EP0946441A1 - Additif fibreux pour materiau cimentaire, materiaux et produit le contenant - Google Patents

Additif fibreux pour materiau cimentaire, materiaux et produit le contenant

Info

Publication number
EP0946441A1
EP0946441A1 EP97947100A EP97947100A EP0946441A1 EP 0946441 A1 EP0946441 A1 EP 0946441A1 EP 97947100 A EP97947100 A EP 97947100A EP 97947100 A EP97947100 A EP 97947100A EP 0946441 A1 EP0946441 A1 EP 0946441A1
Authority
EP
European Patent Office
Prior art keywords
wool
composition
fibrous additive
cao
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97947100A
Other languages
German (de)
English (en)
Inventor
Jean-Luc Joutang
Alain Debouzie
Michel Conche
Marc Lepont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Publication of EP0946441A1 publication Critical patent/EP0946441A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/001Alkali-resistant fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials

Definitions

  • the present invention relates to the field of cementitious products and relates more particularly to a fibrous additive to be incorporated into cementitious materials.
  • cementitious material means a material containing a hydraulic binder based on cement mixed with water and possibly aggregates of variable particle size (gravel, gravel, sand, fine and / or ultra-fine ), which is implemented in particular by casting, by extrusion or by projection, then matured.
  • additive is used here to denote an ingredient intended to enter into the composition of a cementitious material as defined above. This term does not have a quantitative nuance here and should not be limited to minority constituents of said materials.
  • reinforcing fibers in particular mineral fibers
  • the reinforcing mineral fibers are generally so-called glass fibers
  • the fibers must satisfy two major requirements: chemical stability in the hydrated matrix, on the one hand, and the ability to mix homogeneously with the other constituents during the mixing, without too much affecting the rheological properties of the hydrated mixture, on the other hand.
  • Glass fibers are now available, the composition of which has been studied to resist strongly basic media such as that which results from the hydration of cement. These so-called alkali-resistant fibers, described in particular in FR-A-2 447 801, guarantee that the composite maintains high mechanical characteristics, even after severe aging conditions.
  • a known solution consists in modifying the composition of the mixture by adding either excess water with an increased risk of cracking, or additives such as thinning agents which significantly increase the cost of the product. These modifications of the composition are also not without influence on the setting time of the composition.
  • Document FR-A-2 728 560 proposes an alternative which consists in using a fibrous additive based on rock wool, such as basalt, provided with a size allowing the dispersion of the fibers during mixing, this additive being susceptible to promote the fluidity of the cement-based material in which it is added, and in some cases, to totally or partially replace a chemical plasticizer. Obtaining a homogeneous distribution of the fibers in the matrix may, however, require very vigorous mixing.
  • cementitious products to which the invention applies are fire protection, thermal or acoustic insulation coatings, obtained by spraying a mixture of mineral wool flakes and cement onto the surfaces to be protected or insulated.
  • the application of the coating on the surface is usually done by means of a machine which simultaneously projects onto the same area of the surface a jet of dry composition containing the mineral wool and the cement, and a jet of water, which mix to each other by hitting the surface.
  • the qualities of the final coating depend more particularly on the homogeneity of the wool coating with hydrated cement to obtain a uniform and continuous sprayed layer without cracks, as well as on the stability over time of the mixture.
  • the quality of the sprayed mixture can however be difficult to reproducibly control during a campaign of use.
  • the present invention proposes to overcome these difficulties and to allow the manufacture, with the usual mixing or spraying techniques, of a cementitious product containing a mineral fibrous additive homogeneously mixed with the cementitious matrix, and in which the fibers are chemically stable throughout the life of the product.
  • a fibrous additive for cement-based material in particular for mortar or concrete, comprising mineral wool, characterized in that the wool mineral is likely to dissolve in a physiological environment.
  • mineral wool is meant, within the meaning of the present invention, a material capable of being obtained by fiberizing a silicate mineral composition in the molten state, based on natural rock, possibly modified by the addition of one or more several metallic oxides and / or vitrified materials such as blast furnace slag.
  • these silicate compositions with a high melting point are characterized by a content by weight of alkaline-earth elements greater than the content of alkaline elements, in the form of oxides.
  • mineral wool degradable in physiological medium has been developed for the manufacture of thermal and acoustic insulation products in order to '' eliminate any potential problem for the manipulators who equip the buildings.
  • the ability to dissolve after inhalation of mineral wool fibers in a human body is generally appreciated by measuring in vitro the rate of dissolution of wool in a solution which simulates an extracellular fluid.
  • the biodegradable nature of mineral wool can also be assessed by "in vivo" tests reflecting the ability of the inhaled material to remain in the lungs despite physiological evacuation mechanisms and environmental conditions.
  • This capacity which will later be called “biopersistence” can be influenced in particular by the possible action of macrophages or by the possible “mechanical” actions undergone by the fibers in the pulmonary medium which can lead to the breaking of the fibers. constituting the wool in fibers of smaller size, which can be a factor influencing their speed of dissolution and / or their capacity to be evacuated by the organism.
  • these biodegradable wools can be introduced into a hydrated cement mixture without posing any problem of handling the mixture or can be coated with a hydrated cement mixture on a regular basis. , and on the other hand that they are not degraded in the strongly alkaline medium resulting from the hydration of the cement.
  • another advantage which will be detailed later, lies in the fact that these wools easily disperse homogeneously in the hydrated matrix, to give the matured product improved resistance.
  • the biodegradability of wool makes the manufacture of the product free of any potential risk, from the handling of the free additive to the maturing stage of the material. The same applies to the use of the finished product.
  • Mineral wools which can be used according to the invention advantageously have a composition rich in alkaline-earth, in particular lime and magnesia, and relatively poor in alumina.
  • the wools usable according to the invention have an index K1 of at least 40, this index being defined by the following relationship:
  • Kl ⁇ (% by mass of Na 2 O, K 2 O, CaO, MgO, BaO, B 2 O 3 ) - 2 x (% by mass of Al 2 O 3 )
  • wools having a K1 index of the order of 30 and more are compatible with the requirements on the quality of the cementitious material.
  • the wools degradable in a physiological medium have an alumina content of less than 12%, more particularly to 8%, in particular to 4%, and a CaO content of the order of 7 to 45%.
  • the MgO content is preferably from 0 to 16%, in particular from 1 to 16%.
  • Advantageous mineral wools are those of the type described in WO-A-93 22 251, the composition of which comprises the following constituents according to the following weight proportions:
  • these wools are advantageously characterized by good mechanical strength, in particular when they are subjected to heat.
  • the wool composition comprises the following constituents according to the following weight proportions:
  • SiO 2 50 to 67%, especially 50 to 66%
  • MgO l at 16%, especially from 3 to 16%
  • Na 2 O + K 2 O l at 6.5%, especially from 1 to 6%
  • Preferred wools are those which, corresponding to any of the preceding definitions, comprise less than 4% of Al 2 O 3 .
  • rock wools which can be used according to the invention are those of the type described in EP-A-0 459 897 and advantageously correspond to the following formula:
  • biodegradable wools suitable for the invention, mention may be made of those of the type described in WO-A-96 04 213, the composition of which comprises the constituents below according to the following weight proportions:
  • SiO 2 40 less than 52%
  • biodegradable wool suitable for the invention is given in WO-A-95 31 410, which relates to wool whose composition comprises the following constituents according to the following weight proportions:
  • wools having a low or non-biopersistent character in particular those characterized by a half-life time by in vivo test of pulmonary biopersistence by inhalation on animals, for fibers say WHO (defined by the World Health Organization as those having both a length greater than 5 ⁇ m and a diameter of less than 3 ⁇ m), less than or equal to 25 days, preferably less than 20 days.
  • WHO defined by the World Health Organization as those having both a length greater than 5 ⁇ m and a diameter of less than 3 ⁇ m
  • 25 days preferably less than 20 days.
  • Another advantageous characteristic is a half-life time by in vivo pulmonary biopersistence test by inhalation for fibers of length greater than 20 ⁇ m less than or equal to 15 days, preferably less than or equal to 10 days, always under the conditions below. -above.
  • Another useful test is an in vivo measurement test of pulmonary biopersistence by intratracheal instillation on animals, the protocol of which is described in the publication.
  • wools characterized by a half-life can be used in this test, for so-called WHO fibers, less than or equal to 40 days, preferably less than or equal to 35 days. It is also possible to use wools characterized by a half-life time in this test, for fibers of length greater than 20 ⁇ m, less than 35 days, preferably less than or equal to 30 days.
  • the composition of non-biopersistent wool advantageously meets the following conditions, expressed on the weight proportions of the constituents indicated:
  • mineral wool usable according to the invention mention may also be made of materials the composition of which comprises the following constituents, the contents of which are indicated by weight of oxide:
  • SiO 2 30 to 51%
  • composition which can be used according to the invention meeting the above conditions is as follows:
  • SiO 2 30 to less than 51%, especially less than 47%
  • Al 2 O 3 more than 11.5%, in particular more than 13%, up to 25%
  • composition which can be used according to the invention meeting the above conditions is as follows:. SiO 2 32 to 48%, especially 35 to 45%
  • MgO 2 to 20%, especially 5 to 15%
  • the shape of the wool is not decisive and can be chosen in a manner known per se by the specialist.
  • the wools which can be used according to the invention in particular have an average diameter of the order of 3 to 25 ⁇ m. Among this range, we prefer wools whose average diameter is of the order of 5 to 10 ⁇ m, which disperse perfectly in the matrix without increasing the viscosity of the mixture.
  • the fibrous additive according to the invention shows an excellent ability to disperse in the hydrated mixture, whether the wool is introduced in free form or conditioned in the form of more or less entangled nodules.
  • the additive comprises fibrous nodules of approximately 4 to 16 mm in diameter containing fibers of average length from 0.2 to 0.5 mm.
  • Such nodules can be manufactured in particular as described in FR-A-2 677 987.
  • the fibrous additive in this relatively compact form very easily releases the wool which disperses very homogeneously within the hydrated mixture. It has also been found, when these nodules were used to produce sprayed coatings, that they mixed very intimately with the cementitious binder to give a very homogeneous sprayed layer.
  • the mineral wool is advantageously sized, in particular with a mineral oil or a surface-active substance optionally combined with an anti-foaming substance, as described in particular in FR-A-2 728 560.
  • the invention further relates to compositions for cementitious material, comprising a cement-based binder, which can be dry or hydrated, characterized in that they contain a fibrous additive as described above.
  • a first embodiment relates to compositions for products of the concrete or mortar type in which the cementitious binder is a major constituent and the fibrous additive is dispersed in this cementitious matrix.
  • the invention relates more particularly to a composition comprising a hydrated matrix, since the fibrous additive is preferably mixed with the other constituents after the water has been introduced.
  • It may especially be mortar compositions, a material based on cement, sand and water, and possibly fines, or a concrete composition which also comprises gravel and / or gravel.
  • compositions can in particular comprise up to approximately 20% by weight of fibrous additive relative to the weight of dry matter, without any problem of kneading of the hydrated mixture being encountered.
  • a wool content of up to 15%, especially from 5 to 15%, is advantageous for obtaining good reinforcement characteristics with optimum ease of use.
  • compositions are obtained by mixing the constituents in conventional devices, the fibrous additive being preferably introduced last after the water has been mixed with the other dry materials. They can be shaped as required by all the techniques known per se, in particular by casting, by extrusion or by calendering. Depending on the applications, the composition may also include various suitable additives, such as plasticizer, extrusion agent, dye ...
  • the invention also relates to a shaped article consisting of a plate, preferably thin, made from a hydrated composition described above.
  • a thin plate product of variable thickness up to approximately 1.5 cm, in particular from 0.4 to 1 cm, can advantageously be produced according to the invention by extrusion or calendering from a mortar composition added with wool.
  • a plate product according to the invention may also contain other reinforcing agents, such as reinforcing fibers (or textile fibers), in the form in particular of continuous threads and / or cut threads.
  • reinforcing fibers or textile fibers
  • This variant has proven to be very advantageous because the fibrous additive and the textile fibers have two complementary reinforcing actions in the product.
  • This combination makes it possible to advantageously reduce the proportion of reinforcing fibers to obtain an equivalent result, and consequently to reduce the cost of the product, the wool constituting the fibrous additive according to the invention being substantially less expensive than the textile fibers.
  • Another particular embodiment of the invention relates to compositions for products of the sprayed protective or insulating type, in which the mineral wool is in much higher proportion.
  • the invention relates in particular to a dry composition to be sprayed comprising the fibrous additive and a cement-based binder which may optionally also comprise at least one other inorganic binder, such as clays or inorganic salts, and / or organic such as a polyvinyl alcohol.
  • a dry composition to be sprayed comprising the fibrous additive and a cement-based binder which may optionally also comprise at least one other inorganic binder, such as clays or inorganic salts, and / or organic such as a polyvinyl alcohol.
  • composition to be sprayed can advantageously comprise of the order of 15 to 35%, in particular 18 to 25% by weight of dry binder, relative to the mineral wool.
  • the composition to be sprayed according to the invention therefore advantageously lends itself to the usual spraying technique used to produce protective or insulating coatings by giving coatings of very good quality.
  • the invention therefore also relates to a building surface coating, in particular a fire protection coating or thermal or acoustic insulation, produced from a hydrated composition described above. These density coatings ⁇ between 120 and 300 kg / m depending on the applications can be obtained by the usual projection technique.
  • Table 1 below presents the composition (in weight percentages) of mineral wools which can be used to constitute a fibrous additive for cementitious material:
  • the rock wools A to L are wools soluble in physiological medium, with an average diameter of approximately 5 ⁇ m and a length of the order of a few centimeters, obtained by dropping a stream of molten rock on the peripheral surface of successive rotary rollers with horizontal axis, water cooled;
  • wool X is a rock wool indicated for comparison, of the type used to constitute the fibrous additive of FR-A-2 728 560, obtained like the preceding wools, in which the fibers have an average diameter of the order from 10 to 15 ⁇ m, and whose composition is such that it cannot be degraded in a physiological medium within a sufficiently short time;
  • - wool Y is another rock wool indicated for comparison: it was obtained by passing the molten material through a die followed by a drawing blower; it also cannot be degraded in a physiological environment within a sufficiently short time.
  • - wool Z is a wool obtained from standard blast furnace slag by the same technique as wool A to L. Slag is commonly used as a powder additive in cement-based products. The properties of this material, especially in the form of wool, are interesting for a comparative analysis of the reactivity of the mineral wools used.
  • Table 1 presents for each composition the value calculated from the percentages by weight of the following expression (I): (I) IN + 1 K 2 O + 1 CaO + 1 MgO + 3P 2 O 5 + 1 BA - 0 , 5 Fe - 2Al 2 O 3 - 4ZnO - 1 TiO 2
  • the materials are characterized in table 1 by: - the in vitro biosolubility expressed by the dissolution rate K dis in ng / cm 2 .h (expressed from all the elements passing through solution, in particular SiO 2 and CaO) of a sample of 200 mg of fibers placed in a cell consisting of two discs and a circular ring, through which circulates a liquid simulating a physiological fluid at a flow rate of 300 ml / day, the liquid being of pH 7.4 to simulate an extracellular fluid or of pH 4.5 to simulate the action of pulmonary macrophages.
  • a high NBO / T indicates a great ability to migrate modifier ions such as Ca out of the material; - the half-life times measured in days by in vivo pulmonary biopersistence tests by inhalation (INH) and by intratracheal instillation (IT), the protocols of which were referenced above, on the one hand on fibers called WHO [measurements of t 1 2 .INH (WHO) and t 1 2 .IT (WHO)] and on the other hand on fibers of length greater than 20 microns [measurements of t 1/2 .INH (20 ⁇ m) and t 1 / 2 .IT (20 ⁇ m)].
  • the inhalation test consists in exposing laboratory rats by inhalation for 6 hours per day for 5 consecutive days, in an atmosphere containing mineral wool of which at least a part is breathable by these animals. After this exposure period, subgroups of animals are sacrificed at specified intervals and their lungs analyzed.
  • the analyzes include the characterization of the number, the size distribution and the chemical composition of the fibers, as well as the abovementioned half-life times corresponding to the time necessary for 50% of the fibers to have disappeared, for those longer than 20 ⁇ m and for those called WHO.
  • the test by intratracheal instillation also consists, schematically, of instilling intratracheal route to laboratory rats of the fiber suspensions which have been optimized to be breathable by these animals, and this once a day for 4 consecutive days, then to sacrifice the animals at specified intervals and analyze their lungs.
  • the analyzes include the same types of results as in the inhalation test, including the half-life times.
  • the wools A to L are characterized by their degradability in physiological medium largely superior to that of these conventional wools.
  • the wools A to I are remarkable in particular for their high content of alkali metal oxides and their low content of alumina; while wools J to L have a relatively higher content of alumina.
  • Application example 1 Incorporation of a fibrous additive into a mortar composition
  • the performance of wool A was tested as a fibrous additive for reinforcing a cementitious product of the mortar type according to the invention, and it was compared with that of an additive of the prior art based on the wool X.
  • the two wools A and X were sized with a mineral oil such as the oil marketed under the brand MULREX or PROREX and packaged in the form of nodules, most of which had a size of 4 at 16 mm.
  • the sizing oil has the effect of facilitating the dispersion of the additive in the mixture hydrate.
  • Dry mixing of the cement, sand and silica smoke is carried out for 5 minutes, then water, the fluidizer, the dye and the extrusion agent are added. After a first wet kneading, the fibrous nodules are added and the kneading is continued to obtain a homogeneous cement paste.
  • This paste is ready to be extradited to form articles of variable dimensions, in particular in thin plates up to a centimeter thick, which are left to mature to ensure the setting of the cement.
  • samples are prepared which will be subjected to flexural strength tests according to the European standard on glass-cement composites EN 1170-5 (final project of March 1995). From the fresh mortar, 4 standard test pieces are formed which are stored in plastic for 24 h at 20 ° C, then 27 days in a room regulated at 20 ° C and 98% relative humidity. After ripening, three samples are immersed in a water tank regulated at 50 ° C to simulate accelerated aging, for respectively 28, 56 and
  • the samples were broken in 4-point bending according to the pr 1170-5 standard, and the rupture modulus (MOR) was measured in MPa, the proportionality limit (LOP) in MPa, and the deformation at break (in% elongation).
  • MOR rupture modulus
  • LOP proportionality limit
  • the wool-containing additive A mixes very easily with the other constituents, the viscosity of the mixture remains in the usual range and does not require any strength. excessive mixing.
  • the wool disperses very homogeneously in the mass of the hydrated mixture. With wool X, the dispersion is less good and we observe the formation of numerous clumps of fibers (nests) in the hydrated mixture.
  • a first observation of the samples after 28-day ripening provides information on the distribution of wool in the matrix of the reinforced composite and confirms that the wool
  • the additive according to the invention makes it possible to combat the phenomenon of micro-cracking which plays an essential role in the resistance to aging in a humid atmosphere.
  • the presence of mineral wool in the entire volume of the composite, obtained according to the invention thanks to the excellent dispersibility of the fibrous additive in the mortar mix, provides reinforcement throughout the material which is particularly effective against micro-cracking.
  • a more satisfactory product is obtained from an aesthetic and mechanical resistance point of view, since the fixation of water which limits the appearance and brittleness of the material is limited.
  • the use according to the invention of degradable wool in a physiological medium also proves to be very advantageous since the manufacture and use of this very high-performance product are not potentially liable to be questioned with regard to the health of manipulators and users.
  • Application example 1 illustrates the invention more particularly in the context of the preparation of extrudable mortars in which the mineral wool content can be freely chosen, in particular at values of less than 15%, for example of the order of
  • the specialist is also able to modify the composition of the mortar according to the shaping technique which he wishes to apply in order to obtain different degrees of fluidity, and may in particular vary the water / binder ratio in a manner known in oneself.
  • the additive according to the invention lends itself to other shaping techniques, such as in particular the calendering described in EP-A-0 173 873, which also makes it possible to incorporate textile fibers reinforcement.
  • the addition of the fibrous additive in the mixing of the mortar makes it possible, with equal final mechanical properties, to reduce the proportion of reinforcing fibers to a content of less than 5%, in particular of the order of 2%.
  • Application example 2 Incorporation of a fibrous additive into a sprayed protective coating
  • a spraying composition is prepared containing the fibrous nodules obtained from rock wool A used in application example 1, and a cement-based binder in the following proportions (in parts by weight) :
  • the total binder content (hydraulic binder + inorganic binder) is therefore 23% relative to the weight of mineral wool.
  • This composition is prepared by simple dry mixing of the constituents in a conventional mixer, in particular of the router type. Under the usual mixing conditions, the additive mixes perfectly with the mineral binder, resulting in light flakes of light color in which the binder is intimately combined with the mineral wool in a very homogeneous manner.
  • This composition is used to make a fire-resistant protective coating on the walls and ceiling of a living room. It is implemented by projection using a conventional machine which simultaneously projects a jet of dry matter flakes and a jet of water onto the surface to be protected.
  • the composition to be sprayed according to the invention hydrates spontaneously very regularly to form a sprayed layer of homogeneous hydrated material.
  • the machine being adjusted so that the hydrated sprayed material has a density of between approximately 180 and 260 kg / m, a dense protective layer, approximately 30 mm thick, is easily produced on the walls and on the ceiling. Under these spraying conditions, the amount of water combined with the dry composition is such that the pH of the hydrated material is approximately 10.
  • the surface of the coating is then smoothed with a roller for a beautiful finish.
  • the mechanical strength of the sprayed coating was evaluated after 30 days and after 300 days of curing.
  • the test consisted in sticking with a suitable adhesive a wooden plate of given dimensions on the mineral wool covering, then in measuring the tearing stress for a traction perpendicular to the surface of the plate.
  • the sprayed layer After 30 days as after 300 days, the sprayed layer retains its initial appearance and no degradation is observed. In particular, the layer does not show any sign of crumbling liable to release particles of mineral wool.
  • the stress measured after 300 days of curing equivalent to that measured at 30 days, proves the excellent stability over time of the sprayed layer, that is to say the excellent resistance of the rock wool A coated by the alkaline binder.
  • this composition to be sprayed a coating of thermal or acoustic insulation by adapting the setting of the spraying machine of so as to produce a layer with a density of 120 to 180 kg / m 3 .
  • This also alkaline material (pH of the order of 9 to 10) has the same stability characteristics as the fire-fighting layer described above. Thanks to the solubility of rock wool A in a physiological medium, the composition to be sprayed according to the invention is completely harmless and guarantees safe handling from the manufacture of the dry mixture, during loading of the spraying machine and up to the finish of the sprayed material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

L'invention concerne un additif fibreux pour matériau cimentaire, notamment pour mortier, béton, ou mélange à projeter, comportant de la laine minérale, caractérisé en ce que la laine minérale est susceptible de se dissoudre en milieu physiologique. Cet additif peut être incorporé dans des matériaux à matrice cimentaire, sèche ou hydratée, pour former par exemple des produits, notamment en plaque, renforcés de fibres ou des revêtements projetés à base de laine minérale.

Description

ADDITIF FIBREUX POUR MATERIAU CIMENTAIRE, MATERIAUX ET PRODUIT LE CONTENANT
La présente invention se rapporte au domaine des produits cimentaires et concerne plus particulièrement un additif fibreux à incorporer dans des matériaux cimentaires.
Dans la présente demande, on entend par « matériau cimentaire », un matériau renfermant un liant hydraulique à base de ciment mélangé à de l'eau et éventuellement des agrégats de granulométrie variable (gravier, gravillons, sable, fines et/ou ultra-fines), qui est mis en oeuvre notamment par coulée, par extrusion ou par projection, puis mûri. Par ailleurs, le terme « additif » est utilisé ici pour désigner un ingrédient destiné à entrer dans la composition d'un matériau cimentaire tel que défini ci-dessus. Ce terme ne comporte pas ici de nuance quantitative et ne doit pas être limité à des constituants minoritaires desdits matériaux.
Il est maintenant de pratique courante de renforcer des produits à base de ciment, tels que du mortier ou du béton, en incorporant dans la matrice des fibres de renforcement, notamment des fibres minérales. En particulier, la présence de fibres dans le produit mûri confère à celui-ci une meilleure ductilité, due à la possibilité de glissement relatif de la matrice par rapport aux fibres, qui permet la dissipation des contraintes à l'interface entre les fibres et la matrice. Les fibres minérales de renforcement sont en général des fibres de verre dites
« textiles », obtenues par étirage mécanique et rassemblées en fils avec un ensimage, ou bien de la laine minérale, notamment de roche, obtenue par étirage centrifuge d"un filet de matière fondue tombant sur un jeu de rouleaux rotatifs, ou par étirage par soufflage de la matière fondue passant au travers d'une filière appropriée. Pour convenir au renforcement d'un produit cimentaire, les fibres doivent satisfaire à deux exigences majeures : la stabilité chimique dans la matrice hydratée, d'une part, et l'aptitude à se mélanger de façon homogène avec les autres constituants au cours de la gâchée, sans trop affecter les propriétés rhéologiques du mélange hydraté, d'autre part.
On dispose désormais de fibres de verre dont la composition a été étudiée pour résister aux milieux fortement basiques tels que celui qui résulte de l'hydratation du ciment. Ces fibres dites alcali-résistantes, décrites notamment dans FR-A-2 447 801, garantissent au composite le maintien de caractéristiques mécaniques élevées, même après des conditions de vieillissement sévères. Pour remédier aux difficultés d'ordre rhéologique liées à l'incorporation de matériau fibreux dans le mélange hydraté, une solution connue consiste à modifier la composition du mélange en ajoutant soit de l'eau en excès avec un risque accru de fissuration, soit des additifs tels que des agents fluidifiants qui augmentent sensiblement le coût du produit. Ces modifications de la composition ne sont pas non plus sans influence sur le temps de prise de la composition.
Le document FR-A-2 728 560 propose une alternative qui consiste à utiliser un additif fibreux à base de laine de roche, telle que du basalte, dotée d'un ensimage permettant la dispersion des fibres au cours du mélange, cet additif étant susceptible de favoriser la fluidité du matériau à base de ciment dans lequel il est ajouté, et dans certains cas, de remplacer totalement ou partiellement un plastifiant chimique. L'obtention d'une répartition homogène des fibres dans la matrice peut cependant nécessiter un malaxage très énergique.
De façon générale, l'incorporation de laines minérales, lors de la gâchée de bétons ou mortiers, continue de poser un certain nombre de difficultés de mélangeage entre les granulats et les fibres dans la pâte cimentaire.
D'autres produits cimentaires auxquels s'applique l'invention sont les revêtements de protection incendie, d'isolation thermique ou acoustique, obtenus par projection d'un mélange de flocons de laine minérale et de ciment sur les surfaces à protéger ou à isoler. L'application du revêtement sur la surface se fait usuellement au moyen d'une machine qui projette simultanément sur la même zone de la surface un jet de composition sèche renfermant la laine minérale et le ciment, et un jet d'eau, qui se mêlent l'un à l'autre en heurtant la surface.
Les qualités du revêtement final dépendent plus particulièrement de l'homogénéité de l'enrobage de la laine par le ciment hydraté pour obtenir une couche projetée homogène et continue sans fissures, ainsi que de la stabilité dans le temps du mélange. La qualité du mélange projeté peut cependant être difficile à contrôler de manière reproductible au cours d'une campagne d'utilisation.
La présente invention se propose de surmonter ces difficultés et de permettre la fabrication, avec les techniques de mélangeage ou de projection habituelles, d'un produit cimentaire renfermant un additif fibreux minéral mélangé de façon homogène avec la matrice cimentaire, et dans lequel les fibres sont stables chimiquement pendant toute la durée de vie du produit. Ces buts, ainsi que d'autres qui apparaîtront par la suite, sont atteints selon l'invention grâce à un additif fibreux pour matériau à base de ciment, notamment pour mortier ou béton, comportant de la laine minérale, caractérisé en ce que la laine minérale est susceptible de se dissoudre en milieu physiologique. Par laine minérale on entend, au sens de la présente invention, un matériau susceptible d'être obtenu par fibrage d'une composition minérale silicatée à l'état fondu, à base de roche naturelle, éventuellement modifiée par l'ajout d'un ou plusieurs oxydes métalliques et/ou de matières vitrifiées telles que le laitier de haut fourneau. Typiquement, ces compositions silicatées à haut point de fusion se caractérisent par une teneur pondérale en éléments alcalino-terreux supérieure à la teneur en éléments alcalins, sous forme d'oxydes.
Bien qu'il n'ait pas été démontré que l'inhalation de microfibres provenant de laines minérales puisse entraîner une action pathologique quelconque, des laines minérales dégradables en milieu physiologique ont été développées pour la fabrication de produits d'isolation thermique et acoustique afin d'éliminer tout problème potentiel pour les manipulateurs qui en équipent les bâtiments.
L'aptitude à la dissolution après inhalation des fibres de laine minérale dans un organisme humain est généralement appréciée en mesurant in vitro la vitesse de dissolution des laines dans une solution qui simule un fluide extracellulaire. Selon un aspect de l'invention, le caractère biodégradable de la laine minérale peut aussi être apprécié par des tests « in vivo » reflétant la capacité du matériau inhalé à rester dans les poumons malgré les mécanismes d'évacuation physiologiques et les conditions environnementales. Cette capacité, que l'on qualifiera par la suite de « biopersistance », peut être influencée notamment par l'action éventuelle des macrophages ou par les éventuelles actions « mécaniques » subies par les fibres dans le milieu pulmonaire qui peuvent entraîner la rupture des fibres constituant la laine en fibres de taille moindre, ce qui peut être un facteur influençant leur vitesse de dissolution et/ou leur capacité à être évacuées par l'organisme.
De manière surprenante, il a été constaté par les présents inventeurs, d'une part que ces laines biodégradables peuvent être introduites dans un mélange cimentaire hydraté sans poser de problème de maniabilité du mélange ou peuvent être enrobées d'un mélange cimentaire hydraté de façon régulière, et d'autre part qu'elles ne sont pas dégradées dans le milieu fortement alcalin résultant de l'hydratation du ciment. Plus particulièrement dans le cas des produits renforcés de fibres, un autre avantage, qui sera détaillé par la suite, réside dans le fait que ces laines se dispersent facilement de façon homogène dans la matrice hydratée, pour conférer au produit mûri une résistance améliorée. En outre, la biodégradabilité des laines rend la fabrication du produit exempte de tout risque potentiel, depuis la manipulation de l'additif libre jusqu'à l'étape de mûrissement du matériau. Il en va de même de l'utilisation du produit fini.
Des laines minérales utilisables selon l'invention présentent avantageusement une composition riche en alcalino-terreux, notamment chaux et magnésie, et relativement pauvre en alumine. De préférence, les laines utilisables selon l'invention présentent un indice Kl d'au moins 40, cet indice étant défini par la relation suivante :
Kl =Σ (% en masse de Na2O, K2O, CaO, MgO, BaO, B2O3 ) - 2 x (% en masse de Al2O3 )
Cet indice récemment proposé par le gouvernement allemand est assez significatif de la dégradabilité en milieu physiologique. Les valeurs de 40 et plus sont actuellement considérées comme largement au-delà de tout risque potentiel.
Dans le cadre de la présente invention, des laines présentant un indice Kl de l'ordre de 30 et plus sont compatibles avec les exigences sur la qualité du matériau cimentaire.
Avantageusement, les laines dégradables en milieu physiologique présentent une teneur en alumine inférieure à 12 %, plus particulièrement à 8 %, notamment à 4%, et une teneur en CaO de l'ordre de 7 à 45 %. La teneur en MgO est de préférence de 0 à 16 %, notamment de 1 à 16 %.
Des laines minérales avantageuses sont celles du type décrit dans WO-A-93 22 251 , dont la composition comprend les constituants ci-après selon les proportions pondérales suivantes:
• SiO2 48 à 67 %
. Al2O3 O à 8 %
• Fe2O3 0 à l2 %
(fer total)
. CaO 16 à 35 %
. MgO l à 16 %
. Na2O + K2O O à 6,5 %
P2O5 O à 5 % en respectant les relations suivantes . Na2O + P2O5 > 2 %
. Fe2O3 + Al2O3 < 12 %
. CaO + MgO + Fe2O3 > 23 %
Outre leur solubilité élevée en milieu physiologique, ces laines se caractérisent avantageusement par une bonne tenue mécanique, en particulier lorsqu'elles sont soumises à la chaleur.
Très avantageusement, la composition des laines comprend les constituants ci-après selon les proportions pondérales suivantes :
. SiO2 50 à 67 %, notamment 50 à 66 %
• Al2O3 O à 7 %, notamment moins de 4 %
. Fe2O3 O à 11 %, notamment de 0 à 7 %
(fer total)
. CaO 16 à 35 %
. MgO l à 16 %, notamment de 3 à 16 %
. Na2O + K2O l à 6,5 %, notamment de 1 à 6 %
• P205 O à 5 % avec . Fe2O3 + Al2O3 < 8 %
. CaO + MgO + Fe2O3 >25 %
Des laines préférées sont celles qui, répondant à l'une quelconque des définitions précédentes, comprennent moins de 4 % de Al2O3.
Lorsque la teneur en Fe2O3 des laines est égale ou supérieure à 7 %, leur teneur en Al2O3 est de préférence égale ou inférieure à 1 %. Lorsque la teneur en Fe2O3 des laines est égale ou supérieure à 7 %, leur teneur en P2O5 est de préférence supérieure à 1 %.
D'autres laines de roche utilisables selon l'invention sont celles du type décrit dans EP-A-0 459 897 et répondent avantageusement à la formule suivante:
. SiO2 40 à 58 %
• Al2O3 3 à 11,5 %
. Fe2O3 0,1 à 15 % (fer total)
. CaO 7 à 40 %
. MgO 4 à l6 %
• P205 l à 7 %
. Impuretés < 3 % . Na2O + K2O <7 % avec . CaO + MgO + Fe2O3 >25 %
Comme autres exemples de laines biodégradables adaptées à l'invention, on peut citer celles du type décrit dans WO-A-96 04 213, dont la composition comprend les constituants ci-après selon les proportions pondérales suivantes:
. SiO2 40 à moins de 52 %
. Al2O3 moins de 4 %
. CaO plus de 25 et jusqu'à 45 %
. MgO 5 à 15 % . BaO 0 à 7 %
. Na2O 2 à 12 %
. K2O O à lO %
. Na2O + K2O 2 à 15 %
. TiO2, Fe2O3, MnO 0 à 5 % Encore un autre exemple de laines biodégradables adaptées à l'invention est donné dans WO-A-95 31 410, qui concerne des laines dont la composition comprend les constituants ci-après selon les proportions pondérales suivantes:
. SiO2 40 à 67 %
. CaO 20 à 45 % . MgO 0 à l2 %
. Na2O O à lO %
. B2O3 0 à 15 %
. Na2O + B2O3 0 à 25 %
. P2O5 0 à 5 % - Al2O3 0 à 3 %
. TiO2, Fe2O3,BaO, MnO, K2O 0 à 5 %
Parmi des laines minérales utilisables avec avantage suivant l'invention, on trouve les laines présentant un caractère peu ou non biopersistant, en particulier celles caractérisées par un temps de demi-vie par test in vivo de biopersistance pulmonaire par inhalation sur animaux, pour les fibres dites WHO (définies par l'Organisation Mondiale de la Santé comme celles ayant à la fois une longueur supérieure à 5 μm et un diamètre de moins de 3 μm), inférieur ou égal à 25 jours, de préférence inférieur à 20 jours. Les conditions de ce test sont décrites dans la publication intitulée « 772e évaluation of soluble fibres using the inhalation biopersistance model, a nine fibre comparison » parue dans la revue Inhalation
Toxicology, Volume 8, pages 345-385, 1996.
Une autre caractéristique avantageuse est un temps de demi-vie par test in vivo de biopersistance pulmonaire par inhalation pour les fibres de longueur supérieure à 20 μm inférieur ou égal à 15 jours, de préférence inférieur ou égal à 10 jours, toujours dans les conditions ci-dessus.
Un autre test utile est un test de mesure in vivo de biopersistance pulmonaire par instillation intratrachéale sur animaux dont le protocole est décrit dans la publication
« Biopersistance of différent types of minerai fibers in rat lungs after intratracheal application » (BAU, Fb711, 1995). Selon l'invention, on peut utiliser des laines caractérisées par un temps de demi-vie dans ce test, pour les fibres dites WHO, inférieur ou égal à 40 jours, de préférence inférieur ou égal à 35 jours. On peut aussi utiliser des laines caractérisées par un temps de demi-vie dans ce test, pour des fibres de longueur supérieure à 20 μm, inférieur à 35 jours, de préférence inférieur ou égal à 30 jours. La composition des laines non biopersistantes répond avantageusement aux conditions suivantes, exprimées sur les proportions pondérales des constituants indiqués :
. SiO2 > 35 %
. Al2O3 < 15 %
. 1 Na2O + 1 K2O + 1 CaO + 1 MgO + 3 P2O5 + 1 B2O3 - 0,5 Fe2O3 - 2 Al2O3 - 4 ZnO - 1 TiO2 > 26 % en particulier > 28 % notamment > 35 %.
A titre d'exemple de laine minérale utilisable selon l'invention, on peut encore citer des matériaux dont la composition comprend les constituants suivants dont les teneurs sont indiquées en poids d'oxyde:
. SiO2 30 à 51 %
. Al2O3 10 à 30 %
. CaO 2 à 30 %
. MgO 0 à 20 % . Na2O + K2O 0 à 19 %
. TiO2 0 à 6 % ou TiO2 + Fe2O3 6 à 18 %
. autres jusqu'à 15 % Malgré leur teneur relativement élevée en alumine, ces laines présentent un très faible caractère biopersistant, grâce à une sélection appropriée des proportions des autres constituants.
Un exemple particulier de composition utilisable selon l'invention répondant aux conditions ci-dessus est la suivante:
. SiO2 30 à moins de 51 %, notamment moins de 47%
. Al2O3 plus de 11,5% , en particulier plus de 13%, jusqu'à 25%
. CaO 2 à moins de 23 %, notamment 4 à 20%
. MgO 0 à l5 % . Na2O + K2O plus de 10 à 19 %, notamment plus de 10 à 18%
. TiO2 + Fe2O3 6 à 18 %, notamment 7 à 16%
. autres 0 à 3 %, notamment 0 à 2%
Un autre exemple particulier de composition utilisable selon l'invention répondant aux conditions ci-dessus est la suivante: . SiO2 32 à 48 %, notamment 35 à 45%
. Al2O3 10% à 30%, notamment 13 à 26%
. CaO 10 à 30 %, notamment 14 à 25%
. MgO 2 à 20 %, notamment 5 à 15%
. Na2O + K2O 0 à 12 %, notamment 2 à 10%, en particulier 6 à 10% . TiO2 0 à 6 %, notamment 0,5 à 3%
. autres 0 à 15 %
Dans l'additif fibreux selon l'invention, la forme de la laine n'est pas déterminante et peut être choisie de façon connue en soi par le spécialiste. Les laines utilisables selon l'invention ont notamment un diamètre moyen de l'ordre de 3 à 25 μm. Parmi cette gamme, on préfère les laines dont le diamètre moyen est de l'ordre de 5 à 10 μm, qui se dispersent parfaitement dans la matrice sans augmenter la viscosité du mélange.
L'additif fibreux selon l'invention manifeste une excellente aptitude à se disperser dans le mélange hydraté, que la laine soit introduite sous forme libre ou conditionnée sous forme de nodules plus ou moins enchevêtrés. Dans un mode de réalisation particulier, l'additif comprend des nodules fibreux d'environ 4 à 16 mm de diamètre renfermant des fibres de longueur moyenne de 0,2 à 0,5 mm. De tels nodules peuvent être fabriqués notamment de la façon décrite dans FR-A-2 677 987. Au cours de la fabrication de produits cimentaires du type béton ou mortier renforcé, il fut surprenant de constater que dans des conditions de mélangeage usuelles, l'additif fibreux sous cette forme relativement compacte libère très facilement la laine qui se disperse de manière très homogène au sein du mélange hydraté. On a également constaté, lorsque ces nodules étaient utilisés pour réaliser des revêtements projetés, qu'ils se mélangeaient de façon très intime avec le liant cimentaire pour donner une couche projetée très homogène.
La laine minérale est avantageusement ensimée, notamment avec une huile minérale ou une substance tensioactive éventuellement associée à une substance antimousse, telles que décrites notamment dans FR-A-2 728 560. L'invention a en outre pour objet des compositions pour matériau cimentaire, comprenant un liant à base de ciment, qui peuvent être sèches ou hydratées, caractérisées en ce qu'elles renferment un additif fibreux tel que décrit précédemment.
Un premier mode de réalisation concerne des compositions pour produits du type béton ou mortier dans lesquels le liant cimentaire est un constituant majoritaire et l'additif fibreux est dispersé dans cette matrice cimentaire. Dans ce premier mode, l'invention vise plus particulièrement une composition comprenant une matrice hydratée, car l'additif fibreux est de préférence mélangé aux autres constituants après que l'eau a été introduite.
Il peut s'agir notamment de compositions de mortier, matériau à base de ciment, de sable et d'eau, et éventuellement de fines, ou d'une composition de béton qui comprend en outre du gravier et/ou des gravillons.
De telles compositions peuvent notamment comprendre jusqu'à environ 20 % en poids d'additif fibreux par rapport au poids de matière sèche, sans que l'on rencontre de problème de malaxage du mélange hydraté. Une teneur en laine allant jusqu'à 15 %, notamment de 5 à 15 %, est avantageuse pour obtenir de bonnes caractéristiques de renforcement avec une facilité de mise en oeuvre optimale. Des teneurs inférieures, dans la gamme allant jusqu'à 5% en poids, notamment de l'ordre de 0,5 à 5%, en particulier de 0,5 à 3%, permettent très avantageusement d'allier de bonnes performances mécaniques et facilité de mise en oeuvre pour un coût compétitif.
Ces compositions s'obtiennent par malaxage des constituants dans des appareils classiques, l'additif fibreux étant de préférence introduit en dernier lieu après que l'eau a été mélangée avec les autres matières sèches. Elles peuvent être mises en forme selon les besoins par toutes les techniques connues en soi, notamment par coulée, par extrusion ou par calandrage. En fonction des applications, la composition pourra comprendre en outre divers additifs appropriés, tels que plastifiant, agent d'extrusion, colorant ...
L'invention a également pour objet un article conformé constitué d'une plaque, de préférence mince, réalisée à partir d'une composition hydratée décrite ci-dessus. Un tel produit en plaque mince, d'une épaisseur variable jusqu'à environ 1,5 cm, notamment de 0,4 à 1 cm, peut être réalisé avantageusement selon l'invention par extrusion ou calandrage à partir d'une composition de mortier additionnée de laine.
Un produit en plaque selon l'invention peut renfermer en outre d'autres agents de renforcement, tels que des fibres de renforcement (ou fibres textiles), sous forme notamment de fils continus et/ou de fils coupés. Cette variante s'est révélée très avantageuse car l'additif fibreux et les fibres textiles ont dans le produit deux actions de renforcement complémentaires. Cette combinaison permet de réduire avantageusement la proportion de fibres de renforcement pour obtenir un résultat équivalent, et par voie de conséquence de réduire le coût du produit, la laine constituant l'additif fibreux selon l'invention étant sensiblement moins coûteuse que les fibres textiles. Un autre mode de réalisation particulier de l'invention concerne des compositions pour produits du type revêtements protecteurs ou isolants projetés, dans lesquels la laine minérale est en beaucoup plus forte proportion. Dans ce second mode, l'invention vise notamment une composition sèche à projeter comprenant l'additif fibreux et un liant à base de ciment qui peut éventuellement comprendre en outre au moins un autre liant inorganique, tel que des argiles ou des sels inorganiques, et/ou organique tel qu'un alcool polyvinylique.
Une telle composition à projeter peut comprendre avantageusement de l'ordre de 15 à 35 %, notamment de 18 à 25 % en poids de liant sec, par rapport à la laine minérale.
Par simple mélangeage à sec de l'additif selon l'invention avec les constituants du liant cimentaire, on obtient un mélange à projeter parfaitement homogène dans lequel le liant est réparti uniformément sur la laine minérale. L'hydratation de ce mélange est donc facilitée et l'on obtient directement un matériau hydraté très homogène sans recourir à des opérations particulières de mélange. La composition à projeter selon l'invention se prête donc avantageusement à la technique habituelle de projection mise en oeuvre pour réaliser des revêtements protecteurs ou isolants en donnant des revêtements de très bonne qualité. L'invention a donc également pour objet un revêtement de surface de bâtiment, notamment un revêtement de protection anti-feu ou d'isolation thermique ou acoustique, réalisé à partir d'une composition hydratée décrite ci-dessus. Ces revêtements de densité π comprise entre 120 et 300 kg/m selon les applications peuvent être obtenus par la technique de projection habituelle.
D'autres particularités et avantages de l'invention ressortiront de la description détaillée des exemples suivants. Exemples d'additifs A à L selon l'invention, ainsi que X. Y et Z comparatifs
Le tableau 1 ci-après présente la composition (en pourcentages pondéraux) de laines minérales utilisables pour constituer un additif fibreux pour matériau cimentaire :
- les laines de roche A à L sont des laines solubles en milieu physiologique, d'un diamètre moyen de 5 μm environ et d'une longueur de l'ordre de quelques centimètres, obtenues en laissant tomber un filet de roche en fusion sur la surface périphérique de rouleaux rotatifs successifs à axe horizontal, refroidis à l'eau ;
- la laine X est une laine de roche indiquée à titre comparatif, du type utilisé pour constituer l'additif fibreux de FR-A-2 728 560, obtenue comme les laines précédentes, dans laquelle les fibres ont un diamètre moyen de l'ordre de 10 à 15 μm, et dont la composition est telle qu'elle n'est pas dégradable en milieu physiologique dans un délai suffisamment court ;
- la laine Y est une autre laine de roche indiquée à titre comparatif : elle a été obtenue en faisant passer la matière fondue au travers d'une filière suivie d'un souffleur d'étirage ; elle non plus n'est pas dégradable en milieu physiologique dans un délai suffisamment court.
- la laine Z est une laine obtenue à partir de laitier de haut fourneau standard par la même technique que les laines A à L. Le laitier est couramment employé en tant qu'additif pulvérulent dans des produits à base de ciment. Les propriétés de ce matériau, notamment sous forme de laine, sont intéressantes pour une analyse comparative de la réactivité des laines minérales utilisées.
Si la somme des pourcentages pondéraux indiqués pour tous les constituants d'un exemple dans le tableau 1 est inférieure à 100%, il faut comprendre que le taux résiduel correspond aux impuretés et/ou composants minoritaires non analysés, notamment de type SO3, MnO. Si elle s'avère légèrement supérieure à 100%, la raison provient des tolérances admises sur les analyses dans ce domaine. Le tableau 1 présente pour chaque composition la valeur calculée à partir des pourcentages en poids de l'expression ( I ) suivante : (I) IN + 1 K2O + 1 CaO + 1 MgO + 3P2O5 + 1 BA - 0,5 Fe - 2Al2O3 - 4ZnO - 1 TiO2 Les matériaux sont caractérisés dans le tableau 1 par : - la biosolubilité in vitro exprimée par la vitesse de dissolution Kdis en ng/cm2.h (exprimée à partir de l'ensemble des éléments passant en solution, en particulier SiO2 et CaO) d'un échantillon de 200 mg de fibres placé dans une cellule constituée de deux disques et d'une bague circulaire, à travers laquelle circule un liquide simulant un fluide physiologique à un débit de 300 ml/jour, le liquide étant de pH 7,4 pour simuler un fluide extracellulaire ou de pH 4,5 pour simuler l'action des macrophages pulmonaires. Ce test in vitro a été mis au point par SCHOLZE et al. et son protocole est décrit dans Annals of Occupational Hygiène 31 (4B) 1987. Les grandeurs Kdis sont indicatrices de la dégradabilité en milieu physiologique ; - la valeur NBO/T qui indique la proportion d'atomes d'oxygène du matériau non engagés dans une liaison avec la silice et donc libres de créer de nouvelles liaisons impliquant une possibilité d'attaque sur ces sites ; cette grandeur est indicatrice de la réactivité dégradante du matériau. Un NBO/T élevé indique une grande aptitude à la migration hors du matériau des ions modificateurs comme Ca ; - les temps de demi-vie mesurés en jours par les tests in vivo de biopersistance pulmonaire par inhalation (INH) et par instillation intratrachéale (IT) dont les protocoles ont été référencés plus haut, d'une part sur les fibres dites WHO [mesures de t1 2.INH(WHO) et t1 2.IT(WHO)] et d'autre part sur les fibres de longueur supérieure à 20 microns [mesures de t1/2.INH(20 μm) et t1/2.IT(20 μm)]. Schématiquement, le test par inhalation consiste à exposer des rats de laboratoire par inhalation pendant 6 heures par jour pendant 5 jours consécutifs, dans une atmosphère contenant de la laine minérale dont au moins une partie est respirable par ces animaux. Après cette période d'exposition, des sous-groupes d'animaux sont sacrifiés à intervalles déterminés et leurs poumons analysés. Les analyses incluent la caractérisation du nombre, de la distribution en taille et de la composition chimique des fibres, ainsi que les temps de demi -vie précités correspondant au temps nécessaire pour que 50% des fibres aient disparu, pour celles longues de plus de 20 μm et pour celles dites WHO.
Le test par instillation intratrachéale consiste, également schématiquement, à instiller par voie intratrachéale à des rats de laboratoire des suspensions de fibres qui ont été optimisées pour être respirables par ces animaux, et ceci une fois par jour pendant 4 jours consécutifs, puis à sacrifier les animaux à intervalles déterminés et à analyser leurs poumons. Les analyses incluent les mêmes types de résultats que dans le test par inhalation, notamment les temps de demi-vie.
Par rapport aux laines X et Y constituant l'additif de l'art antérieur, les laines A à L se caractérisent par leur dégradabilité en milieu physiologique largement supérieure à celle de ces laines classiques. En termes de compositions, les laines A à I sont remarquables notamment par leur teneur élevée en oxydes d'éléments alcalins et leur faible teneur en alumine ; tandis que les laines J à L ont une relativement plus forte teneur en alumine.
A titre indicatif, le comportement chimique de la laine A est extrêmement proche de celui du laitier Z. En particulier sa valeur NBO/T est équivalente à celle du pur laitier de haut fourneau, et laisse supposer une réactivité identique pour ces deux matériaux. Or, on sait que le laitier est attaqué dans une solution de pH basique tel que celui atteint lors de l'hydratation et la prise du ciment. De ce fait, on aurait pu s'attendre à ce que cette laine biodégradable, ainsi que d'autres de compositions voisines, fût dégradée en présence d'une matrice cimentaire. Les exemples d'application suivants montrent au contraire l'étonnante stabilité des laines biodégradables dans des matériaux cimentaires suivant l'invention.
Exemple d'application 1 : Incorporation d'un additif fibreux dans une composition de mortier
On a testé les performances de la laine A en tant qu'additif fibreux de renforcement d'un produit cimentaire du type mortier suivant l'invention, et on les a comparées avec celles d'un additif de l'art antérieur à base de la laine X. Pour constituer l'additif fibreux, les deux laines A et X ont été ensimées avec une huile minérale telle que l'huile commercialisée sous la marque MULREX ou PROREX et conditionnées sous forme de nodules dont la majeure partie avait une taille de 4 à 16 mm.
Chaque additif a été incorporé dans une composition de mortier à extruder répondant à la formule suivante: Ciment CPA 52,5 100 kg
Sable siliceux 100 kg
Fumée de silice 10 kg
Agent d ' extrusion 1 , 5 kg
Fluidifiant 1,5 kg Colorant noir 5 kg
Eau 47 kg le pourcentage en poids d'additifs ajoutés par rapport à la matière sèche étant de 15 %. L'huile d'ensimage a pour effet de faciliter la dispersion de l'additif dans le mélange hydraté.
On effectue dans un premier temps le malaxage à sec du ciment, du sable et de la fumée de silice pendant 5 minutes, puis on ajoute l'eau, le fluidifiant, le colorant et l'agent d'extrusion. Après un premier malaxage humide, on ajoute les nodules fibreux et l'on poursuit le malaxage pour obtenir une pâte cimentaire homogène.
Cette pâte est prête à être extradée pour former des articles de dimensions variables, notamment en plaques minces allant jusqu'à un centimètre d'épaisseur, que l'on laisse mûrir pour assurer la prise du ciment.
Pour caractériser les propriétés mécaniques des produits mûris, on prépare des échantillons qui seront soumis à des tests de résistance à la flexion selon la norme européenne sur les composites verre-ciment EN 1170-5 (projet définitif de mars 1995). A partir du mortier frais, on forme 4 éprouvettes normalisées que l'on stocke sous plastique pendant 24 h à 20 °C, puis 27 jours dans une chambre régulée à 20 °C et 98 % d'humidité relative. Après mûrissement, trois échantillons sont plongés dans un réservoir d'eau régulée à 50 °C pour simuler un vieillissement accéléré, pendant respectivement 28, 56 et
84 jours (cette dernière durée correspondant pour un ciment renforcé de fibres de verre à un vieillissement sous climat tempéré de 15 ans).
Aux différentes échéances, les échantillons ont été cassés en flexion 4 points selon la norme pr EN 1170-5, et l'on a mesuré le module de rupture (MOR) en MPa, la limite de proportionnalité (LOP) en MPa, et la déformation à la rupture (en % d'allongement).
Par des observations microscopiques, en microscopie électronique à balayage, on a caractérisé à chaque stade l'état des laines au sein de la matrice et estimé la stabilité chimique du produit.
Résultats comparatifs Lors de la préparation des compositions de mortier de la façon décrite ci-dessus, l'additif renfermant la laine A se mélange très facilement avec les autres constituants, la viscosité du mélange reste dans la gamme habituelle et ne nécessite pas de force de malaxage excessive. La laine se disperse de façon très homogène dans la masse du mélange hydraté. Avec la laine X, la dispersion est moins bonne et l'on observe la formation de nombreux amas de fibres (nids) dans le mélange hydraté.
Une première observation des échantillons après mûrissement de 28 jours renseigne sur la distribution des laines dans la matrice du composite renforcé et confirme que la laine
A est répartie plus uniformément dans la matrice que la laine X. Cette première observation montre également que la laine A reste intacte dans la matrice alcaline de l'échantillon. Ce résultat est très surprenant compte tenu de la réactivité de la laine A escomptée à partir de la valeur NBO/T identique à celle du laitier et qui laissait prévoir une réactivité dans le sens de la corrosion dans un environnement aussi agressif que le milieu alcalin de la matrice hydratée.
Les observations microscopiques des échantillons renfermant les laines A et X aux différents stades de vieillissement sont assez similaires. Après 28 jours de mûrissement, la matrice est compacte et présente des pores fermés à bords réguliers et non fissurés ; les laines ne montrent aucun signe de corrosion par la matrice alcaline. Après vieillissement, à chaque stade, la matrice devient très dense et très compacte par hydratation progressive du liant, mais les laines ne sont toujours pas corrodées.
Ces propriétés sont rassemblées dans le tableau 2 suivant, avec les performances mécaniques des échantillons A et X mesurées comme indiqué ci-dessus.
Tableau 2
Les échantillons renforcés avec la laine A manifestent une très bonne résistance mécanique et présentent de surcroît des caractéristiques quasiment constantes quel que soit le stade de vieillissement. Il s'agit donc de produits très stables utilisables avec une grande fiabilité. Encore une fois l'efficacité, en tant qu'agent de renforcement d'une matrice alcaline, de cette laine minérale est surprenante au regard de sa dégradabilité dans les fluides physiologiques.
On a pu mettre en évidence en particulier que l'additif selon l'invention permet de combattre le phénomène de micro-fissuration qui joue un rôle essentiel dans la résistance au vieillissement en atmosphère humide. La présence de laine minérale dans tout le volume du composite, obtenue selon l'invention grâce à l'excellente dispersabilité de l'additif fibreux dans la gâchée de mortier, assure un renfort dans tout le matériau particulièrement efficace contre la micro-fissuration. En évitant l'apparition des micro-fissures, on obtient un produit plus satisfaisant du point de vue esthétique et de la résistance mécanique car on limite la fixation d'eau qui est à l'origine de défauts d'aspects et de fragilité du matériau. L'utilisation selon l'invention de la laine dégradable en milieu physiologique se révèle en outre très avantageuse car la fabrication et l'utilisation de ce produit très performant ne sont pas potentiellement susceptibles d'être mises en cause vis à vis de la santé des manipulateurs et utilisateurs.
L'exemple d'application 1 illustre l'invention plus particulièrement dans le cadre de la préparation de mortiers extrudables dans lesquels la teneur en laine minérale peut être choisie librement, notamment à des valeurs inférieures à 15%, par exemple de l'ordre de
5% ou moins. Le spécialiste est en outre à même de modifier la composition du mortier en fonction de la technique de mise en forme qu'il souhaitera appliquer pour obtenir différents degrés de fluidité, et pourra faire varier notamment le rapport eau/liant d'une façon connue en soi. Il convient de noter que l'additif selon l'invention se prête à d'autres techniques de mise en forme, telles que en particulier le calandrage décrit dans EP-A-0 173 873, qui permet d'incorporer en outre des fibres textiles de renforcement. Dans cette variante, on note que l'ajout de l'additif fibreux dans la gâchée du mortier permet, à propriétés mécaniques finales égales, de réduire la proportion de fibres de renforcement à une teneur inférieure à 5 %, notamment de l'ordre de 2 %.
Exemple d'application 2 : Incorporation d'un additif fibreux dans un revêtement protecteur projeté
Dans cet exemple, on prépare une composition à projeter renfermant les nodules fibreux obtenus à partir de la laine de roche A utilisés dans l'exemple d'application 1, et un liant à base de ciment dans les proportions suivantes (en parties en poids) :
Additif A 100
Ciment 17
Bentonite 4 Sulfate de calcium 2
La teneur en liant total (liant hydraulique + liant inorganique) est donc de 23 % par rapport au poids de laine minérale.
Cette composition est préparée par simple mélange à sec des constituants dans un mélangeur classique, notamment de type toupie. Dans les conditions usuelles de mélangeage, l'additif se mélange parfaitement avec le liant minéral, pour aboutir à des flocons légers de couleur claire dans lesquels le liant est intimement combiné avec la laine minérale de façon très homogène.
Cette composition est utilisée pour réaliser un revêtement protecteur anti-feu sur les murs et le plafond d'une pièce d'habitation. Elle est mise en oeuvre par projection à l'aide d'une machine classique qui projette simultanément un jet de flocons de matière sèche et un jet d'eau sur la surface à protéger. La composition à projeter selon l'invention s'hydrate spontanément de façon très régulière pour constituer une couche projetée de matériau hydraté homogène. La machine étant réglée pour que le matériau projeté hydraté ait une densité comprise entre environ 180 et 260 kg/m , on réalise sans difficulté sur les murs comme au plafond une couche protectrice dense, d'environ 30 mm d'épaisseur. Dans ces conditions de projection, la quantité d'eau combinée à la composition sèche est telle que le pH du matériau hydraté est d'environ 10. La surface du revêtement est ensuite lissée au rouleau pour une belle finition.
La tenue mécanique du revêtement projeté a été évaluée après 30 jours et après 300 jours de mûrissement. L'essai a consisté à coller au moyen d'un adhésif approprié une plaquette en bois de dimensions déterminées sur le revêtement de laine minérale, puis à mesurer la contrainte d'arrachement pour une traction perpendiculairement à la surface de la plaquette.
Après 30 jours comme après 300 jours, la couche projetée conserve son aspect initial et l'on n'observe aucune dégradation. En particulier la couche ne présente aucun signe d'effritement susceptible de libérer des particules de laine minérale.
La contrainte mesurée après 300 jours de mûrissement, équivalente à celle mesurée à 30 jours, prouve l'excellente stabilité dans le temps de la couche projetée, c'est-à-dire l'excellente résistance de la laine de roche A enrobée par le liant alcalin.
En variante, on peut réaliser à partir de cette composition à projeter un revêtement d'isolation thermique ou acoustique en adaptant le réglage de la machine de projection de façon à réaliser une couche d'une densité de 120 à 180 kg/m3. Ce matériau également alcalin (pH de l'ordre de 9 à 10) présente les mêmes caractéristiques de stabilité que la couche anti-feu décrite ci-avant. Grâce à la solubilité de la laine de roche A en milieu physiologique, la composition à projeter selon l'invention est totalement inoffensive et garantit une manipulation sûre dès la fabrication du mélange sec, lors du chargement de la machine de projection et jusqu'à la finition du matériau projeté.

Claims

REVENDICATIONS
1. Additif fibreux pour matériau cimentaire, notamment pour mortier/béton ou matériau à projeter, comportant de la laine minérale, caractérisé en ce que la laine minérale est susceptible de se dissoudre en milieu physiologique.
2. Additif fibreux selon la revendication 1, caractérisé en ce que la laine présente un indice Kl égal ou supérieur à 40, cet indice étant défini par la relation suivante : Kl =Σ (% en masse de Na2O, K2O, CaO, MgO, BaO, B2O3 ) - 2 x (% en masse de Al2O3)
3. Additif fibreux selon la revendication 1 , caractérisé en ce que la laine présente un indice Kl égal ou supérieur à 30, cet indice étant défini par la relation suivante : Kl =Σ (% en masse de Na2O, K2O, CaO, MgO, BaO, B2O3 ) - 2 x (% en masse de Al2O3)
4. Additif fibreux selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la laine présente un caractère peu ou non biopersistant.
5. Additif fibreux selon la revendication 4, caractérisé en ce que la laine présente un temps de demi-vie par test in vivo de biopersistance pulmonaire par inhalation pour les fibres WHO inférieur ou égal à 25 jours.
6. Additif fibreux selon la revendication 4, caractérisé en ce que la laine présente un temps de demi-vie par test in vivo de biopersistance pulmonaire par inhalation pour les fibres de longueur supérieure à 20 μm inférieur ou égal à 15 jours, de préférence inférieur ou égal à 10 jours.
7. Additif fibreux selon la revendication 4, caractérisé en ce que la laine présente un temps de demi-vie par test in vivo de biopersistance pulmonaire par instillation intratrachéale pour les fibres WHO inférieur ou égal à 40 jours.
8. Additif fibreux selon la revendication 4, caractérisé en ce que la laine présente un temps de demi-vie par test in vivo de biopersistance pulmonaire par instillation intratrachéale pour les fibres de longueur supérieure à 20 μm inférieur ou égal à 35 jours.
9. Additif fibreux selon l'une quelconque des revendications 4 à 8, caractérisé en ce que la laine comprend les constituants suivants en les proportions suivantes :
SiO2 > 35 %
Al2O3 < 15 % et en ce que la composition vérifie en outre la relation suivante, exprimée en pourcentages pondéraux :
1 Na2O + 1 K2O + 1 CaO + 1 MgO + 3 P2O5 + 1 B2O3 - 0,5 Fe2O3 -
2 Al2O3 - 4 ZnO - 1 TiO2 > 26 %
10. Additif fibreux selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition de la laine comprend les constituants ci-après selon les proportions pondérales suivantes : .SiO2 48 à 67 % . Al2O3 Oà 8 %
• Fe2O3 0àl2 %
(fer total) .CaO 16à35 % .MgO là 16 % .Na2O + K2O Oà 6,5 %
P2O5 Oà 5 % en respectant les relations suivantes . Na2O + P2O5 > 2 % . Fe2O3 + Al2O3 <12 % . CaO + MgO + Fe2O3 >23 %
11. Additif fibreux selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la composition de la laine comprend les constituants ci-après selon les proportions pondérales suivantes :
. SiO2 40 à 58 %
. Al2O3 3 à 11,5 %
• Fe2O3 0,1 à 15 %
(fer total)
.CaO 7à40 %
.MgO 4 à 16 %
•P205 là7 %
. Impuretés <3 %
. Na2O + K2O <7 %
. CaO + MgO + Fe2O3 >25 %
12. Additif fibreux selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la composition de la laine comprend les constituants ci-après selon les proportions pondérales suivantes :
. SiO2 40 à moins de 52 %
. Al2O3 moins de 4 %
. CaO plus de 25 et jusqu'à 45 %
. MgO 5 à 15 %
. BaO 0 à 7 %
. Na2O 2 à 12 % . K2O O à lO %
. Na2O + K2O 2 à 15 %
. TiO2, Fe2O3, MnO 0 à 5 %
13. Additif fibreux selon l'une quelconque des revendications 4 à 8, caractérisé en ce que la laine comprend les constituants suivants en les proportions suivantes : . SiO2 30 à 51 %
. Al2O3 10 à 30 %
. CaO 2 à 30 %
. MgO 0 à 20 %
. Na2O + K2O 0 à l9 % . TiO2 0 à 6 % ou TiO2 + Fe2O3 6 à 18 %
. autres jusqu'à 15 %
14. Additif fibreux selon l'une quelconque des revendications précédentes, caractérisé en ce que la laine est ensimée avec une huile minérale ou une substance tensioactive éventuellement associée à une substance anti-mousse.
15. Additif fibreux selon l'une quelconque des revendications précédentes, caractérisé en ce que la laine est constituée de fibres ayant un diamètre moyen de 3 à 25 μm, de préférence de l'ordre de 5 à 10 μm.
16. Composition de matériau cimentaire, sèche ou hydratée, comprenant un liant à base de ciment, caractérisée en ce qu'elle renferme un additif fibreux selon l'une quelconque des revendications précédentes.
17. Composition selon la revendication 16, caractérisée en ce qu'elle comprend jusqu' à 15 % en poids d'additif par rapport au poids de matière sèche.
18. Produit en plaque, notamment mince, réalisé à partir d'une composition de matériau cimentaire hydratée selon l'une quelconque des revendications 16 et 17.
19. Produit selon la revendication 18, caractérisé en ce qu'il renferme en outre des fibres de renforcement de type textile.
20. Composition selon la revendication 16, caractérisée en ce qu'elle comprend de 15 à 35 % en poids de liant sec par rapport à la laine minérale.
21. Composition selon la revendication 20, caractérisée en ce qu'elle comprend en plus du ciment au moins un autre liant minéral ou organique.
22. Revêtement de surface de bâtiment, notamment de protection anti-feu ou d'isolation thermique ou acoustique réalisé à partir d'une composition cimentaire hydratée selon l'une des revendications 16, 20 et 21.
23. Revêtement selon la revendication 22, caractérisé en ce qu'il est réalisé par projection simultanée d'une composition cimentaire sèche et d'eau sur ladite surface.
EP97947100A 1996-11-28 1997-11-20 Additif fibreux pour materiau cimentaire, materiaux et produit le contenant Withdrawn EP0946441A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9614567 1996-11-28
FR9614567 1996-11-28
FR9700013 1997-01-02
FR9700013 1997-01-02
PCT/FR1997/002090 WO1998023547A1 (fr) 1996-11-28 1997-11-20 Additif fibreux pour materiau cimentaire, materiaux et produit le contenant

Publications (1)

Publication Number Publication Date
EP0946441A1 true EP0946441A1 (fr) 1999-10-06

Family

ID=26233125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97947100A Withdrawn EP0946441A1 (fr) 1996-11-28 1997-11-20 Additif fibreux pour materiau cimentaire, materiaux et produit le contenant

Country Status (3)

Country Link
EP (1) EP0946441A1 (fr)
AU (1) AU5227298A (fr)
WO (1) WO1998023547A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783516B1 (fr) * 1998-09-17 2000-11-10 Saint Gobain Isover Composition de laine minerale
WO2001019743A1 (fr) * 1999-09-14 2001-03-22 Saint-Gobain Isover G+H Ag Masse fibreuse insonorisante biodegradable
WO2014062987A2 (fr) 2012-10-18 2014-04-24 Ocv Intellectual Capital, Llc Composition de verre pour la fabrication de fibres et procédé
KR102664515B1 (ko) 2017-10-10 2024-05-08 유니프랙스 아이 엘엘씨 결정성 실리카 없는 저 생체내 지속성 무기 섬유

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002394A1 (fr) * 1983-11-23 1985-06-06 Atlantic Richfield Company Compositions de fibres de verre possedant une faible teneur en oxyde de fer
DE3917045A1 (de) * 1989-05-25 1990-11-29 Bayer Ag Toxikologisch unbedenkliche glasfasern
FR2662688B1 (fr) * 1990-06-01 1993-05-07 Saint Gobain Isover Fibres minerales susceptibles de se decomposer en milieu physiologique.
FR2690438A1 (fr) * 1992-04-23 1993-10-29 Saint Gobain Isover Fibres minérales susceptibles de se dissoudre en milieu physiologique.
IS4284A (is) * 1994-05-17 1995-11-18 Isover Saint-Gobain Samsetning glerullartrefja
HRP950332A2 (en) * 1994-08-02 1997-04-30 Saint Gobain Isover Mineral-fiber composition
US5935886A (en) * 1994-11-08 1999-08-10 Rockwool International A/S Man-made vitreous fibres
FR2728560B1 (fr) * 1994-12-27 1997-03-14 Orgel Additif fibreux pour materiaux a base de ciment, et materiaux le contenant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9823547A1 *

Also Published As

Publication number Publication date
WO1998023547A1 (fr) 1998-06-04
AU5227298A (en) 1998-06-22

Similar Documents

Publication Publication Date Title
EP1263690B1 (fr) Composition de beton ultra haute performance resistant au feu
EP0418108B1 (fr) Procédé et produits obtenus par mélange de ciment et de fibres de renfort
EP2401239B1 (fr) Mortier isolant pulverulent, mortier isolant en couche
CA2312033C (fr) Beton de fibres metalliques, matrice cimentaire et pre-melanges pour la preparation de la matrice et du beton
EP0252848B1 (fr) Produit à base de ciment armé de fibres de verre
JP3009059B2 (ja) 発泡結合性組成物及びその製造方法
LU85619A1 (fr) Materiau en feuille de ciment renforce de fibres
EP2981512A1 (fr) Composition de mortier isolant
EP1080049A1 (fr) Beton comportant des fibres organiques dispersees dans une matrice cimentaire, matrice cimentaire du beton et premelanges
FR2458520A1 (fr)
US10882790B2 (en) Engineered self-cleaning cementitious composites
CA2248201A1 (fr) Suspensions aqueuses de silice et leurs applications dans les compositions a base de liant mineral
WO1998023547A1 (fr) Additif fibreux pour materiau cimentaire, materiaux et produit le contenant
EP1150932B1 (fr) Element de construction prefabrique a base de platre et en particulier plaque a base de platre presentant une resistance au feu amelioree
EP1062184B1 (fr) Materiau a base de gypse, procede de fabrication d&#39;un tel materiau et element de construction coupe-feu comprenant ce materiau
EP0194910B1 (fr) Fibres de verre résistant aux milieux basiques et application de celles-ci au renforcement du ciment
EP1122223A1 (fr) Composition à base de ciment destinée à la construction, en particulier destinéee à la réalisation de chapes
EP0719744B1 (fr) Additif fibreux pour matériaux à base de ciment, et matériaux le contenant
FR2520780A1 (fr) Dispositif de protection thermique totale pour facades
JP4743358B2 (ja) ガラス繊維混入コンクリート
BE1010453A5 (fr) Mortier pour la construction.
JPH08333152A (ja) セメント組成物およびセメント組成物の押出成形用助剤
JP4137504B2 (ja) 繊維補強セメント成型物
JPH0345545A (ja) 押出成形無石綿セメント板
FR2555633A1 (fr) Pieces moulees en beton isolant leger, procede de fabrication et composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 19990507

17Q First examination report despatched

Effective date: 20000419

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020622