
  • Soll dieser Druckstickstoff in besonders hoher Reinheit gewonnen werden, wird die Stickstofffraktion mindestens einen theoretischen oder praktischen Boden unterhalb des Kopfs der Niederdrucksäule entnommen und mindestens ein Teil der flüssigen Stickstofffraktion unter einem Druck, der höher als der Betriebsdruck der Niederdrucksäule ist, durch indirekten Wärmeaustausch verdampft und als hochreines Druckstickstoffprodukt abgeführt. Als Heizmittel bei dem indirekten Wärmeaustausch kann beispielsweise ein Gas aus dem oberen Bereich der Drucksäule und/oder ein Gas aus dem unteren Bereich der Niederdrucksäule verwendet werden. Details über diesen Wärmeaustauschschritt sind den älteren Patentanmeldungen DE 19735154 und WO 98/19122 zu entnehmen. Unter hochreinem Druckstickstoff ist beispielsweise Stickstoff mit einer Gesamtverunreinigung von 1 ppm oder weniger, insbesondere zwischen 1 ppm und 10-3 ppb und unter einem überatmosphärischen Druck, insbesondere von über 3 bar zu verstehen.
  • Der oberhalb der Entnahme der Stickstofffraktion gelegene Abschnitt der Niederdrucksäule dient zur Abtrennung von leichterflüchtigen Verunreinigungen. Dieser Abschnitt kann aus Packungen oder Füllkörpern gebildet sein, deren Stoffaustauschwirkung mindestens einem theoretischen Boden entspricht oder aus einem oder mehreren konventionellen Rektifizierböden, beispielsweise Siebböden. Er kann aus bis zu 10, vorzugsweise aus 2 bis 5 theoretischen beziehungsweise praktischen Böden bestehen. Die leichterflüchtigen Verunreinigungen werden als gasförmige Restfraktion aus dem Verflüssigungsraum des Kopfkondensators der Niederdrucksäule abgezogen.
  • Um die besonders hohe Reinheit der Stickstofffraktion aus der Niederdrucksäule zu erhalten, wird diese nicht in die Drucksäule eingeleitet, sondern durch indirekten Wärmeaustausch verdampft und in unveränderter Konzentration als hochreines Druckstickstoffprodukt entnommen. Das Verdampfen des flüssig auf Druck gebrachten Stickstoffs durch indirekten Wärmeaustausch kann wie oben beschrieben erfolgen.
  • Wird ein Teil des in der Drucksäule gewonnenen Stickstoffs als Rücklauf für die Niederdrucksäule eingesetzt, wird diese Stickstoffmenge gewöhnlich am Kopf der Drucksäule abgezogen. Indem der Drucksäule mindestens einen theoretischen oder praktischen Boden unterhalb des Kopfs eine flüssige Rohstickstofffraktion entnommen und an einer Stelle auf die Niederdrucksäule aufgegeben wird, die mindestens einen theoretischen oder praktischen Boden oberhalb der Stelle der Entnahme der flüssigen Stickstofffraktion liegt, kann bereits die Drucksäule zur Abtrennung leichterflüchtiger Verunreinigungen eingesetzt werden. Dadurch ergeben sich Vorteile für die Reinheit des hochreinen Druckstickstoffprodukts.
  • Die Erfindung betrifft außerdem eine Vorrichtung zur Gewinnung von hochreinem Sauerstoff gemäß den Patentansprüchen 9 beziehungsweise 10.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel der Erfindung mit gasförmiger und/oder flüssiger Entnahme des hochreinen Sauerstoffprodukts aus der Niederdrucksäule und
    Figur 2
    eine zweites Ausführungsbeispiel mit Innenverdichtung des Sauerstoffprodukts.
  • Bei dem Verfahren der Figur 1 wird verdichtete und gereinigte Luft 1 in einem Hauptwärmetauscher 2 abgekühlt und einer Drucksäule 4 unter einem Druck von 14 bar zugeleitet (3). Das Rektifiziersystem weist außerdem eine Niederdrucksäule 5 auf, die mit einem Druck von 5 bar betrieben wird und mit der Drucksäule über einen gemeinsamen Kondensator-Verdampfer (Hauptkondensator) 6 in wärmetauschender Verbindung steht. Ein Teil 8 des am Kopf der Drucksäule entnommenen Stickstoffs 7 wird im Hauptkondensator 6 verflüssigt und über die Leitungen 9 und 10 als Rücklauf auf die Drucksäule aufgegeben. Am Hauptkondensator 6 kann über Leitung 57 ein Restdampf, der insbesondere leichterflüchtige Verunreinigungen wie Helium, Neon und/oder Wasserstoff enthält, entnommen werden. Eine sauerstoffhaltige flüssige Fraktion 411 aus der Drucksäule wird nach Unterkühlung 15 in die Niederdrucksäule 5 eingedrosselt (412).
  • Die Niederdrucksäule 5 weist einen Kopfkondensator 17 auf, in dessen Verflüssigungsraum gasförmiger Stickstoff 18 vom Kopf der Niederdrucksäule 5 kondensiert; das Kondensat 19 wird mindestens teilweise in die Niederdrucksäule zurückgeleitet. Ein Restdampf, der insbesondere leichterflüchtige Verunreinigungen wie Helium, Neon und/oder Wasserstoff enthält, wird bei 51 aus dem Kopfkondensator 17 (wie dargestellt) oder alternativ aus der im Kopfkondensator kondensierten Fraktion 19 entnommen.
  • Erfindungsgemäß wird der Kopfkondensator 17 der Niederdrucksäule 5 nicht oder nicht ausschließlich mit Sumpfflüssigkeit der Niederdrucksäule betrieben (siehe Stand der Technik nach DE 3528374 A1), sondern mit Sumpfflüssigkeit 457 der Drucksäule 4. Die sauerstoffhaltige flüssige Fraktion 411, die in die Niederdrucksäule 5 eingedrosselt (412) wird, stammt von einer Zwischenstelle oberhalb eines zusätzlichen Stoffaustauschabschnitts 458 im unteren Bereich der Drucksäule. Der zusätzliche Stoffaustauschabschnitt 458 weist in dem Beispiel fünf theoretische Böden auf. Im Sumpf der Niederdrucksäule 5 wird ein hochreines Sauerstoffprodukt mit einer Reinheit von 99,99 vol% erzeugt und flüssig (459) und/oder gasförmig (460, 461) unter dem Druck der Niederdrucksäule abgezogen. Über eine Restfraktion (Unreinstickstofffraktion) 462 aus der Niederdrucksäule 5 wird Argon ausgeschleust. Der Unreinstickstoff wird vorzugsweise mit den übrigen Restströmen 31, 57, 51 und 53 vereint.
  • Das Ausführungsbeispiel dient außerdem zur Gewinnung von hochreinem Druckstickstoff. Dazu wird unterhalb eines Stoffaustauschabschnitts 54, der in dem Beispiel drei theoretische Böden aufweist, ein Teil der in der Drucksäule 4 herabfließenden Flüssigkeit als flüssige Rohstickstofffraktion 55 entnommen und in den Kopf der Niederdrucksäule 5 eingedrosselt (56).
  • Nach Durchlaufen eines Stoffaustauschabschnitts 52, der in dem Beispiel drei theoretische Böden aufweist, wird ein Teil der in der Niederdrucksäule 5 herabfließenden Flüssigkeit als Stickstofffraktion 20 entnommen, in flüssigem Zustand auf Druck (im Beispiel 14 bar) gebracht (Pumpe 21) und über Leitung 22 durch den Unterkühler 15 zu einem Produktverdampfer 23 geführt. Der unter einem Druck von 13,4 bar verdampfte Stickstoff 24 wird im Hauptwärmetauscher 2 angewärmt und als hochreines Druckprodukt 25 abgeführt. Er kann gegebenenfalls in gasförmigem Zustand weiter verdichtet werden. In dem Beispiel weist das hochreine Druckstickstoffprodukt 25 eine Gesamtverunreinigung von 10 ppb (einschließlich Kohlenmonoxid) auf. Bei Bedarf kann ein Teil des gasförmigen Stickstoffs 7 vom Kopf der Drucksäule im Hauptwärmetauscher 2 angewärmt und als weiteres Druckprodukt geringerer Reinheit gewonnen werden (nicht dargestellt). In diesem Fall ist es möglich, auf die Überleitung von Flüssigstickstoff 55 aus der Drucksäule 4 in die Niederdrucksäule 5 zu verzichten.
  • Auf der Verflüssigungsseite des Produktverdampfers 23 wird ein (anderer) Teil 35 des gasförmigen Stickstoffs 7 vom Kopf der Drucksäule 4 kondensiert. Die dabei entstehende Flüssigkeit 36 wird als zusätzlicher Rücklauf auf die Drucksäule 4 aufgegeben. Der Produktverdampfer 23 ist in dem Beispiel als Fallfilmverdampfer ausgebildet, in dem eine nur partielle Verdampfung stattfindet. Flüssig verbliebener Stickstoff 45 wird in die Niederdrucksäule 5 zurückgeführt. Auch am Produktverdampfer 23 wird ein Restdampf, der insbesondere leichterflüchtige Verunreinigungen wie Helium, Neon und/oder Wasserstoff enthält, entnommen (Leitung 53).
  • Bei Bedarf kann ein Teil der flüssigen Stickstofffraktion 20 aus der Niederdrucksäule als Flüssigprodukt 30 gewonnen werden. Der unreine Sauerstoff 31, der durch Verdampfung der Sumpfflüssigkeit 457 der Drucksäule 5 im Kopfkondensator 17 der Niederdrucksäule entsteht, wird über die Restgasleitung 432 in den Wärmetauschern 14, 15 und 2 angewärmt und als Nebenprodukt oder Restgas abgeführt (27). Er kann beispielsweise für die Regenerierung einer Vorrichtung zur Luftreinigung eingesetzt werden.
  • Kälte wird bei dem Verfahren nach Figur 1 durch arbeitsleistende Entspannung 33 des Restgases 432 erzeugt. Die in der Entspannungsmaschine 33 gewonnene mechanische Energie kann beispielsweise zur Nachverdichtung des im Produktverdampfer 23 verdampften Druckstickstoffprodukts 24 oder zur Druckerhöhung im Restgas stromaufwärts der Entspannungsmaschine 33 verwendet werden, vorzugsweise durch direkte mechanische Kopplung von Entspannungsmaschine 33 und einem entsprechenden Verdichter. Es ist günstig, wenn die Restdämpfe 57, 51 und 53 ebenfalls in die Restgasleitung 432 eingeführt werden.
  • Insbesondere bei relativ hohem Bedarf an Flüssigprodukt 30 kann zusätzlich oder alternativ zu der in Figur 1 dargestellten Restgasturbine eine Luftturbine eingesetzt werden. Ein Teil der verdichteten und gereinigten Luft 1 wird dabei im Hauptwärmetauscher 2 nur auf eine Zwischentemperatur abgekühlt und anschließend arbeitsleistend entspannt. Die entspannte Luft kann angewärmt und vor den Luftverdichter zurückgeführt werden. Die in der Luftturbine erzeugte mechanische Energie kann zur Nachverdichtung der Luft vor der arbeitsleistenden Entspannung eingesetzt werden.
  • Für den Fall, daß das hochreine Sauerstoffprodukt unter einem Druck benötigt wird, der höher als der Betriebsdruck der Niederdrucksäule ist, kann der flüssig aus der Niederdrucksäule abgezogene hochreine Sauerstoff über Leitung 563 einer Flüssigpumpe 562 zugeführt und in einem Produktverdampfer Einsatzluft verdampft werden. In dem Beispiel der Figur 2 dient der Hauptwärmetauscher 2 als Produktverdampfer für den hochreinen Sauerstoff, alternativ könnte ein separater Produktverdampfer vorgesehen sein. Nach (weiterer) Anwärmung im Hauptwärmetauscher 2 wird das Drucksauerstoffprodukt bei 564 abgezogen.

Claims (10)

  1. Verfahren zur Gewinnung von hochreinem Sauerstoff durch Tieftemperaturzerlegung von Luft in einem Rektifiziersystem, das eine Drucksäule (4) und eine Niederdrucksäule (5) aufweist, wobei bei dem Verfahren
    • Einsatzluft (1, 3) in die Drucksäule (4) eingeleitet wird,
    • eine sauerstoffhaltige flüssige Fraktion (411) aus der Drucksäule (4) entnommen und in die Niederdrucksäule (5) eingespeist wird und
    • gasförmiger Stickstoff (18) aus der Niederdrucksäule (5) in einem Kopfkondensator (17) durch indirekten Wärmeaustausch mit einer verdampfenden Flüssigkeit (457) mindestens teilweise kondensiert wird,
    dadurch gekennzeichnet, daß
    • die sauerstoffhaltige flüssige Fraktion (411), die in die Niederdrucksäule (5) eingespeist wird, mindestens einen theoretischen oder praktischen Boden oberhalb des Sumpfs der Drucksäule (4) entnommen wird, daß
    • mindestens ein Teil der Sumpfflüssigkeit (457) der Drucksäule (4) in den Verdampfungsraum des Kopfkondensators (17) der Niederdrucksäule (5) geleitet wird und daß
    • aus dem unteren Bereich der Niederdrucksäule (5) ein hochreines Sauerstoffprodukt (459, 460, 461, 563, 564) entnommen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Restfraktion (462) von einer Zwischenstelle der Niederdrucksäule abgezogen wird.
  3. Verfahren nach Anspruch 1 oder 2, eine gasförmige Fraktion (31) aus dem Verdampfungsraum des Kopfkondensators (17) der Niederdrucksäule und/oder eine gasförmige Fraktion (462) aus der Niederdrucksäule arbeitsleistend entspannt (33) werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Luft arbeitsleistend entspannt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mindestens ein Teil (563) des hochreinen Sauerstoffprodukts flüssig aus der Niederdrucksäule (5) herausgeführt und unter einem Druck, der höher als der Betriebsdruck der Niederdrucksäule (5) ist, verdampft (2) wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine Stickstofffraktion (20) flüssig aus der Niederdrucksäule (5) oder deren Kopfkondensator (17) entnommen wird und der Druck der Stickstofffraktion (20) in flüssigem Zustand auf einen Wert erhöht (21) wird, der höher als der Betriebsdruck der Niederdrucksäule (5) ist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die flüssige Stickstofffraktion (20) mindestens einen theoretischen oder praktischen Boden unterhalb des Kopfs der Niederdrucksäule entnommen und mindestens ein Teil der flüssigen Stickstofffraktion (22) unter einem Druck, der höher als der Betriebsdruck der Niederdrucksäule (5) ist, durch indirekten Wärmeaustausch (23) verdampft und als hochreines Druckstickstoffprodukt (24, 25) abgeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Drucksäule (4) mindestens einen theoretischen oder praktischen Boden unterhalb des Kopfs eine flüssige Rohstickstofffraktion (55) entnommen und an einer Stelle auf die Niederdrucksäule (5) aufgegeben wird, die mindestens einen theoretischen oder praktischen Boden oberhalb der Stelle der Entnahme der flüssigen Stickstofffraktion (20) liegt.
  9. Vorrichtung zur Gewinnung von hochreinem Sauerstoff durch Tieftemperaturzerlegung von Luft mit einem Rektifiziersystem, das eine Drucksäule (4) und eine Niederdrucksäule (5) aufweist, und mit
    • einer Einsatzluftleitung (1, 3), die in die Drucksäule (4) führt,
    • einer Rohsauerstoffleitung (411) zur Einleitung einer sauerstoffhaltigen flüssigen Fraktion aus der Drucksäule (4) in die Niederdrucksäule (5) und mit
    • einem Kopfkondensator (17) zur mindestens teilweisen Kondensation von gasförmigem Stickstoff (18) aus der Niederdrucksäule (5) durch indirekten Wärmeaustausch mit einer verdampfenden Flüssigkeit (457),
    gekennzeichnet durch
    • einen Stoffaustauschabschnitt (458), der in der Drucksäule (4) unterhalb der Rohsauerstoffleitung (411) und insbesondere oberhalb der Einsatzluftleitung (3) angeordnet ist und mindestens einen theoretischen oder praktischen Boden aufweist,
    • durch eine Sumpfflüssigkeitsleitung (457) zur Einleitung der Sumpfflüssigkeit der Drucksäule (4) in den Verdampfungsraum des Kopfkondensators (17) der Niederdrucksäule (5) und durch
    • eine Produktleitung zur Entnahme von hochreinem Sauerstoffprodukt (459, 460, 461, 563, 564) aus dem unteren Bereich der Niederdrucksäule (5).
  10. Vorrichtung nach Anspruch 9, gekennzeichnet durch eine Restfraktionsleitung (462, 432), die mit einer Zwischenstelle der Niederdrucksäule (5) verbunden ist.
EP98116041A 1998-04-30 1998-08-25 Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff Expired - Lifetime EP0955509B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19819338 1998-04-30
DE19819338A DE19819338A1 (de) 1997-10-30 1998-04-30 Verfahren und Vorrichtung zur Gewinnung von hochreinem Druckstickstoff

Publications (2)

Publication Number Publication Date
EP0955509A1 true EP0955509A1 (de) 1999-11-10
EP0955509B1 EP0955509B1 (de) 2004-12-22

Family

ID=7866294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98116041A Expired - Lifetime EP0955509B1 (de) 1998-04-30 1998-08-25 Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff

Country Status (3)

Country Link
US (1) US6196022B1 (de)
EP (1) EP0955509B1 (de)
JP (1) JP4450886B2 (de)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300640A1 (de) * 2001-10-04 2003-04-09 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hoch reinem Stickstoff durch Tieftemperaturzerlegung von Luft
FR2853405A1 (fr) * 2003-04-01 2004-10-08 Air Liquide Procede et installation de separation d'air par distillation cryogenique
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2662654A1 (de) * 2012-05-07 2013-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Vorrichtung zur Abscheidung von Luft durch kryogene Destillation
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
WO2018114052A2 (de) 2016-12-23 2018-06-28 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330812B2 (en) * 2000-03-02 2001-12-18 Robert Anthony Mostello Method and apparatus for producing nitrogen from air by cryogenic distillation
DE10058332A1 (de) * 2000-11-24 2002-05-29 Linde Ag Verfahren und Vorrichtung zur Erzeugung von Sauerstoff und Stickstoff
US6568208B1 (en) * 2002-05-03 2003-05-27 Air Products And Chemicals, Inc. System and method for introducing low pressure reflux to a high pressure column without a pump
DE10245379A1 (de) * 2002-09-28 2004-04-08 Linde Ag Verfahren und Vorrichtung zur Gewinnung von hoch reinem Stickstoff
US8991209B2 (en) * 2010-12-13 2015-03-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for producing high-pressure nitrogen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303428A (en) * 1979-07-20 1981-12-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic processes for separating air
DE3528374A1 (de) * 1985-08-07 1987-02-12 Linde Ag Verfahren und vorrichtung zur erzeugung von stickstoff mit ueberatmosphaerischem druck
FR2655137A1 (fr) * 1989-11-28 1991-05-31 Air Liquide Procede et installation de distillation d'air avec production d'argon.
US5123947A (en) * 1991-01-03 1992-06-23 Air Products And Chemicals, Inc. Cryogenic process for the separation of air to produce ultra high purity nitrogen
WO1998019122A1 (de) * 1996-10-30 1998-05-07 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung von druckstickstoff

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471842A (en) * 1994-08-17 1995-12-05 The Boc Group, Inc. Cryogenic rectification method and apparatus
US5582032A (en) * 1995-08-11 1996-12-10 Liquid Air Engineering Corporation Ultra-high purity oxygen production
US5963666A (en) * 1995-08-18 1999-10-05 International Business Machines Corporation Confusion matrix mediated word prediction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303428A (en) * 1979-07-20 1981-12-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic processes for separating air
DE3528374A1 (de) * 1985-08-07 1987-02-12 Linde Ag Verfahren und vorrichtung zur erzeugung von stickstoff mit ueberatmosphaerischem druck
FR2655137A1 (fr) * 1989-11-28 1991-05-31 Air Liquide Procede et installation de distillation d'air avec production d'argon.
US5123947A (en) * 1991-01-03 1992-06-23 Air Products And Chemicals, Inc. Cryogenic process for the separation of air to produce ultra high purity nitrogen
WO1998019122A1 (de) * 1996-10-30 1998-05-07 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung von druckstickstoff

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300640A1 (de) * 2001-10-04 2003-04-09 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hoch reinem Stickstoff durch Tieftemperaturzerlegung von Luft
US6708523B2 (en) 2001-10-04 2004-03-23 Linde Aktiengesellschaft Process and apparatus for producing high-purity nitrogen by low-temperature fractionation of air
FR2853405A1 (fr) * 2003-04-01 2004-10-08 Air Liquide Procede et installation de separation d'air par distillation cryogenique
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015012A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (de) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2662654A1 (de) * 2012-05-07 2013-11-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Vorrichtung zur Abscheidung von Luft durch kryogene Destillation
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
WO2016005031A1 (de) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
WO2018114052A2 (de) 2016-12-23 2018-06-28 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2018114052A3 (de) * 2016-12-23 2018-10-11 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage

Also Published As

Publication number Publication date
JP4450886B2 (ja) 2010-04-14
US6196022B1 (en) 2001-03-06
EP0955509B1 (de) 2004-12-22
JPH11351738A (ja) 1999-12-24

Similar Documents

Publication Publication Date Title
EP0955509B1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
EP0377117B1 (de) Verfahren und Vorrichtung zur Luftzerlegung
EP1243881B1 (de) Drei-Säulen-System zur Tieftemperatur-Luftzerlegung
EP0716280B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0948730B1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0669509A1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
EP0669508B1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
EP0363861B1 (de) Verfahren zur Gewinnung von Rohargon
EP1006326B1 (de) Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Krypton/Xenon durch Tieftemperaturzerlegung von Luft
DE60007686T2 (de) Tieftemperaturrektifikationsystem zur Luftzerleggung
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE202009004099U1 (de) Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1300640A1 (de) Verfahren und Vorrichtung zur Gewinnung von hoch reinem Stickstoff durch Tieftemperaturzerlegung von Luft
EP1001236B1 (de) Verfahren zur Gewinnung von ultrareinem Stickstoff
DE19819338A1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Druckstickstoff
DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP1022530B1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
EP1189002A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Produkts durch Tieftemperaturzerlegung von Luft
EP3255366A1 (de) Verfahren und vorrichtung zum erzeugen eines gasförmigen drucksauerstoffprodukts
DE19819263A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff
EP0775880A2 (de) Doppelsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE19933557A1 (de) Verfahren und Vorrichtung zur Erzeugung von Druckstickstoff durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991012

AKX Designation fees paid

Free format text: DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020628

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59812412

Country of ref document: DE

Date of ref document: 20050127

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050318

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050923

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080905

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080903

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090814

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090825

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831