EP0952508B1 - Generating circuit for reference voltage - Google Patents

Generating circuit for reference voltage Download PDF

Info

Publication number
EP0952508B1
EP0952508B1 EP99105491A EP99105491A EP0952508B1 EP 0952508 B1 EP0952508 B1 EP 0952508B1 EP 99105491 A EP99105491 A EP 99105491A EP 99105491 A EP99105491 A EP 99105491A EP 0952508 B1 EP0952508 B1 EP 0952508B1
Authority
EP
European Patent Office
Prior art keywords
bipolar transistor
voltage
circuit
current
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99105491A
Other languages
German (de)
French (fr)
Other versions
EP0952508A1 (en
Inventor
Martin Feldtkeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP0952508A1 publication Critical patent/EP0952508A1/en
Application granted granted Critical
Publication of EP0952508B1 publication Critical patent/EP0952508B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • G05F3/222Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/225Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology

Definitions

  • Known reference voltage sources use, for example Zener diodes, to which an unstabilized via a series resistor Input voltage is supplied, which at the Zener diode tapped voltage as voltage-stabilized Reference voltage is used.
  • Zener diodes to which an unstabilized via a series resistor Input voltage is supplied, which at the Zener diode tapped voltage as voltage-stabilized Reference voltage is used.
  • the forward or forward voltage of a diode or the base-emitter voltage of a bipolar transistor as a reference voltage be used.
  • the The forward voltage of a pn junction has a negative temperature coefficient and thus a temperature dependency that for many applications is negative.
  • the output voltage as Reference voltage is used, sensors, A / D converters or similar Components are supplied, the output voltage of the voltage regulator highly accurate and in particular extremely temperature stable his.
  • tolerance limits up to maximum 1% are normal requirements.
  • the emitter current densities of the transistors T 1 and T 2 differ by the factor n * m, ie the emitter current density of the transistor T 1 is (n * m) times as large as the emitter current density of the transistor T 2 .
  • the total voltage is tapped from the base-emitter voltage of the transistor T 1 and the voltage present at the node between the resistors R 1 and R 2 .
  • the first-mentioned base-emitter voltage of the transistor T 1 corresponds to the forward voltage of a current-carrying pn junction and therefore, as has been explained above, has a negative temperature coefficient.
  • the voltage drop across the resistor R 1 is dependent on the difference between the base-emitter voltage of the transistor T 1 and the base-emitter voltage of the transistor T 2 and, as has also been explained above, has a positive temperature coefficient.
  • the emitter-base voltage of the bipolar transistor T 1 decreases by 2mV / K depending on the temperature.
  • the bandgap reference voltage source shown in FIG. 2 can be dimensioned in such a way that the differential voltage across the resistor R 1 from the forward voltages of the two transistors T 1 and T 2 is one by appropriate selection of the resistors R 1 and R 2 and the previously specified factor n the negative temperature coefficient compensating positive temperature coefficient of + 2mV / K is subject.
  • the circuit shown in FIG. 2 reacts very sensitively to the temperature gradients which are ubiquitous in integrated power circuits.
  • room temperatures the difference between the emitter-base voltages of the two transistors T 1 and T 2 is approximately 50 mV. If the temperatures of the transistors T 1 and T 2 differ by 1K, the difference in the emitter-base voltages changes by approximately 2 mV, ie by approximately 4%.
  • Reference voltage source can be achieved that a deviation the temperature around 1K of one of the transistors used only 1.3% in the difference in total voltages comes in. It is also possible to use the transistors in the layout of the reference voltage source according to the invention to be arranged crosswise so that linear temperature gradients the output voltage of the reference voltage source from any direction cannot falsify.
  • circuit means used which is the remaining parabolic Temperature dependency of the generated reference voltage compensate so that the output reference voltage in Ideally, temperature stable within a 0.03% window can be generated.
  • the one preferred embodiment of a reference voltage source in accordance with the present invention again the principle described above, known per se used the reference voltage by adding a share with negative temperature coefficient and a share with to generate positive temperature coefficient, whereby by suitable circuit dimensioning the negative temperature coefficient through the positive temperature coefficient can be compensated.
  • the in Fig. 1st illustrated embodiment is considered the one Share of the generated reference voltage, that of a positive Temperature coefficient is subject to the difference of two Sum voltages from several forward voltages of with different current densities through which pn junctions flow used.
  • the part that includes the negative Subject to temperature coefficients the sum of Forward voltages of several pn junctions.
  • the emitter areas A E3 and A E4 of the transistors T 3 and T 4 are in a ratio of 1: n 2 .
  • the transistors T 3 and T 4 are flowed through by different currents I 3 and I 4 , which can be set via resistors R 3 and R 4 .
  • the collectors of the transistors T 3 and T 4 are connected to a positive supply voltage potential V CC .
  • the base connections of the transistors T 3 and T 4 are connected to one another.
  • the resistors R 1 and R 2 are connected to the transistors T 1 and T 2 in accordance with the known reference voltage source shown in FIG. 2.
  • the desired reference or output voltage is tapped at the common base connection of the bipolar transistors T 3 and T 4 .
  • This output voltage corresponds to the total voltage from the base-emitter voltages of the transistors T 3 and T 1 and the voltage present at the node between the resistors R 1 and R 2 .
  • the base-emitter voltages of the transistors T 3 and T 1 are known to have a negative temperature coefficient of approximately -2 mV / K.
  • the voltage present at the node between the resistors R 1 and R 2 is determined by the base-emitter voltages of the transistors T 1 -T 4 and corresponds in particular to the difference between a first voltage and the sum of the forward voltages of those through which a high current density flows Transistors T 1 and T 3 depends, and a second voltage, which depends on the sum of the forward voltages of the bipolar transistors T 2 and T 4 through which a low current density flows. That is, the voltage present at the node between the resistors R 1 and R 2 depends on the difference between the sum of the base-emitter voltages of the transistors T 1 and T 3 and the sum of the base-emitter voltages of the transistors T 2 and T 4 from.
  • the differential voltage present at the node between the resistors R 1 and R 2 has such a positive temperature coefficient that the negative temperature coefficient of the base emitter -Voltage of the bipolar transistors T 3 and T 1 compensated.
  • the positive temperature coefficient of the differential voltage dropping across the resistor R 1 must be as high as the negative temperature coefficient of the base-emitter voltages of the transistors T 3 and T 1 and consequently be approximately + 4 mV / K.
  • a deviation of the temperature of one of the bipolar transistors T 1 - T 4 by 1K is only 1.3% in this differential voltage, so that the reference voltage circuit shown in Fig. 1 is less sensitive to temperature fluctuations or temperature gradients.
  • the resistance ratio R 1 : R 2 can be set to 4: 1 by a clever choice of the individual components shown in FIG. 1. This is a ratio that can be adjusted particularly precisely.
  • a circuit arrangement is coupled to the resistor R 3 , which, in addition to the diode D already shown in FIG. 1 in accordance with FIG. 3, has connected resistors R 7 -R 9 and a further bipolar transistor T 9 .
  • This circuit arrangement works as follows. At low temperatures, the current flow through the resistor R 3 is smallest and the flow voltages of all pn junctions are so high that the resistors R7 and R8 essentially determine the behavior of this circuit arrangement.
  • the path leading through the diode D and the resistor R 9 dominates , in which case the resistance of the equivalent circuit diagram of this circuit arrangement is lower due to the parallel connection of R 8 and R 7 to R 9 and the diode voltage by the factor (R 8 + R 7 ) / (R 7 + R 8 + R 9 ) is divided down.
  • the path leading through transistor T 9 dominates, the equivalent circuit diagram having a diode forward voltage increased by the factor (R 7 + R 8 ) / R 7 without series resistance.
  • Fig. 4 shows an example of one realized on a test chip Double bandgap reference voltage source according to the present invention. Again, those components are which correspond to the components shown in Fig. 3 with have the same reference numerals and will not be repeated explained.
  • the current mirror S 1 shown in Figure 3 includes p-channel MOS field effect transistors M 3 - M 6 and n-channel MOS field effect transistors M 7 - M 10.
  • the current mirror circuit S 2 is implemented by a pnp bipolar transistor T 11 .
  • the reference potential of the current mirrors S 1 and S 3 corresponds to the input potential of the actuator ST, which is implemented by a control transistor M 11 .
  • the reference potential of the current mirror S 2 is connected to the reference potential of the control transistor M 11 .
  • the previously described relationship of the reference potentials is not absolutely necessary.
  • the resistor R 10 additionally shown in FIG. 4 serves to compensate for the thermal leakage current of the resistor R 4 .
  • the components T 12 , T 13 , C 1 - C 3 and R 11 serve to stabilize the circuit.
  • the diode D shown in FIG. 3 is realized by the pn junction of a further bipolar transistor T 10 , the base-collector path of which is short-circuited. Otherwise, the mode of operation of the reference voltage source shown in FIG. 4 corresponds to that of the circuits shown in FIGS. 1 and 3.

Description

Die vorliegende Erfindung betrifft eine Referenzspannung-Erzeugungsschaltung oder Referenzspannungsquelle nach dem Oberbegriff des Anspruches 1.The present invention relates to a reference voltage generating circuit or reference voltage source after the Preamble of claim 1.

Die meisten integrierten Schaltungen, die aus einer nicht stabilisierten Versorgungsspannung betrieben werden, d. h. nahezu alle Smart-Power-ICs, benötigen intern eine Referenzspannungsquelle. Dies gilt insbesondere für Spannungsregler, deren Ausgangsspannung anderen integrierten Schaltungen oder Schaltungsblöcken als Referenzspannung dient.Most integrated circuits that do not consist of one stabilized supply voltage are operated, d. H. Almost all smart power ICs require an internal reference voltage source. This applies in particular to voltage regulators, whose output voltage other integrated circuits or Circuit blocks serve as reference voltage.

Bekannte Referenzspannungsquellen verwenden beispielsweise Zenerdioden, denen über einen Vorwiderstand eine unstabilisierte Eingangsspannung zugeführt wird, wobei die an der Zenerdiode abgegriffene Spannung als spannungsstabilisierte Referenzspannung verwendet wird. Des weiteren kann im Prinzip allgemein die Durchlaß- oder Flußspannung einer Diode oder die Basis-Emitter-Spannung eines Bipolartransistors als Referenzspannung verwendet werden. Allerdings besitzt die Flußspannung eines pn-Übergangs einen negativen Temperaturkoeffizienten und damit eine Temperaturabhängigkeit, die für viele Anwendungen negativ ist. Sollen beispielsweise mit Hilfe eines Spannungsreglers, dessen Ausgangsspannung als Referenzspannung dient, Sensoren, A/D-Wandler oder ähnliche Bauteile versorgt werden, muß die Ausgangsspannung des Spannungsreglers hochgenau und insbesondere äußerst temperaturstabil sein. Dabei stellen heutzutage Toleranzgrenzen bis maximal 1 % normale Anforderungen dar.Known reference voltage sources use, for example Zener diodes, to which an unstabilized via a series resistor Input voltage is supplied, which at the Zener diode tapped voltage as voltage-stabilized Reference voltage is used. Furthermore, in principle generally the forward or forward voltage of a diode or the base-emitter voltage of a bipolar transistor as a reference voltage be used. However, the The forward voltage of a pn junction has a negative temperature coefficient and thus a temperature dependency that for many applications is negative. For example, with With the help of a voltage regulator, the output voltage as Reference voltage is used, sensors, A / D converters or similar Components are supplied, the output voltage of the voltage regulator highly accurate and in particular extremely temperature stable his. Nowadays there are tolerance limits up to maximum 1% are normal requirements.

Aus diesem Grund wurden die zuvor beschriebenen Referenzspannungsquellen in den letzten Jahren durch Bandgap- oder Bandabstands-Referenzspannungsquellen abgelöst, die eine temperaturstabilisierte Referenzspannung liefern. Diese bekannten Bandgap-Referenzspannungsquellen basieren auf einer Addition einer Flußspannung eines stromdurchflossenen pn-Übergangs und einer mit einem entsprechenden Faktor multiplizierten Differenzspannung, die aus zwei Flußspannungen von zwei mit unterschiedlichen Stromdichten durchflossenen pn-Übergängen gebildet wird. Allgemein hat die Flußspannung eines stromdurchflossenen pn-Übergangs - wie bereits zuvor erläutert worden ist - einen negativen Temperaturkoeffizienten. Hingegen steigt die Differenz zweier Flußspannungen proportional zur absoluten Temperatur an und unterliegt daher einem positiven Temperaturkoeffizienten. Wird der Faktor, mit dem die zuvor erläuterte Differenzspannung multipliziert wird, derart eingestellt, daß der negative Temperaturkoeffizient der Flußspannung des pn-Übergangs den positiven Temperaturkoeffizienten der Differenzspannung aufhebt, kann eine temperaturstabilisierte Ausgangs- bzw. Referenzspannung erhalten werden, die nurmehr eine parabelförmige bzw. quadratische Temperaturabhängigkeit aufweist. Insbesondere beträgt die Ausgangsspannung der Bandgap-Referenzspannungsquelle, welche durch Addition der zuvor erläuterten Flußspannung eines stromdurchflossenen pn-Übergangs mit der mit dem entsprechenden Faktor multiplizierten Differenzspannung von zwei weiteren Flußspannungen gewonnen wird, ca. 1,25 V, was in etwa dem Bandabstand (Bandgap) von Silizium entspricht. Der Betrag der Ausgangsspannung dieser Referenzspannungsquelle hat daher der Bandgap-Referenzspannungsquelle ihren Namen verliehen.For this reason, the previously described reference voltage sources in recent years through bandgap or Bandgap reference voltage sources replaced, one deliver temperature-stabilized reference voltage. These well-known Bandgap reference voltage sources are based on one Addition of a forward voltage of a current-carrying pn junction and multiplied one by a corresponding factor Differential voltage resulting from two forward voltages of two pn junctions with different current densities is formed. Generally has the forward voltage of a current-carrying pn junction - as before has been explained - a negative temperature coefficient. In contrast, the difference between two flow voltages increases proportional to the absolute temperature and is therefore subject to a positive temperature coefficient. The factor with multiplied by the previously explained differential voltage is set so that the negative temperature coefficient the forward voltage of the pn junction the positive Eliminates the temperature coefficient of the differential voltage, can be a temperature stabilized output or reference voltage can be obtained, which is only a parabolic or has quadratic temperature dependence. In particular is the output voltage of the bandgap reference voltage source, which by adding the previously explained Forward voltage of a current-carrying pn junction with the differential voltage multiplied by the corresponding factor is obtained from two further river voltages, approx. 1.25 V, which is about the bandgap of silicon corresponds. The amount of output voltage from this reference voltage source therefore has the bandgap reference voltage source given their name.

Fig. 2 zeigt ein verallgemeinertes Schaltbild einer bekannten Bandgap-Referenzspannungsquelle. An einem positiven Versorgungsspannungsanschluß Vcc ist eine Stromspiegelschaltung S1 angeschlossen, die die Kollektorströme I1 und I2 von zwei gemäß Fig. 2 verschalteten npn-Bipolartransistoren T1 bzw. T2 vergleicht. Die Stromstärken dieser Ströme I1 und I2 sind durch die Transistoren T1 bzw. T2 vorgegeben. Die Basisanschlüsse dieser Transistoren T1 und T2 sind miteinander verbunden, wobei die Basisspannung des Transistors T1 über einen Spannungsteiler bestehend aus zwei Widerständen R5 und R6 hochmultipliziert wird, so daß am Widerstand R6 eine gewünschte Ausgangs- bzw. Bezugsspannung Vref abgegriffen werden kann. Gemäß Fig. 1 besitzt der Stromspiegel S1 einen Ausgang, der das Ergebnis des Vergleichs der Ströme I1 und I2 wiedergibt und mit einem Stellglied ST, beispielsweise einem Operationsverstärker oder einem Verstärkungstransistor, gekoppelt ist.2 shows a generalized circuit diagram of a known bandgap reference voltage source. A current mirror circuit S 1 is connected to a positive supply voltage connection V cc and compares the collector currents I 1 and I 2 from two npn bipolar transistors T 1 and T 2 connected according to FIG. 2. The currents of these currents I 1 and I 2 are predetermined by the transistors T 1 and T 2 . The base terminals of these transistors T 1 and T 2 are connected to each other, wherein the base voltage of the transistor T is multiplied up 1 via a voltage divider consisting of two resistors R 5 and R 6, so that the resistor R 6 ref a desired initial or reference voltage V can be tapped. 1, the current mirror S 1 has an output which reproduces the result of the comparison of the currents I 1 and I 2 and is coupled to an actuator ST, for example an operational amplifier or an amplifying transistor.

Mit Hilfe des in Fig. 2 gezeigten Regelkreises mit dem Stromspiegel S1 und dem Stellglied ST wird das Verhältnis der durch die Transistoren T1 bzw. T2 fließenden Ströme I1 bzw. I2 eingestellt, wobei die Ströme I1 und I2 üblicherweise gleich groß sind. In BICMOS-Schaltungen wird jedoch der Strom I1 häufig auch auf einen vielfachen Wert des Stroms I2 eingestellt, so daß allgemein gilt: I1=m·I2. With the aid of the control circuit shown in Fig. 2 with the current mirror S 1 and the actuator ST, the ratio of through the transistors T 1 and T 2 flowing currents I 1 and I 2 is adjusted, the currents I 1 and I 2 usually are the same size. In BICMOS circuits, however, the current I 1 is often also set to a multiple value of the current I 2 , so that the following generally applies: I. 1 = m · I 2nd .

Die Transistoren T1 und T2 besitzen unterschiedliche Emitterflächen, wobei die Emitterfläche des Transistors T2 einem Vielfachen der Emitterfläche des Transistors T1 entspricht, so daß die Beziehung zwischen den Emitterflächen AE1 und AE2 der Transistoren T1 und T2 wie folgt dargestellt werden kann: AE2=n·AE1. The transistors T 1 and T 2 have different emitter areas, the emitter area of the transistor T 2 corresponding to a multiple of the emitter area of the transistor T 1 , so that the relationship between the emitter areas A E1 and A E2 of the transistors T 1 and T 2 is shown as follows can be: A E2 = n · A E1 .

Aufgrund der oben angegebenen Beziehungen unterscheiden sich die Emitterstromdichten der Transistoren T1 und T2 um den Faktor n·m, d. h. die Emitterstromdichte des Transistors T1 ist (n·m) -mal so groß wie die Emitterstromdichte des Transistors T2.Because of the relationships given above, the emitter current densities of the transistors T 1 and T 2 differ by the factor n * m, ie the emitter current density of the transistor T 1 is (n * m) times as large as the emitter current density of the transistor T 2 .

Am gemeinsamen Basisanschluß der Transistoren T1 und T2 wird die Summenspannung aus der Basis-Emitter-Spannung des Transistors T1 sowie der am Knotenpunkt zwischen den Widerständen R1 und R2 anliegenden Spannung abgegriffen. Die erstgenannte Basis-Emitter-Spannung des Transistors T1 entspricht der Flußspannung eines stromdurchflossenen pn-Übergangs und weist daher - wie zuvor erläutert worden ist - einen negativen Temperaturkoeffizienten auf. Die an dem Widerstand R1 abfallende Spannung ist abhängig von der Differenz zwischen der Basis-Emitter-Spannung des Transistors T1 und der Basis-Emitter-Spannung des Transistors T2 und besitzt - wie ebenfalls zuvor erläutert worden ist - einen positiven Temperaturkoeffizienten. Die Emitter-Basis-Spannung des Bipolartransistors T1 nimmt temperaturabhängig um 2mV/K ab. Durch entsprechende Wahl der Widerstände R1 und R2 sowie des zuvor angegebenen Faktors n kann die in Fig. 2 gezeigte Bandgap-Referenzspannungsquelle derart dimensioniert werden, daß die am Widerstand R1 anliegende Differenzspannung aus den Flußspannungen der beiden Transistoren T1 und T2 einem den negativen Temperaturkoeffizienten kompensierenden positiven Temperaturkoeffizienten von +2mV/K unterliegt. Am Widerstand R1 fällt somit bei Raumtemperatur die Spannung 2mV/K x 300K = 600mV ab, so daß an dem gemeinsamen Basisanschluß der Transistoren T1 und T2 aufgrund der typischen Emitter-Basis-Spannung von ca. 650mV die gewünschte temperaturstabilisierte Bandgap-Referenzspannung von ca. 1,25V (=650mV+600mV) anliegt, die anschließend über den Teiler mit den Widerständen R5 und R6 hochmultipliziert wird.At the common base connection of the transistors T 1 and T 2 , the total voltage is tapped from the base-emitter voltage of the transistor T 1 and the voltage present at the node between the resistors R 1 and R 2 . The first-mentioned base-emitter voltage of the transistor T 1 corresponds to the forward voltage of a current-carrying pn junction and therefore, as has been explained above, has a negative temperature coefficient. The voltage drop across the resistor R 1 is dependent on the difference between the base-emitter voltage of the transistor T 1 and the base-emitter voltage of the transistor T 2 and, as has also been explained above, has a positive temperature coefficient. The emitter-base voltage of the bipolar transistor T 1 decreases by 2mV / K depending on the temperature. The bandgap reference voltage source shown in FIG. 2 can be dimensioned in such a way that the differential voltage across the resistor R 1 from the forward voltages of the two transistors T 1 and T 2 is one by appropriate selection of the resistors R 1 and R 2 and the previously specified factor n the negative temperature coefficient compensating positive temperature coefficient of + 2mV / K is subject. The voltage 2mV / K x 300K = 600mV drops across the resistor R 1 at room temperature, so that the desired temperature-stabilized bandgap reference voltage is obtained at the common base connection of the transistors T 1 and T 2 due to the typical emitter-base voltage of approx. 650mV of approximately 1.25V (= 650mV + 600mV), which is then multiplied by the divider with the resistors R 5 and R 6 .

Für eine enge Toleranz der Ausgangsspannung Vref sind insbesondere die Widerstandsverhältnisse R5:R6, R1:R2, das Stromspiegelübersetzungsverhältnis I1:I2 (m:1) und das Verhältnis der Emitterflächen der Transistoren T1 und T2 (1:n) kritisch. Weiterhin reagiert die in Fig. 2 gezeigte Schaltung sehr empfindlich auf die in integrierten Leistungsschaltungen allgegenwärtigen Temperaturgradienten. Bei üblichen Emitterflächenverhältnissen (z. B. n=8) und Raumtemperaturen beträgt die Differenz der Emitter-Basis-Spannungen der beiden Transistoren T1 und T2 ca. 50mV. Unterscheiden sich die Temperaturen der Transistoren T1 und T2 um 1K, ändert sich die Differenz der Emitter-Basis-Spannungen um ca. 2mV, d. h. um etwa 4 %. Daher ist es erforderlich, die Transistoren T1 und T2 in einem realisierten Schaltungslayout exakt auf Isothermen der größten Wärmequelle der entsprechenden Schaltung anzuordnen. Modernes Layout mit wiederverwendbaren Schaltungs- und Layoutblöcken verbietet jedoch eine Anpassung der Schaltung an die jeweilige Lage der vorhandenen Wärmequellen. Zudem nimmt die Anzahl der Wärmequellen in Smart-Power-ICs stetig zu, so daß der Verlauf der entsprechenden Isothermen dieser Wärmequellen nicht eindeutig bestimmt werden kann. Weiterhin ist aufgrund der Vielzahl der bezüglich Paarungseigenschaften kritischen Bauelemente der Bandgap-Referenzspannungsquelle in der Regel ein individueller Abgleich der Schaltung erforderlich, was beispielsweise mit Hilfe von sogenannten "Zapping"-Zenerdioden erfolgen kann, welche beim Anlegen einer hohen äußeren Spannung in Sperrichtung durchbrechen und eine niederohmige Verbindung erzeugen. Dadurch steigt jedoch der schaltungstechnische Aufwand.For a close tolerance of the output voltage V ref , the resistance ratios R 5 : R 6 , R 1 : R 2 , the current mirror ratio I 1 : I 2 (m: 1) and the ratio of the emitter areas of the transistors T 1 and T 2 (1 : n) critical. Furthermore, the circuit shown in FIG. 2 reacts very sensitively to the temperature gradients which are ubiquitous in integrated power circuits. With usual emitter area ratios (e.g. n = 8) and room temperatures, the difference between the emitter-base voltages of the two transistors T 1 and T 2 is approximately 50 mV. If the temperatures of the transistors T 1 and T 2 differ by 1K, the difference in the emitter-base voltages changes by approximately 2 mV, ie by approximately 4%. It is therefore necessary to arrange the transistors T 1 and T 2 exactly on isotherms of the largest heat source of the corresponding circuit in an implemented circuit layout. However, modern layout with reusable circuit and layout blocks prohibits the circuit from being adapted to the respective location of the existing heat sources. In addition, the number of heat sources in smart power ICs is constantly increasing, so that the course of the corresponding isotherms of these heat sources cannot be clearly determined. Furthermore, due to the large number of components of the bandgap reference voltage source that are critical with regard to the mating properties, an individual adjustment of the circuit is generally required, which can be done, for example, with the help of so-called "zapping" zener diodes, which break through in the reverse direction when a high external voltage is applied and a generate low-resistance connection. However, this increases the complexity of the circuitry.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Referenzspannung-Erzeugungsschaltung der eingangs beschriebenen Art anzugeben, welche weniger empfindlich gegenüber Temperaturschwankungen und Bauelementetoleranzen ist.The invention is therefore based on the object of a reference voltage generating circuit the one described at the beginning Specify which type is less sensitive to temperature fluctuations and component tolerances.

Diese Aufgabe wird gemäß der vorliegenden Erfindung durch eine Referenzspannung-Erzeugungsschaltung mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche beschreiben jeweils vorteilhafte und bevorzugte Ausführungsformen der vorliegenden Erfindung, die ihrerseits zu einer möglichst einfach zu realisierenden Schaltung bzw. zu einer größtmöglichen Temperaturstabilität beitragen.This object is accomplished in accordance with the present invention a reference voltage generating circuit with the features of claim 1 solved. The subclaims describe in each case advantageous and preferred embodiments of the present Invention, in turn, as simple as possible circuit to be implemented or the largest possible Contribute to temperature stability.

Gemäß der vorliegenden Erfindung wird die Referenzspannung weiterhin durch Addieren eines Spannungsanteils mit einem negativen Temperaturkoeffizienten mit einem Spannungsanteil mit einem positiven Temperaturkoeffizienten erzeugt. Der dem negativen Temperaturkoeffizienten unterliegende Anteil umfaßt erfindungsgemäß jedoch mehrere Flußspannungen entsprechender pn-Übergänge, und der Anteil mit dem positiven Temperaturkoeffizient umfaßt wiederum eine Differenzspannung, wobei jede zur Differenzspannung beitragende Spannung einer Summenspannung aus mehreren Flußspannungen entsprechender pn-Übergänge entspricht. Insbesondere wird als Differenzspannung, welche den Anteil der gewünschten Referenzspannung mit positivem Temperaturkoeffizienten darstellt, die Differenz zweier Summen aus mehreren Flußspannungen mit unterschiedlicher Stromdichte durchflossener pn-Übergänge verwendet. In diesem Fall liefert die Referenzspannungsquelle eine Ausgangsspannung, die ein Vielfaches der gewöhnlichen Bandgap-Referenzspannung beträgt. Diese Spannung ist für die meisten Anwendungen ausreichend hoch, so daß beispielsweise ein Spannungsteiler zum Hochmultiplizieren der Referenzspannung entfallen kann.According to the present invention, the reference voltage further by adding a voltage component with a negative temperature coefficient with a voltage component generated with a positive temperature coefficient. The one negative temperature coefficient underlying portion includes according to the invention, however, corresponding to several forward voltages pn transitions, and the portion with the positive Temperature coefficient in turn comprises a differential voltage, where each voltage contributing to the differential voltage is one Sum voltage from several forward voltages of corresponding pn junctions corresponds. In particular, as Differential voltage, which is the proportion of the desired Reference voltage with a positive temperature coefficient represents the difference between two sums of several Flow voltages with different current densities flow through pn transitions used. In this case, the reference voltage source delivers an output voltage that a Is a multiple of the usual bandgap reference voltage. This voltage is sufficient for most applications high, so that for example a voltage divider for Highly multiplying the reference voltage can be omitted.

Durch entsprechende Dimensionierung der erfindungsgemäßen Referenzspannungsquelle kann erreicht werden, daß eine Abweichung der Temperatur um 1K eines der verwendeten Transistoren lediglich zu 1,3 % in die Differenz der Summenspannungen eingeht. Des weiteren ist es möglich, die Transistoren im Layout der erfindungsgemäßen Referenzspannungsquelle derart überkreuz anzuordnen, daß lineare Temperaturgradienten aus beliebiger Richtung die Ausgangsspannung der Referenzspannungsquelle nicht verfälschen können.By appropriate dimensioning of the invention Reference voltage source can be achieved that a deviation the temperature around 1K of one of the transistors used only 1.3% in the difference in total voltages comes in. It is also possible to use the transistors in the layout of the reference voltage source according to the invention to be arranged crosswise so that linear temperature gradients the output voltage of the reference voltage source from any direction cannot falsify.

Gemäß einem bevorzugten Ausführungsbeispiel werden Schaltungsmittel eingesetzt, die die noch verbleibende parabelförmige Temperaturabhängigkeit der erzeugten Referenzspannung kompensieren, so daß die ausgegebene Referenzspannung im Idealfall innerhalb eines 0,03%-Fensters temperaturstabil erzeugt werden kann.According to a preferred embodiment, circuit means used which is the remaining parabolic Temperature dependency of the generated reference voltage compensate so that the output reference voltage in Ideally, temperature stable within a 0.03% window can be generated.

Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.

  • Fig. 1 zeigt ein vereinfachtes Schaltbild eines bevorzugten Ausführungsbeispiels der erfindungsgemäßen Referenzspannungsquelle,
  • Fig. 2 zeigt ein vereinfachtes Schaltbild einer bekannten Referenzspannungsquelle,
  • Fig. 3 zeigt ein verfeinertes Ausführungsbeispiel der erfindungsgemäßen Referenzspannungsquelle, und
  • Fig. 4 zeigt eine weiter verfeinerte und tatsächlich realisierte Ausgestaltung der in Fig. 3 dargestellten Referenzspannungsquelle der vorliegenden Erfindung.
  • The invention is explained in more detail below on the basis of preferred exemplary embodiments with reference to the accompanying drawings.
  • 1 shows a simplified circuit diagram of a preferred exemplary embodiment of the reference voltage source according to the invention,
  • 2 shows a simplified circuit diagram of a known reference voltage source,
  • 3 shows a refined embodiment of the reference voltage source according to the invention, and
  • FIG. 4 shows a further refined and actually implemented embodiment of the reference voltage source of the present invention shown in FIG. 3.
  • Bei der in Fig. 1 gezeigten vereinfachten Schaltung, die einem bevorzugten Ausführungsbeispiel einer Referenzspannungsquelle gemäß der vorliegenden Erfindung entspricht, wird wiederum das zuvor beschriebene, an sich bekannte Prinzip verwendet, die Referenzspannung durch Addieren eines Anteils mit negativem Temperaturkoeffizienten und eines Anteil mit positivem Temperaturkoeffizienten zu erzeugen, wobei durch geeignete Schaltungsdimensionierung der negative Temperaturkoeffizient durch den positiven Temperaturkoeffizienten kompensiert werden kann. Gemäß dem in Fig. 1 dargestellten Ausführungsbeispiel wird jedoch als derjenige Anteil der erzeugten Referenzspannung, der einem positiven Temperaturkoeffizienten unterliegt, die Differenz zweier Summenspannungen aus mehreren Flußspannungen von mit unterschiedlichen Stromdichten durchflossenen pn-Übergängen verwendet. Des weiteren umfaßt der Anteil, der dem negativen Temperaturkoeffizienten unterliegt, die Summe von Flußspannungen mehrerer pn-Übergänge.In the simplified circuit shown in Fig. 1, the one preferred embodiment of a reference voltage source in accordance with the present invention again the principle described above, known per se used the reference voltage by adding a share with negative temperature coefficient and a share with to generate positive temperature coefficient, whereby by suitable circuit dimensioning the negative temperature coefficient through the positive temperature coefficient can be compensated. According to the in Fig. 1st illustrated embodiment, however, is considered the one Share of the generated reference voltage, that of a positive Temperature coefficient is subject to the difference of two Sum voltages from several forward voltages of with different current densities through which pn junctions flow used. Furthermore, the part that includes the negative Subject to temperature coefficients, the sum of Forward voltages of several pn junctions.

    Die in Fig. 1 gezeigte Schaltung umfaßt wiederum npn-Transistoren T1 und T2, deren Emitterflächen AE1 und AE2 im Verhältnis 1:n1 stehen. Die Transistoren T1 und T2 werden mit Kollektorströmen I1 bzw. I2 betrieben, die von einer Stromspiegelschaltung S1 verglichen werden, wobei die Stromstärken dieser Ströme I1 und I2 durch die Transistoren T1 und T2 vorgegeben sind. Die Ströme I1 und I2 stehen zueinander im Verhältnis m1=I1/I2. Die Basisanschlüsse der Transistoren T1 und T2 sind voneinander getrennt an die Emitter weiterer npn-Bipolartransistoren T3 bzw. T4 angeschlossen. Die Emitterflächen AE3 und AE4 der Transistoren T3 bzw. T4 stehen zueinander im Verhältnis 1:n2. Die Transistoren T3 und T4 werden von unterschiedlichen Strömen I3 und I4 durchflossen, welche über Widerstände R3 und R4 eingestellt werden können. Die Kollektoren der Transistoren T3 und T4 sind gemäß Fig. 1 an ein positives Versorgungsspannungspotential Vcc angeschlossen. Die Basisanschlüsse der Transistoren T3 und T4 sind miteinander verbunden. Des weiteren sind die Widerstände R1 und R2 mit den Transistoren T1 bzw. T2 in Übereinstimmung mit der in Fig. 2 gezeigten bekannten Referenzspannungsquelle verschaltet. The circuit shown in FIG. 1 again comprises npn transistors T 1 and T 2 , the emitter areas A E1 and A E2 of which are in the ratio 1: n 1 . The transistors T 1 and T 2 are operated with collector currents I 1 and I 2 , respectively, which are compared by a current mirror circuit S 1 , the current strengths of these currents I 1 and I 2 being predetermined by the transistors T 1 and T 2 . The currents I 1 and I 2 are in the ratio m 1 = I 1 / I 2 . The base connections of the transistors T 1 and T 2 are separately connected to the emitters of further npn bipolar transistors T 3 and T 4 . The emitter areas A E3 and A E4 of the transistors T 3 and T 4 are in a ratio of 1: n 2 . The transistors T 3 and T 4 are flowed through by different currents I 3 and I 4 , which can be set via resistors R 3 and R 4 . 1, the collectors of the transistors T 3 and T 4 are connected to a positive supply voltage potential V CC . The base connections of the transistors T 3 and T 4 are connected to one another. Furthermore, the resistors R 1 and R 2 are connected to the transistors T 1 and T 2 in accordance with the known reference voltage source shown in FIG. 2.

    Mit dem Widerstand R3 ist eine Diode D bzw. ein entsprechender pn-Übergang gekoppelt. Die Spannung am Widerstand R4 entspricht der Differenz aus den Emitter-Basis-Spannungen der Transistoren T3 und T4. Damit das Verhältnis der Emitterströme dieser Transistoren temperaturstabil ist, muß auch die Spannung am Widerstand R3 proportional zu Temperatur sein. Dies wird mit Hilfe der Diode D erreicht, da die Spannung an R1 proportional zur Temperatur ansteigt und sich die Flußspannungen des Bipolartransistors T1 und der Diode D nicht wesentlich unterscheiden, so daß die Spannung am Widerstand R3 wunschgemäß proportional zur Temperatur verläuft.A diode D or a corresponding pn junction is coupled to the resistor R 3 . The voltage across resistor R 4 corresponds to the difference between the emitter-base voltages of transistors T 3 and T 4 . So that the ratio of the emitter currents of these transistors is temperature stable, the voltage across resistor R 3 must also be proportional to temperature. This is achieved with the aid of the diode D, since the voltage at R 1 increases in proportion to the temperature and the forward voltages of the bipolar transistor T 1 and the diode D do not differ significantly, so that the voltage across the resistor R 3 is proportional to the temperature as desired.

    Bei der in Fig. 1 gezeigten Referenzspannungsquelle wird die gewünschte Referenz- bzw. Ausgangsspannung am gemeinsamen Basisanschluß der Bipolartransistoren T3 und T4 abgegriffen. Diese Ausgangsspannung entspricht der Summenspannung aus den Basis-Emitter-Spannungen der Transistoren T3 und T1 sowie der am Knotenpunkt zwischen den Widerständen R1 und R2 anliegenden Spannung. Die Basis-Emitter-Spannungen der Transistoren T3 und T1 besitzen bekanntermaßen einen negativen Temperaturkoeffizienten von ca. -2mV/K. Die am Knotenpunkt zwischen den Widerständen R1 und R2 anliegende Spannung wird von den Basis-Emitter-Spannungen der Transistoren T1-T4 bestimmt und entspricht insbesondere der Differenz einer ersten Spannung, welche von der Summe der Flußspannungen der mit einer hohen Stromdichte durchflossenen Transistoren T1 und T3 abhängt, und einer zweiten Spannung, die von der Summe der Flußspannungen der mit einer geringen Stromdichte durchflossenen Bipolartransistoren T2 und T4 abhängt. Das heißt die am Knotenpunkt zwischen den Widerständen R1 und R2 anliegende Spannung hängt von der Differenz zwischen der Summe der Basis-Emitter-Spannungen der Transistoren T1 und T3 und der Summe der Basis-Emitter-Spannungen der Transistoren T2 und T4 ab. Durch geeignete Dimensionierung der in Fig. 1 gezeigten Bauelemente bzw. der den einzelnen Bipolartransistoren zugeführten Ströme kann erreicht werden, daß die am Knotenpunkt zwischen den Widerständen R1 und R2 anliegende Differenzspannung einen derartigen positiven Temperaturkoeffizienten aufweist, welche den negativen Temperaturkoeffizienten der Basis-Emitter-Spannungen der Bipolartransistoren T3 und T1 kompensiert. In diesem Fall muß der positive Temperaturkoeffizient der am Widerstand R1 abfallenden Differenzspannung so hoch wie der negative Temperaturkoeffizient der Basis-Emitter-Spannungen der Transistoren T3 und T1 sein und demzufolge ca. +4mV/K betragen. Somit muß bei Raumtemperatur (300K) an R1 ein Spannungsabfall von ca. 1,2V auftreten, so daß die schließlich am gemeinsamen Basisanschluß der Bipolartransistoren T3 und T4 abgegriffene Ausgangsspannung in etwa 2,5V (=1,2V + 2x650mV) beträgt, was doppelt so hoch wie bei der in Fig. 2 gezeigten bekannten Referenzspannungsquelle ist, so daß es sich bei der in Fig. 1 gezeigten Referenzspannungsquelle im Prinzip um eine Doppel-Bandgap-Referenzspannungsquelle handelt.In the reference voltage source shown in FIG. 1, the desired reference or output voltage is tapped at the common base connection of the bipolar transistors T 3 and T 4 . This output voltage corresponds to the total voltage from the base-emitter voltages of the transistors T 3 and T 1 and the voltage present at the node between the resistors R 1 and R 2 . The base-emitter voltages of the transistors T 3 and T 1 are known to have a negative temperature coefficient of approximately -2 mV / K. The voltage present at the node between the resistors R 1 and R 2 is determined by the base-emitter voltages of the transistors T 1 -T 4 and corresponds in particular to the difference between a first voltage and the sum of the forward voltages of those through which a high current density flows Transistors T 1 and T 3 depends, and a second voltage, which depends on the sum of the forward voltages of the bipolar transistors T 2 and T 4 through which a low current density flows. That is, the voltage present at the node between the resistors R 1 and R 2 depends on the difference between the sum of the base-emitter voltages of the transistors T 1 and T 3 and the sum of the base-emitter voltages of the transistors T 2 and T 4 from. By suitable dimensioning of the components shown in FIG. 1 or the currents supplied to the individual bipolar transistors, it can be achieved that the differential voltage present at the node between the resistors R 1 and R 2 has such a positive temperature coefficient that the negative temperature coefficient of the base emitter -Voltage of the bipolar transistors T 3 and T 1 compensated. In this case, the positive temperature coefficient of the differential voltage dropping across the resistor R 1 must be as high as the negative temperature coefficient of the base-emitter voltages of the transistors T 3 and T 1 and consequently be approximately + 4 mV / K. Thus, at room temperature (300K), a voltage drop of approximately 1.2 V must occur at R 1 , so that the output voltage finally tapped at the common base connection of the bipolar transistors T 3 and T 4 is approximately 2.5 V (= 1.2 V + 2x650 mV) , which is twice as high as in the known reference voltage source shown in FIG. 2, so that the reference voltage source shown in FIG. 1 is in principle a double bandgap reference voltage source.

    Die an der gemeinsamen Basis der Transistoren T3 und T4 anliegende Spannung von ca. 2,5 V ist für die meisten Anwendungen ausreichend hoch, so daß im Prinzip der Einsatz eines Spannungsteilers mit Widerständen R5 und R6 zum Hochmultiplizieren der Referenzspannung entfallen kann. Daher ist bei der in Fig. 1 gezeigten Schaltung der Spannungsteiler mit den Widerständen R5 und R6 lediglich gestrichelt dargestellt.The voltage of approximately 2.5 V present at the common base of the transistors T 3 and T 4 is sufficiently high for most applications, so that in principle the use of a voltage divider with resistors R 5 and R 6 for high multiplication of the reference voltage can be omitted . Therefore, in the circuit shown in FIG. 1, the voltage divider with the resistors R 5 and R 6 is only shown in broken lines.

    Selbstverständlich kann die in Fig. 1 gezeigte Schaltung auf einfache Weise dahingehend abgewandelt werden, daß nicht nur die Differenz aus zwei Summenspannungen gebildet wird, sondern daß durch den Einsatz einer entsprechend größeren Anzahl von Bipolartransistoren die Differenz aus mehreren Summenspannungen gebildet wird, wobei jeder dieser Summenspannungen einer Addition von sogar drei oder mehr Flußspannungen von mit unterschiedlichen Stromdichten durchflossenen pn-Übergängen entspricht. Auf diese Weise kann die in Fig. 1 gezeigte Schaltung derart abgewandelt werden, daß an dem Basisanschluß des Transistors T3 allgemein eine Spannung abgegriffen wird, die einem Mehrfachen des Bandabstands von Silizium entspricht.Of course, the circuit shown in Fig. 1 can be modified in a simple manner so that not only the difference is formed from two summation voltages, but that the difference is formed from several summation voltages by using a correspondingly larger number of bipolar transistors, each of these summation voltages corresponds to an addition of even three or more forward voltages of pn junctions through which different current densities flow. In this way, the circuit shown in FIG. 1 can be modified in such a way that a voltage which corresponds to a multiple of the bandgap of silicon is generally tapped at the base terminal of the transistor T 3 .

    Hinsichtlich der in Fig. 1 gezeigten Schaltung ist zu bemerken, daß der Emitterstrom des Bipolartransistors T4 sehr klein gewählt werden kann, da der in sperrschichtisolierten Bipolartechnologien größte thermische Leckstrom vom Kollektor eines jeden npn-Transistors zum Substrat im vorliegenden Fall nicht in den Emitterstrom des entsprechenden npn-Transistors eingeht. Betragen beispielsweise die Emitterströme der Bipolartransistoren T3 und T4 10 µA bzw. 0,5 µA (Verhältnis 1:20), die Emitterflächenverhältnisse n1 und n2 jeweils 4 und sind die Kollektorströme I1, I2 der Bipolartransistoren T1, T2 gleich groß (d.h. m1=1), beträgt die zuvor erläuterte Differenzspannung der Summen der einzelnen Flußspannungen ca. 150 mV. Eine Abweichung der Temperatur eines der Bipolartransistoren T1 - T4 um 1K geht nur noch zu 1,3 % in dieser Differenzspannung ein, so daß die in Fig. 1 gezeigte Referenzspannungsschaltung weniger empfindlich gegenüber Temperaturschwankungen bzw. Temperaturgradienten ist. Zudem ist es einfacher, die in Fig. 1 gezeigten Transistoren im Layout der tatsächlich realisierten Schaltung so überkreuz anzuordnen, daß lineare Temperaturgradienten aus beliebiger Richtung die Ausgangsspannung am gemeinsamen Basisanschluß der Bipolartransistoren T3 und T4 nicht verfälschen können.With regard to the circuit shown in Fig. 1 it should be noted that the emitter current of the bipolar transistor T 4 can be selected to be very small, since the greatest thermal leakage current from the collector of each npn transistor to the substrate in barrier-layer-insulated bipolar technologies does not enter the emitter current of the in the present case corresponding npn transistor is received. For example, if the emitter currents of the bipolar transistors T 3 and T 4 are 10 μA and 0.5 μA (ratio 1:20), the emitter area ratios n 1 and n 2 are each 4 and the collector currents I 1 , I 2 of the bipolar transistors T 1 , T 2 of the same size (ie m 1 = 1), the previously explained differential voltage of the sums of the individual forward voltages is approximately 150 mV. A deviation of the temperature of one of the bipolar transistors T 1 - T 4 by 1K is only 1.3% in this differential voltage, so that the reference voltage circuit shown in Fig. 1 is less sensitive to temperature fluctuations or temperature gradients. In addition, it is easier to arrange the transistors shown in FIG. 1 crosswise in the layout of the circuit actually implemented in such a way that linear temperature gradients from any direction cannot falsify the output voltage at the common base connection of the bipolar transistors T 3 and T 4 .

    Durch eine geschickte Wahl der einzelnen in Fig. 1 gezeigten Komponenten kann das Widerstandsverhältnis R1:R2 auf 4:1 festgelegt werden. Dies ist ein Verhältnis, welches sich besonders genau einstellen läßt. Der Stromspiegel S1 kann besonders genau gefertigt werden, wenn das Stromverhältnis I1:I2 1:1 beträgt, d. h. m1=1.The resistance ratio R 1 : R 2 can be set to 4: 1 by a clever choice of the individual components shown in FIG. 1. This is a ratio that can be adjusted particularly precisely. The current mirror S 1 can be manufactured particularly precisely if the current ratio I 1 : I 2 is 1: 1, ie m 1 = 1.

    Wie bei der in Fig. 2 gezeigten bekannten Referenzspannungsquelle ist auch bei der in Fig. 1 gezeigten Schaltung wieder ein Stellglied ST mit dem Ausgangsanschluß des Stromspiegels S1 gekoppelt, welches abhängig von dem Vergleichsergebnis des Stromspiegels S1 angesteuert wird, um bei einer ungleichmäßigen Belastung dieses Ausgangsanschlusses eine Nachregelung der Ausgangsspannung Vref zu ermöglichen.As in the known reference voltage source shown in FIG. 2, an actuator ST is also coupled to the output terminal of the current mirror S 1 in the circuit shown in FIG. 1, which is controlled depending on the comparison result of the current mirror S1 in order to avoid an uneven load Output connection to allow readjustment of the output voltage V ref .

    Anhand Fig. 1 wurde das der vorliegenden Erfindung zugrundeliegende allgemeine Prinzip erläutert. Hingegen zeigt Fig. 3 ein verfeinertes Ausführungsbeispiel der erfindungsgemäßen Referenzspannungsquelle, wobei die sich entsprechenden Bauteile mit denselben Bezugszeichen versehen sind und auf eine wiederholte Beschreibung dieser Bauteile verzichtet wird.1 was the basis of the present invention general principle explained. 3 shows a refined embodiment of the invention Reference voltage source, the corresponding components are provided with the same reference numerals and on a repeated description of these components is omitted.

    Gemäß Fig. 3 wird eine weitere Stromspiegelschaltung S2 verwendet, die Kollektorströme I7 bzw. I8 von weiteren Transistoren T7 und T8 vergleicht und abhängig von dem Vergleichsergebnis das Stellglied ST ansteuert. Diese Bipolartransistoren T3 und T4 bilden eine Verstärkerstufe, um die Stromaufnahme der in Fig. 3 gezeigten Referenzspannungsquelle möglichst gering zu halten. Beim Stromspiegel S1 entsprechen die Eingänge den Ausgängen und sind mit den Basisanschlüssen der Transistoren T7 und T8 verbunden. Ein weiterer npn-Bipolartransistor T5 dient zusammen mit einer weiteren Stromspiegelschaltung S3 zum Kompensieren der durch den Basisstrom des Transistors T2 entstehenden Fehler. Durch den Einsatz des in Fig. 3 gezeigten npn-Bipolartransistors T6 kann erreicht werden, daß sich die thermischen Leckströme der Bipolartransistoren T1 und T5 von ihren Kollektoren zum Substrat gegenüber den thermischen Leckströmen der Bipolartransistoren T2 und T6 aufheben, falls das Übersetzungsverhältnis des Stromspiegels S1 1:1 beträgt. Der Bipolartransistor T5 besitzt eine der Emitterfläche des Bipolartransistors T2 entsprechende Emitterfläche, während der Bipolartransistor T6 eine der Emitterfläche des Bipolartransistors T1 entsprechende Emitterfläche aufweist, d.h. die Emitterfläche des Bipolartransistors T5 ist n1-mal so groß wie die Emitterfläche des Bipolartransistors T6.According to FIG. 3, a further current mirror circuit S 2 is used, which compares collector currents I 7 and I 8 from further transistors T 7 and T 8 and controls the actuator ST depending on the comparison result. These bipolar transistors T 3 and T 4 form an amplifier stage in order to keep the current consumption of the reference voltage source shown in FIG. 3 as low as possible. With current mirror S 1 , the inputs correspond to the outputs and are connected to the base connections of transistors T 7 and T 8 . Another npn bipolar transistor T 5 , together with another current mirror circuit S 3, serves to compensate for the errors arising from the base current of transistor T 2 . By using the npn bipolar transistor T 6 shown in Fig. 3 it can be achieved that the thermal leakage currents of the bipolar transistors T 1 and T 5 cancel from their collectors to the substrate compared to the thermal leakage currents of the bipolar transistors T 2 and T 6 , if that Transmission ratio of the current mirror S 1 is 1: 1. The bipolar transistor T 5 has an emitter area corresponding to the emitter area of the bipolar transistor T 2 , while the bipolar transistor T 6 has an emitter area corresponding to the emitter area of the bipolar transistor T 1 , ie the emitter area of the bipolar transistor T 5 is n 1 times as large as the emitter area of the bipolar transistor M 6 .

    Mit dem Widerstand R3 ist eine Schaltungsanordnung gekoppelt, welche neben der bereits in Fig. 1 dargestellten Diode D entsprechend Fig. 3 verschaltete Widerstände R7 - R9 sowie einen weiteren Bipolartransistor T9 aufweist. Diese Schaltungsanordnung funktioniert folgendermaßen. Bei tiefen Temperaturen ist der Stromfluß über den Widerstand R3 am kleinsten und die Flußspannungen sämtlicher pn-Übergänge sind so hoch, daß im wesentlichen die Widerstände R7 und R8 das Verhalten dieser Schaltungsanordnung bestimmen. Bei mittleren Temperaturen dominiert der über die Diode D und den Widerstand R9 führende Pfad, wobei in diesem Fall der Widerstand des Ersatzschaltbildes dieser Schaltungsanordnung aufgrund der Parallelschaltung von R8 und R7 zu R9 kleiner ist und die Diodenspannung um den Faktor (R8+R7) / (R7+R8+R9) heruntergeteilt wird. Bei hohen Temperaturen dominiert hingegen der über den Transistor T9 führende Pfad, wobei das Ersatzschaltbild eine um den Faktor (R7+R8)/R7 heraufgesetzte Diodenflußspannung ohne Serienwiderstand aufweist. Damit ergibt sich am Kollektor des Bipolartransistors T9 ein abschnittsweise linearer Temperaturgang, der näherungsweise gemäß einer Parabelfunktion verläuft, so daß bei richtiger Dimensionierung dieser Schaltungsanordnung die trotz der Temperaturstabilisierung in Folge der Differenzspannungsbildung noch verbleibende parabelförmige Temperaturabhängigkeit der Referenzspannung ausgeglichen werden kann. Die erzeugte Referenzspannung kann somit im Idealfall innerhalb eines 0,03%-Fensters temperaturstabil erzeugt werden. Schließlich ist in Fig. 3 zudem ein Spannungsteiler mit Widerständen R5 und R6 an den gemeinsamen Basisanschluß der Transistoren T3 und T4 angeschlossen, um die Basisspannung dieser Transistoren hochzumultiplizieren und die gewünschte Referenzspannung Vref zu erhalten.A circuit arrangement is coupled to the resistor R 3 , which, in addition to the diode D already shown in FIG. 1 in accordance with FIG. 3, has connected resistors R 7 -R 9 and a further bipolar transistor T 9 . This circuit arrangement works as follows. At low temperatures, the current flow through the resistor R 3 is smallest and the flow voltages of all pn junctions are so high that the resistors R7 and R8 essentially determine the behavior of this circuit arrangement. At medium temperatures, the path leading through the diode D and the resistor R 9 dominates , in which case the resistance of the equivalent circuit diagram of this circuit arrangement is lower due to the parallel connection of R 8 and R 7 to R 9 and the diode voltage by the factor (R 8 + R 7 ) / (R 7 + R 8 + R 9 ) is divided down. At high temperatures, on the other hand, the path leading through transistor T 9 dominates, the equivalent circuit diagram having a diode forward voltage increased by the factor (R 7 + R 8 ) / R 7 without series resistance. This results in a sectionally linear temperature response at the collector of the bipolar transistor T 9 , which proceeds approximately according to a parabolic function, so that, with the correct dimensioning of this circuit arrangement, the parabolic temperature dependency of the reference voltage which remains despite the temperature stabilization as a result of the differential voltage formation can be compensated. Ideally, the generated reference voltage can be generated in a temperature-stable manner within a 0.03% window. Finally, in FIG. 3, a voltage divider with resistors R 5 and R 6 is also connected to the common base connection of the transistors T 3 and T 4 in order to multiply the base voltage of these transistors and to obtain the desired reference voltage V ref .

    Fig. 4 zeigt ein Beispiel einer auf einem Testchip realisierten Doppel-Bandgap-Referenzspannungsquelle gemäß der vorliegenden Erfindung. Dabei sind wiederum diejenigen Bauteile, die den in Fig. 3 gezeigten Bauteilen entsprechen, mit denselben Bezugszeichen versehen und werden nicht erneut erläutert.Fig. 4 shows an example of one realized on a test chip Double bandgap reference voltage source according to the present invention. Again, those components are which correspond to the components shown in Fig. 3 with have the same reference numerals and will not be repeated explained.

    Gemäß Fig. 4 bilden zwei p-Kanal-MOS-Feldeffekttransistoren M1 und M2 den in Fig. 3 gezeigten Stromspiegel S1, wobei der gemeinsame Gateanschluß dieser Transistoren M1 und M2 an den gemeinsamen Emitteranschluß der Transistoren T7 und T8 gelegt ist. Der in Fig. 3 gezeigte Stromspiegel S3 umfaßt p-Kanal-MOS-Feldeffekttransistoren M3 - M6 sowie n-Kanal-MOS-Feldeffekttransistoren M7 - M10. Die Stromspiegelschaltung S2 ist hingegen durch einen pnp-Bipolartransistor T11 realisiert. Gemäß Fig. 4 entspricht das Bezugspotential der Stromspiegel S1 und S3 dem Eingangspotential des Stellglieds ST, welches durch einen Stelltransistor M11 realisiert ist. Des weiteren ist das Bezugspotential des Stromspiegels S2 mit dem Bezugspotential des Stelltransistors M11 verbunden. Der zuvor beschriebene Zusammenhang der Bezugspotentiale ist jedoch nicht zwingend erforderlich.4, two p-channel MOS field effect transistors M 1 and M 2 form the current mirror S 1 shown in FIG. 3, the common gate connection of these transistors M 1 and M 2 to the common emitter connection of transistors T 7 and T 8 is laid. . The current mirror S 3 shown in Figure 3 includes p-channel MOS field effect transistors M 3 - M 6 and n-channel MOS field effect transistors M 7 - M 10. The current mirror circuit S 2 , however, is implemented by a pnp bipolar transistor T 11 . 4, the reference potential of the current mirrors S 1 and S 3 corresponds to the input potential of the actuator ST, which is implemented by a control transistor M 11 . Furthermore, the reference potential of the current mirror S 2 is connected to the reference potential of the control transistor M 11 . However, the previously described relationship of the reference potentials is not absolutely necessary.

    Der zusätzlich in Fig. 4 gezeigte Widerstand R10 dient zur Kompensation des thermischen Leckstroms des Widerstands R4. Die Bauelemente T12, T13, C1 - C3 und R11 dienen zur Stabilisierung der Schaltung. The resistor R 10 additionally shown in FIG. 4 serves to compensate for the thermal leakage current of the resistor R 4 . The components T 12 , T 13 , C 1 - C 3 and R 11 serve to stabilize the circuit.

    Schließlich ist die in Fig. 3 gezeigte Diode D durch den pn-Üergang eines weiteren Bipolartransistors T10 realisiert, dessen Basis-Kollektor-Strecke kurzgeschlossen ist. Ansonsten entspricht die Funktionsweise der in Fig. 4 gezeigten Referenzspannungsquelle derjenigen der in Fig. 1 und 3 gezeigten Schaltungen.Finally, the diode D shown in FIG. 3 is realized by the pn junction of a further bipolar transistor T 10 , the base-collector path of which is short-circuited. Otherwise, the mode of operation of the reference voltage source shown in FIG. 4 corresponds to that of the circuits shown in FIGS. 1 and 3.

    Claims (19)

    1. Circuit for producing a reference voltage, having first circuit means (T1, T3) for producing a first voltage, which has a negative temperature coefficient, and having second circuit means (T1 - T4, R1 - R4) for producing a difference voltage from a second voltage and a third voltage, the second voltage and the third voltage each being derived from forward voltages across corresponding pn junctions and the difference voltage being subject to a positive temperature coefficient, it being possible for the reference voltage (Vref) to be tapped off as the sum of the first voltage from the first circuit means (T1, T3) and the difference voltage from the second circuit means (T1 - T4, R1 - R4), characterized in that the first circuit means (T1, T3) are designed and arranged such that they derive the first voltage from a summed voltage formed by at least two forward voltages across corresponding pn junctions, and in that the second circuit means (T1 - T4, R1 - R4) are designed and arranged such that they derive the second voltage and the third voltage, respectively, from a first and a second summed voltage, respectively, which are each formed by at least two forward voltages across corresponding pn junctions, and produce the difference voltage from said second and third voltages.
    2. Circuit for producing a reference voltage according to Claim 1, characterized in that the second circuit means (T1 - T4, R1 - R4) are designed and arranged such that they derive the second voltage and the third voltage, respectively, from a first summed voltage and a second summed voltage, respectively, which are each formed by at least two forward voltages across corresponding pn junctions which have different current densities flowing through them.
    3. Circuit for producing a reference voltage according to Claim 1 or 2, characterized in that the second circuit means comprise first, second, third, and fourth bipolar transistors (T1 - T4), respectively, which have a first, a second, a third and a fourth current density, respectively, flowing through them and are connected such that the second voltage is derived from the summed voltage formed by the forward voltages across the first and the third bipolar transistor (T1, T3), and the third voltage is derived from the summed voltage formed by the forward voltages across the second and the fourth bipolar transistor (T2, T4), the first and the third bipolar transistor (T1, T3) having a higher current density flowing through them than the second and the fourth bipolar transistor (T2, T4), and in that the first and the third bipolar transistor (T1, T3) are both constituent parts of the first circuit means such that the first voltage is derived from the summed voltage formed by the forward voltages across the first and the third bipolar transistor (T1, T3).
    4. Circuit for producing a reference voltage according to Claim 3, characterized in that the emitter area of the second bipolar transistor (T2) is equivalent to a multiple of the emitter area of the first bipolar transistor (T1), and the emitter area of the fourth bipolar transistor (T4) is equivalent to a multiple of the emitter area of the third bipolar transistor (T3).
    5. Circuit for producing a reference voltage according to Claim 3 or 4, characterized in that the collector of the first bipolar transistor (T1) is supplied with a first current, the collector of the second bipolar transistor (T2) is supplied with a second current, the collector of the third bipolar transistor (T3) is supplied with a third current and the collector of the fourth bipolar transistor (T4) is supplied with a fourth current, in that the base of the first bipolar transistor (T1) is connected to the emitter of the third bipolar transistor (T3), and the emitter of the first bipolar transistor (T1) is connected via a first resistor (R1) to a negative supply voltage connection and via a second resistor (R2) to the emitter of the second bipolar transistor (T2), in that the base of the second bipolar transistor (T2) is connected to the emitter of the fourth bipolar transistor (T4), the node between the base of the first bipolar transistor (T1) and the emitter of the third bipolar transistor (T3) being connected via a third resistor (R3) to the negative supply voltage connection and via a fourth resistor (R4) to the node between the base of the second bipolar transistor (T2) and the emitter of the fourth bipolar transistor (T4), and in that the base of the third bipolar transistor (T3) is connected to the base of the fourth bipolar transistor (T4), so that the summed voltage comprising the base/emitter voltages of the third bipolar transistor (T3) and of the first bipolar transistor (T1) corresponds to the first voltage, and the voltage drop across the first resistor (R1) corresponds to the difference voltage, and the reference voltage (Vref) can be tapped off at the base of the third bipolar transistor (T3).
    6. Circuit for producing a reference voltage according to Claim 5, characterized in that the emitter area of the second bipolar transistor (T2) is roughly four times as large as the emitter area of the first bipolar transistor (T1), and the emitter area of the fourth bipolar transistor (T4) is roughly four times as large as the emitter area of the third bipolar transistor (T3), in that the first current, supplied to the first bipolar transistor (T1), is roughly the same size as the second current, supplied to the second bipolar transistor (T2), and in that the first resistor (R1) is roughly four times as large as the second resistor (R2).
    7. Circuit for producing a reference voltage according to Claim 5 or 6, characterized in that the third and the fourth current, respectively, supplied to the third and the fourth bipolar transistor (T3, T4), respectively, and the third and the fourth resistor (R3, R4) are designed such that the emitter current in the fourth bipolar transistor (T4) is markedly smaller than the emitter current in the third bipolar transistor (T3).
    8. Circuit for producing a reference voltage according to one of Claims 5 to 7, characterized by a current-mirror circuit (S1) which, on the one hand, is connected to a positive supply voltage connection and, on the other hand, provides the first current, which is supplied to the first bipolar transistor (T1), and the second current, which is supplied to the second bipolar transistor (T2).
    9. Circuit for producing a reference voltage according to Claim 8, characterized in that a fifth bipolar transistor (T5) is connected between the current-mirror circuit (S1) and the collector of the first bipolar transistor (T1), and in that a further current-mirror circuit (S3) is connected between the base of the fifth bipolar transistor (T5) and the node between the base of the second bipolar transistor (T2) and the emitter of the fourth bipolar transistor (T4).
    10. Circuit for producing a reference voltage according to Claim 9, characterized in that a sixth bipolar transistor (T6), with a short-circuited base/collector junction, is connected between the current-mirror circuit (S1) and the collector of the second bipolar transistor (T2).
    11. Circuit for producing a reference voltage according to Claim 10, characterized in that the emitter area of the sixth bipolar transistor (T6) is roughly equivalent to the emitter area of the first bipolar transistor (T1), and the emitter area of the fifth bipolar transistor (T5) is roughly equivalent to the emitter area of the second bipolar transistor (T2), and the translation ratio of the current-mirror circuit (S1) is 1:1.
    12. Circuit for producing a reference voltage according to one of Claims 5 to 11, characterized in that a further current-mirror circuit (S2) is provided which is connected to a positive supply voltage connection (Vcc) and provides the third current, which is supplied to the third bipolar transistor (T3), and the fourth current, which is supplied to the fourth bipolar transistor (T4), and in that an amplifier circuit (T7, T8) is connected between the further current-mirror circuit (S2) and the collectors of the third and the fourth bipolar transistor (T3, T4), respectively.
    13. Reference-earth voltage reference circuit according to one of the preceding claims, characterized by third circuit means (D, T9, R7 - R9) for compensating for a parabolic temperature dependency of the reference voltage (Vref) produced by the second circuit means (T3, R3).
    14. Reference-earth voltage reference circuit according to Claim 13 and one of Claims 5 to 12, characterized in that the third circuit means (D, T9, R7 - R9) comprise a diode (D) connected between the third resistor (R3) and the negative supply voltage connection.
    15. Circuit for producing a reference voltage according to Claim 14, characterized in that the third circuit means comprise a parallel circuit which is connected between the third resistor (R3) and the negative supply voltage connection and comprises a series circuit made up of a resistor (R9) with the diode (D) and a series circuit made up of two further resistors (R7, R8), the main current path of a further bipolar transistor (T9) being connected in parallel with the two further resistors (R7, R8), and the base of said further bipolar transistor (T9) being connected to the node between the two further resistors (R7, R8).
    16. Circuit for producing a reference voltage according to one of the preceding claims, characterized in that the first circuit means comprise amplifier means (R5, R6) for amplifying the reference voltage (Vref).
    17. Circuit for producing a reference voltage according to one of Claims 5 to 12 and Claim 16, characterized in that the amplifier means comprise a voltage divider (R5, R6) acting on the base of the third bipolar transistor (T3).
    18. Circuit for producing a reference voltage according to one of the preceding claims, characterized in that the first and the second circuit means (T1 - T4, R1 - R4) are designed such that the reference voltage (Vref) produced as the sum of the first voltage from the first circuit means (T3, T1) and the difference voltage from the second circuit means (T1 - T4) is roughly 2.5 V.
    19. Circuit for producing a reference voltage according to one of the preceding claims, characterized in that control means (ST, M11) are provided to keep constant the reference voltage (Vref) output to an output connection by the circuit for producing a reference voltage when the output voltage connection is unevenly loaded.
    EP99105491A 1998-04-24 1999-03-17 Generating circuit for reference voltage Expired - Lifetime EP0952508B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19818464A DE19818464A1 (en) 1998-04-24 1998-04-24 Reference voltage generation circuit
    DE19818464 1998-04-24

    Publications (2)

    Publication Number Publication Date
    EP0952508A1 EP0952508A1 (en) 1999-10-27
    EP0952508B1 true EP0952508B1 (en) 2001-08-29

    Family

    ID=7865738

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99105491A Expired - Lifetime EP0952508B1 (en) 1998-04-24 1999-03-17 Generating circuit for reference voltage

    Country Status (5)

    Country Link
    US (1) US6046578A (en)
    EP (1) EP0952508B1 (en)
    DE (2) DE19818464A1 (en)
    ES (1) ES2163909T3 (en)
    PT (1) PT952508E (en)

    Families Citing this family (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6292050B1 (en) 1997-01-29 2001-09-18 Cardiac Pacemakers, Inc. Current and temperature compensated voltage reference having improved power supply rejection
    US6154018A (en) * 1999-09-01 2000-11-28 Vlsi Technology, Inc. High differential impedance load device
    US6381491B1 (en) 2000-08-18 2002-04-30 Cardiac Pacemakers, Inc. Digitally trimmable resistor for bandgap voltage reference
    US6340882B1 (en) * 2000-10-03 2002-01-22 International Business Machines Corporation Accurate current source with an adjustable temperature dependence circuit
    US6380723B1 (en) * 2001-03-23 2002-04-30 National Semiconductor Corporation Method and system for generating a low voltage reference
    US6677808B1 (en) 2002-08-16 2004-01-13 National Semiconductor Corporation CMOS adjustable bandgap reference with low power and low voltage performance
    US7088085B2 (en) * 2003-07-03 2006-08-08 Analog-Devices, Inc. CMOS bandgap current and voltage generator
    US7411443B2 (en) * 2005-12-02 2008-08-12 Texas Instruments Incorporated Precision reversed bandgap voltage reference circuits and method
    US7834610B2 (en) * 2007-06-01 2010-11-16 Faraday Technology Corp. Bandgap reference circuit
    GB2452324A (en) * 2007-09-03 2009-03-04 Adaptalog Ltd Temperature sensor or bandgap regulator
    JP5072718B2 (en) * 2008-06-02 2012-11-14 株式会社東芝 Signal receiving device
    US8981736B2 (en) * 2010-11-01 2015-03-17 Fairchild Semiconductor Corporation High efficiency, thermally stable regulators and adjustable zener diodes
    US9448579B2 (en) * 2013-12-20 2016-09-20 Analog Devices Global Low drift voltage reference
    EP3021189B1 (en) * 2014-11-14 2020-12-30 ams AG Voltage reference source and method for generating a reference voltage
    KR20160072703A (en) * 2014-12-15 2016-06-23 에스케이하이닉스 주식회사 Reference voltage generator
    DE102021134256A1 (en) 2021-12-22 2023-06-22 Infineon Technologies Ag start-up circuit

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH639521B (en) * 1980-05-28 Ebauches Electroniques Sa VOLTAGE LEVEL DETECTOR CIRCUIT.
    JPS5927326A (en) * 1982-08-02 1984-02-13 Hitachi Ltd Constant-voltage circuit
    EP0216265B1 (en) * 1985-09-17 1991-12-11 Siemens Aktiengesellschaft Voltage reference generating circuit with a given temperature drift
    US5231316A (en) * 1991-10-29 1993-07-27 Lattice Semiconductor Corporation Temperature compensated cmos voltage to current converter
    BE1007853A3 (en) * 1993-12-03 1995-11-07 Philips Electronics Nv BANDGAPE REFERENCE FLOW SOURCE WITH COMPENSATION FOR DISTRIBUTION IN SATURATION FLOW OF BIPOLAR TRANSISTORS.
    US5532576A (en) * 1994-04-11 1996-07-02 Rockwell International Corporation Efficient, well regulated, DC-DC power supply up-converter for CMOS integrated circuits
    JP3347896B2 (en) * 1994-10-21 2002-11-20 日本オプネクスト株式会社 Constant voltage source circuit
    FR2737319B1 (en) * 1995-07-25 1997-08-29 Sgs Thomson Microelectronics REFERENCE GENERATOR OF INTEGRATED CIRCUIT VOLTAGE AND / OR CURRENT
    FR2750514A1 (en) * 1996-06-26 1998-01-02 Philips Electronics Nv VOLTAGE REGULATION DEVICE WITH LOW INTERNAL ENERGY DISSIPATION

    Also Published As

    Publication number Publication date
    DE19818464A1 (en) 1999-10-28
    EP0952508A1 (en) 1999-10-27
    US6046578A (en) 2000-04-04
    ES2163909T3 (en) 2002-02-01
    DE59900215D1 (en) 2001-10-04
    PT952508E (en) 2002-01-30

    Similar Documents

    Publication Publication Date Title
    EP0952508B1 (en) Generating circuit for reference voltage
    US5774013A (en) Dual source for constant and PTAT current
    DE19804747B4 (en) Bandgap reference circuit and method
    DE19530472B4 (en) Constant current circuit
    DE2457753C2 (en) Voltage regulating circuit
    EP0160836B1 (en) Temperature sensor
    DE3836338A1 (en) TEMPERATURE COMPENSATED POWER SOURCE CIRCUIT WITH TWO CONNECTIONS
    DE2440795B2 (en) Temperature-dependent voltage transmitter
    DE3241364A1 (en) DIGITALLY CONTROLLED PRECISION POWER SOURCE WITH AN OPEN COMPENSATION CIRCUIT
    DE102017125831B4 (en) Band gap reference voltage circuit, cascaded band gap reference voltage circuit and method for generating a temperature stable reference voltage
    EP0080567A2 (en) Semiconducter integrated current source
    DE102011001346A1 (en) Low noise bandgap references
    DE19545160C2 (en) Reference voltage generator circuit
    DE2260405A1 (en) REFERENCE VOLTAGE GENERATOR CIRCUIT
    DE102005033434A1 (en) Temperature-stable reference voltage generating circuit, has amplifier arrangement exhibiting offset that is proportional to temperature voltage of semiconductor material of semiconductor components of differential amplifier stage
    DE2750998A1 (en) REFERENCE VOLTAGE CIRCUIT
    DE10143032C2 (en) Electronic circuit for generating an output voltage with a defined temperature dependency
    EP0216265B1 (en) Voltage reference generating circuit with a given temperature drift
    DE3230429C2 (en)
    DE10237122B4 (en) Circuit and method for setting the operating point of a BGR circuit
    EP0506174B1 (en) Integrated circuit device comprising a differential amplifier
    DE3110355C2 (en) DC voltage generator for supplying a temperature-dependent DC output voltage
    EP0237086B1 (en) Current mirror circuit
    DE10047620B4 (en) Circuit for generating a reference voltage on a semiconductor chip
    EP0952509B1 (en) Voltage reference circuit

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IE IT PT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991206

    AKX Designation fees paid

    Free format text: DE ES FR GB IE IT PT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20000912

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: INFINEON TECHNOLOGIES AG

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IE IT PT

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59900215

    Country of ref document: DE

    Date of ref document: 20011004

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20011117

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    EN Fr: translation not filed
    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20011031

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2163909

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030226

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20040218

    Year of fee payment: 6

    Ref country code: IE

    Payment date: 20040218

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040317

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20040322

    Year of fee payment: 6

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ERR

    Free format text: BOPI DE PUBLICATION N: 02/04 PAGES: 245 PARTIE DU BULLETIN CONCERNEE: BREVETS EUROPEENS DONT LA TRADUCTION N'A PAS ETE REMISE A I'INPI IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE DE LA TRADUCTION EST PUBLIEE DANS LE PRESENT BOPI.

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040317

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050317

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050318

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050919

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20050318

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20170322

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170516

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20170323

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59900215

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181002

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180317

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180331