EP0949077B1 - Verfahren zum Ausstossen einer elektrisch leitenden Flüssigkeit und kontinuierliche Tintenstrahldruckvorrichtung für ein solches Verfahren - Google Patents

Verfahren zum Ausstossen einer elektrisch leitenden Flüssigkeit und kontinuierliche Tintenstrahldruckvorrichtung für ein solches Verfahren Download PDF

Info

Publication number
EP0949077B1
EP0949077B1 EP99400831A EP99400831A EP0949077B1 EP 0949077 B1 EP0949077 B1 EP 0949077B1 EP 99400831 A EP99400831 A EP 99400831A EP 99400831 A EP99400831 A EP 99400831A EP 0949077 B1 EP0949077 B1 EP 0949077B1
Authority
EP
European Patent Office
Prior art keywords
jet
drops
break
points
jets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400831A
Other languages
English (en)
French (fr)
Other versions
EP0949077A1 (de
Inventor
Stéphane Vago
Max Perrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP0949077A1 publication Critical patent/EP0949077A1/de
Application granted granted Critical
Publication of EP0949077B1 publication Critical patent/EP0949077B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/105Ink jet characterised by jet control for binary-valued deflection

Definitions

  • the invention relates to a projection method of an electrically conductive liquid in the form at least one continuous stimulated jet.
  • the invention also relates to a device multi-nozzle printing using this process.
  • a printing device can be used in all industrial fields related to marking, coding, addressing and industrial decoration.
  • the continuous inkjet technique deflected, electrically conductive ink, maintained under pressure, escapes from a calibrated nozzle.
  • the ink jet thus formed breaks at time intervals regular at a single point in space.
  • This forced fragmentation of the inkjet is usually induced by periodic vibrations of a crystal piezoelectric placed upstream of the nozzle.
  • the continuous jet turns into a train of identical and regular ink drops spaced.
  • a first group of electrodes whose function is to transfer to each drop of the spray, selectively, a variable amount of electrical charge and predetermined. All the drops of the jet pass through then a second group of electrodes within which there is a constant electric field.
  • Each drop undergoes then a deflection proportional to the electric charge previously assigned to it, and which points to a specific point on a print medium.
  • the non-deflected drops are recovered by a gutter and recycled to an ink circuit.
  • a specific device is usually provided to ensure a constant synchronization between the moments of jet break and the application of the charge signals of the drops.
  • This technology is mainly characterized by the fact that a variable amount of electric charge is selectively transferred to each drop of jet, so that multiple levels of deflection are created.
  • This feature allows a nozzle unique to print, by segments (lines of points of a given width), the entire pattern (character or graphic pattern). Moving from one segment to another is carried out by the continuous displacement, perpendicularly to the segments, of the printing medium opposite the printing device.
  • multiple devices monobuses printing (generally two to four) can be grouped within the same box.
  • Document EP-A-0 512 907 describes a multi-nozzle printing device (eight nozzles) using inkjet technology continuously deflected. By juxtaposing several devices multi-nozzle printing, more printing widths important can be obtained.
  • Inkjet printing devices continuous stimulated using the continuous jet technique stand out from printing devices using the technique of continuous deflected jet mainly by the fact that only an amount of electric charge predetermined can be transferred on demand, with every drop of the spray. A single level of deflection of drops is then created.
  • Printing characters or of patterns therefore requires the use of devices multi-nozzle printers, in which the distance between the nozzles generally coincide with the spacing between impacts on the print medium.
  • the drops intended for printing (“drops to print "in the rest of the text) are the drops not deflected. This technique is particularly suitable for high speed printing applications such as addressing, printing proofs in high resolution color, etc.
  • the cost problems originate from the multiplication of charge electrodes and multiplication high voltage electronic circuits connected to these electrodes, which induce a connection important and complex.
  • this article proposes to use two groups of electrodes, each of which is formed by a flat electrode.
  • each electrode is common to all jets and subject to constant electrical voltage.
  • the selection of drops to print and drops to recycle is done then by the individual control of the stimulation of each of the ink jets from the print head. In this effect, an individual stimulation device each of the jets is planned.
  • the associated connectors to stimulation devices is located upstream nozzles and therefore distant from the jets.
  • she carries lower voltage levels than those are required to charge the drops. The effects of crosstalk are therefore reduced.
  • the jet breaking point is located opposite the first electrode, or charging electrode, brought to a constant voltage V c .
  • the drop which detaches at this instant then carries a charge Q1 and undergoes a deflection of angle ⁇ 1 in the field created by the second electrode, or deflection electrode, brought to a constant voltage V d .
  • This drop is recovered by a gutter and recycled to the ink circuit of the printing device.
  • the breaking distance When the breaking distance is shorter, due to the application of a high level stimulation signal on the jet, the latter breaks at a point situated slightly before the charging electrode.
  • the charge Q2 carried by the drop is then lower than in the previous case.
  • the deflection ⁇ 2 induced by the deflection plane is therefore also less.
  • the drop then avoids the gutter and reaches the print medium.
  • the difference between the two levels of stimulation of the jet is such that the distance d between the breaking points of the jet for each of these two levels is equal to the wavelength ⁇ of the stimulated jet, that is to say ie the train of drops.
  • the first handicap stems from the fact that the distance d between the two break points of the jet is equal to the wavelength ⁇ of the drop train. This leads to a difficulty in operating the jet during the long break-short break transitions.
  • the condition d ⁇ theoretically leads to the simultaneous detachment of the two drops.
  • the kinetics of charge transfers is then different from that associated with a short-break-long break transition, which can induce different trajectories.
  • any fluctuation of one or the other of the breaking distances inevitable in an actual implementation of the method, leads to a modification of the operating conditions of the jet.
  • the start of such a device led printing, for ink jets escaping from the nozzles, during a transient phase during which aerodynamic braking predominates.
  • a jet forms at the end of each jet ink volume larger than that drops formed during the steady state, and jet trajectory is temporarily altered.
  • any fluctuation of the trajectory of the jets around their axis can also deflect slightly spray and lead to dirt on the electrode load placed in the immediate vicinity of jets, which usually causes short circuits between the jet and the electrode.
  • document US-A-4 220 958 describes a method of stimulating an ink jet, in which jet disturbance is accomplished by excitation electro-hydrodynamics (EHD).
  • the stimulation device EHD proposed in this document is composed of one or several electrodes placed near the jet, downstream of the nozzle, the length of each electrode being approximately equal to ⁇ / 2.
  • the main object of the invention is a method electrically conductive liquid spray using the binary continuous jet technique described in the above-mentioned article by Donald J. DRAKE, without presenting the disadvantages of this technique.
  • the invention relates to a method projection of liquid by continuous jet, in which the process of charging the drops from jets are controlled regardless of the sequence of drops emitted, and the trajectory of the printable drops is not a strictly monotonic function of the position of the breaking point within the device charge.
  • said quantities are applied to the drops of different electrical charge by creating two contiguous areas located in the respective vicinity of the two breaking points and bringing these two areas to constant electrical potentials and this opposite signs.
  • the jet can be passed successively between two pairs of oriented electrodes parallel to the jet and sized so that both break points are located between said electrodes, and applying on the two pairs of electrodes constant electrical voltages and signs opposed.
  • each electrode in order to avoid the inconvenience related to the immediate proximity between the surface of the jet and the load plan, we advantageously place each electrode at least equal distance from the jet axis twice the diameter of it.
  • the individual means of binary stimulation of each of the jets includes a piezoelectric element or thermo-resistive placed in the pressurized tank and individually controlled by an electronic circuit external.
  • the individual means of binary stimulation of each of the jets includes two elements thermo-resistive placed in the pressurized tank, an external electrical circuit permanently delivering a periodic electrical signal for supplying a first of the thermo-resistive elements, corresponding to first breaking point and, on request, a signal complementary electric supply of the second thermo-resistive element, corresponding to the second breaking point.
  • the individual means of stimulation binary of each of the jets includes a transducer individual placed in the pressurized tank and at minus a common electro-hydrodynamic excitation electrode placed near the jets, downstream of the nozzle, an external electrical circuit delivering permanently a periodic power signal electric excitation electrode electro-hydrodynamics, corresponding to the first point breakage and, on request, an electrical signal additional supply of the transducer individual, corresponding to the second breaking point.
  • Figure 1 shows schematically a continuous inkjet printing device implement the method of projecting a liquid electrically conductor according to the invention.
  • the device comprises a pressurized tank 10, equipped with a plurality of calibrated nozzles 12 (three in the figure) from which escape, at a given speed V j , ink jets 14 parallel to each other and having between them a constant spacing.
  • Each ink jet 14 is associated with an individual means 16 of binary stimulation, placed in the reservoir 10 and controlled individually by an external electronic circuit 18.
  • Each individual means 16 of binary stimulation fixes, on demand, the place of breaking of each of the jets 14 at a short breaking point C , relatively close to the nozzle 12 or at a long breaking point L further from this nozzle.
  • the drops formed at points C and L are designated by the references 22 and 24 respectively.
  • the drops 22 and 24 are all emitted at the same given emission frequency F.
  • a charging means 20 which will be described in more detail detail later, is placed in the vicinity of breaking points C and L. This charging means 20 is common to all ink jets 14. It applies different amounts of charge in drops 22 and 24, according to their breaking points.
  • the device print Downstream of the charging means 20, the device print includes a sensor 26 designed to measure the speed of the ink jets 14. This sensor 26 is connected to an electronic circuit 28 which ensures the processing of data collected by the sensor. The circuit 28 is connected to a regulation loop (not shown) of the speed of the jets 14, according to an arrangement known to those skilled in the art. To simplify, the sensor 26 and its associated circuit have not been shown in Figures 2A to 4.
  • the printing device Downstream of sensor 26, the printing device includes deflection means 30 which applies a same constant electric field on ink drops 22 and 24 previously electrically charged in the load means 20.
  • This deflection means 30 comprises two planar electrodes 32 and 34, common to all ink jets 14. These electrodes 32 and 34 are arranged on both sides of the ink drop trains 22 and 24 and a constant voltage is applied between them by a supply circuit 36.
  • the deflection means 30 directs the charged drops 24 to a gutter 38 which recycles them to a general ink circuit 40 of the device.
  • the charging means 20 comprises two groups of planar electrodes, respectively 42, 44 and 46, 48, the electrodes of each group being placed on either side of the jets 14.
  • the two groups of electrodes are separated one on the other by a distance D ( Figure 2A) parallel to the axes of the jets.
  • D Figure 2A
  • the total length of the two groups of electrodes, parallel to the axes of the jets, is called S.
  • supply circuits 50 and 52 apply the same constant voltage V1 to the two electrodes 42 and 44 of the first group of electrodes and supply circuits 54 and 56 apply a same constant voltage V2 , of opposite sign to V1 , on the two electrodes 46 and 48 of the second group of electrodes.
  • Two contiguous zones are thus created, in the vicinity of the breaking points C and L , respectively, brought to constant electrical potentials and of opposite signs.
  • the electrodes 42 and 44 of the first group of electrodes are arranged symmetrically on either side of the jets 14 and each placed at a distance E from the axes of the jets.
  • this distance E is greater than or equal to twice the diameter d j of the jets 14.
  • the electrodes 46 and 48 of the second group of electrodes are also arranged symmetrically on either side of the jets 14 and at the same distance E from their axes.
  • the selection of a drop 24 not intended for the printing of the support 42 takes place by controlling the individual means 16 of binary stimulation of the corresponding jet 14 by an electrical signal whose level V l is determined in order to induce the breaking of the jet at the predetermined long breaking point L, inside the charging means 20.
  • the selection of a drop 22 intended for the printing of the support 42 is carried out by controlling the individual means 16 of binary stimulation of the corresponding jet by an electrical signal whose level V c will induce the breaking of the jet at the predetermined point of breaking short C also inside the charging means 20.
  • the distance ⁇ D between the two breaking points C and L is strictly less than the wavelength ⁇ of the stimulated jets.
  • Any sequence of drops 24 not intended for printing or of drops 22 intended for printing is created by generating, on the individual means 16 for stimulating each of the jets and at the frequency F of emission of the drops chosen, a signal gathering the corresponding sequence of level V c or V l .
  • the trajectory of the drops to be printed 22 is therefore not a strictly monotonic function of the position of the breaking point within the charging device. On the contrary, the same point of impact is ensured on the printing medium, despite possible fluctuations in the short breaking point C. The print quality is thus ensured without any particular technical difficulty or increase in cost.
  • the length S of the charging means 20 can be less than 2.5 mm, the voltage V1 applied to the electrodes 42 and 44 equal to 300 V, and the voltage V2 applied to the electrodes 46 and 48 equal to - 300 V.
  • Each of the jets 14 has, for example, a diameter of 35 ⁇ m, a speed of 24 m / s and a stimulation frequency equal to 125 kHz.
  • each of the individual stimulation means 16 binary consists of a piezoelectric element placed in the tank 10 and controlled individually by the external electronic circuit 18.
  • the number of piezoelectric elements is equal to that nozzles 12 of the print head.
  • each of the piezoelectric elements constituting the individual stimulation means 16 binary can be replaced by an element thermo-resistive generating disturbances of nature thermal.
  • thermo-resistive their operation and manufacturing method, we will usefully refer to the document US-A-4,638,328.
  • thermo-resistive element When each individual means 16 of binary stimulation consists of a single thermo-resistive element associated with each nozzle 12 of the print head, this element is supplied by an electrical signal composed of a sequence of voltages V c and V l , corresponding to the pattern to be printed.
  • each of the individual means 16 of binary stimulation includes two heat-resistant elements 16a and 16b associated with each nozzle 12 of the print head.
  • the first element 16a is supplied uninterruptedly by a periodic electrical signal of amplitude Vl . When it is the only one to be supplied, the jet is therefore broken at the point L furthest from the nozzle.
  • the second element 16b located as appropriate upstream or downstream of the first, is only activated when a drop 22 is to be printed. It then receives an electrical signal, preferably a voltage pulse, the amplitude and phase shift of which relative to the periodic signal applied to the first element 16a lead to the displacement of the jet breaking point at the point C closest to the nozzle.
  • an electrical signal preferably a voltage pulse
  • a third embodiment of the means individual binary stimulation of each of the jets 14 is illustrated diagrammatically in FIG. 4.
  • each individual means 16 of binary stimulation comprises an electrode 58, placed immediately downstream of the nozzles 12 and common to all of the jets.
  • This electrode 58 constitutes a stimulation device by electrodynamic excitation (EHD).
  • EHD electrodynamic excitation
  • the electrode 58 the length of which is approximately equal to ⁇ / 2 , fixes the point of breakage of the jets at the point L furthest from the nozzles, when no other stimulation is applied to the jets.
  • Each individual means 16 of binary stimulation further comprises an individual transducer 60, preferably of the thermoresistive type, associated with each of the jets inside the reservoir 10.
  • the transducers 60 are only activated to move the breaking points to the point C closest to the nozzle, when a drop 22 is to be printed.
  • the embodiment of FIG. 4 makes it possible to extend the life of the thermo-resistive transducers by reducing their stress.
  • this process allows you to control the charging process droplets from the jets whatever the sequence of drops emitted.
  • the electrodes of the charging device drops are not located at close proximity to jets.
  • the trajectory drops to be printed is not a strictly function monotonic of the position of the breaking point at within the charging device.
  • a jet printer multi-nozzle ink produced according to the invention can be used in all applications related to industrial marking and coding.
  • the domain of addressing, which requires speed and width printing, also represents an area of application of the invention.
  • the absence individual electrodes facing the jet increases the number of nozzles per unit length on the printing device tank. This allows application of the invention to industrial decoration which requires increased resolution, in addition high print speed.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)

Claims (11)

  1. Verfahren zum Ausstoßen einer elektrisch leitenden Flüssigkeit, wobei:
    mindestens ein kontinuierlicher Flüssigkeitsstrahl (14) mit einer gegebenen Geschwindigkeit Vj emittiert wird,
    der Strahl so stimuliert wird, dass er je nach Bedarf an zwei vorbestimmten, unterschiedlichen Unterbrechungspunkten (C,L) fragmentiert wird, um Flüssigkeitstropfen (22,24) mit einer gegebenen Ausstoßfrequenz F zu bilden,
    an die Tropfen (22,24) unterschiedliche Mengen elektrischer Ladung gemäß ihren Unterbrechungspunkten (C, L) angelegt werden, und dann
    ein gleiches elektrisches Feld an die Tropfen so angelegt wird, dass nur die an einem ersten (L) der Unterbrechungspunkte, der relativ entfernt ist, gebildeten Tropfen (24) abgelenkt werden,
       dadurch gekennzeichnet, dass der Strahl (14) so stimuliert wird, dass die beiden Unterbrechungspunkte (C,L) um einen Abstand ΔD, der kleiner ist als die Wellenlänge λ des Strahls, die durch die Beziehung λ = V j /F definiert ist, getrennt sind, und dass in etwa eine gleiche Menge Ladung an alle Tropfen (22) angelegt wird, die in einer um den zweiten Unterbrechungspunkt (C) zentrierten Zone mit einer Länge von im wesentlichen gleich λ/4 gebildet werden.
  2. Verfahren nach Anspruch 1, wobei an die Tropfen (22,24) die unterschiedlichen Mengen elektrischer Ladung angelegt werden, indem zwei aneinandergrenzende Zonen geschaffen werden, die jeweils in Nachbarschaft der Unterbrechungspunkte (C,L) liegen, und indem diese beiden zonen auf konstante elektrische Potentiale von entgegengesetzten Vorzeichen gebracht werden.
  3. Verfahren nach Anspruch 2, wobei der Strahl sukzessiv zwischen zwei Elektrodenpaaren (42,44; 46,48) durchgeleitet wird, die parallel zum Strahl (14) ausgerichtet und so dimensioniert sind, dass sich die beiden Unterbrechungspunkte (C,L) zwischen den Elektroden befinden, und wobei an die beiden Elektrodenpaare konstante elektrische Spannungen (V1, V2) mit entgegengesetzten Vorzeichen angelegt werden.
  4. Verfahren nach Anspruch 3, wobei jede Elektrode (42,44;46,48) in einem Abstand (E) von der Achse des Strahls (14) angeordnet ist, der mindestens gleich dessen doppeltem Durchmesser ist.
  5. Verfahren nach einem der vorangehenden Ansprüche, wobei gleichzeitig mehrere kontinuierliche Flüssigkeitsstrahlen (14) emittiert werden, die zueinander parallel sind, jeder Strahl separat stimuliert wird, gleichzeitig an die Tropfen (22,24) aller Strahlen die genannten unterschiedlichen Mengen elektrischer Ladung angelegt werden, und dann gleichzeitig ein gleiches elektrisches Feld an die Strahlen angelegt wird.
  6. Vorrichtung zum Drucken durch kontinuierliche Tintenstrahlen, umfassend:
    einen druckbeaufschlagten Behälter (10), der mit mehreren Düsen (12) versehen ist, welche gleichzeitig mit einer gegebenen Geschwindigkeit Vj mehrere kontinuierliche, zueinander parallele Tintenstrahlen (14) ausstoßen können,
    ein jeweiliges Mittel (16) zur digitalen Stimulierung jedes der Strahlen, das geeignet ist, diese je nach Bedarf an zwei vorbestimmten, unterschiedlichen Unterbrechungspunkten (C/L) zu fragmentieren, um Tintentropfen (22,24) mit einer gegebenen Ausstoßfrequenz F zu bilden,
    ein Lademittel (20), das von den mehreren Tintenstrahlen (14) gemeinsam genutzt wird, um an die Tintenstrahlen (22,24) unterschiedliche Mengen elektrischer Ladung gemäß ihren Unterbrechungspunkten anzulegen,
    ein Ablenkmittel (30), das von den mehreren Tintenstrahlen (14) gemeinsam genutzt wird, um ein gleiches elektrisches Feld an die Tropfen anzulegen, um so nur diejenigen Tropfen (24) abzulenken, die an einem ersten, von den Düsen relativ entfernten Unterbrechungspunkt (L) gebildet werden, und
    eine Auffangrinne (38) zum Zurückführen der abgelenkten Tropfen (24) zu dem druckbeaufschlagten Behälter (10),
       dadurch gekennzeichnet, dass das jeweilige Mittel (16) zur digitalen Stimulierung jedes der Strahlen (14) mit vordefinierten Spannungspegeln (Vc,Vl ) so gesteuert ist, dass die beiden Unterbrechungspunkte (C, L) um einen Abstand (ΔD) getrennt sind, der kleiner ist als die Wellenlänge λ des Strahls, der durch die Beziehung λ= Vj /F definiert ist, wobei das Lademittel (20) geeignet ist, in etwa eine gleiche Lademenge an alle Tropfen (22) anzulegen, die in einer um den zweiten Unterbrechungspunkt (C) zentrierten Zone mit einer Länge im wesentlichen gleich λ/4 gebildet werden.
  7. Vorrichtung nach Anspruch 6, wobei das Lademittel (20) zwei Elektrodenpaare (42,44; 46,48), die parallel zu den Strahlen ausgerichtet und so dimensioniert sind, dass sich die Unterbrechungspunkte (C,L) zwischen den Elektroden befinden, sowie Mittel (50,52; 54,56) zum Anlegen konstanter elektrischer Spannungen mit entgegengesetzten Vorzeichen an die zwei Elektrodenpaare umfasst.
  8. Vorrichtung nach Anspruch 7, wobei die Elektroden (42,44; 46,48) flach und in einem Abstand (E) von der Achse jedes der Strahlen (14) angeordnet sind, der mindestens das Doppelte des Durchmessers der Strahlen beträgt.
  9. Vorrichtung nach einem der Ansprüche 6 bis 8, wobei das jeweilige Mittel zur digitalen Stimulierung jedes der Strahlen (14) ein piezoelektrisches oder Thermowiderstandselement (16) umfasst, das in dem druckbeaufschlagten Behälter (10) angeordnet ist und individuell durch eine externe elektronische Schaltung (18) gesteuert wird.
  10. Vorrichtung nach einem der Ansprüche 6 bis 8, wobei das jeweilige Mittel (16) zur digitalen Stimulierung jedes der Strahlen (14) zwei Thermowiderstandselemente (16a,16b), die in dem druckbeaufschlagten Behälter (10) angebracht sind, sowie eine externe elektrische Schaltung (18) umfasst, die permanent ein periodisches elektrisches Signal zum Speisen eines ersten der Thermowiderstandselemente, das dem ersten Unterbrechungspunkt (L) entspricht, und je nach Bedarf ein komplementäres elektrisches Signal zum Speisen des zweiten Thermowiderstandselements (16b), das dem zweiten Unterbrechungspunkt (C) entspricht, liefert.
  11. Vorrichtung nach einem der Ansprüche 6 bis 8, wobei das jeweilige Mittel (16) zur digitalen Stimulierung jedes der Strahlen (14) einen jeweiligen Wandler (60), der in dem druckbeaufschlagten Behälter (10) angeordnet ist, und mindestens eine gemeinsame, in Nähe der Strahlen stromab der Düse (12) angeordnete Elektrode (58) zur elektrohydrodynamischen Erregung umfasst, wobei eine externe elektrische Schaltung (18) permanent ein periodisches elektrisches Signal, welches dem ersten Unterbrechungspunkt (L) entspricht, zum Speisen der Elektrode (58) zur elektrohydrodynamischen Erregung und je nach Bedarf ein komplementäres elektrisches Signal, welches dem zweiten Unterbrechungspunkt (C) entspricht, zum Speisen des individuellen Wandlers (60), liefert.
EP99400831A 1998-04-10 1999-04-06 Verfahren zum Ausstossen einer elektrisch leitenden Flüssigkeit und kontinuierliche Tintenstrahldruckvorrichtung für ein solches Verfahren Expired - Lifetime EP0949077B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9804561A FR2777211B1 (fr) 1998-04-10 1998-04-10 Procede de projection d'un liquide electriquement conducteur et dispositif d'impression par jet d'encre continu utilisant ce procede
FR9804561 1998-04-10

Publications (2)

Publication Number Publication Date
EP0949077A1 EP0949077A1 (de) 1999-10-13
EP0949077B1 true EP0949077B1 (de) 2003-09-17

Family

ID=9525153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400831A Expired - Lifetime EP0949077B1 (de) 1998-04-10 1999-04-06 Verfahren zum Ausstossen einer elektrisch leitenden Flüssigkeit und kontinuierliche Tintenstrahldruckvorrichtung für ein solches Verfahren

Country Status (5)

Country Link
US (1) US6273559B1 (de)
EP (1) EP0949077B1 (de)
DE (1) DE69911289T2 (de)
ES (1) ES2207918T3 (de)
FR (1) FR2777211B1 (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799688B1 (fr) * 1999-10-15 2001-11-30 Imaje Sa Imprimante et procede d'impression par jets d'encre
US6457807B1 (en) * 2001-02-16 2002-10-01 Eastman Kodak Company Continuous ink jet printhead having two-dimensional nozzle array and method of redundant printing
FR2851495B1 (fr) 2003-02-25 2006-06-30 Imaje Sa Imprimante a jet d'encre
FR2890596B1 (fr) 2005-09-13 2007-10-26 Imaje Sa Sa Dispositif de charge et deflexion de gouttes pour impression a jet d'encre
US7273270B2 (en) * 2005-09-16 2007-09-25 Eastman Kodak Company Ink jet printing device with improved drop selection control
US7673976B2 (en) * 2005-09-16 2010-03-09 Eastman Kodak Company Continuous ink jet apparatus and method using a plurality of break-off times
FR2892052B1 (fr) * 2005-10-13 2011-08-19 Imaje Sa Impression par deflexion differentielle de jet d'encre
US7892461B2 (en) * 2005-11-04 2011-02-22 Heubach Gmbh Method for the production and use of pigmented thermoplastic material comprising a flow enhancer in the form of a dissolved salt
FR2906755B1 (fr) * 2006-10-05 2009-01-02 Imaje Sa Sa Impression par deflexion d'un jet d'encre par un champ variable.
US8740359B2 (en) 2008-08-07 2014-06-03 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths
US7938516B2 (en) * 2008-08-07 2011-05-10 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed during different phases of a common charge electrode
FR2938207B1 (fr) * 2008-11-12 2010-12-24 Imaje Sa Imprimante munie d'un generateur de gouttes a jet continu binaire a deflexion et vitesse d'impression optimales
US8573757B2 (en) * 2009-03-26 2013-11-05 North Carolina Agricultural And Technical State University Methods and apparatus of manufacturing micro and nano-scale features
FR2955801B1 (fr) 2010-02-01 2012-04-13 Markem Imaje Dispositif formant pupitre d'imprimante a jet d'encre continu, a concentrations de vapeur de solvant a l'interieur et autour du pupitre diminuees
US8398210B2 (en) 2011-04-19 2013-03-19 Eastman Kodak Company Continuous ejection system including compliant membrane transducer
EP2699423A1 (de) 2011-04-19 2014-02-26 Eastman Kodak Company Kontinuierliches ausstosssystem mit wandler mit nachgiebiger membran
US8529021B2 (en) 2011-04-19 2013-09-10 Eastman Kodak Company Continuous liquid ejection using compliant membrane transducer
EP2714406B1 (de) 2011-05-25 2016-12-14 Eastman Kodak Company Flüssigkeitsausstosssystem mit tropfengeschwindigkeitsmodulation
JP2014515326A (ja) 2011-05-25 2014-06-30 イーストマン コダック カンパニー 滴帯電及び質量を利用した液吐出
US8382259B2 (en) 2011-05-25 2013-02-26 Eastman Kodak Company Ejecting liquid using drop charge and mass
US8469496B2 (en) 2011-05-25 2013-06-25 Eastman Kodak Company Liquid ejection method using drop velocity modulation
US8657419B2 (en) 2011-05-25 2014-02-25 Eastman Kodak Company Liquid ejection system including drop velocity modulation
US8465129B2 (en) 2011-05-25 2013-06-18 Eastman Kodak Company Liquid ejection using drop charge and mass
FR2975632A1 (fr) * 2011-05-27 2012-11-30 Markem Imaje Imprimante a jet d'encre continu binaire
US8646882B2 (en) 2012-03-20 2014-02-11 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8651632B2 (en) 2012-03-20 2014-02-18 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8646883B2 (en) 2012-03-20 2014-02-11 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8651633B2 (en) 2012-03-20 2014-02-18 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8641175B2 (en) 2012-06-22 2014-02-04 Eastman Kodak Company Variable drop volume continuous liquid jet printing
US8585189B1 (en) 2012-06-22 2013-11-19 Eastman Kodak Company Controlling drop charge using drop merging during printing
US8696094B2 (en) 2012-07-09 2014-04-15 Eastman Kodak Company Printing with merged drops using electrostatic deflection
US8888256B2 (en) 2012-07-09 2014-11-18 Eastman Kodak Company Electrode print speed synchronization in electrostatic printer
CN105015166A (zh) * 2015-07-20 2015-11-04 厦门英杰华机电科技有限公司 Cij喷码机分段式高压偏转系统
FR3045459B1 (fr) 2015-12-22 2020-06-12 Dover Europe Sarl Tete d'impression ou imprimante a jet d'encre a consommation de solvant reduite
CN109808310B (zh) * 2019-03-07 2020-11-06 浙江鸣春纺织股份有限公司 一种喷码机连续喷墨打印装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220958A (en) 1978-12-21 1980-09-02 Xerox Corporation Ink jet electrohydrodynamic exciter
CA1158706A (en) * 1979-12-07 1983-12-13 Carl H. Hertz Method and apparatus for controlling the electric charge on droplets and ink jet recorder incorporating the same
US4417256A (en) * 1980-05-09 1983-11-22 International Business Machines Corporation Break-off uniformity maintenance
JPS5831765A (ja) * 1981-08-20 1983-02-24 Ricoh Co Ltd インクジエツト記録装置
ATE36136T1 (de) * 1984-01-20 1988-08-15 Codi Jet Markierungs Systeme G Verfahren und anordnung fuer das tintenzufuehrsystem eines tintenstrahldruckers.
US4638328A (en) 1986-05-01 1987-01-20 Xerox Corporation Printhead for an ink jet printer
US4734705A (en) * 1986-08-11 1988-03-29 Xerox Corporation Ink jet printer with satellite droplet control
FR2676023B1 (fr) 1991-05-03 1993-07-23 Imaje Tete de deflexion multijet modulaire et procede de fabrication.
JPH06183003A (ja) * 1992-08-03 1994-07-05 Nec Eng Ltd インクジェットプリンタ
US5523778A (en) * 1993-12-07 1996-06-04 Videojet Systems International, Inc. Segmented charge tunnel for drop charging in a printhead

Also Published As

Publication number Publication date
EP0949077A1 (de) 1999-10-13
DE69911289D1 (de) 2003-10-23
FR2777211A1 (fr) 1999-10-15
ES2207918T3 (es) 2004-06-01
DE69911289T2 (de) 2004-06-17
US6273559B1 (en) 2001-08-14
FR2777211B1 (fr) 2000-06-16

Similar Documents

Publication Publication Date Title
EP0949077B1 (de) Verfahren zum Ausstossen einer elektrisch leitenden Flüssigkeit und kontinuierliche Tintenstrahldruckvorrichtung für ein solches Verfahren
EP1628832B1 (de) Tintenstrahldrucker
EP0856403B1 (de) Tintenausstossdruckkopf und Verfahren
US6509917B1 (en) Continuous ink jet printer with binary electrostatic deflection
EP1106371B1 (de) Drucker mit vereinfachtem Herstellungsverfahren und Herstellungsverfahren
EP0911168B1 (de) Kontinuierlicher Tintenstrahldrucker mit asymmetrischer elektrostatischer Ablenkung
EP1234670B1 (de) Druckkopf und Drucker mit verbesserten Ablenkelektroden
FR2906755A1 (fr) Impression par deflexion d'un jet d'encre par un champ variable.
FR2892052A1 (fr) Impression par deflexion differentielle de jet d'encre
JP2010264761A (ja) インクジェットによるプリント方法
FR2835217A1 (fr) Tete d'impression a double buse d'axes convergents et imprimante equipee
EP0911165B1 (de) Kontinuierlicher Tintenstrahldrucker mit variabler Kontakttropfenablenkung
IL132331A0 (en) Operation of droplet deposition apparatus
US20070097180A1 (en) Inkjet printhead system and method using laser-based heating
EP0365454B1 (de) Kontinuierliche, mittels Trabantentintentropfen betriebene Druckvorrichtung mit hoher Auflösung
EP1092542B1 (de) Tintenstrahldrucker und Druckverfahren
EP0900656A2 (de) Drucken mit Tinte mit Trennung von Tropfen mit veränderlichem Volumen
FR2975632A1 (fr) Imprimante a jet d'encre continu binaire
JPH05261941A (ja) インクジェット記録方法及びインクジェット記録ヘッド
JPH08252918A (ja) インクジェット記録装置
EP1060889B1 (de) Kontinuierlicher Tintenstrahldruckkopf mit einer Heizvorrichtung mit symmetrischer Konfiguration
EP0911166A2 (de) Kontinuierlicher Tintenstrahldrucker mit elektrostatischer Ablenkung
FR3088242A1 (fr) Procede et dispositif de formation de gouttes a l'aide d'une cavite a facteur de qualite degrade
EP1110731B1 (de) Verfahren zur Verhinderung von falschgerichteten Tintentropfen in einem Tintenstrahldrucker mit asymmetrischer thermischer Ablenkung
JP2005052971A (ja) 立体イメージの形成方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991217

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMAJE S.A.

AKX Designation fees paid

Free format text: DE ES GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PERRIN, MAX

Inventor name: VAGO, STEPHANE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69911289

Country of ref document: DE

Date of ref document: 20031023

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040503

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2207918

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050406

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050406

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050407