EP0952508A1 - Generating circuit for reference voltage - Google Patents
Generating circuit for reference voltage Download PDFInfo
- Publication number
- EP0952508A1 EP0952508A1 EP99105491A EP99105491A EP0952508A1 EP 0952508 A1 EP0952508 A1 EP 0952508A1 EP 99105491 A EP99105491 A EP 99105491A EP 99105491 A EP99105491 A EP 99105491A EP 0952508 A1 EP0952508 A1 EP 0952508A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bipolar transistor
- voltage
- reference voltage
- emitter
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/22—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
- G05F3/222—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
- G05F3/225—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the temperature
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/265—Current mirrors using bipolar transistors only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/267—Current mirrors using both bipolar and field-effect technology
Definitions
- the present invention relates to a reference voltage generating circuit or reference voltage source according to the preamble of claim 1.
- Known reference voltage sources use, for example, Zener diodes, to which an unstabilized input voltage is supplied via a series resistor, the voltage tapped at the Zener diode being used as the voltage-stabilized reference voltage.
- the forward or forward voltage of a diode or the base-emitter voltage of a bipolar transistor can in principle be used as a reference voltage.
- the forward voltage of a pn junction has a negative temperature coefficient and thus a temperature dependency that is negative for many applications. If, for example, sensors, A / D converters or similar components are to be supplied with the aid of a voltage regulator, the output voltage of which serves as a reference voltage, the output voltage of the voltage regulator must be highly precise and, in particular, extremely temperature-stable.
- tolerance limits of up to 1% are normal requirements.
- bandgap or Bandgap reference voltage sources have been replaced by bandgap or Bandgap reference voltage sources replaced, which provide a temperature-stabilized reference voltage.
- bandgap reference voltage sources are based on an addition of a forward voltage of a current-carrying pn junction and a differential voltage multiplied by a corresponding factor, which is formed from two forward voltages of two pn junctions through which different current densities flow.
- the forward voltage of a current-carrying pn junction - as has already been explained above - has a negative temperature coefficient.
- the difference between two forward voltages increases proportionally to the absolute temperature and is therefore subject to a positive temperature coefficient.
- the factor by which the differential voltage explained above is multiplied is set such that the negative temperature coefficient of the forward voltage of the pn junction cancels the positive temperature coefficient of the differential voltage, a temperature-stabilized output or reference voltage can be obtained which only has a parabolic or exhibits quadratic temperature dependence.
- the output voltage of the bandgap reference voltage source which is obtained by adding the previously explained forward voltage of a current-carrying pn junction with the difference voltage multiplied by the corresponding factor of two further forward voltages, is approximately 1.25 V, which is approximately the band gap (band gap ) of silicon.
- the magnitude of the output voltage of this reference voltage source has therefore given the bandgap reference voltage source its name.
- a current mirror circuit S 1 which connects the collector currents I 1 and I 2 from two npn bipolar transistors T 1 and T 2 connected according to FIG. 2, is connected to a positive supply voltage connection V cc compares.
- the currents of these currents I 1 and I 2 are predetermined by the transistors T 1 and T 2 .
- the base terminals of these transistors T 1 and T 2 are connected to each other, wherein the base voltage of the transistor T is multiplied up 1 via a voltage divider consisting of two resistors R 5 and R 6, so that the resistor R 6 ref a desired initial or reference voltage V can be tapped.
- the current mirror S 1 has an output which reproduces the result of the comparison of the currents I 1 and I 2 and is coupled to an actuator ST, for example an operational amplifier or an amplifying transistor.
- the emitter current densities of transistors T 1 and T 2 differ by the factor n ⁇ m, ie the emitter current density of transistor T 1 is (n ⁇ m) times as large as the emitter current density of the transistor T 2 .
- the total voltage is tapped from the base-emitter voltage of the transistor T 1 and the voltage present at the node between the resistors R 1 and R 2 .
- the first-mentioned base-emitter voltage of the transistor T 1 corresponds to the forward voltage of a current-carrying pn junction and therefore, as has been explained above, has a negative temperature coefficient.
- the voltage drop across the resistor R 1 is dependent on the difference between the base-emitter voltage of the transistor T 1 and the base-emitter voltage of the transistor T 2 and, as has also been explained above, has a positive temperature coefficient.
- the emitter-base voltage of the bipolar transistor T 1 decreases by 2mV / K depending on the temperature.
- the bandgap reference voltage source shown in FIG. 2 can be dimensioned in such a way that the differential voltage across the resistor R 1 from the forward voltages of the two transistors T 1 and T 2 is one by appropriate selection of the resistors R 1 and R 2 and the previously specified factor n the negative temperature coefficient compensating positive temperature coefficient of + 2mV / K is subject.
- the invention is therefore based on the object of specifying a reference voltage generating circuit of the type described at the outset, which is less sensitive to temperature fluctuations and component tolerances.
- the reference voltage is further generated by adding a voltage component with a negative temperature coefficient to a voltage component with a positive temperature coefficient.
- the portion subject to the negative temperature coefficient comprises a plurality of forward voltages of corresponding pn junctions
- the portion with the positive temperature coefficient in turn comprises a differential voltage, each voltage contributing to the differential voltage corresponding to a sum voltage from a plurality of forward voltages of corresponding pn junctions.
- the difference voltage which represents the proportion of the desired reference voltage with a positive temperature coefficient, is the difference between two sums of several forward voltages with different current densities through pn junctions.
- the reference voltage source provides an output voltage that is a multiple of the usual bandgap reference voltage. This voltage is sufficiently high for most applications, so that, for example, a voltage divider for high multiplication of the reference voltage can be omitted.
- the reference voltage source according to the invention By appropriate dimensioning of the reference voltage source according to the invention it can be achieved that a deviation of 1K in the temperature of one of the transistors used is only 1.3% of the difference in the total voltages. Furthermore, it is possible to arrange the transistors in the layout of the reference voltage source according to the invention in such a way that linear temperature gradients cannot falsify the output voltage of the reference voltage source from any direction.
- circuit means are used which compensate for the remaining parabolic temperature dependency of the generated reference voltage, so that the output reference voltage can ideally be generated in a temperature-stable manner within a 0.03% window.
- the previously described principle known per se is used in turn to add the reference voltage by adding a component with a negative temperature coefficient and a component with a positive temperature coefficient generate, whereby by suitable circuit dimensioning the negative temperature coefficient can be compensated for by the positive temperature coefficient.
- the portion of the generated reference voltage which is subject to a positive temperature coefficient is the difference between two summation voltages from a plurality of forward voltages of pn junctions through which different current densities flow.
- the portion that is subject to the negative temperature coefficient comprises the sum of the forward voltages of several pn junctions.
- the circuit shown in FIG. 1 again comprises npn transistors T 1 and T 2 , the emitter areas A E1 and A E2 of which are in the ratio 1: n 1 .
- the transistors T 1 and T 2 are operated with collector currents I 1 and I 2 , respectively, which are compared by a current mirror circuit S 1 , the current strengths of these currents I 1 and I 2 being predetermined by the transistors T 1 and T 2 .
- the base connections of the transistors T 1 and T 2 are separately connected to the emitters of further npn bipolar transistors T 3 and T 4 .
- the emitter areas A E3 and A E4 of the transistors T 3 and T 4 are in a ratio of 1: n 2 .
- the transistors T 3 and T 4 are flowed through by different currents I 3 and I 4 , which can be set via resistors R 3 and R 4 .
- the collectors of the transistors T 3 and T 4 are connected to a positive supply voltage potential V CC .
- the base connections of the transistors T 3 and T 4 are connected to one another.
- the resistors R 1 and R 2 are connected to the transistors T 1 and T 2 in accordance with the known reference voltage source shown in FIG. 2.
- a diode D or a corresponding pn junction is coupled to the resistor R 3 .
- the voltage across resistor R 4 corresponds to the difference between the emitter-base voltages of transistors T 3 and T 4 . So that the ratio of the emitter currents of these transistors is temperature stable, the voltage across resistor R 3 must also be proportional to temperature. This is achieved with the aid of the diode D, since the voltage at R 1 increases in proportion to the temperature and the forward voltages of the bipolar transistor T 1 and the diode D do not differ significantly, so that the voltage across the resistor R 3, as desired, is proportional to the temperature.
- the desired reference or output voltage is tapped at the common base connection of the bipolar transistors T 3 and T 4 .
- This output voltage corresponds to the total voltage from the base-emitter voltages of the transistors T 3 and T 1 and the voltage present at the node between the resistors R 1 and R 2 .
- the base-emitter voltages of the transistors T 3 and T 1 are known to have a negative temperature coefficient of approximately -2 mV / K.
- the voltage present at the node between the resistors R 1 and R 2 is determined by the base-emitter voltages of the transistors T 1 -T 4 and corresponds in particular to the difference between a first voltage and the sum of the forward voltages of those through which a high current density flows Transistors T 1 and T 3 depends, and a second voltage, which depends on the sum of the forward voltages of the bipolar transistors T 2 and T 4 through which a low current density flows. That is, the voltage present at the node between the resistors R 1 and R 2 depends on the difference between the sum of the base-emitter voltages of the transistors T 1 and T 3 and the sum of the base-emitter voltages of the transistors T 2 and T 4 from.
- the differential voltage present at the node between the resistors R 1 and R 2 has such a positive temperature coefficient which the negative temperature coefficient of the base-emitter voltages the bipolar transistors T 3 and T 1 compensated.
- the positive temperature coefficient of the differential voltage drop across the resistor R 1 must be as high as the negative temperature coefficient of the base-emitter voltages of the transistors T 3 and T 1 and consequently be approximately + 4mV / K.
- the voltage of approximately 2.5 V present at the common base of the transistors T 3 and T 4 is sufficiently high for most applications, so that in principle the use of a voltage divider with resistors R 5 and R 6 for high multiplication of the reference voltage can be omitted . Therefore, in the circuit shown in FIG. 1, the voltage divider with the resistors R 5 and R 6 is only shown in broken lines.
- the circuit shown in Fig. 1 can be modified in a simple manner such that not only the difference is formed from two summation voltages, but that the difference is formed from several summation voltages by using a correspondingly larger number of bipolar transistors, each of these summation voltages corresponds to an addition of even three or more forward voltages of pn junctions through which different current densities flow.
- the circuit shown in FIG. 1 can be modified in such a way that a voltage which corresponds to a multiple of the bandgap of silicon is generally tapped at the base terminal of the transistor T 3 .
- the emitter current of the bipolar transistor T 4 can be chosen to be very small, since the greatest thermal leakage current from the collector of each npn transistor to the substrate in barrier-layer-insulated bipolar technologies does not enter the emitter current of the in the present case corresponding npn transistor is received.
- a deviation of the temperature of one of the bipolar transistors T 1 - T 4 by 1K is only 1.3% in this differential voltage, so that the reference voltage circuit shown in Fig. 1 is less sensitive to temperature fluctuations or temperature gradients.
- the resistance ratio R 1 : R 2 can be set to 4: 1 by a clever choice of the individual components shown in FIG. 1. This is a ratio that can be adjusted particularly precisely.
- an actuator ST is again coupled to the output terminal of the current mirror S 1 in the circuit shown in FIG. 1, which is controlled as a function of the comparison result of the current mirror S1 in order to avoid an uneven load on the latter Output connection to allow readjustment of the output voltage V ref .
- FIG. 1 shows a refined exemplary embodiment of the reference voltage source according to the invention, the corresponding components being provided with the same reference numerals and a repeated description of these components being dispensed with.
- a further current mirror circuit S 2 which compares collector currents I 7 and I 8 from further transistors T 7 and T 8 and controls the actuator ST depending on the comparison result.
- These bipolar transistors T 3 and T 4 form an amplifier stage in order to keep the current consumption of the reference voltage source shown in FIG. 3 as low as possible.
- current mirror S 1 With current mirror S 1 , the inputs correspond to the outputs and are connected to the base connections of transistors T 7 and T 8 .
- Another npn bipolar transistor T 5 together with another current mirror circuit S 3, serves to compensate for the errors arising from the base current of transistor T 2 .
- the bipolar transistor T 5 has an emitter area corresponding to the emitter area of the bipolar transistor T 2
- the bipolar transistor T 6 has an emitter area corresponding to the emitter area of the bipolar transistor T 1 , ie the emitter area of the bipolar transistor T 5 is n 1 times as large as the emitter area of the bipolar transistor M 6 .
- a circuit arrangement is coupled to the resistor R 3 , which, in addition to the diode D already shown in FIG. 1 in accordance with FIG. 3, has connected resistors R 7 -R 9 and a further bipolar transistor T 9 .
- This circuit arrangement works as follows. At low temperatures, the current flow through the resistor R 3 is smallest and the flow voltages of all pn junctions are so high that the resistors R7 and R8 essentially determine the behavior of this circuit arrangement.
- the path leading via the diode D and the resistor R 9 dominates , in which case the resistance of the equivalent circuit diagram of this circuit arrangement is lower due to the parallel connection of R 8 and R 7 to R 9 and the diode voltage by the factor (R 8 + R 7 ) / (R 7 + R 8 + R 9 ) is divided down.
- the path leading through transistor T 9 dominates, the equivalent circuit diagram having a diode forward voltage increased by the factor (R 7 + R 8 ) / R 7 without series resistance.
- FIG. 4 shows an example of a double band gap reference voltage source implemented on a test chip according to the present invention. Again, those components that correspond to the components shown in FIG. 3 are given the same reference numerals and will not be explained again.
- the current mirror S 1 shown in Figure 3 includes p-channel MOS field effect transistors M 3 - M 6 and n-channel MOS field effect transistors M 7 - M 10.
- the current mirror circuit S 2 is implemented by a pnp bipolar transistor T 11 .
- the reference potential of the current mirrors S 1 and S 3 corresponds to the input potential of the actuator ST, which is realized by an actuating transistor M 11 .
- the reference potential of the current mirror S 2 is connected to the reference potential of the control transistor M 11 .
- the previously described relationship of the reference potentials is not absolutely necessary.
- the resistor R 10 additionally shown in FIG. 4 serves to compensate for the thermal leakage current of the resistor R 4 .
- the components T 12 , T 13 , C 1 - C 3 and R 11 serve to stabilize the circuit.
- the diode D shown in FIG. 3 is realized by the pn junction of a further bipolar transistor T 10 , the base-collector path of which is short-circuited. Otherwise, the mode of operation of the reference voltage source shown in FIG. 4 corresponds to that of the circuits shown in FIGS. 1 and 3.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Referenzspannung-Erzeugungsschaltung oder Referenzspannungsquelle nach dem Oberbegriff des Anspruches 1.The present invention relates to a reference voltage generating circuit or reference voltage source according to the preamble of claim 1.
Die meisten integrierten Schaltungen, die aus einer nicht stabilisierten Versorgungsspannung betrieben werden, d. h. nahezu alle Smart-Power-ICs, benötigen intern eine Referenzspannungsquelle. Dies gilt insbesondere für Spannungsregler, deren Ausgangsspannung anderen integrierten Schaltungen oder Schaltungsblöcken als Referenzspannung dient.Most integrated circuits that operate from an unstabilized supply voltage, i. H. Almost all smart power ICs require an internal reference voltage source. This applies in particular to voltage regulators whose output voltage serves as a reference voltage for other integrated circuits or circuit blocks.
Bekannte Referenzspannungsquellen verwenden beispielsweise Zenerdioden, denen über einen Vorwiderstand eine unstabilisierte Eingangsspannung zugeführt wird, wobei die an der Zenerdiode abgegriffene Spannung als spannungsstabilisierte Referenzspannung verwendet wird. Des weiteren kann im Prinzip allgemein die Durchlaß- oder Flußspannung einer Diode oder die Basis-Emitter-Spannung eines Bipolartransistors als Referenzspannung verwendet werden. Allerdings besitzt die Flußspannung eines pn-Übergangs einen negativen Temperaturkoeffizienten und damit eine Temperaturabhängigkeit, die für viele Anwendungen negativ ist. Sollen beispielsweise mit Hilfe eines Spannungsreglers, dessen Ausgangsspannung als Referenzspannung dient, Sensoren, A/D-Wandler oder ähnliche Bauteile versorgt werden, muß die Ausgangsspannung des Spannungsreglers hochgenau und insbesondere äußerst temperaturstabil sein. Dabei stellen heutzutage Toleranzgrenzen bis maximal 1 % normale Anforderungen dar.Known reference voltage sources use, for example, Zener diodes, to which an unstabilized input voltage is supplied via a series resistor, the voltage tapped at the Zener diode being used as the voltage-stabilized reference voltage. In addition, the forward or forward voltage of a diode or the base-emitter voltage of a bipolar transistor can in principle be used as a reference voltage. However, the forward voltage of a pn junction has a negative temperature coefficient and thus a temperature dependency that is negative for many applications. If, for example, sensors, A / D converters or similar components are to be supplied with the aid of a voltage regulator, the output voltage of which serves as a reference voltage, the output voltage of the voltage regulator must be highly precise and, in particular, extremely temperature-stable. Nowadays, tolerance limits of up to 1% are normal requirements.
Aus diesem Grund wurden die zuvor beschriebenen Referenzspannungsquellen in den letzten Jahren durch Bandgap- oder Bandabstands-Referenzspannungsquellen abgelöst, die eine temperaturstabilisierte Referenzspannung liefern. Diese bekannten Bandgap-Referenzspannungsquellen basieren auf einer Addition einer Flußspannung eines stromdurchflossenen pn-Übergangs und einer mit einem entsprechenden Faktor multiplizierten Differenzspannung, die aus zwei Flußspannungen von zwei mit unterschiedlichen Stromdichten durchflossenen pn-Übergängen gebildet wird. Allgemein hat die Flußspannung eines stromdurchflossenen pn-Übergangs - wie bereits zuvor erläutert worden ist - einen negativen Temperaturkoeffizienten. Hingegen steigt die Differenz zweier Flußspannungen proportional zur absoluten Temperatur an und unterliegt daher einem positiven Temperaturkoeffizienten. Wird der Faktor, mit dem die zuvor erläuterte Differenzspannung multipliziert wird, derart eingestellt, daß der negative Temperaturkoeffizient der Flußspannung des pn-Übergangs den positiven Temperaturkoeffizienten der Differenzspannung aufhebt, kann eine temperaturstabilisierte Ausgangs- bzw. Referenzspannung erhalten werden, die nurmehr eine parabelförmige bzw. quadratische Temperaturabhängigkeit aufweist. Insbesondere beträgt die Ausgangsspannung der Bandgap-Referenzspannungsquelle, welche durch Addition der zuvor erläuterten Flußspannung eines stromdurchflossenen pn-Übergangs mit der mit dem entsprechenden Faktor multiplizierten Differenzspannung von zwei weiteren Flußspannungen gewonnen wird, ca. 1,25 V, was in etwa dem Bandabstand (Bandgap) von Silizium entspricht. Der Betrag der Ausgangsspannung dieser Referenzspannungsquelle hat daher der Bandgap-Referenzspannungsquelle ihren Namen verliehen.For this reason, the reference voltage sources described above have been replaced by bandgap or Bandgap reference voltage sources replaced, which provide a temperature-stabilized reference voltage. These known bandgap reference voltage sources are based on an addition of a forward voltage of a current-carrying pn junction and a differential voltage multiplied by a corresponding factor, which is formed from two forward voltages of two pn junctions through which different current densities flow. In general, the forward voltage of a current-carrying pn junction - as has already been explained above - has a negative temperature coefficient. In contrast, the difference between two forward voltages increases proportionally to the absolute temperature and is therefore subject to a positive temperature coefficient. If the factor by which the differential voltage explained above is multiplied is set such that the negative temperature coefficient of the forward voltage of the pn junction cancels the positive temperature coefficient of the differential voltage, a temperature-stabilized output or reference voltage can be obtained which only has a parabolic or exhibits quadratic temperature dependence. In particular, the output voltage of the bandgap reference voltage source, which is obtained by adding the previously explained forward voltage of a current-carrying pn junction with the difference voltage multiplied by the corresponding factor of two further forward voltages, is approximately 1.25 V, which is approximately the band gap (band gap ) of silicon. The magnitude of the output voltage of this reference voltage source has therefore given the bandgap reference voltage source its name.
Fig. 2 zeigt ein verallgemeinertes Schaltbild einer bekannten Bandgap-Referenzspannungsquelle. An einem positiven Versorgungsspannungsanschluß Vcc ist eine Stromspiegelschaltung S1 angeschlossen, die die Kollektorströme I1 und I2 von zwei gemäß Fig. 2 verschalteten npn-Bipolartransistoren T1 bzw. T2 vergleicht. Die Stromstärken dieser Ströme I1 und I2 sind durch die Transistoren T1 bzw. T2 vorgegeben. Die Basisanschlüsse dieser Transistoren T1 und T2 sind miteinander verbunden, wobei die Basisspannung des Transistors T1 über einen Spannungsteiler bestehend aus zwei Widerständen R5 und R6 hochmultipliziert wird, so daß am Widerstand R6 eine gewünschte Ausgangs- bzw. Bezugsspannung Vref abgegriffen werden kann. Gemäß Fig. 1 besitzt der Stromspiegel S1 einen Ausgang, der das Ergebnis des Vergleichs der Ströme I1 und I2 wiedergibt und mit einem Stellglied ST, beispielsweise einem Operationsverstärker oder einem Verstärkungstransistor, gekoppelt ist.2 shows a generalized circuit diagram of a known bandgap reference voltage source. A current mirror circuit S 1 , which connects the collector currents I 1 and I 2 from two npn bipolar transistors T 1 and T 2 connected according to FIG. 2, is connected to a positive supply voltage connection V cc compares. The currents of these currents I 1 and I 2 are predetermined by the transistors T 1 and T 2 . The base terminals of these transistors T 1 and T 2 are connected to each other, wherein the base voltage of the transistor T is multiplied up 1 via a voltage divider consisting of two resistors R 5 and R 6, so that the resistor R 6 ref a desired initial or reference voltage V can be tapped. 1, the current mirror S 1 has an output which reproduces the result of the comparison of the currents I 1 and I 2 and is coupled to an actuator ST, for example an operational amplifier or an amplifying transistor.
Mit Hilfe des in Fig. 2 gezeigten Regelkreises mit dem Stromspiegel S1 und dem Stellglied ST wird das Verhältnis der durch die Transistoren T1 bzw. T2 fließenden Ströme I1 bzw. I2 eingestellt, wobei die Ströme I1 und I2 üblicherweise gleich groß sind. In BICMOS-Schaltungen wird jedoch der Strom I1 häufig auch auf einen vielfachen Wert des Stroms I2 eingestellt, so daß allgemein gilt:
Die Transistoren T1 und T2 besitzen unterschiedliche Emitterflächen, wobei die Emitterfläche des Transistors T2 einem Vielfachen der Emitterfläche des Transistors T1 entspricht, so daß die Beziehung zwischen den Emitterflächen AE1 und AE2 der Transistoren T1 und T2 wie folgt dargestellt werden kann:
Aufgrund der oben angegebenen Beziehungen unterscheiden sich die Emitterstromdichten der Transistoren T1 und T2 um den Faktor n·m, d. h. die Emitterstromdichte des Transistors T1 ist (n·m)-mal so groß wie die Emitterstromdichte des Transistors T2.Because of the relationships given above, the emitter current densities of transistors T 1 and T 2 differ by the factor n · m, ie the emitter current density of transistor T 1 is (n · m) times as large as the emitter current density of the transistor T 2 .
Am gemeinsamen Basisanschluß der Transistoren T1 und T2 wird die Summenspannung aus der Basis-Emitter-Spannung des Transistors T1 sowie der am Knotenpunkt zwischen den Widerständen R1 und R2 anliegenden Spannung abgegriffen. Die erstgenannte Basis-Emitter-Spannung des Transistors T1 entspricht der Flußspannung eines stromdurchflossenen pn-Übergangs und weist daher - wie zuvor erläutert worden ist - einen negativen Temperaturkoeffizienten auf. Die an dem Widerstand R1 abfallende Spannung ist abhängig von der Differenz zwischen der Basis-Emitter-Spannung des Transistors T1 und der Basis-Emitter-Spannung des Transistors T2 und besitzt - wie ebenfalls zuvor erläutert worden ist - einen positiven Temperaturkoeffizienten. Die Emitter-Basis-Spannung des Bipolartransistors T1 nimmt temperaturabhängig um 2mV/K ab. Durch entsprechende Wahl der Widerstände R1 und R2 sowie des zuvor angegebenen Faktors n kann die in Fig. 2 gezeigte Bandgap-Referenzspannungsquelle derart dimensioniert werden, daß die am Widerstand R1 anliegende Differenzspannung aus den Flußspannungen der beiden Transistoren T1 und T2 einem den negativen Temperaturkoeffizienten kompensierenden positiven Temperaturkoeffizienten von +2mV/K unterliegt. Am Widerstand R1 fällt somit bei Raumtemperatur die Spannung 2mV/K x 300K = 600mV ab, so daß an dem gemeinsamen Basisanschluß der Transistoren T1 und T2 aufgrund der typischen Emitter-Basis-Spannung von ca. 650mV die gewünschte temperaturstabilisierte Bandgap-Referenzspannung von ca. 1,25V (=650mV+600mV) anliegt, die anschließend über den Teiler mit den Widerständen R5 und R6 hochmultipliziert wird.At the common base connection of the transistors T 1 and T 2 , the total voltage is tapped from the base-emitter voltage of the transistor T 1 and the voltage present at the node between the resistors R 1 and R 2 . The first-mentioned base-emitter voltage of the transistor T 1 corresponds to the forward voltage of a current-carrying pn junction and therefore, as has been explained above, has a negative temperature coefficient. The voltage drop across the resistor R 1 is dependent on the difference between the base-emitter voltage of the transistor T 1 and the base-emitter voltage of the transistor T 2 and, as has also been explained above, has a positive temperature coefficient. The emitter-base voltage of the bipolar transistor T 1 decreases by 2mV / K depending on the temperature. The bandgap reference voltage source shown in FIG. 2 can be dimensioned in such a way that the differential voltage across the resistor R 1 from the forward voltages of the two transistors T 1 and T 2 is one by appropriate selection of the resistors R 1 and R 2 and the previously specified factor n the negative temperature coefficient compensating positive temperature coefficient of + 2mV / K is subject. The voltage 2mV / K x 300K = 600mV drops across the resistor R 1 at room temperature, so that the desired temperature-stabilized bandgap reference voltage is obtained at the common base connection of the transistors T 1 and T 2 due to the typical emitter-base voltage of approx. 650mV of approximately 1.25V (= 650mV + 600mV), which is then multiplied by the divider with the resistors R 5 and R 6 .
Für eine enge Toleranz der Ausgangsspannung Vref sind insbesondere die Widerstandsverhältnisse R5:R6, R1:R2, das Stromspiegelübersetzungsverhältnis I1:I2 (m:1) und das Verhältnis der Emitterflächen der Transistoren T1 und T2 (1:n) kritisch. Weiterhin reagiert die in Fig. 2 gezeigte Schaltung sehr empfindlich auf die in integrierten Leistungsschaltungen allgegenwärtigen Temperaturgradienten. Bei üblichen Emitterflächenverhältnissen (z. B. n=8) und Raumtemperaturen beträgt die Differenz der Emitter-Basis-Spannungen der beiden Transistoren T1 und T2 ca. 50mV. Unterscheiden sich die Temperaturen der Transistoren T1 und T2 um 1K, ändert sich die Differenz der Emitter-Basis-Spannungen um ca. 2mV, d. h. um etwa 4 %. Daher ist es erforderlich, die Transistoren T1 und T2 in einem realisierten Schaltungslayout exakt auf Isothermen der größten Wärmequelle der entsprechenden Schaltung anzuordnen. Modernes Layout mit wiederverwendbaren Schaltungs- und Layoutblöcken verbietet jedoch eine Anpassung der Schaltung an die jeweilige Lage der vorhandenen Wärmequellen. Zudem nimmt die Anzahl der Wärmequellen in Smart-Power-ICs stetig zu, so daß der Verlauf der entsprechenden Isothermen dieser Wärmequellen nicht eindeutig bestimmt werden kann. Weiterhin ist aufgrund der Vielzahl der bezüglich Paarungseigenschaften kritischen Bauelemente der Bandgap-Referenzspannungsquelle in der Regel ein individueller Abgleich der Schaltung erforderlich, was beispielsweise mit Hilfe von sogenannten "Zapping"-Zenerdioden erfolgen kann, welche beim Anlegen einer hohen äußeren Spannung in Sperrichtung durchbrechen und eine niederohmige Verbindung erzeugen. Dadurch steigt jedoch der schaltungstechnische Aufwand.The resistance ratios R 5 : R 6 , R 1 : R 2 , the current mirror transmission ratio I 1 : I 2 (m: 1) and the ratio are in particular for a narrow tolerance of the output voltage V ref the emitter areas of the transistors T 1 and T 2 (1: n) critical. Furthermore, the circuit shown in FIG. 2 reacts very sensitively to the temperature gradients which are ubiquitous in integrated power circuits. With usual emitter area ratios (e.g. n = 8) and room temperatures, the difference between the emitter-base voltages of the two transistors T 1 and T 2 is approximately 50 mV. If the temperatures of the transistors T 1 and T 2 differ by 1K, the difference in the emitter-base voltages changes by approximately 2 mV, ie by approximately 4%. It is therefore necessary to arrange the transistors T 1 and T 2 exactly on isotherms of the largest heat source of the corresponding circuit in an implemented circuit layout. However, modern layout with reusable circuit and layout blocks prohibits the circuit from being adapted to the respective location of the existing heat sources. In addition, the number of heat sources in smart power ICs is increasing steadily, so that the course of the corresponding isotherms of these heat sources cannot be clearly determined. Furthermore, due to the large number of components of the bandgap reference voltage source that are critical with regard to the mating properties, an individual adjustment of the circuit is generally required, which can be done, for example, with the aid of so-called "zapping" zener diodes, which break through in the reverse direction when a high external voltage is applied and a generate low-resistance connection. However, this increases the complexity of the circuitry.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Referenzspannung-Erzeugungsschaltung der eingangs beschriebenen Art anzugeben, welche weniger empfindlich gegenüber Temperaturschwankungen und Bauelementetoleranzen ist.The invention is therefore based on the object of specifying a reference voltage generating circuit of the type described at the outset, which is less sensitive to temperature fluctuations and component tolerances.
Diese Aufgabe wird gemäß der vorliegenden Erfindung durch eine Referenzspannung-Erzeugungsschaltung mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche beschreiben jeweils vorteilhafte und bevorzugte Ausführungsformen der vorliegenden Erfindung, die ihrerseits zu einer möglichst einfach zu realisierenden Schaltung bzw. zu einer großtmöglichen Temperaturstabilität beitragen.This object is achieved according to the present invention by a reference voltage generation circuit with the features of claim 1 solved. The subclaims each describe advantageous and preferred embodiments of the present invention, which in turn contribute to a circuit that is as simple to implement as possible or to the greatest possible temperature stability.
Gemäß der vorliegenden Erfindung wird die Referenzspannung weiterhin durch Addieren eines Spannungsanteils mit einem negativen Temperaturkoeffizienten mit einem Spannungsanteil mit einem positiven Temperaturkoeffizienten erzeugt. Der dem negativen Temperaturkoeffizienten unterliegende Anteil umfaßt erfindungsgemäß jedoch mehrere Flußspannungen entsprechender pn-Übergänge, und der Anteil mit dem positiven Temperaturkoeffizient umfaßt wiederum eine Differenzspannung, wobei jede zur Differenzspannung beitragende Spannung einer Summenspannung aus mehreren Flußspannungen entsprechender pn-Übergänge entspricht. Insbesondere wird als Differenzspannung, welche den Anteil der gewünschten Referenzspannung mit positivem Temperaturkoeffizienten darstellt, die Differenz zweier Summen aus mehreren Flußspannungen mit unterschiedlicher Stromdichte durchflossener pn-Übergänge verwendet. In diesem Fall liefert die Referenzspannungsquelle eine Ausgangsspannung, die ein Vielfaches der gewöhnlichen Bandgap-Referenzspannung beträgt. Diese Spannung ist für die meisten Anwendungen ausreichend hoch, so daß beispielsweise ein Spannungsteiler zum Hochmultiplizieren der Referenzspannung entfallen kann.According to the present invention, the reference voltage is further generated by adding a voltage component with a negative temperature coefficient to a voltage component with a positive temperature coefficient. According to the invention, however, the portion subject to the negative temperature coefficient comprises a plurality of forward voltages of corresponding pn junctions, and the portion with the positive temperature coefficient in turn comprises a differential voltage, each voltage contributing to the differential voltage corresponding to a sum voltage from a plurality of forward voltages of corresponding pn junctions. In particular, the difference voltage, which represents the proportion of the desired reference voltage with a positive temperature coefficient, is the difference between two sums of several forward voltages with different current densities through pn junctions. In this case, the reference voltage source provides an output voltage that is a multiple of the usual bandgap reference voltage. This voltage is sufficiently high for most applications, so that, for example, a voltage divider for high multiplication of the reference voltage can be omitted.
Durch entsprechende Dimensionierung der erfindungsgemäßen Referenzspannungsquelle kann erreicht werden, daß eine Abweichung der Temperatur um 1K eines der verwendeten Transistoren lediglich zu 1,3 % in die Differenz der Summenspannungen eingeht. Des weiteren ist es möglich, die Transistoren im Layout der erfindungsgemäßen Referenzspannungsquelle derart überkreuz anzuordnen, daß lineare Temperaturgradienten aus beliebiger Richtung die Ausgangsspannung der Referenzspannungsquelle nicht verfälschen können.By appropriate dimensioning of the reference voltage source according to the invention it can be achieved that a deviation of 1K in the temperature of one of the transistors used is only 1.3% of the difference in the total voltages. Furthermore, it is possible to arrange the transistors in the layout of the reference voltage source according to the invention in such a way that linear temperature gradients cannot falsify the output voltage of the reference voltage source from any direction.
Gemäß einem bevorzugten Ausführungsbeispiel werden Schaltungsmittel eingesetzt, die die noch verbleibende parabelförmige Temperaturabhängigkeit der erzeugten Referenzspannung kompensieren, so daß die ausgegebene Referenzspannung im Idealfall innerhalb eines 0,03%-Fensters temperaturstabil erzeugt werden kann.According to a preferred embodiment, circuit means are used which compensate for the remaining parabolic temperature dependency of the generated reference voltage, so that the output reference voltage can ideally be generated in a temperature-stable manner within a 0.03% window.
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
- Fig. 1 zeigt ein vereinfachtes Schaltbild eines bevorzugten Ausführungsbeispiels der erfindungsgemäßen Referenzspannungsquelle,
- Fig. 2 zeigt ein vereinfachtes Schaltbild einer bekannten Referenzspannungsquelle,
- Fig. 3 zeigt ein verfeinertes Ausführungsbeispiel der erfindungsgemäßen Referenzspannungsquelle, und
- Fig. 4 zeigt eine weiter verfeinerte und tatsächlich realisierte Ausgestaltung der in Fig. 3 dargestellten Referenzspannungsquelle der vorliegenden Erfindung.
- 1 shows a simplified circuit diagram of a preferred exemplary embodiment of the reference voltage source according to the invention,
- 2 shows a simplified circuit diagram of a known reference voltage source,
- 3 shows a refined embodiment of the reference voltage source according to the invention, and
- FIG. 4 shows a further refined and actually implemented embodiment of the reference voltage source of the present invention shown in FIG. 3.
Bei der in Fig. 1 gezeigten vereinfachten Schaltung, die einem bevorzugten Ausführungsbeispiel einer Referenzspannungsquelle gemäß der vorliegenden Erfindung entspricht, wird wiederum das zuvor beschriebene, an sich bekannte Prinzip verwendet, die Referenzspannung durch Addieren eines Anteils mit negativem Temperaturkoeffizienten und eines Anteil mit positivem Temperaturkoeffizienten zu erzeugen, wobei durch geeignete Schaltungsdimensionierung der negative Temperaturkoeffizient durch den positiven Temperaturkoeffizienten kompensiert werden kann. Gemäß dem in Fig. 1 dargestellten Ausführungsbeispiel wird jedoch als derjenige Anteil der erzeugten Referenzspannung, der einem positiven Temperaturkoeffizienten unterliegt, die Differenz zweier Summenspannungen aus mehreren Flußspannungen von mit unterschiedlichen Stromdichten durchflossenen pn-Übergängen verwendet. Des weiteren umfaßt der Anteil, der dem negativen Temperaturkoeffizienten unterliegt, die Summe von Flußspannungen mehrerer pn-Übergänge.In the simplified circuit shown in FIG. 1, which corresponds to a preferred exemplary embodiment of a reference voltage source according to the present invention, the previously described principle known per se is used in turn to add the reference voltage by adding a component with a negative temperature coefficient and a component with a positive temperature coefficient generate, whereby by suitable circuit dimensioning the negative temperature coefficient can be compensated for by the positive temperature coefficient. According to the exemplary embodiment shown in FIG. 1, however, the portion of the generated reference voltage which is subject to a positive temperature coefficient is the difference between two summation voltages from a plurality of forward voltages of pn junctions through which different current densities flow. Furthermore, the portion that is subject to the negative temperature coefficient comprises the sum of the forward voltages of several pn junctions.
Die in Fig. 1 gezeigte Schaltung umfaßt wiederum npn-Transistoren T1 und T2, deren Emitterflächen AE1 und AE2 im Verhältnis 1:n1 stehen. Die Transistoren T1 und T2 werden mit Kollektorströmen I1 bzw. I2 betrieben, die von einer Stromspiegelschaltung S1 verglichen werden, wobei die Stromstärken dieser Ströme I1 und I2 durch die Transistoren T1 und T2 vorgegeben sind. Die Ströme I1 und I2 stehen zueinander im Verhältnis
Mit dem Widerstand R3 ist eine Diode D bzw. ein entsprechender pn-Übergang gekoppelt. Die Spannung am Widerstand R4 entspricht der Differenz aus den Emitter-Basis-Spannungen der Transistoren T3 und T4. Damit das Verhältnis der Emitterströme dieser Transistoren temperaturstabil ist, muß auch die Spannung am Widerstand R3 proportional zu Temperatur sein. Dies wird mit Hilfe der Diode D erreicht, da die Spannung an R1 proportional zur Temperatur ansteigt und sich die Flußspannungen des Bipolartransistors T1 und der Diode D nicht wesentlich unterscheiden, so daß die Spannung am Widerstand R3 wunschgemäß proportional zur Temperatur verläuft.A diode D or a corresponding pn junction is coupled to the resistor R 3 . The voltage across resistor R 4 corresponds to the difference between the emitter-base voltages of transistors T 3 and T 4 . So that the ratio of the emitter currents of these transistors is temperature stable, the voltage across resistor R 3 must also be proportional to temperature. This is achieved with the aid of the diode D, since the voltage at R 1 increases in proportion to the temperature and the forward voltages of the bipolar transistor T 1 and the diode D do not differ significantly, so that the voltage across the resistor R 3, as desired, is proportional to the temperature.
Bei der in Fig. 1 gezeigten Referenzspannungsquelle wird die gewünschte Referenz- bzw. Ausgangsspannung am gemeinsamen Basisanschluß der Bipolartransistoren T3 und T4 abgegriffen. Diese Ausgangsspannung entspricht der Summenspannung aus den Basis-Emitter-Spannungen der Transistoren T3 und T1 sowie der am Knotenpunkt zwischen den Widerständen R1 und R2 anliegenden Spannung. Die Basis-Emitter-Spannungen der Transistoren T3 und T1 besitzen bekanntermaßen einen negativen Temperaturkoeffizienten von ca. -2mV/K. Die am Knotenpunkt zwischen den Widerständen R1 und R2 anliegende Spannung wird von den Basis-Emitter-Spannungen der Transistoren T1-T4 bestimmt und entspricht insbesondere der Differenz einer ersten Spannung, welche von der Summe der Flußspannungen der mit einer hohen Stromdichte durchflossenen Transistoren T1 und T3 abhängt, und einer zweiten Spannung, die von der Summe der Flußspannungen der mit einer geringen Stromdichte durchflossenen Bipolartransistoren T2 und T4 abhängt. Das heißt die am Knotenpunkt zwischen den Widerständen R1 und R2 anliegende Spannung hängt von der Differenz zwischen der Summe der Basis-Emitter-Spannungen der Transistoren T1 und T3 und der Summe der Basis-Emitter-Spannungen der Transistoren T2 und T4 ab. Durch geeignete Dimensionierung der in Fig. 1 gezeigten Bauelemente bzw. der den einzelnen Bipolartransistoren zugeführten Ströme kann erreicht werden, daß die am knotenpunkt zwischen den Widerstanden R1 und R2 anliegende Differenzspannung einen derartigen positiven Temperaturkoeffizienten aufweist, welche den negativen Temperaturkoeffizienten der Basis-Emitter-Spannungen der Bipolartransistoren T3 und T1 kompensiert. In diesem Fall muß der positive Temperaturkoeffizient der am Widerstand R1 abfallenden Differenzspannung so hoch wie der negative Temperaturkoeffizient der Basis-Emitter-Spannungen der Transistoren T3 und T1 sein und demzufolge ca. +4mV/K betragen. Somit muß bei Raumtemperatur (300K) an R1 ein Spannungsabfall von ca. 1,2V auftreten, so daß die schließlich am gemeinsamen Basisanschluß der Bipolartransistoren T3 und T4 abgegriffene Ausgangsspannung in etwa 2,5V (=1,2V + 2x650mV) beträgt, was doppelt so hoch wie bei der in Fig. 2 gezeigten bekannten Referenzspannungsquelle ist, so daß es sich bei der in Fig. 1 gezeigten Referenzspannungsquelle im Prinzip um eine Doppel-Bandgap-Referenzspannungsquelle handelt.In the reference voltage source shown in FIG. 1, the desired reference or output voltage is tapped at the common base connection of the bipolar transistors T 3 and T 4 . This output voltage corresponds to the total voltage from the base-emitter voltages of the transistors T 3 and T 1 and the voltage present at the node between the resistors R 1 and R 2 . The base-emitter voltages of the transistors T 3 and T 1 are known to have a negative temperature coefficient of approximately -2 mV / K. The voltage present at the node between the resistors R 1 and R 2 is determined by the base-emitter voltages of the transistors T 1 -T 4 and corresponds in particular to the difference between a first voltage and the sum of the forward voltages of those through which a high current density flows Transistors T 1 and T 3 depends, and a second voltage, which depends on the sum of the forward voltages of the bipolar transistors T 2 and T 4 through which a low current density flows. That is, the voltage present at the node between the resistors R 1 and R 2 depends on the difference between the sum of the base-emitter voltages of the transistors T 1 and T 3 and the sum of the base-emitter voltages of the transistors T 2 and T 4 from. By suitable Dimensioning of the components shown in Fig. 1 or the currents supplied to the individual bipolar transistors can be achieved that the differential voltage present at the node between the resistors R 1 and R 2 has such a positive temperature coefficient which the negative temperature coefficient of the base-emitter voltages the bipolar transistors T 3 and T 1 compensated. In this case, the positive temperature coefficient of the differential voltage drop across the resistor R 1 must be as high as the negative temperature coefficient of the base-emitter voltages of the transistors T 3 and T 1 and consequently be approximately + 4mV / K. Thus, at room temperature (300K), a voltage drop of approximately 1.2 V must occur at R 1 , so that the output voltage finally tapped at the common base connection of the bipolar transistors T 3 and T 4 is approximately 2.5 V (= 1.2 V + 2x650 mV) , which is twice as high as in the known reference voltage source shown in FIG. 2, so that the reference voltage source shown in FIG. 1 is in principle a double bandgap reference voltage source.
Die an der gemeinsamen Basis der Transistoren T3 und T4 anliegende Spannung von ca. 2,5 V ist für die meisten Anwendungen ausreichend hoch, so daß im Prinzip der Einsatz eines Spannungsteilers mit Widerständen R5 und R6 zum Hochmultiplizieren der Referenzspannung entfallen kann. Daher ist bei der in Fig. 1 gezeigten Schaltung der Spannungsteiler mit den Widerständen R5 und R6 lediglich gestrichelt dargestellt.The voltage of approximately 2.5 V present at the common base of the transistors T 3 and T 4 is sufficiently high for most applications, so that in principle the use of a voltage divider with resistors R 5 and R 6 for high multiplication of the reference voltage can be omitted . Therefore, in the circuit shown in FIG. 1, the voltage divider with the resistors R 5 and R 6 is only shown in broken lines.
Selbstverständlich kann die in Fig. 1 gezeigte Schaltung auf einfache Weise dahingehend abgewandelt werden, daß nicht nur die Differenz aus zwei Summenspannungen gebildet wird, sondern daß durch den Einsatz einer entsprechend größeren Anzahl von Bipolartransistoren die Differenz aus mehreren Summenspannungen gebildet wird, wobei jeder dieser Summenspannungen einer Addition von sogar drei oder mehr Flußspannungen von mit unterschiedlichen Stromdichten durchflossenen pn-Übergängen entspricht. Auf diese Weise kann die in Fig. 1 gezeigte Schaltung derart abgewandelt werden, daß an dem Basisanschluß des Transistors T3 allgemein eine Spannung abgegriffen wird, die einem Mehrfachen des Bandabstands von Silizium entspricht.Of course, the circuit shown in Fig. 1 can be modified in a simple manner such that not only the difference is formed from two summation voltages, but that the difference is formed from several summation voltages by using a correspondingly larger number of bipolar transistors, each of these summation voltages corresponds to an addition of even three or more forward voltages of pn junctions through which different current densities flow. In this way, the circuit shown in FIG. 1 can be modified in such a way that a voltage which corresponds to a multiple of the bandgap of silicon is generally tapped at the base terminal of the transistor T 3 .
Hinsichtlich der in Fig. 1 gezeigten Schaltung ist zu bemerken, daß der Emitterstrom des Bipolartransistors T4 sehr klein gewählt werden kann, da der in sperrschichtisolierten Bipolartechnologien größte thermische Leckstrom vom Kollektor eines jeden npn-Transistors zum Substrat im vorliegenden Fall nicht in den Emitterstrom des entsprechenden npn-Transistors eingeht. Betragen beispielsweise die Emitterströme der Bipolartransistoren T3 und T4 10 µA bzw. 0,5 µA (Verhältnis 1:20), die Emitterflächenverhältnisse n1 und n2 jeweils 4 und sind die Kollektorströme I1, I2 der Bipolartransistoren T1, T2 gleich groß (d.h. m1=1), beträgt die zuvor erläuterte Differenzspannung der Summen der einzelnen Flußspannungen ca. 150 mV. Eine Abweichung der Temperatur eines der Bipolartransistoren T1 - T4 um 1K geht nur noch zu 1,3 % in dieser Differenzspannung ein, so daß die in Fig. 1 gezeigte Referenzspannungsschaltung weniger empfindlich gegenüber Temperaturschwankungen bzw. Temperaturgradienten ist. Zudem ist es einfacher, die in Fig. 1 gezeigten Transistoren im Layout der tatsächlich realisierten Schaltung so überkreuz anzuordnen, daß lineare Temperaturgradienten aus beliebiger Richtung die Ausgangsspannung am gemeinsamen Basisanschluß der Bipolartransistoren T3 und T4 nicht verfälschen können.With regard to the circuit shown in FIG. 1, it should be noted that the emitter current of the bipolar transistor T 4 can be chosen to be very small, since the greatest thermal leakage current from the collector of each npn transistor to the substrate in barrier-layer-insulated bipolar technologies does not enter the emitter current of the in the present case corresponding npn transistor is received. For example, if the emitter currents of the bipolar transistors T 3 and T 4 are 10 μA and 0.5 μA (ratio 1:20), the emitter area ratios n 1 and n 2 are each 4 and the collector currents I 1 , I 2 of the bipolar transistors T 1 , T 2 of the same size (ie m 1 = 1), the previously explained differential voltage of the sums of the individual forward voltages is approximately 150 mV. A deviation of the temperature of one of the bipolar transistors T 1 - T 4 by 1K is only 1.3% in this differential voltage, so that the reference voltage circuit shown in Fig. 1 is less sensitive to temperature fluctuations or temperature gradients. In addition, it is simpler to arrange the transistors shown in FIG. 1 crosswise in the layout of the circuit actually implemented in such a way that linear temperature gradients from any direction cannot falsify the output voltage at the common base connection of the bipolar transistors T 3 and T 4 .
Durch eine geschickte Wahl der einzelnen in Fig. 1 gezeigten Komponenten kann das Widerstandsverhältnis R1:R2 auf 4:1 festgelegt werden. Dies ist ein Verhältnis, welches sich besonders genau einstellen läßt. Der Stromspiegel S1 kann besonders genau gefertigt werden, wenn das Stromverhältnis I1:I2 1:1 beträgt, d. h. m1=1.The resistance ratio R 1 : R 2 can be set to 4: 1 by a clever choice of the individual components shown in FIG. 1. This is a ratio that can be adjusted particularly precisely. The current mirror S 1 can be special be manufactured precisely if the current ratio I 1 : I 2 is 1: 1, ie m 1 = 1.
Wie bei der in Fig. 2 gezeigten bekannten Referenzspannungsquelle ist auch bei der in Fig. 1 gezeigten Schaltung wieder ein Stellglied ST mit dem Ausgangsanschluß des Stromspiegels S1 gekoppelt, welches abhängig von dem Vergleichsergebnis des Stromspiegels S1 angesteuert wird, um bei einer ungleichmäßigen Belastung dieses Ausgangsanschlusses eine Nachregelung der Ausgangsspannung Vref zu ermöglichen.As in the known reference voltage source shown in FIG. 2, an actuator ST is again coupled to the output terminal of the current mirror S 1 in the circuit shown in FIG. 1, which is controlled as a function of the comparison result of the current mirror S1 in order to avoid an uneven load on the latter Output connection to allow readjustment of the output voltage V ref .
Anhand Fig. 1 wurde das der vorliegenden Erfindung zugrundeliegende allgemeine Prinzip erläutert. Hingegen zeigt Fig. 3 ein verfeinertes Ausführungsbeispiel der erfindungsgemäßen Referenzspannungsquelle, wobei die sich entsprechenden Bauteile mit denselben Bezugszeichen versehen sind und auf eine wiederholte Beschreibung dieser Bauteile verzichtet wird.The general principle on which the present invention is based was explained with reference to FIG. 1. 3 shows a refined exemplary embodiment of the reference voltage source according to the invention, the corresponding components being provided with the same reference numerals and a repeated description of these components being dispensed with.
Gemäß Fig. 3 wird eine weitere Stromspiegelschaltung S2 verwendet, die Kollektorströme I7 bzw. I8 von weiteren Transistoren T7 und T8 vergleicht und abhängig von dem Vergleichsergebnis das Stellglied ST ansteuert. Diese Bipolartransistoren T3 und T4 bilden eine Verstärkerstufe, um die Stromaufnahme der in Fig. 3 gezeigten Referenzspannungsquelle möglichst gering zu halten. Beim Stromspiegel S1 entsprechen die Eingänge den Ausgängen und sind mit den Basisanschlüssen der Transistoren T7 und T8 verbunden. Ein weiterer npn-Bipolartransistor T5 dient zusammen mit einer weiteren Stromspiegelschaltung S3 zum Kompensieren der durch den Basisstrom des Transistors T2 entstehenden Fehler. Durch den Einsatz des in Fig. 3 gezeigten npn-Bipolartransistors T6 kann erreicht werden, daß sich die thermischen Leckströme der Bipolartransistoren T1 und T5 von ihren Kollektoren zum Substrat gegenüber den thermischen Leckströmen der Bipolartransistoren T2 und T6 aufheben, falls das Übersetzungsverhältnis des Stromspiegels S1 1:1 beträgt. Der Bipolartransistor T5 besitzt eine der Emitterfläche des Bipolartransistors T2 entsprechende Emitterfläche, während der Bipolartransistor T6 eine der Emitterfläche des Bipolartransistors T1 entsprechende Emitterfläche aufweist, d.h. die Emitterfläche des Bipolartransistors T5 ist n1-mal so groß wie die Emitterfläche des Bipolartransistors T6.According to FIG. 3, a further current mirror circuit S 2 is used, which compares collector currents I 7 and I 8 from further transistors T 7 and T 8 and controls the actuator ST depending on the comparison result. These bipolar transistors T 3 and T 4 form an amplifier stage in order to keep the current consumption of the reference voltage source shown in FIG. 3 as low as possible. With current mirror S 1 , the inputs correspond to the outputs and are connected to the base connections of transistors T 7 and T 8 . Another npn bipolar transistor T 5 , together with another current mirror circuit S 3, serves to compensate for the errors arising from the base current of transistor T 2 . By using the npn bipolar transistor T 6 shown in FIG. 3 it can be achieved that the thermal leakage currents of the bipolar transistors T 1 and T 5 from their collectors to the substrate compared to the thermal leakage currents of the bipolar transistors T 2 and T 6 cancel if the ratio of the current mirror S 1 is 1: 1. The bipolar transistor T 5 has an emitter area corresponding to the emitter area of the bipolar transistor T 2 , while the bipolar transistor T 6 has an emitter area corresponding to the emitter area of the bipolar transistor T 1 , ie the emitter area of the bipolar transistor T 5 is n 1 times as large as the emitter area of the bipolar transistor M 6 .
Mit dem Widerstand R3 ist eine Schaltungsanordnung gekoppelt, welche neben der bereits in Fig. 1 dargestellten Diode D entsprechend Fig. 3 verschaltete Widerstände R7 - R9 sowie einen weiteren Bipolartransistor T9 aufweist. Diese Schaltungsanordnung funktioniert folgendermaßen. Bei tiefen Temperaturen ist der Stromfluß über den Widerstand R3 am kleinsten und die Flußspannungen sämtlicher pn-Übergänge sind so hoch, daß im wesentlichen die Widerstände R7 und R8 das Verhalten dieser Schaltungsanordnung bestimmen. Bei mittleren Temperaturen dominiert der über die Diode D und den Widerstand R9 führende Pfad, wobei in diesem Fall der Widerstand des Ersatzschaltbildes dieser Schaltungsanordnung aufgrund der Parallelschaltung von R8 und R7 zu R9 kleiner ist und die Diodenspannung um den Faktor (R8+R7)/(R7+R8+R9) heruntergeteilt wird. Bei hohen Temperaturen dominiert hingegen der über den Transistor T9 führende Pfad, wobei das Ersatzschaltbild eine um den Faktor (R7+R8)/R7 heraufgesetzte Diodenflußspannung ohne Serienwiderstand aufweist. Damit ergibt sich am Kollektor des Bipolartransistors T9 ein abschnittsweise linearer Temperaturgang, der näherungsweise gemäß einer Parabelfunktion verläuft, so daß bei richtiger Dimensionierung dieser Schaltungsanordnung die trotz der Temperaturstabilisierung in Folge der Differenzspannungsbildung noch verbleibende parabelförmige Temperaturabhängigkeit der Referenzspannung ausgeglichen werden kann. Die erzeugte Referenzspannung kann somit im Idealfall innerhalb eines 0,03%-Fensters temperaturstabil erzeugt werden. Schließlich ist in Fig. 3 zudem ein Spannungsteiler mit Widerständen R5 und R6 an den gemeinsamen Basisanschluß der Transistoren T3 und T4 angeschlossen, um die Basisspannung dieser Transistoren hochzumultiplizieren und die gewünschte Referenzspannung Vref zu erhalten.A circuit arrangement is coupled to the resistor R 3 , which, in addition to the diode D already shown in FIG. 1 in accordance with FIG. 3, has connected resistors R 7 -R 9 and a further bipolar transistor T 9 . This circuit arrangement works as follows. At low temperatures, the current flow through the resistor R 3 is smallest and the flow voltages of all pn junctions are so high that the resistors R7 and R8 essentially determine the behavior of this circuit arrangement. At medium temperatures, the path leading via the diode D and the resistor R 9 dominates , in which case the resistance of the equivalent circuit diagram of this circuit arrangement is lower due to the parallel connection of R 8 and R 7 to R 9 and the diode voltage by the factor (R 8 + R 7 ) / (R 7 + R 8 + R 9 ) is divided down. At high temperatures, on the other hand, the path leading through transistor T 9 dominates, the equivalent circuit diagram having a diode forward voltage increased by the factor (R 7 + R 8 ) / R 7 without series resistance. This results in a sectionally linear temperature response at the collector of the bipolar transistor T 9 , which proceeds approximately according to a parabolic function, so that, with the correct dimensioning of this circuit arrangement, the parabolic temperature dependence of the reference voltage that remains despite the temperature stabilization as a result of the differential voltage formation can be compensated. The reference voltage generated can thus ideally be within of a 0.03% window can be generated in a temperature-stable manner. Finally, in FIG. 3, a voltage divider with resistors R 5 and R 6 is also connected to the common base connection of the transistors T 3 and T 4 in order to multiply the base voltage of these transistors and to obtain the desired reference voltage V ref .
Fig. 4 zeigt ein Beispiel einer auf einem Testchip realisierten Doppel-Bandgap-Referenzspannungsquelle gemäß der vorliegenden Erfindung. Dabei sind wiederum diejenigen Bauteile, die den in Fig. 3 gezeigten Bauteilen entsprechen, mit denselben Bezugszeichen versehen und werden nicht erneut erläutert.FIG. 4 shows an example of a double band gap reference voltage source implemented on a test chip according to the present invention. Again, those components that correspond to the components shown in FIG. 3 are given the same reference numerals and will not be explained again.
Gemäß Fig. 4 bilden zwei p-Kanal-MOS-Feldeffekttransistoren M1 und M2 den in Fig. 3 gezeigten Stromspiegel S1, wobei der gemeinsame Gateanschluß dieser Transistoren M1 und M2 an den gemeinsamen Emitteranschluß der Transistoren T7 und T8 gelegt ist. Der in Fig. 3 gezeigte Stromspiegel S3 umfaßt p-Kanal-MOS-Feldeffekttransistoren M3 - M6 sowie n-Kanal-MOS-Feldeffekttransistoren M7 - M10. Die Stromspiegelschaltung S2 ist hingegen durch einen pnp-Bipolartransistor T11 realisiert. Gemäß Fig. 4 entspricht das Bezugspotential der Stromspiegel S1 und S3 dem Eingangspotential des Stellglieds ST, welches durch einen Stelltransistor M11 realisiert ist. Des weiteren ist das Bezugspotential des Stromspiegels S2 mit dem Bezugspotential des Stelltransistors M11 verbunden. Der zuvor beschriebene Zusammenhang der Bezugspotentiale ist jedoch nicht zwingend erforderlich.4, two p-channel MOS field effect transistors M 1 and M 2 form the current mirror S 1 shown in FIG. 3, the common gate connection of these transistors M 1 and M 2 to the common emitter connection of transistors T 7 and T 8 is laid. . The current mirror S 3 shown in Figure 3 includes p-channel MOS field effect transistors M 3 - M 6 and n-channel MOS field effect transistors M 7 - M 10. The current mirror circuit S 2 , however, is implemented by a pnp bipolar transistor T 11 . 4, the reference potential of the current mirrors S 1 and S 3 corresponds to the input potential of the actuator ST, which is realized by an actuating transistor M 11 . Furthermore, the reference potential of the current mirror S 2 is connected to the reference potential of the control transistor M 11 . However, the previously described relationship of the reference potentials is not absolutely necessary.
Der zusätzlich in Fig. 4 gezeigte Widerstand R10 dient zur Kompensation des thermischen Leckstroms des Widerstands R4. Die Bauelemente T12, T13, C1 - C3 und R11 dienen zur Stabilisierung der Schaltung.The resistor R 10 additionally shown in FIG. 4 serves to compensate for the thermal leakage current of the resistor R 4 . The components T 12 , T 13 , C 1 - C 3 and R 11 serve to stabilize the circuit.
Schließlich ist die in Fig. 3 gezeigte Diode D durch den pn-Übergang eines weiteren Bipolartransistors T10 realisiert, dessen Basis-Kollektor-Strecke kurzgeschlossen ist. Ansonsten entspricht die Funktionsweise der in Fig. 4 gezeigten Referenzspannungsquelle derjenigen der in Fig. 1 und 3 gezeigten Schaltungen.Finally, the diode D shown in FIG. 3 is realized by the pn junction of a further bipolar transistor T 10 , the base-collector path of which is short-circuited. Otherwise, the mode of operation of the reference voltage source shown in FIG. 4 corresponds to that of the circuits shown in FIGS. 1 and 3.
Claims (19)
wobei die Referenzspannung (Vref) als Summe aus der ersten Spannung der ersten Schaltungsmittel (T1, T3) und der Differenzspannung der zweiten Schaltungsmittel (T1 - T4, R1 - R4) abgreifbar ist,
dadurch gekennzeichnet,
wherein the reference voltage (V ref ) can be tapped as the sum of the first voltage of the first switching means (T 1 , T 3 ) and the differential voltage of the second switching means (T 1 - T 4 , R 1 - R 4 ),
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
gekennzeichnet durch
marked by
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
gekennzeichnet durch
marked by
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19818464 | 1998-04-24 | ||
DE19818464A DE19818464A1 (en) | 1998-04-24 | 1998-04-24 | Reference voltage generation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0952508A1 true EP0952508A1 (en) | 1999-10-27 |
EP0952508B1 EP0952508B1 (en) | 2001-08-29 |
Family
ID=7865738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99105491A Expired - Lifetime EP0952508B1 (en) | 1998-04-24 | 1999-03-17 | Generating circuit for reference voltage |
Country Status (5)
Country | Link |
---|---|
US (1) | US6046578A (en) |
EP (1) | EP0952508B1 (en) |
DE (2) | DE19818464A1 (en) |
ES (1) | ES2163909T3 (en) |
PT (1) | PT952508E (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101336400B (en) * | 2005-12-02 | 2010-09-01 | 德州仪器公司 | Precision reversed bandgap voltage reference circuits and method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6292050B1 (en) | 1997-01-29 | 2001-09-18 | Cardiac Pacemakers, Inc. | Current and temperature compensated voltage reference having improved power supply rejection |
US6154018A (en) * | 1999-09-01 | 2000-11-28 | Vlsi Technology, Inc. | High differential impedance load device |
US6381491B1 (en) | 2000-08-18 | 2002-04-30 | Cardiac Pacemakers, Inc. | Digitally trimmable resistor for bandgap voltage reference |
US6340882B1 (en) * | 2000-10-03 | 2002-01-22 | International Business Machines Corporation | Accurate current source with an adjustable temperature dependence circuit |
US6380723B1 (en) * | 2001-03-23 | 2002-04-30 | National Semiconductor Corporation | Method and system for generating a low voltage reference |
US6677808B1 (en) | 2002-08-16 | 2004-01-13 | National Semiconductor Corporation | CMOS adjustable bandgap reference with low power and low voltage performance |
US7088085B2 (en) * | 2003-07-03 | 2006-08-08 | Analog-Devices, Inc. | CMOS bandgap current and voltage generator |
US7834610B2 (en) * | 2007-06-01 | 2010-11-16 | Faraday Technology Corp. | Bandgap reference circuit |
GB2452324A (en) * | 2007-09-03 | 2009-03-04 | Adaptalog Ltd | Temperature sensor or bandgap regulator |
JP5072718B2 (en) * | 2008-06-02 | 2012-11-14 | 株式会社東芝 | Signal receiving device |
US8981736B2 (en) * | 2010-11-01 | 2015-03-17 | Fairchild Semiconductor Corporation | High efficiency, thermally stable regulators and adjustable zener diodes |
US9448579B2 (en) * | 2013-12-20 | 2016-09-20 | Analog Devices Global | Low drift voltage reference |
EP3021189B1 (en) * | 2014-11-14 | 2020-12-30 | ams AG | Voltage reference source and method for generating a reference voltage |
KR20160072703A (en) * | 2014-12-15 | 2016-06-23 | 에스케이하이닉스 주식회사 | Reference voltage generator |
DE102021134256A1 (en) | 2021-12-22 | 2023-06-22 | Infineon Technologies Ag | start-up circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3119048A1 (en) * | 1980-05-28 | 1982-03-25 | Ebauches Electroniques S.A., 2074 Marin, Neuchâtel | "VOLTAGE LEVEL DETECTOR" |
WO1993009597A1 (en) * | 1991-10-29 | 1993-05-13 | Lattice Semiconductor Corporation | Temperature compensated cmos voltage to current converter |
EP0676856A2 (en) * | 1994-04-11 | 1995-10-11 | Rockwell International Corporation | Efficient, well regulated, DC-DC power supply up-converter for CMOS integrated circuits |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5927326A (en) * | 1982-08-02 | 1984-02-13 | Hitachi Ltd | Constant-voltage circuit |
JPS6269308A (en) * | 1985-09-17 | 1987-03-30 | シ−メンス、アクチエンゲゼルシヤフト | Reference voltage generation circuit apparatus |
BE1007853A3 (en) * | 1993-12-03 | 1995-11-07 | Philips Electronics Nv | BANDGAPE REFERENCE FLOW SOURCE WITH COMPENSATION FOR DISTRIBUTION IN SATURATION FLOW OF BIPOLAR TRANSISTORS. |
JP3347896B2 (en) * | 1994-10-21 | 2002-11-20 | 日本オプネクスト株式会社 | Constant voltage source circuit |
FR2737319B1 (en) * | 1995-07-25 | 1997-08-29 | Sgs Thomson Microelectronics | REFERENCE GENERATOR OF INTEGRATED CIRCUIT VOLTAGE AND / OR CURRENT |
FR2750514A1 (en) * | 1996-06-26 | 1998-01-02 | Philips Electronics Nv | VOLTAGE REGULATION DEVICE WITH LOW INTERNAL ENERGY DISSIPATION |
-
1998
- 1998-04-24 DE DE19818464A patent/DE19818464A1/en not_active Withdrawn
-
1999
- 1999-03-17 EP EP99105491A patent/EP0952508B1/en not_active Expired - Lifetime
- 1999-03-17 PT PT99105491T patent/PT952508E/en unknown
- 1999-03-17 DE DE59900215T patent/DE59900215D1/en not_active Expired - Lifetime
- 1999-03-17 ES ES99105491T patent/ES2163909T3/en not_active Expired - Lifetime
- 1999-04-26 US US09/299,363 patent/US6046578A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3119048A1 (en) * | 1980-05-28 | 1982-03-25 | Ebauches Electroniques S.A., 2074 Marin, Neuchâtel | "VOLTAGE LEVEL DETECTOR" |
WO1993009597A1 (en) * | 1991-10-29 | 1993-05-13 | Lattice Semiconductor Corporation | Temperature compensated cmos voltage to current converter |
EP0676856A2 (en) * | 1994-04-11 | 1995-10-11 | Rockwell International Corporation | Efficient, well regulated, DC-DC power supply up-converter for CMOS integrated circuits |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101336400B (en) * | 2005-12-02 | 2010-09-01 | 德州仪器公司 | Precision reversed bandgap voltage reference circuits and method |
Also Published As
Publication number | Publication date |
---|---|
US6046578A (en) | 2000-04-04 |
ES2163909T3 (en) | 2002-02-01 |
DE19818464A1 (en) | 1999-10-28 |
EP0952508B1 (en) | 2001-08-29 |
DE59900215D1 (en) | 2001-10-04 |
PT952508E (en) | 2002-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19530472B4 (en) | Constant current circuit | |
EP0952508B1 (en) | Generating circuit for reference voltage | |
DE1813326C3 (en) | Integrated circuit for biasing the base-emitter path of a transistor using a temperature-dependent bias | |
EP0421516B1 (en) | Power supply arrangement with voltage regulation and current limiting | |
EP0160836B1 (en) | Temperature sensor | |
DE2154904B2 (en) | Temperature compensated DC reference voltage source | |
DE102017125831B4 (en) | Band gap reference voltage circuit, cascaded band gap reference voltage circuit and method for generating a temperature stable reference voltage | |
DE3836338A1 (en) | TEMPERATURE COMPENSATED POWER SOURCE CIRCUIT WITH TWO CONNECTIONS | |
DE1906213B2 (en) | Current control circuit | |
DE2440795B2 (en) | Temperature-dependent voltage transmitter | |
DE3241364A1 (en) | DIGITALLY CONTROLLED PRECISION POWER SOURCE WITH AN OPEN COMPENSATION CIRCUIT | |
EP0080567A2 (en) | Semiconducter integrated current source | |
DE102011001346A1 (en) | Low noise bandgap references | |
DE2260405B2 (en) | Reference voltage generator circuit | |
DE102019124383A1 (en) | Proportional-to-absolute temperature circuit, method, voltage reference and voltage reference circuit | |
DE102005033434A1 (en) | Temperature-stable reference voltage generating circuit, has amplifier arrangement exhibiting offset that is proportional to temperature voltage of semiconductor material of semiconductor components of differential amplifier stage | |
DE2750998A1 (en) | REFERENCE VOLTAGE CIRCUIT | |
EP0216265B1 (en) | Voltage reference generating circuit with a given temperature drift | |
DE3230429C2 (en) | ||
EP0506174B1 (en) | Integrated circuit device comprising a differential amplifier | |
DE2354340A1 (en) | PRELOAD SWITCH FOR A TRANSISTOR | |
EP0237086B1 (en) | Current mirror circuit | |
DE3110355C2 (en) | DC voltage generator for supplying a temperature-dependent DC output voltage | |
DE3788033T2 (en) | Voltage regulator with precision thermal current source. | |
EP0952509B1 (en) | Voltage reference circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IE IT PT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991206 |
|
AKX | Designation fees paid |
Free format text: DE ES FR GB IE IT PT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20000912 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: INFINEON TECHNOLOGIES AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IE IT PT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59900215 Country of ref document: DE Date of ref document: 20011004 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20011117 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
EN | Fr: translation not filed | ||
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20011031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2163909 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030226 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20040218 Year of fee payment: 6 Ref country code: IE Payment date: 20040218 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040317 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20040322 Year of fee payment: 6 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ERR Free format text: BOPI DE PUBLICATION N: 02/04 PAGES: 245 PARTIE DU BULLETIN CONCERNEE: BREVETS EUROPEENS DONT LA TRADUCTION N'A PAS ETE REMISE A I'INPI IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE DE LA TRADUCTION EST PUBLIEE DANS LE PRESENT BOPI. |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050919 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20050318 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170322 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170516 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170323 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59900215 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |