EP0947625B1 - Process and apparatus for controlling and optimizing the process of chemical recovery during cellulose production - Google Patents

Process and apparatus for controlling and optimizing the process of chemical recovery during cellulose production Download PDF

Info

Publication number
EP0947625B1
EP0947625B1 EP19990105545 EP99105545A EP0947625B1 EP 0947625 B1 EP0947625 B1 EP 0947625B1 EP 19990105545 EP19990105545 EP 19990105545 EP 99105545 A EP99105545 A EP 99105545A EP 0947625 B1 EP0947625 B1 EP 0947625B1
Authority
EP
European Patent Office
Prior art keywords
chemical
model
spectra
state model
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990105545
Other languages
German (de)
French (fr)
Other versions
EP0947625A1 (en
Inventor
Herbert Dr. Furumoto
Andreas Dr. Kemna
Uwe Dr. Lampe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0947625A1 publication Critical patent/EP0947625A1/en
Application granted granted Critical
Publication of EP0947625B1 publication Critical patent/EP0947625B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C7/00Digesters
    • D21C7/12Devices for regulating or controlling
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters

Definitions

  • the invention relates to a process for process control and process optimization of chemical recovery in the production of pulp using at least one state model and / or process model.
  • the invention relates to an apparatus for carrying out the method.
  • pulp digestion is carried out by boiling wood chips using appropriate cooking chemicals either in a continuous or in a batch process.
  • Sulphure or sulphite pulp cooking usually involves a recovery process for the cooking chemicals.
  • the process control in the recovery of cooking chemicals is difficult, as important quality parameters of cooking chemicals - the sulphate pulping example, the active alkali concentration, sulfidity, sulfate content, sulfur content, Na 2 S, Na 2 SO 4 , Na 2 CO 3 , Na 2 O, CaO, NaOH, NaCl, K 2 CO 3 , CaCO 3 , Ca (OH) 2 and in sulfite pulping, for example, the chemicals SO 2 , HSO 3 - , SO 3 - , S 2 O 3 - , SO 4 - , MgO , Active MgO, dead burned MgO - measured in the laboratory only after a time delay. For this reason, a meantime erroneous production can not be excluded. To avoid the risk of mis-production, therefore, the production process is usually operated with a greater safety margin in terms of Kochchemikalienteilteil than it would actually be necessary.
  • WO 98/10137 A1 For example, a method and apparatus for process control and process optimization in causticizing a green liquor in the sulfate pulp manufacturing process is known.
  • continuous infrared absorption spectra are measured on the green liquor and on the white liquor and the spectra are evaluated to form parameters.
  • Control signals are set up from the parameters and laboratory measurements in order to control the lime intake in the lime slaker used for causticisation.
  • Paper stocks and in the operation of refiners and paper machines it is proposed in each case to measure at least one point continuous spectra of electromagnetic radiation and / or continuous spectra of mechanical properties, continue to detect at least one location discrete physical and / or chemical properties, by mathematical evaluation of the continuous spectra characteristics form and from the characteristics, the physical and / or chemical properties and laboratory measurements of the product properties a state model and possibly a process model set up.
  • the method of detecting the continuous spectra is alternatively applicable to the sulfite or sulfate process.
  • spectroscopic measurements are carried out specifically on the chemical streams of the recovery plant, ie on sulphate digestion, for example on the soda melt after the recovery boiler, in the green, white and black liquors, and on sulphite digestion, for example in the ash stream or on the ash or in the cooking liquors. carried out.
  • sulphate digestion for example on the soda melt after the recovery boiler, in the green, white and black liquors
  • sulphite digestion for example in the ash stream or on the ash or in the cooking liquors.
  • for measuring continuous spectra of electromagnetic radiation absorption, emission and / or luminescence spectroscopy in the spectral range from 0.1 .mu.m to 400 .mu.m, preferably between 0.4 .mu.m and 100 .mu.m.
  • the continuous spectra are evaluated with suitable calculation methods and allow a statement about the expected chemical composition of the cooking liquid.
  • On the basis of these statements can be intervened in the process regulating, eg by changing the air distribution in the recovery boiler, the CaO supply in the so-called Kaustifizierer, by addition of so-called "make-up” chemicals and by regulating the mixing ratio of Black liquor, white liquor and dilution water.
  • the improved chemical recovery is particularly advantageous for pulp production with homogenization of the quality of the cooking liquor at a high level. This achieves an increase in the yield and the production quantity, a reduction in the use of chemicals and / or energy as well as the saving of auxiliary substances in the bleaching stage subsequent to the pulp production.
  • the invention is in relation to the above-mentioned prior art in essential points, such as in particular the measuring location, the measurement method, the processing of the spectra and the modeling further developed.
  • electromagnetic waves are used in the wavelength range between 100 nm and 400 ⁇ m, preferably in the range from 0.4 ⁇ m to 100 ⁇ m, not only absorption, emission or luminescence spectra but also so-called Raman spectra can be measured.
  • the excitation to luminescence can eg by the irradiation of electromagnetic radiation, such as UV radiation or by a specific chemical reaction such Chemiluminescence, done;
  • the emission is excited, for example, by irradiation with electrons.
  • FTIR Fourier transform infrared spectroscopy
  • the parameters are used to model the desired quality parameters.
  • the state models for calculating the quality parameters can be structured with a sufficiently large number of data based on neural networks, fuzzy systems, multi-linear regression models or combinations thereof. As an alternative to purely data-driven models, combined models are also possible in which additional analytical knowledge is introduced.
  • the process models can be constructed in the same way and with the same means.
  • a pre-processing integrated into model verification ("Novelty Detection") according to the older, not pre-published DE 196 322 45 A1 can indicate in time the need for a new training phase in the current process.
  • FIG. 1 the structure of a continuously working chemical treatment is shown, wherein in the present context, the Meßstellenschema is clarified.
  • a known cooker for producing pulp by cooking raw materials in particular in the form of wood chips, in a suitable cooking liquid.
  • Denoted at 11 is the inlet for the wood into the digester 10, at 12 the supply line for the cooking liquid and at 13 the outlet for the finished pulp.
  • the digester 10 is followed by a blow tank 14 and a plurality of scrubbers 15, 15 ', 15 "with associated filtrate tanks 16, 16', 16". From the washer the finished pulp is spent.
  • the filtrate is passed through at least one unit 17, advantageously units 17, 17 ', 17 ", ... for multistage evaporation, into a so-called black liquor tank 18 and from there into a recovery boiler 20 for cooking chemicals.
  • recovery boiler 20 the non-reusable waste liquors referred to as black liquor are to be incinerated and the recyclable cooking chemicals recovered.
  • An electric filter 21 removes the fly ash.
  • the soda melt accumulating at the bottom of the recovery boiler 20 flows into a melt-dissolving tank 22. This is followed by a green liquor clarification tank 23 and a caustification plant in which chemical conversion reactions for liquor extraction take place.
  • This plant consists essentially of a quenching tank 24, several individual Kaustifizierern 25, 25 ', 25 ", a white liquor clarification tank 26 and a cooking liquor tank 27.
  • the Kaustment plant is associated with a scrubber 28 with filter 29 and a lime kiln 30.
  • the there burned lime is returned to the extinguishing tank 24. From the partial illustration to FIG. 2 the operation of the staggered caustics 25, 25 ', 25''and25''' becomes clear.
  • the illustrated chemical treatment is relatively complex: it can be used alternatively after the sulphate process or after the sulphite process.
  • the process state is to be detected at various significant points of the process chain and the process to be optimized, for which measurement quantities must be recorded.
  • spectrometers for recording individual continuous spectra A at corresponding points in the process chain, B, C, D, E, F, G, H and I of electromagnetic radiation and in the partial view according to FIG. 2 With appropriate modifications, spectrometers are mounted at suitable measuring points for the spectra F 'and G'.
  • spectroscopic measurements are carried out online in the cooking liquid.
  • Such a measurement can be carried out, for example, with the aid of a known ATR probe or a known FTIR spectrometer.
  • the measured spectra are smoothed and normalized by signal preprocessing. Subsequently, a decomposition into the main components and / or the identification of important peaks can take place.
  • the main components can then be modeled, e.g. according to multilinear regression methods, the concentrations of the following quantities are calculated: effective alkali, sulphidity, carbonate, sulphate and thiosulphate.
  • a regulatory intervention is conceivable at various points in the recovery process, e.g. by replenishment of chemicals, by temperature variations or by changes in the circulation.
  • FIG. 3 31 exemplifies the course of an IR spectrum of cooking liquid in the wavenumber range 1500 to 900 cm -1 .
  • spectra A to I in the FIGS. 1 and 2 can also be measured in other wavenumber ranges.
  • FIG. 3 exemplified spectra are analyzed by a variety of mathematical methods, As already mentioned, this essentially involves a preprocessing of the spectra, the introduction of analytical knowledge and a possible outlier detection, in order to ensure a correct determination of parameters as intended. It is essential that alone from the continuous spectra by a suitable mathematical evaluation such characteristics can be formed specifically for the chemical streams in the recovery process and that from the characteristics and laboratory measurements of the chemical concentrations a state model and / or additionally with process properties a process model is formed. Furthermore, discrete physical and / or chemical properties for further processing can be detected at the chemical streams.
  • the latter applies to the cooking chemicals both in the sulfate process and in the sulfite process:
  • descriptive chemical concentrations in particular the active alkali concentration, the sulfidity, the sulfate content and the proportion of Na 2 S, Na 2 CO 3 and NaOH used.
  • the MgO Concentration divided into so-called deadburned MgO and active MgO, used.
  • FIGS. 4 and 5 40A and 40B each indicate a related state model of the cooking chemicals from which their properties, such as concentration, are calculated. From this, the essential quality parameters for the cooking liquid to be processed can be derived. For this purpose, from the spectra either with the so-called principal component analysis (PCA) or With the so-called PLS method (partial least square), the parameters are determined and entered into the model.
  • PCA principal component analysis
  • PLS partial least square
  • the state model 40A or 40B can optionally be formed solely with parameters PC1 to PCn determined from the continuous spectra.
  • the model 40A or 40B may e.g. advantageously be formed by a neural network.
  • a neural network In modeling, use is generally made of modern information-technological calculation methods, in particular also evolutionary or genetic algorithms.
  • a process model for chemical recovery by the sulphate process is designated 50.
  • discrete physical and chemical properties such as temperature, pH and pressure
  • state variables of the cooking liquid as an output of the state models, for example, according to the FIGS. 4 or 5
  • the process models can also be formed solely with the parameters determined from the continuous spectra.
  • FIG. 7 a corresponding process model 60 is given specifically for the sulfite process. If discrete physical and / or chemical properties are to be used, in addition to the optical spectrum, for example, the flow rates and / or the temperatures can be specified, which in FIG. 6 is shown. The pH value for sulfite digestion can be entered.
  • the process model according to FIG. 6 can also be designed as a dynamic process model 70.
  • the input variables are here according to the input variables in FIG. 6 in each case at discrete points in time k,..., (kn). The same applies to the chemical concentration. From this, the dynamic process model 70 determines the chemical concentration at future times (k + 1.
  • fuzzy methods can also be used.
  • Combined neuro-fuzzy systems can be used.
  • the sizes obtained from the described modeling methods are used for process control and process optimization in the recovery plant.
  • the process model is designated here by 82, from which the data is put into a unit for the cost function 83, which simultaneously with data for costs and prices from the unit 84 is charged.
  • An optimizer 85 determines therefrom the manipulated variables 86, which are fed back into the process model 82 and also the optimal manipulated variables 87 for process control. These can also be switched through a switch 88 by the plant operator.
  • FIG. 10 for a litigation, in which a dynamic model according to the FIG. 8 is used.
  • a unit 89 with the dynamic model is additionally present, in which the current process state is entered on the one hand, and the optimal control variables, on the other hand, are specified.
  • FIG. 11 illustrates that a unit 91 for preprocessing and compression for the spectra of the total spectrum 90 is used, from which in the evaluation unit 92, for example, the parameters PC 1 to PC 10 are calculated.
  • the parameters PC 1 to PC 10 are calculated.
  • scores are formed from a suitable number of spectra, for example between three and ten spectra, for the purpose of data reduction. From this, the input variables PC1,..., PCn, in particular the model according to FIG FIG. 4 calculated.
  • the parameters PC1 to PCn flow into the state model 93 and into the process model 94, in which case additional discrete physical and / or chemical properties and the process description supplement the state model to the process model.
  • the product properties of the cooking chemicals and from the process model 94 the product properties of the cooking liquid are derived. Now all chemical additives can be calculated and optimized in terms of the targeted cost savings.
  • FIG. 12 shows, as with appropriate evaluation and optimization software on the basis of a computer, the computer 105 from FIG. 1 be intervened in an existing process control system.
  • Optimized manipulated variables can be generated, which act as a process control system on a known automation device 100, which interacts with the actual system for carrying out the process.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Prozeßführung und zur Prozeßoptimierung der Chemikalienrückgewinnung bei der Herstellung von Zellstoff unter Einsatz wenigstens eines Zustandsmodells und/oder Prozeßmodells. Daneben bezieht sich die Erfindung auf eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a process for process control and process optimization of chemical recovery in the production of pulp using at least one state model and / or process model. In addition, the invention relates to an apparatus for carrying out the method.

Die Herstellung von Zellstoff durch den sogenannten Zellstoffaufschluß erfolgt durch Kochung von Holzhackschnitzeln unter Einsatz von entsprechenden Kochchemikalien entweder in einem kontinuierlichen oder in einem diskontinuierlichen Prozeß. Der Zellstoffkochung mit Sulfat- oder Sulfitausschluß schließt sich üblicherweise ein Rückgewinnungsprozeß für die Kochchemikalien an.The production of pulp by the so-called pulp digestion is carried out by boiling wood chips using appropriate cooking chemicals either in a continuous or in a batch process. Sulphure or sulphite pulp cooking usually involves a recovery process for the cooking chemicals.

Die Prozeßführung bei der Rückgewinnung der Kochchemikalien ist schwierig, da wichtige Qualitätsparameter der Kochchemikalien - beim Sulfataufschluß beispielsweise die Aktiv-Alkali-Konzentration, Sulfidität, Sulfatanteil, Schwefelanteil, Na2S, Na2SO4, Na2CO3, Na2O, CaO, NaOH, NaCl, K2CO3, CaCO3, Ca(OH)2 und beim Sulfitaufschluß beispielsweise die Chemikalien SO2, HSO3 -, SO3 --, S2O3 --, SO4 --, MgO, Aktiv-MgO, totgebranntes MgO - im Labor erst mit Zeitverzögerung gemessen werden. Aus diesem Grund kann eine zwischenzeitliche Fehlproduktion nicht ausgeschlossen werden. Um die Gefahr einer Fehlproduktion zu vermeiden, wird daher der Produktionsprozeß üblicherweise mit einem größeren Sicherheitsspielraum hinsichtlich der Kochchemikalienqualität betrieben, als es eigentlich notwendig wäre.The process control in the recovery of cooking chemicals is difficult, as important quality parameters of cooking chemicals - the sulphate pulping example, the active alkali concentration, sulfidity, sulfate content, sulfur content, Na 2 S, Na 2 SO 4 , Na 2 CO 3 , Na 2 O, CaO, NaOH, NaCl, K 2 CO 3 , CaCO 3 , Ca (OH) 2 and in sulfite pulping, for example, the chemicals SO 2 , HSO 3 - , SO 3 - , S 2 O 3 - , SO 4 - , MgO , Active MgO, dead burned MgO - measured in the laboratory only after a time delay. For this reason, a meantime erroneous production can not be excluded. To avoid the risk of mis-production, therefore, the production process is usually operated with a greater safety margin in terms of Kochchemikalienqualität than it would actually be necessary.

Beim Stand der Technik werden häufig folgende Strategien angewandt:

  • Der Prozeß wird nach Erfahrungswerten gesteuert. Regeleingriffe sind nur in geringem Umfang möglich. Die Qualität der Kochchemikalien kann nur im nachhinein bestimmt werden. Eine große Streuung der Qualitätsparameter ist daher häufig nicht vermeidbar.
  • Es erfolgt ein analytisches Messen einzelner Komponenten der Kochflüssigkeit mit beispielsweise Titrationsautomaten.
The prior art often uses the following strategies:
  • The process is controlled based on experience. Control interventions are only possible to a limited extent. The quality of the cooking chemicals can only be determined with hindsight. A large spread of quality parameters is therefore often unavoidable.
  • There is an analytical measurement of individual components of the cooking liquid with, for example, automatic titration.

Daneben wurde bereits vorgeschlagen, Infrarotspektroskopie zur Prozeßbeurteilung vorzusehen, wozu eine Reihe von Veröffentlichungen existiert. Aus der DE 195 10 009 A1 ist ein Verfahren zur Prozeßführung einer Papiermaschine bekannt. Dabei werden ausgewählte spektrale Kennwerte für die Messung von Produktqualitätsparametern verwendet. Speziell zur Prozeßführung beim Stoffauflauf einer Papiermaschine werden neuronale Netze eingesetzt, die an den im Labor gemessenen Produktparametern trainiert wurden. Weiterhin ist aus der DE 195 10 008 A1 ein Verfahren zur Prozeßführung bei der Zellstoff- und Papierherstellung bekannt, bei dem spektrale Kennwerte unterschiedlicher Wellenlängen zur Bestimmung der Ausgangsstoffe und zur Bewertung der Rohstoffqualität abgeleitet werden. Dabei sollen ebenfalls Korrektursignale für die anlagentechnischen Regel- oder Steuereinrichtungen ermittelt werden, und zwar insbesondere mit neuronalen Netzen. Bei diesem Verfahren erfolgt die Meßsignalaufnahme direkt am Rohstoff "Holz", wie Holzhackschnitzel oder Holzfasern, oder direkt am Rohstoff "Altpapier".In addition, it has already been proposed to provide infrared spectroscopy for process evaluation, for which a number of publications exist. From the DE 195 10 009 A1 a method for process control of a paper machine is known. Selected spectral characteristics are used to measure product quality parameters. Especially for process control at the headbox of a paper machine neural networks are used, which were trained on the measured in the laboratory product parameters. Furthermore, from the DE 195 10 008 A1 a process for process control in the pulp and paper production known in which spectral characteristics of different wavelengths for the determination of the starting materials and for the evaluation of the raw material quality are derived. Correction signals are also to be determined for the plant control or regulating devices, in particular with neural networks. In this method, the Meßsignalaufnahme takes place directly on the raw material "wood", such as wood chips or wood fibers, or directly on the raw material "waste paper".

Gemäß der US 5 378 320 A wird bei der Sulfatzellstoff-Herstellung über IR-Spektroskopie bei ausgewählten Wellenzahlen die Absorption gemessen und werden über Korrelationen verschiedene Alkalikonzentrationen ermittelt. Dabei wird vorvorgeschlagen, mit spektroskopischen Messungen den Ligningehalt von Zellstoff zu bestimmen.According to the US 5,378,320 In the sulphate pulp production, the absorption is measured at selected wavenumbers by IR spectroscopy and correlations are used to determine different alkali concentrations. It is proposed to determine the lignin content of pulp with spectroscopic measurements.

Schließlich ist aus der DE 36 16 051 A1 ein Verfahren zur Kontrolle des Aufschlusses von Lignozellulosen mit Hilfe von FTIR - Spektroskopie bekannt. Durch Messung im MIR-(Mittleren Infrarot)-Bereich wird der Restligninanteil und die Konzentration der Kochchemikalien bestimmt, z.B. der Gehalt an freiem SO2 bei der Sulfitkochung.Finally, out of the DE 36 16 051 A1 a method for controlling the digestion of lignocelluloses using FTIR spectroscopy. By measurement in the MIR (middle infrared) range, the residual lignin content and the concentration of the cooking chemicals is determined, for example the content of free SO 2 in the sulfite boiling.

Daneben ist aus der DE 42 21 404 A1 eine Verbrennungsanlage für die Ablauge eines Zellstoffkochers mit einer Regeleinrichtung für die Verbrennungsluft bekannt, bei der die Menge und Temperatur einer in der Anlage zerstäubten Ablauge in Abhängigkeit von einer Maßzahl für die Aschequalität derart erfolgt, daß die Verbrennungsprodukte der Ablauge möglichst große Mengen an hydratisierbaren Ausgangsstoffen für die Rückgewinnung der Aufschlußchemikalien enthalten.Besides that is from the DE 42 21 404 A1 a combustion plant for the spent liquor of a digester with a control device for the combustion air, in which the amount and temperature of an atomized waste liquor in the plant depending on a measure of the ash quality is such that the combustion products of the waste liquor as large amounts of hydratable starting materials for contain the recovery of digestion chemicals.

Schließlich wird in der US 5 616 214 A , der US 5 364 502 A und der US 5 282 931 vorgeschlagen, Spektroskopie speziell im Zusammenhang mit der Rückgewinnung der Aufschlußchemikalien bei der Zellstoffherstellung anzuwenden. Bei diesen Druckschriften werden jeweils aus dem Verfahrensprozeß Proben entnommen und bei definierten Wellenlängen untersucht. Davon abgesehen wird mit der JP 5-321183 A vorgeschlagen, zur Regelung der Verbrennung von Schwarzlauge in einem Rückgewinnungskessel eine Fuzzy-Regelung in der Weise vorzusehen, daß aus der Betriebspraxis Fuzzy-Regeln aufgestellt und mit einer geeigneten Zugehörigkeitsfunktion korreliert werden.Finally, in the US 5 616 214 A , of the US 5,364,502 A and the US 5,282,931 proposed to use spectroscopy especially in connection with the recovery of digestion chemicals in pulp production. In these documents samples are taken from the process and examined at defined wavelengths. Apart from that, with the JP 5-321183 A proposed to provide fuzzy control to control the combustion of black liquor in a recovery boiler such that fuzzy rules are established from operating practice and correlated with a suitable membership function.

Aus der WO 98/10137 A1 ist ein Verfahren und eine Vorrichtung zur Prozessführung und zur Prozessoptimierung bei der Kaustifizierung einer Grünlauge beim Sulfat-Zellstoffherstellungsprozess bekannt. Hierbei werden kontinuierliche Infrarot-Absorptionsspektren an der Grünlauge und an der Weißlauge gemessen und die Spektren zur Bildung von Kenngrößen ausgewertet. Aus den Kenngrößen und Labormessungen werden Steuersignale aufgestellt, um die Kalkzufuhr bei dem für die Kaustifizierung eingesetzten Kalklöscher zu steuern.From the WO 98/10137 A1 For example, a method and apparatus for process control and process optimization in causticizing a green liquor in the sulfate pulp manufacturing process is known. In this case, continuous infrared absorption spectra are measured on the green liquor and on the white liquor and the spectra are evaluated to form parameters. Control signals are set up from the parameters and laboratory measurements in order to control the lime intake in the lime slaker used for causticisation.

Beim nicht vorveröffentlichten Stand der Technik gemäß der DE 196 53 530 A1 , der DE 196 53 532 A1 , der DE 196 53 479 A1 und der DE 196 53 477 A1 wird auf die Anwendung und Auswertung der Spektroskopie bei der Zellstoffkochung, beim Bleichen vonWhen not prepublished prior art according to the DE 196 53 530 A1 , of the DE 196 53 532 A1 , of the DE 196 53 479 A1 and the DE 196 53 477 A1 is focused on the application and evaluation of pulping spectroscopy when bleaching

Papierstoffen sowie beim Betreiben von Refinern und Papiermaschinen eingegangen. Für diese Anwendungen wird jeweils vorgeschlagen, an mindestens einer Stelle kontinuierliche Spektren von elektromagnetischer Strahlung und/oder kontinuierliche Spektren von mechanischen Eigenschaften zu messen, weiterhin an mindestens einer Stelle diskrete physikalische und/oder chemische Eigenschaften zu erfassen, durch mathematische Auswertung der kontinuierlichen Spektren Kenngrößen zu bilden und aus den Kenngrößen, den physikalischen und/oder chemischen Eigenschaften und Labormessungen der Produkteigenschaften ein Zustandsmodell und ggfs. ein Prozeßmodell aufzustellen.Paper stocks and in the operation of refiners and paper machines. For these applications, it is proposed in each case to measure at least one point continuous spectra of electromagnetic radiation and / or continuous spectra of mechanical properties, continue to detect at least one location discrete physical and / or chemical properties, by mathematical evaluation of the continuous spectra characteristics form and from the characteristics, the physical and / or chemical properties and laboratory measurements of the product properties a state model and possibly a process model set up.

Demgegenüber ist es Aufgabe der Erfindung, die Prozeßführung speziell für die Chemikalienrückgewinnung bei der Herstellung von Zellstoff zu verbessern und eine zugehörige Vorrichtung zu schaffen.In contrast, it is an object of the invention to improve the process control specifically for the recovery of chemicals in the production of pulp and to provide an associated device.

Die Aufgabe ist bei einem Verfahren der eingangs genannten Art erfindungsgemäß mit den Merkmalen des Patentanspruches 1 gelöst, wobei vorteilhafte Weiterbildungen in den abhängigen Ansprüchen angegeben sind. Die zugehörige Vorrichtung ist im einzigen Sachanspruch angegeben.The object is achieved in a method of the type mentioned according to the invention with the features of claim 1, wherein advantageous developments are specified in the dependent claims. The associated device is specified in the single claim.

Das Verfahren mit Erfassung der kontinuierlichen Spektren ist alternativ für den Sulfit- oder Sulfatprozeß einsetzbar. Bei der Erfindung werden spektroskopische Messungen speziell an den Chemikalienströmen der Rückgewinnungsanlage, d.h. beim Sulfataufschluß z.B. an der Sodaschmelze nach dem Rückgewinnungskessel, in der Grün-, Weiß- und Schwarzlauge, und beim Sulfitaufschluß z.B. im Aschestrom oder an der Asche bzw. in den Kochflüssigkeiten, durchgeführt. Vorteilhafterweise können zur Messung kontinuierlicher Spektren elektromagnetischer Strahlung Absorptions-, Emissions- und/oder Lumineszenzspektroskopie im Spektralbereich von 0,1 µm bis 400 µm, vorzugsweise zwischen 0,4 µm und 100 µm eingesetzt werden. Die kontinuierlichen Spektren werden mit geeigneten Rechenverfahren ausgewertet und ermöglichen eine Aussage über die zu erwartende chemische Zusammensetzung der Kochflüssigkeit. Auf der Basis dieser Aussagen kann in den Prozeß regelnd eingegriffen werden, z.B. durch die Veränderung der Luftverteilung im Rückgewinnungskessel, der CaO-Zufuhr im sog. Kaustifizierer, durch Zusatz von sog. "Make-up"-Chemikalien sowie durch die Regelung des Mischungsverhältnisses von Schwarzlauge, Weißlauge und Verdünnungswasser.The method of detecting the continuous spectra is alternatively applicable to the sulfite or sulfate process. In the present invention, spectroscopic measurements are carried out specifically on the chemical streams of the recovery plant, ie on sulphate digestion, for example on the soda melt after the recovery boiler, in the green, white and black liquors, and on sulphite digestion, for example in the ash stream or on the ash or in the cooking liquors. carried out. Advantageously, for measuring continuous spectra of electromagnetic radiation absorption, emission and / or luminescence spectroscopy in the spectral range from 0.1 .mu.m to 400 .mu.m, preferably between 0.4 .mu.m and 100 .mu.m. The continuous spectra are evaluated with suitable calculation methods and allow a statement about the expected chemical composition of the cooking liquid. On the basis of these statements can be intervened in the process regulating, eg by changing the air distribution in the recovery boiler, the CaO supply in the so-called Kaustifizierer, by addition of so-called "make-up" chemicals and by regulating the mixing ratio of Black liquor, white liquor and dilution water.

Die verbesserte Chemikalienrückgewinnung ist insbesondere vorteilhaft für die Zellstoffherstellung mit einer Vergleichmäßigung der Qualität der Kochflüssigkeit auf hohem Niveau. Damit wird eine Erhöhung der Ausbeute und der Produktionsmenge, eine Reduzierung des Chemikalien- und/oder Energieeinsatzes sowie auch die Einsparung von Hilfsstoffen in der an die Zellstoffherstellung nachfolgenden Bleichstufe erreicht.The improved chemical recovery is particularly advantageous for pulp production with homogenization of the quality of the cooking liquor at a high level. This achieves an increase in the yield and the production quantity, a reduction in the use of chemicals and / or energy as well as the saving of auxiliary substances in the bleaching stage subsequent to the pulp production.

Die Erfindung ist gegenüber dem eingangs angegebenen Stand der Technik in wesentlichen Punkten, wie insbesondere dem Meßort, der Meßmethode, der Verarbeitung der Spektren und der Modellbildung, weiterentwickelt.The invention is in relation to the above-mentioned prior art in essential points, such as in particular the measuring location, the measurement method, the processing of the spectra and the modeling further developed.

Sofern mit elektromagnetischen Wellen im Bereich der Wellenlängen zwischen 100 nm und 400 µm, vorzugsweise im Bereich von 0,4 µm bis 100 µm, gearbeitet wird, können neben Absorptions-, Emissions- oder Lumineszenzspektren auch sog. Ramanspektren gemessen werden. Beispielsweise die Absorptionsspektroskopie kann in Transmission, diffuser Reflexion oder gedämpfter Totalreflexion (ATR = attennuated total reflection) erfolgen. Die Anregung zur Lumineszenz kann z.B. durch die Einstrahlung von elektromagnetischer Strahlung, z.B. UV-Strahlung oder durch eine spezifische chemische Reaktion wie Chemolumineszenz, erfolgen; die Anregung der Emission erfolgt dagegen z.B. durch Bestrahlung mit Elektronen. Bei Messung im Bereich des Infraroten (IR:800 nm bis 20 µm) kann vorzugsweise die Fourier-Transformations-Infrarot-Spektroskopie (FTIR) eingesetzt werden. Bei inhomogenen Proben erfolgt zum Plausibilitätsvergleich die spektroskopische Messung mehrfach.If electromagnetic waves are used in the wavelength range between 100 nm and 400 μm, preferably in the range from 0.4 μm to 100 μm, not only absorption, emission or luminescence spectra but also so-called Raman spectra can be measured. For example, the absorption spectroscopy can be done in transmission, diffuse reflection or attenuated total reflection (ATR = a ttennuated t otal r eflection). The excitation to luminescence can eg by the irradiation of electromagnetic radiation, such as UV radiation or by a specific chemical reaction such Chemiluminescence, done; In contrast, the emission is excited, for example, by irradiation with electrons. When measured in the infrared range (IR: 800 nm to 20 μm), Fourier transform infrared spectroscopy (FTIR) can preferably be used. In the case of inhomogeneous samples, the spectroscopic measurement is repeated several times for a plausibility comparison.

Vorzugsweise werden die Spektren wie folgt vorverarbeitet:

  • durch Fourier-Transformation.
  • Bei der Messung der Absorption durch diffuse Reflexion durch Umrechnung in sog. Kubelka-Munk-Einheiten und Korrektur von Mehrfachstreueffekten
  • durch Normierung und Glättung der Spektren
  • durch Ermittlung von für die Modellbildung ungeeigneten Spektren. Die Ausschaltung ungeeigneter Messungen kann z.B. durch Vergleich mit Referenzspektren erfolgen
  • durch Bildung von Mittelwerten bei mehreren Spektren zu einer Probennahme.
Preferably, the spectra are preprocessed as follows:
  • through Fourier transformation.
  • In the measurement of absorption by diffuse reflection by conversion into so-called Kubelka-Munk units and correction of multiple scattering effects
  • by normalization and smoothing of the spectra
  • by determining spectra unsuitable for modeling. The elimination of unsuitable measurements can be done eg by comparison with reference spectra
  • by forming averages at several spectra for sampling.

Nach diesen ersten Verarbeitungsschritten können an den Spektren ganz oder abschnittsweise folgende rechnergestützte Verfahren zur Ermittlung von Kenngrößen angewandt werden, wobei die Beschreibung der Spektren im wesentlichen durch ihre Hauptkomponenten erfolgt:

  • PCA-Verfahren (principle component analysis) oder auch sog. Hauptkomponentenanalyse
  • PLS-Verfahren(partial least square), einer der Fachwelt bekannten Rechenmethode unter Verwendung kleinster Quadrate
  • Neuronale Netze
  • Analytische Beschreibung der Spektren, z.B. im Bereich des Infraroten (IR) durch Lage, Intensität und Breite der wichtigsten Absorptions- oder Emissionspeaks, Ermittlung dieser Größen z.B. mit einfachen Minimum-/Maximum-Verfahren oder der
  • zweite Ableitung der Spektren
After these first processing steps, the following computer-assisted methods for determining characteristic quantities can be used in whole or in sections on the spectra, the description of the spectra being essentially based on its main components:
  • PCA-method (p rinciple c omponent a nalysis) or so-called. Principal Component Analysis
  • PLS method (partial least square), a method known in the art using least squares
  • Neural Networks
  • Analytical description of the spectra, eg in the range of the infrared (IR) by position, intensity and width of the most important absorption or emission peaks, determination of these quantities eg with simple minimum / maximum methods or
  • second derivative of the spectra

Die Kenngrößen werden zur Modellierung der gewünschten Qualitätsparameter herangezogen.The parameters are used to model the desired quality parameters.

Die Zustandsmodelle zur Berechnung der Qualitätsparameter können bei ausreichend großer Zahl von Daten auf der Basis von neuronalen Netzen, Fuzzy-Systemen, Multilinearen Regressionsmodellen bzw. Kombinationen daraus strukturiert sein. Alternativ zu rein datengetriebenen Modellen sind auch kombinierte Modelle möglich, bei denen zusätzlich analytisches Wissen eingebracht wird. Auf die gleiche Weise und mit den gleichen Mitteln können auch die Prozeßmodelle aufgebaut werden.The state models for calculating the quality parameters can be structured with a sufficiently large number of data based on neural networks, fuzzy systems, multi-linear regression models or combinations thereof. As an alternative to purely data-driven models, combined models are also possible in which additional analytical knowledge is introduced. The process models can be constructed in the same way and with the same means.

Zur Aufstellung der Modelle werden Labormessungen an Zwischen- und Endprodukten herangezogen. Das Training der Modelle bzw. deren Validierung erfolgt jeweils auf der Grundlage der Laborwerte und kann in bestimmten Zeitabständen wiederholt werden, wobei auch ein nur partielles Nachlernen möglich ist.Laboratory measurements on intermediate and end products are used to construct the models. The training of the models or their validation is carried out on the basis of the laboratory values and can be repeated at certain intervals, with only a partial readjustment is possible.

Eine in der Spektrenvorverarbeitung integrierte Prüfung auf Modellgültigkeit ("Novelty Detection") entsprechend der älteren, nicht vorveröffentlichten DE 196 322 45 A1 kann im laufenden Prozeß rechtzeitig die Notwendigkeit einer neuen Trainingsphase anzeigen.A pre-processing integrated into model verification ("Novelty Detection") according to the older, not pre-published DE 196 322 45 A1 can indicate in time the need for a new training phase in the current process.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung. Es zeigen

Figur 1
ein Schema der Meßstellen bei der Chemikalienrückgewinnung,
Figur 2
als Ausschnitt von Figur 1 ein entsprechendes Schema für die Kaustifizierung,
Figur 3
ein kontinuierliches Spektrum von optischen Messungen an Kochflüssigkeit,
Figuren 4 und 5
jeweils ein Zustandsmodell für die Qualitätsparameter der Kochflüssigkeit für den Sulfataufschluß und den Sulfitaufschluß,
Figur 6
ein Prozeßmodell für die Chemikalienaufbereitung beim Sulfatzellstoff,
Figur 7
ein Prozeßmodell für die Chemikalienaufbereitung beim Sulfitzellstoff,
Figur 8
ein dynamisches Prozeßmodell,
Figur 9
den schematischen Aufbau einer Prozeßoptimierung zum Steuern der Chemikalienaufbereitung,
Figur 10
eine Variante zu Figur 8 unter Einbeziehung des dynamischen Modells gemäß Figur 7,
Figur 11
schematisch die Vorverarbeitung und Verdichtung der Spektren und
Figur 12
eine Vorrichtung zur optimierten Prozeßführung bei der Chemikalienaufbereitung.
Further details and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the drawings. Show it
FIG. 1
a schematic of the measuring points in chemical recovery,
FIG. 2
as a section of FIG. 1 a corresponding scheme for caustification,
FIG. 3
a continuous spectrum of optical measurements of cooking liquid,
FIGS. 4 and 5
in each case a state model for the quality parameters of the cooking liquor for sulphate digestion and sulphite digestion,
FIG. 6
a process model for the treatment of sulphate pulp,
FIG. 7
a process model for the chemical treatment of sulfite pulp,
FIG. 8
a dynamic process model,
FIG. 9
the schematic structure of a process optimization for controlling the chemical treatment,
FIG. 10
a variant too FIG. 8 including the dynamic model according to FIG. 7 .
FIG. 11
schematically the preprocessing and densification of the spectra and
FIG. 12
a device for optimized process control in the treatment of chemicals.

Die Figuren werden nachfolgend teilweise gemeinsam beschrieben. Gleiche bzw. gleichwirkende Teile haben sich entsprechende Bezugszeichen.The figures will be described below partially together. The same or equivalent parts have corresponding reference numerals.

In Figur 1 ist der Aufbau einer kontinuierlich arbeitenden Chemikalienaufbereitung dargestellt, wobei in vorliegendem Zusammenhang das Meßstellenschema verdeutlicht wird. Dabei wird von einem bekannten Kocher zum Herstellen von Zellstoff durch Kochen von Ausgangsstoffen, insbesondere in Form von Holzhackschnitzeln, in einer geeigneten Kochflüssigkeit ausgegangen. Mit 11 ist der Einlaß für das Holz in den Kocher 10, mit 12 die Zuleitung für die Kochflüssigkeit und mit 13 der Auslaß für den fertigen Zellstoff bezeichnet. Dem Kocher 10 schließen sich ein Blasstank 14 und mehrere Wäscher 15, 15', 15" mit zugeordneten Filtrattanks 16, 16', 16" an. Vom Wäscher wird der fertige Zellstoff ausgegeben.In FIG. 1 the structure of a continuously working chemical treatment is shown, wherein in the present context, the Meßstellenschema is clarified. In this case, it is assumed that a known cooker for producing pulp by cooking raw materials, in particular in the form of wood chips, in a suitable cooking liquid. Denoted at 11 is the inlet for the wood into the digester 10, at 12 the supply line for the cooking liquid and at 13 the outlet for the finished pulp. The digester 10 is followed by a blow tank 14 and a plurality of scrubbers 15, 15 ', 15 "with associated filtrate tanks 16, 16', 16". From the washer the finished pulp is spent.

Das Filtrat wird über wenigstens eine Einheit 17, vorteilhafterweise Einheiten 17, 17', 17'',... zur mehrstufigen Eindampfung, in einen sog. Schwarzlaugetank 18 gegeben und gelangt von dort in einen Rückgewinnungskessel 20 für Kochchemikalien. Im Rückgewinnungskessel 20 sollen die als Schwarzlauge bezeichneten, nichtwiederverwertbaren Ablaugen, verbrannt und die wiederverwertbaren Kochchemikalien zurückgewonnen werden. Über ein Elektro-Filter 21 wird die Flugasche entfernt. Die sich am Boden des Rückgewinnungskessels 20 ansammelnde Sodaschmelze fließt in einen Schmelze-Löse-Tank 22 ab. Es folgt ein Grünlauge-Klärtank 23 und eine Anlage zur Kaustifizierung, in der chemische Umbesetzungsreaktionen zur Laugengewinnung erfolgen. Diese Anlage besteht im wesentlichen aus einem Löschtank 24, mehreren einzelnen Kaustifizierern 25, 25', 25", einem Weißlauge-Klärtank 26 und einem Kochlaugetank 27. Der Anlage zur Kaustifizierung ist ein Wäscher 28 mit Filter 29 und einem Kalkofen 30 zugeordnet. Der dort gebrannte Kalk wird in den Löschtank 24 zurückgeführt. Aus der Teildarstellung nach Figur 2 wird die Funktionsweise der gestaffelten Kaustifizierer 25, 25', 25'' und 25''' deutlich. Es ist ein Rechner 105 zur Aufnahme und Verarbeitung charakteristischer Daten, insbesondere auch von physikalischen bzw. chemischen Eigenschaften, wie Durchfluß und Dichte ρ, vorhanden.The filtrate is passed through at least one unit 17, advantageously units 17, 17 ', 17 ", ... for multistage evaporation, into a so-called black liquor tank 18 and from there into a recovery boiler 20 for cooking chemicals. In recovery boiler 20, the non-reusable waste liquors referred to as black liquor are to be incinerated and the recyclable cooking chemicals recovered. An electric filter 21 removes the fly ash. The soda melt accumulating at the bottom of the recovery boiler 20 flows into a melt-dissolving tank 22. This is followed by a green liquor clarification tank 23 and a caustification plant in which chemical conversion reactions for liquor extraction take place. This plant consists essentially of a quenching tank 24, several individual Kaustifizierern 25, 25 ', 25 ", a white liquor clarification tank 26 and a cooking liquor tank 27. The Kaustifizierung plant is associated with a scrubber 28 with filter 29 and a lime kiln 30. The there burned lime is returned to the extinguishing tank 24. From the partial illustration to FIG. 2 the operation of the staggered caustics 25, 25 ', 25''and25''' becomes clear. There is a computer 105 for receiving and processing characteristic data, in particular of physical or chemical properties, such as flow and density ρ, available.

Aufgrund des angestrebten kontinuierlichen Betriebes der Anlage ist die dargestellte Chemikalienaufbereitung vergleichsweise komplex: Es kann alternativ nach dem Sulfatprozeß oder nach dem Sulfitprozeß gearbeitet werden. Dabei ist an verschiedenen signifikanten Stellen der Verfahrenskette der Prozeßzustand zu erfassen und der Prozeßverlauf zu optimieren, wozu Meßgrößen erfaßt werden müssen. In Figur 1 sind dazu an entsprechenden Stellen der Verfahrenskette Spektrometer zur Aufnahme einzelner kontinuierlichen Spektren A, B, C, D, E, F, G, H und I von elektromagnetischer Strahlung und in der Teildarstellung gemäß Figur 2 mit entsprechenden Modifizierungen Spektrometer an geeigneten Meßstellen für die Spektren F' und G' angebracht. Mit dieser Anordnung werden, vorzugsweise im Bereich des Infraroten (IR: 1 - 25 µm), online in der Kochflüssigkeit spektroskopische Messungen durchgeführt. Eine solche Messung kann z.B. mit Hilfe einer bekannten ATR-Sonde oder einem bekannten FTIR-Spektrometer durchgeführt werden.Due to the desired continuous operation of the system, the illustrated chemical treatment is relatively complex: it can be used alternatively after the sulphate process or after the sulphite process. In this case, the process state is to be detected at various significant points of the process chain and the process to be optimized, for which measurement quantities must be recorded. In FIG. 1 for this purpose spectrometers for recording individual continuous spectra A at corresponding points in the process chain, B, C, D, E, F, G, H and I of electromagnetic radiation and in the partial view according to FIG. 2 With appropriate modifications, spectrometers are mounted at suitable measuring points for the spectra F 'and G'. With this arrangement, preferably in the infrared range (IR: 1-25 μm), spectroscopic measurements are carried out online in the cooking liquid. Such a measurement can be carried out, for example, with the aid of a known ATR probe or a known FTIR spectrometer.

Die gemessenen Spektren werden durch eine Signalvorverarbeitung geglättet und normiert. Anschließend kann eine Zerlegung in die Hauptkomponenten und/oder die Identifikation wichtiger Peaks erfolgen. Aus den Hauptkomponenten können anschließend mit Modellen, z.B. nach Methoden der multilinearen Regression, die Konzentrationen folgender Größen berechnet werden: Effektiv-Alkali, Sulfidität, Carbonat, Sulfat und Thiosulfat.The measured spectra are smoothed and normalized by signal preprocessing. Subsequently, a decomposition into the main components and / or the identification of important peaks can take place. The main components can then be modeled, e.g. according to multilinear regression methods, the concentrations of the following quantities are calculated: effective alkali, sulphidity, carbonate, sulphate and thiosulphate.

Letztere Werte können neben anderen Werten bekanntermaßen in Prozeßmodellen für die Berechnung der Qualitätsparameter der in Figur 1 erzeugten Kochflüssigkeit 12 verwendet werden.The latter values can be known, among other values, in process models for the calculation of the quality parameters of in FIG. 1 produced cooking liquid 12 are used.

Ein regelnder Eingriff ist an verschiedenen Punkten des Rückgewinnungsprozesses denkbar, z.B. durch Nachdosieren von Chemikalien, durch Temperaturvariationen oder auch durch Änderungen in den Zirkulationen.A regulatory intervention is conceivable at various points in the recovery process, e.g. by replenishment of chemicals, by temperature variations or by changes in the circulation.

In Figur 3 kennzeichnet 31 beispielhaft den Verlauf eines IR-Spektrums von Kochflüssigkeit im Wellenzahlbereich 1500 bis 900 cm-1. Zum Erhalten der Spektren A bis I in den Figuren 1 und 2 kann auch in anderen Wellenzahlbereichen gemessen werden.In FIG. 3 31 exemplifies the course of an IR spectrum of cooking liquid in the wavenumber range 1500 to 900 cm -1 . To obtain the spectra A to I in the FIGS. 1 and 2 can also be measured in other wavenumber ranges.

Die anhand der Figur 3 beispielhaft dargestellten Spektren werden mittels unterschiedlichster mathematischer Methoden, die jeweils für sich vom Stand der Technik bekannt sind, aufbereitet Wie bereits erwähnt, geht es dabei im wesentlichen um eine Vorverarbeitung der Spektren, um das Einbringen von analytischem Wissen und um eine mögliche Ausreißererkennung, um eine korrekte bestimmungsgemäße Ermittlung von Kenngrößen zu gewährleisten. Wesentlich ist dafür, daß allein aus den kontinuierlichen Spektren durch eine geeignete mathematische Auswertung derartige Kenngrößen speziell für die Chemikalienströme im Rückgewinnungsprozeß gebildet werden können und daß aus den Kenngrößen und Labormessungen der Chemikalienkonzentrationen ein Zustandsmodell und/oder zusätzlich mit Prozeßeigenschaften ein Prozeßmodell gebildet wird. Weiterhin können dazu an den Chemikalienströmen diskrete physikalische und/oder chemische Eigenschaften zur Weiterverarbeitung erfaßt werden.The basis of the FIG. 3 exemplified spectra are analyzed by a variety of mathematical methods, As already mentioned, this essentially involves a preprocessing of the spectra, the introduction of analytical knowledge and a possible outlier detection, in order to ensure a correct determination of parameters as intended. It is essential that alone from the continuous spectra by a suitable mathematical evaluation such characteristics can be formed specifically for the chemical streams in the recovery process and that from the characteristics and laboratory measurements of the chemical concentrations a state model and / or additionally with process properties a process model is formed. Furthermore, discrete physical and / or chemical properties for further processing can be detected at the chemical streams.

Letzteres gilt für die Kochchemikalien sowohl im Sulfatprozeß als auch im Sulfitprozeß: Im einzelnen werden beim Sulfatprozeß als den Chemikalienrückgewinnungsprozeß beschreibende Chemikalienkonzentrationen insbesondere die Aktiv-Alkali-Konzentration, die Sulfidität, der Sulfatanteil sowie der Anteil von Na2S, Na2CO3 und NaOH verwendet. Beim Sulfitprozeß werden als den Chemikalienrückgewinnungsprozeß beschreibende Chemikalienkonzentrationen für die Säuren die Gesamt-SO2, die HSO3 --, SO3 ---, S2O3 ---, SO4 ---Konzentrationen und für die Basen die MgO-Konzentration, unterteilt in sog. totgebranntes MgO und Aktiv-MgO, verwendet.The latter applies to the cooking chemicals both in the sulfate process and in the sulfite process: In particular, in the sulfate process as the chemical recovery process descriptive chemical concentrations in particular the active alkali concentration, the sulfidity, the sulfate content and the proportion of Na 2 S, Na 2 CO 3 and NaOH used. When sulfite are used as the chemical recovery process described chemical concentrations of the acids, the total SO 2, HSO 3 - -, -SO 3 - -, S 2 O 3 - -, SO 4 - concentrations and for the bases, the MgO Concentration, divided into so-called deadburned MgO and active MgO, used.

In den Figuren 4 und 5 bedeuten 40A und 40B jeweils ein diesbezügliches Zustandsmodell der Kochchemikalien, aus dem deren Eigenschaften, wie z.B. die Konzentration, berechnet werden. Daraus können die wesentlichen Qualitätsparameter für die aufzubereitende Kochflüssigkeit abgeleitet werden. Dazu werden aus den Spektren entweder mit der sogenannten Hauptkomponentenanalyse (PCA = principal component analysis) oder mit der sogenannten PLS-Methode (partial least square) die Kenngrößen ermittelt und in das Modell eingegeben.In the FIGS. 4 and 5 40A and 40B each indicate a related state model of the cooking chemicals from which their properties, such as concentration, are calculated. From this, the essential quality parameters for the cooking liquid to be processed can be derived. For this purpose, from the spectra either with the so-called principal component analysis (PCA) or With the so-called PLS method (partial least square), the parameters are determined and entered into the model.

Weiterhin werden in Fig. 4 und Fig.5 ausgewählte diskrete mechanische oder chemische Eigenschaften und in das Zustandsmodell 40 eingegeben. Das Zustandsmodell 40A bzw.40B kann aber ggfs. allein mit aus den kontinuierlichen Spektren ermittelten Kenngrößen PC1 bis PCn gebildet werden.Continue to be in Fig. 4 and Figure 5 selected discrete mechanical or chemical properties and entered into the state model 40. However, the state model 40A or 40B can optionally be formed solely with parameters PC1 to PCn determined from the continuous spectra.

Das Modell 40A bzw. 40B kann z.B. vorteilhafterweise durch ein neuronales Netz gebildet sein. Beim Modellieren wird insgesamt von modernen informationstechnischen Rechenmethoden, wie insbesondere auch evolutionären bzw. genetischen Algorithmen, Gebrauch gemacht.The model 40A or 40B may e.g. advantageously be formed by a neural network. In modeling, use is generally made of modern information-technological calculation methods, in particular also evolutionary or genetic algorithms.

In Figur 6 ist ein Prozeßmodell für die Chemikalienrückgewinnung nach dem Sulfatverfahren mit 50 bezeichnet. Eingegeben werden hier beispielhaft diskrete physikalische und chemische Eigenschaften, wie z.B. Temperatur, pH-Wert und Druck und die Zustandsgrößen der Kochflüssigkeit als Ausgabe der Zustandsmodelle beispielsweise gemäß den Figuren 4 oder 5. Auch die Prozeßmodelle können allein mit den aus den kontinuierlichen Spektren ermittelten Kenngrößen gebildet werden.In FIG. 6 For example, a process model for chemical recovery by the sulphate process is designated 50. Entered here are, for example, discrete physical and chemical properties, such as temperature, pH and pressure and the state variables of the cooking liquid as an output of the state models, for example, according to the FIGS. 4 or 5 , The process models can also be formed solely with the parameters determined from the continuous spectra.

In Figur 7 ist ein entsprechendes Prozeßmodell 60 speziell für das Sulfitverfahren angegeben. Sofern diskrete physikalische und/oder chemische Eigenschaften verwendet werden sollen, können neben dem optischen Spektrum beispielsweise die Durchflüsse und/oder die Temperaturen angegeben werden, was in Figur 6 dargestellt ist. Der pH-Wert beim Sulfitaufschluß kann eingegeben werden.In FIG. 7 a corresponding process model 60 is given specifically for the sulfite process. If discrete physical and / or chemical properties are to be used, in addition to the optical spectrum, for example, the flow rates and / or the temperatures can be specified, which in FIG. 6 is shown. The pH value for sulfite digestion can be entered.

Für jeden zu berechnenden Qualitätsparameter sind zweckmäßigerweise eigene Modelle zu erstellen. Zur Erhöhung der Vorhersagegenauigkeit können für jeden Parameter Teilmodelle gebildet werden.It is expedient to create your own models for each quality parameter to be calculated. To increase the prediction accuracy For each parameter partial models can be formed.

Gemäß Figur 8 kann das Prozeßmodell gemäß Figur 6 auch als dynamisches Prozeßmodell 70 konzipiert sein. Die Eingangsgrößen sind hier entsprechend den Eingangsgrößen in Figur 6 jeweils zu diskreten Zeitpunkten k, ..., (k-n), angegeben. Entsprechendes gilt für die Chemikalienkonzentration. Daraus bestimmt das dynamische Prozeßmodell 70 die Chemikalienkonzentration zu zukünftigen Zeitpunkten (k+1.According to FIG. 8 can the process model according to FIG. 6 also be designed as a dynamic process model 70. The input variables are here according to the input variables in FIG. 6 in each case at discrete points in time k,..., (kn). The same applies to the chemical concentration. From this, the dynamic process model 70 determines the chemical concentration at future times (k + 1.

Bei der Aufstellung der Modelle kann außer von neuronalen Netzen auch von Fuzzy-Verfahren Gebrauch gemacht werden. Es können kombinierte Neuro-Fuzzy-Systeme eingesetzt werden.When setting up the models, except for neural networks, fuzzy methods can also be used. Combined neuro-fuzzy systems can be used.

Nach Aufstellung der Zustands- und/oder der der Prozeßmodelle geht es insbesondere darum, die Gültigkeit der Modelle zu validieren, was durch ein online-Training der einzelnen Modelle bzw. der Teilmodelle erfolgen kann. Dabei kann es für die Praxis wichtig sein, durch rechnergestützte Auswahl aller informationstragender Daten eine Überprüfung der jeweils erhaltenen Ergebnisse vorzunehmen. Dieses Verfahren wurde als sog. "Novelty Detection" vorgeschlagen und ermöglicht im laufenden Produktionsprozeß, neue Datensätze in das Auswerteverfahren einzubringen. Bei Vorliegen nicht konsistenter Ergebnisse ist ein Nachtrainieren der Modelle notwendig.After setting up the state and / or the process models, it is particularly important to validate the validity of the models, which can be done by an online training of the individual models or sub-models. It may be important for the practice to make a review of the results obtained by computer-aided selection of all information-bearing data. This method was proposed as so-called "Novelty Detection" and allows in the current production process, to introduce new data sets in the evaluation. In the case of inconsistent results, it is necessary to retrain the models.

Die anhand der beschriebenen Modellierungsverfahren erhaltenen Größen werden zur Prozeßführung und Prozeßoptimierung in der Rückgewinnungsanlage eingesetzt. Dafür ist in Figur 9 der Prozeß allgemein mit 80 bezeichnet, woraus sich der aktuelle Prozeßzustand anhand der Spektren mit 81 ergibt. Das Prozeßmodell ist hier mit 82 bezeichnet, aus dem die Daten in eine Einheit zur Kostenfunktion 83 gegeben werden, die gleichzeitig mit Daten für Kosten und Preise aus der Einheit 84 beaufschlagt wird. Ein Optimierer 85 ermittelt daraus die Stellgrößen 86, die in das Prozeßmodell 82 zurückgekoppelt werden und weiterhin die optimalen Stellgrößen 87 zur Prozeßführung. Diese können auch über einen Schalter 88 vom Anlagenfahrer durchgeschaltet werden.The sizes obtained from the described modeling methods are used for process control and process optimization in the recovery plant. This is in FIG. 9 the process generally indicated at 80, from which the current process state results from the spectra with 81. The process model is designated here by 82, from which the data is put into a unit for the cost function 83, which simultaneously with data for costs and prices from the unit 84 is charged. An optimizer 85 determines therefrom the manipulated variables 86, which are fed back into the process model 82 and also the optimal manipulated variables 87 for process control. These can also be switched through a switch 88 by the plant operator.

Entsprechendes ergibt sich aus Figur 10 für eine Prozeßführung, bei der gleichermaßen ein dynamisches Modell entsprechend der Figur 8 verwendet wird. Hier ist zusätzlich eine Einheit 89 mit dem dynamischen Modell vorhanden, in die der aktuelle Prozeßzustand einerseits eingegeben und die optimalen Stellgrößen andererseits angegeben werden.The same applies FIG. 10 for a litigation, in which a dynamic model according to the FIG. 8 is used. Here, a unit 89 with the dynamic model is additionally present, in which the current process state is entered on the one hand, and the optimal control variables, on the other hand, are specified.

Anhand Figur 11 wird verdeutlicht, daß eine Einheit 91 zur Vorverarbeitung und Verdichtung für die Spektren des Gesamtspektrums 90 dient, aus dem in der Auswerteeinheit 92 z.B. die Kenngrößen PC 1 bis PC 10 berechnet werden. Bei der hierzu verwendeten Hauptkomponentenanalyse werden aus einer geeigneten Anzahl von Spektren, beispielsweise zwischen drei und zehn Spektren, sogenannte Scores, zwecks Datenreduktion gebildet. Daraus werden die Eingangsgrößen PC1,..., PCn insbesondere des Modells gemäß Figur 4 berechnet.Based FIG. 11 illustrates that a unit 91 for preprocessing and compression for the spectra of the total spectrum 90 is used, from which in the evaluation unit 92, for example, the parameters PC 1 to PC 10 are calculated. In the case of the principal component analysis used for this purpose, so-called scores are formed from a suitable number of spectra, for example between three and ten spectra, for the purpose of data reduction. From this, the input variables PC1,..., PCn, in particular the model according to FIG FIG. 4 calculated.

Gemäß Figur 11 fließen die Kenngrößen PC1 bis PCn in das Zustandsmodell 93 und in das Prozeßmodell 94 ein, wobei hier zusätzlich diskrete physikalische und/oder chemische Eigenschaften und die Prozeßbeschreibung das Zustandsmodell zum Prozeßmodell ergänzen. Vom Zustandsmodell 93 werden die Produkteigenschaften der Kochchemikalien und aus dem Prozeßmodell 94 die Produkteigenschaften der Kochflüssigkeit abgeleitet. Nunmehr können alle Chemikalienzusätze berechnet und im Sinne der angestrebten Kosteneinsparung optimiert werden.According to FIG. 11 the parameters PC1 to PCn flow into the state model 93 and into the process model 94, in which case additional discrete physical and / or chemical properties and the process description supplement the state model to the process model. From the state model 93, the product properties of the cooking chemicals and from the process model 94 the product properties of the cooking liquid are derived. Now all chemical additives can be calculated and optimized in terms of the targeted cost savings.

Figur 12 zeigt, wie mit entsprechender Auswerte- und Optimie-rungssoftware anhand eines Rechners, der der Rechner 105 aus Figur 1 sein kann, in ein vorhandenes Prozeßleitsystem eingegriffen wird. Es können optimierte Stellgrößen erzeugt werden, die ein bekanntes Automatisierungsgerät 100 als Prozeßleitsystem beaufschlagen, das mit der eigentlichen Anlage zur Durchführung des Prozesses in Wechselwirkung steht. Im Prinzip werden also die vorhandenen Anlagen zur Chemikalienrückgewinnung durch mehrere Spektrometer 101 bis 103 und ein zugehöriges, als Software realisiertes Optimierungsprogramm, das auf dem Rechner 105 abläuft, ergänzt. FIG. 12 shows, as with appropriate evaluation and optimization software on the basis of a computer, the computer 105 from FIG. 1 be intervened in an existing process control system. Optimized manipulated variables can be generated, which act as a process control system on a known automation device 100, which interacts with the actual system for carrying out the process. In principle, therefore, the existing facilities for chemical recovery by several spectrometers 101 to 103 and an associated, implemented as a software optimization program that runs on the computer 105, supplemented.

Claims (27)

  1. Method for process control and process optimisation during chemical recovery in the manufacturing of cellulose using at least one state model or state model and process model, with the following features:
    a) At at least one point continuous spectra of electromagnetic radiation are measured at the chemical flows,
    b) By evaluation of the continuous spectra, characteristic values (PCl...PCn) for the chemical flows are formed,
    c) From the characteristic values (PCl...PCn) and laboratory measurements of the chemical concentrations the state model is set up and the setup of the process model may possibly include process characteristics,
    characterised in that,
    in method step b) the spectra are pre-processed and compressed, that as part of a mathematical evaluation, a main component analysis is performed on a predetermined number of spectra and for data reduction a corresponding number of scores is selected and that the characteristic values for the model formation are determined therefrom for the modelling.
  2. Method according to claim 1, characterised in that discrete physical and/or chemical characteristics are detected at at least one point at the chemical flows.
  3. Method according to claim 2, characterised in that the discrete physical and/or chemical characteristics are used for setting up the state model and if necessary the process model.
  4. Method according to claim 1, characterised in that measurements are made at wavelengths of the electromagnetic radiation between 100 nm and 400 µm.
  5. Method according to claim 4, characterised in that the electromagnetic radiation is detected as an absorption, emission, luminescence or a Raman spectrum.
  6. Method according to claim 4, characterised in that the electromagnetic radiation is detected in transmission, direct or diffuse reflexion or attenuated total reflectance (ATR).
  7. Method according to claim 2, characterised in that the electrical conductivity, the pH value, the temperature, the throughflows, the chemical concentration of the chemical flows are recorded as discrete physical and/or chemical characteristics.
  8. Method according to claim 1, characterised in that the specific characteristic values of the spectra, especially the main components, are selected for describing the product state and entered directly into the state model.
  9. Method according to claim 1, characterised in that the specific characteristic values of the spectra, especially the main components, are incorporated into the state model and that, at the output of the state model, the product characteristics are formed and entered directly into the process model.
  10. Method according to claim 1, characterised in that unsuitable spectra for modelling are eliminated by plausibility checking.
  11. The method according to one of the preceding claims, characterised in that neural networks and/or fuzzy logic are employed for modelling.
  12. Method according to claim 1, characterised in that the measurements of the spectra are performed in the sulphate process both on the soda melts and also on the aqueous chemical flows such as green liquor, white liquor and black liquor.
  13. Method according to claim 1, characterised in that the measurements of the spectra are performed in the sulphite process both on the ash stream and on the ash and on the cooking acids.
  14. Method according to claim 12 or claim 13, characterised in that the characteristic variables obtained by evaluation of the spectra are included for closed-loop and/or open-loop control of the recovery process.
  15. Method according to claim 14, characterised in that the quality parameters of the finished cooking fluid, especially the chemical concentrations, are modelled for the open-loop and/or closed-loop control of the chemical recovery.
  16. Method according to claim 15, characterised in that the model approaches are employed for calculation of the chemical usage as well as for predicting the product quality.
  17. Method according to claim 15, characterised in that the active alkali concentration, the sulphidity, the sulphate proportion as well as the proportion of Na2S, Na2CO3 and NaOH are used as the chemical concentrations describing the chemical recovery process.
  18. Method according to claim 15, characterised in that, for the acids, the overall SO2, the HSO3 -, SO3 --, S2O3 --, SO4 -- concentrations and for the bases the MgO concentration, divided into burned MgO and active MgO, are used as the chemical concentrations describing the chemical recovery process in the sulphite process.
  19. Method according to claim 15, characterised in that the model approach with the quality parameters is used in the process optimisation.
  20. Method according to one of the preceding claims, characterised in that a cost function is formed which is optimised with an optimiser by suitable variation of the adjustment variables.
  21. Method according to claim 19, characterised in that the optimisation is undertaken by genetic algorithms.
  22. Method according to claim 20, characterised in that a cost function for the production costs and/or a profit function is used as the cost function.
  23. Method according to one of the preceding claims, characterised in that a dynamic model is used for checking the adjustment variables optimised by a static model, wherein a neural network in particular is used as the dynamic model.
  24. Method according to one of the preceding claims, characterised in that the model and/or the submodels are trained online.
  25. Method according to one of the preceding claims, characterised in that checking of results obtained (novelty detection) is carried out by computer-aided selection of all information-bearing data.
  26. Method according to claim 25, characterised in that, if non-consistent results are present, re-training is carried out.
  27. Apparatus for carrying out the method according to one of claims 1 to 26, consisting of at least one spectrometer (101, 102, 103), a unit for pre-processing and compressing the spectra, a digital computer (105) for mathematical evaluation of the continuous spectra for the purposes of calculating the characteristic variables (PC1...PCn) and for setting up the state model or the state model and process model from the characteristic variables (PCl...PCn) and if necessary the discrete physical and/or chemical characteristics as process characteristics, and also consisting of a process control system (100).
EP19990105545 1998-03-31 1999-03-18 Process and apparatus for controlling and optimizing the process of chemical recovery during cellulose production Expired - Lifetime EP0947625B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998114385 DE19814385C1 (en) 1998-03-31 1998-03-31 Process and device for process control and process optimization of chemical recovery in the manufacture of pulp
DE19814385 1998-03-31

Publications (2)

Publication Number Publication Date
EP0947625A1 EP0947625A1 (en) 1999-10-06
EP0947625B1 true EP0947625B1 (en) 2014-08-13

Family

ID=7863101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990105545 Expired - Lifetime EP0947625B1 (en) 1998-03-31 1999-03-18 Process and apparatus for controlling and optimizing the process of chemical recovery during cellulose production

Country Status (2)

Country Link
EP (1) EP0947625B1 (en)
DE (1) DE19814385C1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023065A (en) 1997-03-10 2000-02-08 Alberta Research Council Method and apparatus for monitoring and controlling characteristics of process effluents
EP1254363A1 (en) * 2000-02-07 2002-11-06 Alberta Research Council, Inc. Determination of the properties of a solution or solid using raman ratios
DE10126251A1 (en) * 2001-05-29 2003-01-23 Buehler Ag Online process monitoring and online process modeling
US7149649B2 (en) 2001-06-08 2006-12-12 Panoratio Database Images Gmbh Statistical models for improving the performance of database operations
DE102007036383A1 (en) * 2007-07-31 2009-02-05 Voith Patent Gmbh Controlling the duration of dissolving sulfite substances for high-yield fibers involves terminating solubilizing on reaching predefined correlation between quantity of raw material to be solubilized and sulfite content of sulfite solution
EP2274566A4 (en) 2008-05-13 2015-04-01 Soottech Aktiebolag A method for measuring conditions in a power boiler furnace using a sootblower
WO2010128354A1 (en) * 2009-05-06 2010-11-11 Abb Research Ltd A method and a system for on-line optimization of a batch pulp digester
DE102012202111A1 (en) * 2012-02-13 2013-08-14 Krones Ag Method for controlling and / or regulating filter systems for ultrafiltration
FI129477B (en) * 2019-05-17 2022-03-15 Andritz Oy Determining the reduction degree of a recovery boiler
CN116859830B (en) * 2023-03-27 2024-01-26 福建天甫电子材料有限公司 Production management control system for electronic grade ammonium fluoride production

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK424281A (en) * 1981-09-25 1983-03-26 Kemotron A S METHOD OF MANAGING WHITE CHARACTERISTICS
DE3233428C1 (en) 1982-09-09 1993-04-29 Maschinenfabrik Müller-Weingarten AG, 7987 Weingarten Feed and removal device, especially on presses
EP0148207A4 (en) * 1983-05-18 1985-07-30 Weyerhaeuser Co Method and apparatus for analyzing and controlling carbonate and sulfide in green liquor slaking and causticizing.
DE3504486A1 (en) * 1985-02-09 1986-08-14 Oskar Dipl.-Holzw. Dr. 2057 Reinbek Faix Method for monitoring sulphite pulping of lignocelluloses with the aid of FTIR spectroscopy
US4614265A (en) 1985-07-22 1986-09-30 Danly Machine Corporation Apparatus for automatically splitting transfer feed rails in a transfer feed press
DE9108104U1 (en) * 1991-07-02 1992-10-29 Siemens Ag, 8000 Muenchen, De
JP2967002B2 (en) * 1992-05-18 1999-10-25 株式会社東芝 Recovery boiler combustion controller
US5282931A (en) * 1992-07-08 1994-02-01 Pulp And Paper Research Institute Of Canada Determination and control of effective alkali in kraft liquors by IR spectroscopy
DE4408447A1 (en) 1994-03-12 1995-09-14 Mueller Weingarten Maschf Transport system
DE4408449A1 (en) 1994-03-12 1995-09-14 Mueller Weingarten Maschf Transport system
DE19521976A1 (en) 1994-06-16 1995-12-21 Mueller Weingarten Maschf Transport system for workpieces
DE19510009C2 (en) * 1995-03-23 2000-05-11 Siemens Ag Process and device for process control of a paper machine
DE19510008C2 (en) * 1995-03-23 1997-01-30 Siemens Ag Process and device for process control in pulp and / or paper production
US5616214A (en) * 1995-09-12 1997-04-01 Pulp And Paper Research Institute Of Canada Determination of sodium sulfide and sulfidity in green liquors and smelt solutions
US5822220A (en) * 1996-09-03 1998-10-13 Fisher-Rosemount Systems, Inc. Process for controlling the efficiency of the causticizing process
DE19651934A1 (en) 1996-12-14 1998-06-18 Mueller Weingarten Maschf Heat press
DE19653532C2 (en) * 1996-12-20 2001-03-01 Siemens Ag Process and device for process control in the production of wood pulp
DE19653477C2 (en) * 1996-12-20 1999-04-22 Siemens Ag Process and device for process control in the manufacture of paper
DE19653530C1 (en) * 1996-12-20 1998-07-23 Siemens Ag Process and device for process control and process optimization in the production of pulp
DE19653479C1 (en) * 1996-12-20 1998-09-03 Siemens Ag Process and device for process control and process optimization when bleaching fibrous materials

Also Published As

Publication number Publication date
DE19814385C1 (en) 1999-10-07
EP0947625A1 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
DE19510008C9 (en) Method and device for process control in pulp and / or paper manufacture
US5822220A (en) Process for controlling the efficiency of the causticizing process
EP0946820B1 (en) Method and device for conducting a process in the production of paper
EP0947625B1 (en) Process and apparatus for controlling and optimizing the process of chemical recovery during cellulose production
DE19653530C1 (en) Process and device for process control and process optimization in the production of pulp
EP0815315A2 (en) Method and device for process control in cellulose and paper manufacture
EP0946818B2 (en) Method and device for process control during bleaching of fibrous materials
DE19653532C2 (en) Process and device for process control in the production of wood pulp
DE60018208T2 (en) DETERMINATION OF THE KAPPA NUMBER IN CHEMICAL PULP BY RAMAN SPECTROSCOPY
DE69824616T2 (en) METHOD AND DEVICE FOR REGULATING A MAINLY CONTINUOUS PROCESS
DE19910910A1 (en) Process for carrying out an optimized fiber or paper production process
US6339222B1 (en) Determination of ionic species concentration by near infrared spectroscopy
EP0967326B1 (en) Method for conducting and optimising a process in the production of fibre mats and/or boards
CN1179188A (en) Method and device for process control in cellulose and/or paper manufacture
EP1031023A1 (en) Determination of anionic species concentration by near infrared spectroscopy
EP1175611B1 (en) Determination of ionic species concentration by near infrared spectroscopy
EP1528148B1 (en) Method and apparatus for conducting the process of cooking cellulose pulp
EP0850333A2 (en) Process and arrangement for monitoring cellulose digestion
DE19752442C2 (en) Control device for a continuously operating cooker for the production of pulp
DE102022129850A1 (en) METHOD OF MEASUREMENT AND ARRANGEMENT
WO2006007683A1 (en) Method and apparatus for deriving information from liquor obtained in the course of a wood digestion reaction
Pearce et al. An intelligent monitoring and control system for a hardboard mill
SE529420C2 (en) Process for controlling a cooking process based on the levels of easily soluble carbohydrates and lignin in the pulp fibers
DD293215A5 (en) METHOD FOR DETERMINING THE PERIOD OF COMPLETING TERMINATION IN PAPER PULP MANUFACTURE
DE2537143B2 (en) PROCESS FOR REGULATING THE SUPPLY OF REACTION CHEMICALS DURING THE DELIGNIFICATION AND / OR BLEACHING OF PULP

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000405

AKX Designation fees paid

Free format text: DE FI SE

17Q First examination report despatched

Effective date: 20030909

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 59915412

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D21C0011000000

Ipc: D21C0007120000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: D21C 11/00 20060101ALI20140214BHEP

Ipc: D21C 7/12 20060101AFI20140214BHEP

INTG Intention to grant announced

Effective date: 20140310

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 59915412

Country of ref document: DE

Effective date: 20140918

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 59915412

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20180322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180315

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180518

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59915412

Country of ref document: DE