EP0944802A1 - Method for dynamic separation into two zones with a screen of clean air - Google Patents

Method for dynamic separation into two zones with a screen of clean air

Info

Publication number
EP0944802A1
EP0944802A1 EP97951278A EP97951278A EP0944802A1 EP 0944802 A1 EP0944802 A1 EP 0944802A1 EP 97951278 A EP97951278 A EP 97951278A EP 97951278 A EP97951278 A EP 97951278A EP 0944802 A1 EP0944802 A1 EP 0944802A1
Authority
EP
European Patent Office
Prior art keywords
jet
air
zone
clean
protected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97951278A
Other languages
German (de)
French (fr)
Other versions
EP0944802B1 (en
Inventor
Jean-Claude Laborde
Victor Manuel Mocho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIR Ultra Propre Nutrition Industrie Recherche
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
UNIR Ultra Propre Nutrition Industrie Recherche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, UNIR Ultra Propre Nutrition Industrie Recherche filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0944802A1 publication Critical patent/EP0944802A1/en
Application granted granted Critical
Publication of EP0944802B1 publication Critical patent/EP0944802B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • F24F2009/007Use of air currents for screening, e.g. air curtains using more than one jet or band in the air curtain

Definitions

  • the invention relates to a method for ensuring the dynamic separation of a contaminating zone and a zone to be protected, communicating with each other by at least one separation zone, by means of a curtain of clean air obtained by injecting in the separation zone at least two adjacent clean air jets in the same direction.
  • the process according to the invention can be used in numerous industrial sectors.
  • a first family of industries concerned by this process includes all industries (food, medical, biotechnology, high technology, etc.), in which it is necessary to prevent the atmosphere of a given work area from being contaminated by ambient air, carrying thermal, microbial, particulate and / or gaseous contamination.
  • Another family of industries concerned by the process according to the invention includes industries (nuclear, chemical, medical, etc.) in which man and his environment must be protected from toxic or dangerous products placed at inside a containment.
  • Ventilation protection and air curtain protection There are currently two types of solutions to ensure the dynamic separation of two zones communicating with each other by one or more separation zones in order, for example, to allow the entry and exit of objects: ventilation protection and air curtain protection.
  • Protection by ventilation consists in artificially creating a pressure difference between the two zones, so that the pressure prevailing in the zone to be protected is greater than the pressure which prevails inside the contaminating zone.
  • the area to be protected contains a product liable to be contaminated by ambient air
  • a laminar flow which blows outward through the separation area is injected into the area to be protected.
  • the dynamic confinement is ensured by implementing an extraction ventilation in this contaminated space.
  • a rule of thumb imposes a minimum speed of the ventilated air of 0.5 m / s, in the plane of the separation zone through which the two zones communicate, in order to avoid transfer of contamination to the area to be protected.
  • this ventilation protection technique is however not perfect, especially in a so-called "break-in" situation, that is to say when objects are transferred through the separation zone interposed between the two zones.
  • this type of protection requires treating and controlling, as the case may be, the entire clean area to be protected from the contaminating external atmosphere or the entire contaminated area. When the area to be treated and controlled is large, this entails a cost of equipment and particularly important functioning.
  • this ventilation protection technique only provides one-way protection, that is to say that it only acts when transfers of contamination are only possible in one direction.
  • the air curtain protection technique consists in simultaneously injecting, into the separation zone by which the two zones communicate, one or more jets of clean air, adjacent and of the same direction, which form a fictitious gate between the zone to protect and the contaminating area.
  • a plane air jet breaks up into two distinct zones: a transition zone (or core zone) and a development zone.
  • the transition zone corresponds to the central part of the jet, supported on the nozzle, in which the speed vector is constant. This zone corresponds to the part of the jet in which no mixing between the injected air and the air present on either side of the jet occurs. In section along a plane perpendicular to the plane of the separation zone, the width of the transition zone gradually decreases as it moves away from the nozzle. For this reason, this transition zone will be called “dart" in the remainder of the text.
  • the jet development zone is the part of the jet located outside the transition zone. In this jet development zone, the outside air is entrained by the flow of the jet. This results in variations in the speed vector and in air mixing. The entrainment of air by the two faces of the jet, in this development zone pement, is called "induction". An air jet thus induces, on each of its faces, an air flow which depends in particular on the injection flow rate of the jet considered.
  • document JP-B-36 7228 it has been proposed to produce an air curtain by simultaneously injecting into the separation zone three adjacent air jets of the same direction. More specifically, a relatively fast air jet is injected between two relatively slow air jets.
  • This arrangement is supposed to provide more effective confinement than a single air jet, by the fact that the air entrained and stirred by the central jet is lightly contaminated air, coming from the relatively slow jets injected from both sides. other of this central air jet.
  • this document does not take into account either the length of the darts of each of the jets, nor their injection rates, so that the effectiveness of the confinement is very random.
  • the dart of the slow jet is sufficiently long to cover the entire opening when the width of the injection nozzle of this slow jet is at least equal to 1/6 of the height of the opening to be protected. It is also indicated that the injection flows of the two air jets must be such that the air flow induced by the face of the fast jet which is in contact with the slow jet is substantially equal to the injection flow of this latest.
  • the return grid by which the two jets are recovered is arranged at the ex- inside the opening, and below the workstation, to control the ventilation of the contaminated area.
  • the two side walls which delimit the opening are extended outward over a distance at least equal to the thickness of the air curtain.
  • the subject of the invention is precisely a method of dynamic separation of two zones communicating with each other by at least one separation zone, using an air curtain whose principle is comparable to that which is described in documents FR-A-2 530 163, FR-A-2 652 520 and FR-A-2 659 782, but the containment efficiency of which is significantly improved, especially in the event of break-ins.
  • this result is obtained by means of a process for dynamic separation of a contaminating zone and a zone to be protected, communicating with one another by at least one separation zone, this method comprising the following steps:
  • the air curtain can provide dynamic containment in either direction, if we add a relatively slow third jet to the first two jets.
  • a third relatively slow jet of clean air is injected into the separation zone, at a third injection rate, adjacent to the second jet and in the same direction as the first and second jets, between the zone to be protected and the second draft.
  • the third jet comprises a dart capable of covering the entire separation zone.
  • the third injection flow is then adjusted so that it is substantially equal to the first injection flow, so that the air flows induced by the faces of the second jet respectively in contact with the first and third jets are at most substantially equal to half of the first and third injection rates. Thanks to these characteristics, the third jet effectively covers the entire separation zone.
  • clean ventilation air is simultaneously injected inside the area to be protected, at an injection rate at least equal to the air flow induced by the second or third jet (depending on whether the curtain includes two or three jets), on the face of it in contact with the clean ventilation air.
  • this characteristic makes it possible to obtain a "purifying effect" in the area to be protected, in particular in the event of fractions through the air curtain.
  • the clean ventilation air is advantageously injected at a speed such that the speed of this clean ventilation air, brought to the surface. of the plan of the separation zone, ie at least equal to 0.1 m / s.
  • clean ventilation air is injected over an entire rear or upper wall of the area to be protected, in the direction of the separation area.
  • the wall through which the clean ventilation air is injected is therefore oriented parallel or substantially perpendicular to the plane of the separation zone.
  • clean ventilation air is injected at a regulated temperature.
  • all the clean air jets are preferably injected in directions substantially parallel to the plane of the separation zone.
  • all of the clean air jets are advantageously recovered by a return grid installed opposite the injection nozzles of these jets and situated in a plane substantially perpendicular to the direction of the clean air jets. Optimization of the barrier effect provided by the air curtain can also be obtained by extending the side walls of the opening, located on either side of the clean air jets, so that they extend towards the contaminating zone over a distance at least equal to the maximum thickness of the jets.
  • FIG. 1 is a perspective view, which schematically illustrates the protection of a clean work area by means of an air curtain formed of two adjacent air jets, according to a first embodiment the method of the invention.
  • FIG. 2 is a perspective view comparable to Figure 1, which schematically illustrates the protection of a clean work area by means of an air curtain formed of three adjacent air jets, according to a second form of implementation of the method of the invention. Detailed description of two forms of implementation
  • the areas 10 and 12 have been designated respectively by an area to be protected and a contaminating area.
  • the zone 10 to be protected is constituted by the clean interior space of a work station and the contaminating zone 12 is constituted by the space external to this work station.
  • This external space constitutes a source of thermal, particulate, gaseous and / or microbial contamination with respect to the internal space of the work station.
  • the work station which forms the zone 10 to be protected is delimited by watertight walls in all directions, except to the right when considering figure 1. More precisely, the face of the work station turned to the right in the figure 1 forms a separation zone, constituted by an opening 11, through which the zone 10 to be protected communicates with the contaminating external zone 12.
  • This opening 11 is intended, for example, to allow entry and exit of objects into the zone 10 to be protected, as well as possible handling inside this zone, from the contaminating external zone 12.
  • this illustration is only an exemplary embodiment, in no way limiting, zones 10 and 12 being able to communicate by one or more separation zones of any orientation and which are not necessarily materialized by openings, without departing from the scope of the invention.
  • the separation zone between the contaminating zone and the zone to be protected extends longitudinally along the path of said conveyor.
  • an air curtain 14 is permanently formed in this opening when the installation is used. In the embodiment illustrated schematically in Figure 1, this air curtain 14 is formed by simultaneously injecting into the opening two adjacent clean air jets and in the same direction.
  • a relatively slow first jet of clean air is injected into the opening 11, of which only the sting 16 is shown, and a second jet of clean air, relatively fast compared to the first jet, of which only the sting 18 is represented.
  • the second jet is injected between the first jet and the zone 10 to be protected.
  • the first jet and the second jet are called respectively "slow jet” and “fast jet” in the remainder of the text.
  • the injections of the slow jet and the rapid jet into the opening 11 are made respectively by juxtaposed nozzles 20 and 22.
  • the injection nozzles 20 and 22 extend over the entire length of the upper edge of the opening 11, so that the air curtain 14 is formed over the entire width of the latter.
  • the two jets forming the air curtain 14 are then completely recovered by a single return grid 24 which extends along the lower edge of the opening and along the entire length of this edge.
  • the vertical edges of the opening 11 are materialized by two side walls 26, located on either side of the two jets forming the air curtain 14. These two side walls 26 extend into the contaminating zone 12 on a distance at least equal to the maximum thickness of the jets.
  • the slow jet, injected by the nozzle 20 is dimensioned so that its dart 16 covers the entire plane of the opening 11 to be protected. This result is obtained by ensuring that the range, or length, of the dart 16 is at least equal to the height of the opening 11.
  • the width of the nozzle 20, parallel to the plane of the figure 1 is at least equal to
  • the width of the nozzle 20 will be at least 0.20 m.
  • the speed of the slow jet emitted by the nozzle 20 is advantageously fixed at 0.5 m / s. Because the length of the dart 16 of the slow jet is at least equal to the height of the opening to be protected and that this jet is relatively slow, the air streams follow the outline of the objects which pass through the curtain of air 14, without breaking the confinement.
  • the low speed of the slow jet injected by the nozzle 20 however has the consequence that this jet, if it were alone, would risk being destabilized by the aeraulic or mechanical disturbances which may occur near the air curtain, thus causing the rup- containment of the workplace.
  • the rapid jet injected by the nozzle 22 is added to the slow jet, the higher speed of which makes it possible to ensure the stability of the first jet and, consequently, to improve the efficiency of the confinement in situation of break-ins through the dynamic barrier formed by the air curtain 14.
  • the width of the nozzle 22 by which is injected the j and fast can be equal to about 1/40 of the width of the nozzle 20, which corresponds to 0.005 m in the example described.
  • the applicants have established that the speed of injection of the fast jet injected by the nozzle 22 must be adjusted so that the air flow induced by the face of this fast jet which is in contact with the slow jet, injected by the nozzle 20, either lower or, preferably, substantially equal to half the injection rate of this slow jet.
  • this characteristic leads to a significant improvement in the barrier effect compared to the prior art, in which the speed of the rapid jet is adjusted so that the air flow induced by the face of this fast jet in contact with the slow jet, ie substantially equal to the injection rate of the slow jet.
  • the nozzle 22 is 360 m / h, the blowing rate of the rapid jet injected by the nozzle 22 must be approximately
  • the return grille 24 communicates with suction means (not shown), dimensioned for this purpose.
  • the air recovered by the return grille 24 is advantageously purified by specific purification means (not shown) before being recycled to the injection nozzles 20 and 22. The excess air is then rejected outside after a second specific purification.
  • 3 rework 24 is 825 m / h.
  • the barrier effect is further optimized when each of the two jets is injected in a direction substantially parallel to the vertical plane of the opening 11 and when the return grid 24 is perpendicular to this direction.
  • a purifying effect of the zone 10 to be protected is obtained by ensuring internal ventilation of this zone and by respecting an injection flow rate determined for this internal ventilation.
  • This purifying effect added to the barrier effect provided by the air curtain 14, appreciably improves the efficiency of the confinement, in particular in a crumbling situation. tions.
  • the rate of injection of clean ventilation air inside the zone 10 to be protected is at least equal to the air flow induced by the rapid jet, injected by the nozzle 22, on the face of this rapid jet which is in contact with the clean ventilation air, that is to say say on the face of the rapid jet facing the zone 10 to be protected.
  • the clean ventilation air is injected at a speed such that the speed of this air, relative to the surface of the plane of the opening 11, is at least equal to 0.1 m / s.
  • the injection of clean ventilation air inside the zone 10 to be protected is carried out by a blowing grille 28 which extends over the entire rear wall of the area to be protected, that is to say over the entire wall of the working area facing the opening 11 and oriented parallel to the vertical plane thereof.
  • the supply grille 28 through which the clean ventilation air is injected is located on the left, considering FIG. 1.
  • the wall through which the clean ventilation air is injected forming the purifying flow is the upper wall of the area to be protected. This wall is arranged opposite the conveyor and then oriented substantially perpendicular to the plane of the separation zone.
  • the clean ventilation air is injected through the blowing grille 28 at a regulated temperature.
  • temperature regulation means such as a heat exchanger (not shown), are placed in the ventilation circuit, upstream of the blowing grid 28.
  • FIG. 2 a second form of implementation of the method according to the invention is illustrated.
  • This second form of implementation essentially takes up the characteristics described above with reference to FIG. 1, by adding a third jet, relatively slow, between the rapid jet and the area to be protected.
  • the elements of the installation illustrated in FIG. 2 which are identical to those of the installation described above with reference to FIG. 1 are designated by the same reference numbers and no detailed description will be made of them.
  • Figure 2 the area
  • the contaminating zone 12 the opening 11, the nozzles 20 and 22 through which the slow jet and the fast jet are injected respectively, the respective darts of which are illustrated in 16 and 18, the side walls 26 of the opening 11 and the blowing grid 28 ensuring the internal ventilation of the zone 10 to be protected.
  • the air curtain designated in this case by the reference 14 ', further comprises a third jet of clean air, relatively slow compared to the rapid jet, which is emitted by a nozzle 30 adjacent to the nozzle 22, between the rapid jet and zone 10 to be protected, so as to be adjacent to the rapid jet and in the same direction as the other jets.
  • the sting of this third jet is illustrated at 32 in FIG. 2.
  • the dimensions of the nozzle 30 are chosen so that the dart 32 of the third jet covers the entire opening.
  • the nozzle 30 extends, like the nozzles 20 and 22, over the entire length of the upper edge of the opening 11, and the width of this nozzle 30 is ⁇ ,. ,, -diag,,,, _. , s ⁇ / c th, at least equal to 1/6 and preferably 1/5 of the height of the opening 11.
  • the widths of the nozzles 20 and 30 are the same and, for example , of 0.20 m in the case of the digital illustration given above, without limitation, with reference to FIG. 1.
  • the injection rate is adjusted tion of the slow jet delivered by the nozzle 30, so that this flow is substantially equal to the injection flow of the slow jet delivered by the nozzle 20.
  • the air flows induced by the faces of the fast jet, emitted by the nozzle 22, respectively in contact with each of the slow jets are less than or, preferably, substantially equal to half the injection rates of these slow jets.
  • the width of the return grille is adapted to the width of the air curtain, so that all the jets are recovered by this grid 24 '. More precisely, the grid 24 'for the return of the air curtain 14' formed by three jets is wider than the grid 24 for the return of the air curtain 14, formed by two jets.
  • the presence of another slow jet, between the rapid jet and the zone 10 to be protected makes it possible to reduce the injection rate of the internal ventilation by compared to the first form of implementation.
  • the rate of injection of clean ventilation air by the blowing grid 28 is then at least equal to the air flow induced by the slow jet emitted by the nozzle 30, on the face of this third jet which is in contact with clean ventilation air.
  • the injection rate of each of the slow jets is 3 of 360 m / h
  • 3 24 'return grid is 1185 m / h.
  • the three jets are preferably injected in directions parallel to the plane of the opening 11 and the return grid is placed below the injection nozzles 20, 22 and 30 and oriented perpendicular to this plane. Furthermore, the speed at which the ventilation air is injected into the zone 10 to be protected is advantageously at least equal to 0.1 m / s.
  • the possible modifications also relate to the shape, the orientation and the number of the separation zones by which the two zones communicate, as well as the choice of the edges of the separation zone on which the injection nozzles and the return grid are located. , which may be different from those which have been described.

Abstract

An air curtain (14) is used to dynamically separate a zone (10) to be protected and a contaminating zone (12) communicating with each other through at least one separation zone (11), the air curtain being formed by simultaneously injecting at least two adjacent clean air jets into the same direction in the separation zone (11). More precisely, the air curtain (14) comprises a slow jet, in which the tongue (16) covers the entire separation zone (11) and a fast jet inserted between the slow jet and the zone (10) to be protected and for which the injection flow is such that it induces an air flow equal to approximately half the injection flow of the slow jet, on its surface in contact with the slow jet. Preferably, clean ventilation air is also injected into the zone (10) to be protected at a flow equal to at least the air flow induced by the surface of the air curtain in contact with the ventilation air, and in any case at a speed not less than 0.1 m/s.

Description

PROCEDE DE SEPARATION DYNAMIQUE DE DEUX ZONES PAR UN METHOD FOR DYNAMICLY SEPARATING TWO ZONES BY ONE
RIDEAU D'AIR PROPRE.CLEAN AIR CURTAIN.
DESCRIPTIONDESCRIPTION
Domaine -techniqueTechnical area
L'invention concerne un procédé permettant d'assurer la séparation dynamique d'une zone contaminante et d'une zone à protéger, communiquant entre elles par au moins une zone de séparation, au moyen d'un rideau d'air propre obtenu en injectant dans la zone de séparation au moins deux jets d'air propre adjacents et de même sens.The invention relates to a method for ensuring the dynamic separation of a contaminating zone and a zone to be protected, communicating with each other by at least one separation zone, by means of a curtain of clean air obtained by injecting in the separation zone at least two adjacent clean air jets in the same direction.
Le procédé selon l'invention peut être uti- lise dans de nombreux secteurs industriels.The process according to the invention can be used in numerous industrial sectors.
Une première famille d'industries concernée par ce procédé inclut toutes les industries (agroalimentaires, médicales, biotechnologies, hautes technologies, etc.), dans lesquelles il est nécessaire d'empêcher que l'atmosphère d'une zone de travail donnée soit contaminée par l'air ambiant, porteur d'une contamination thermique, microbienne, particulaire et/ou gazeuse.A first family of industries concerned by this process includes all industries (food, medical, biotechnology, high technology, etc.), in which it is necessary to prevent the atmosphere of a given work area from being contaminated by ambient air, carrying thermal, microbial, particulate and / or gaseous contamination.
Une autre famille d'industries concernée par le procédé selon l'invention inclut les industries (nucléaires, chimiques, médicales, etc.) dans lesquelles l'homme et son environnement doivent être protégés vis-à-vis de produits toxiques ou dangereux placés à l'intérieur d'une enceinte de confinement.Another family of industries concerned by the process according to the invention includes industries (nuclear, chemical, medical, etc.) in which man and his environment must be protected from toxic or dangerous products placed at inside a containment.
Etat de la techniqueState of the art
Il existe actuellement deux types de solutions pour assurer la séparation dynamique de deux zones communiquant entre elles par une ou plusieurs zones de séparation afin, par exemple, de permettre l'entrée et la sortie d'objets : la protection par ventilation et la protection par rideau d'air. La protection par ventilation consiste à créer artificiellement une différence de pression entre les deux zones, pour que la pression régnant dans la zone à protéger soit supérieure à la pression qui règne à l'intérieur de la zone contaminante. Ainsi, dans le cas où la zone à protéger contient un produit susceptible d'être contaminé par l'air ambiant, on injecte dans la zone à protéger un flux laminaire qui souffle vers l'extérieur au travers de la zone de séparation. Dans le cas inverse où il s'agit de protéger le personnel et l'environnement situés à l'extérieur d'un espace contaminé, le confinement dynamique est assuré en mettant en oeuvre une ventilation d'extraction dans cet espace contaminé. Dans l'un et l'autre cas, une règle empirique impose une vitesse minimale de l'air ventilé de 0,5 m/s, dans le plan de la zone de séparation par laquelle les deux zones communiquent, afin d'éviter le transfert de la contamination dans la zone à protéger.There are currently two types of solutions to ensure the dynamic separation of two zones communicating with each other by one or more separation zones in order, for example, to allow the entry and exit of objects: ventilation protection and air curtain protection. Protection by ventilation consists in artificially creating a pressure difference between the two zones, so that the pressure prevailing in the zone to be protected is greater than the pressure which prevails inside the contaminating zone. Thus, in the case where the area to be protected contains a product liable to be contaminated by ambient air, a laminar flow which blows outward through the separation area is injected into the area to be protected. In the opposite case where it is a question of protecting the personnel and the environment located outside of a contaminated space, the dynamic confinement is ensured by implementing an extraction ventilation in this contaminated space. In both cases, a rule of thumb imposes a minimum speed of the ventilated air of 0.5 m / s, in the plane of the separation zone through which the two zones communicate, in order to avoid transfer of contamination to the area to be protected.
L'efficacité de cette technique de protection par ventilation n'est cependant pas parfaite, surtout en situation dite "d'effractions", c'est-à-dire lorsque des objets sont transférés au travers de la zone de séparation interposée entre les deux zones. De plus, ce type de protection impose de traiter et de contrôler, selon le cas, toute la zone propre à protéger vis-à-vis de l'atmosphère extérieure contaminante ou toute la zone contaminée. Lorsque la zone à traiter et à contrôler est de grandes dimensions, cela entraine un coût d'équipement et de fonctionnement particulièrement important. Enfin, cette technique de protection par ventilation n'assure qu'une protection à sens unique, c'est-à-dire qu'elle n'agit que lorsque les transferts de contamination ne sont possibles que dans un seul sens.The effectiveness of this ventilation protection technique is however not perfect, especially in a so-called "break-in" situation, that is to say when objects are transferred through the separation zone interposed between the two zones. In addition, this type of protection requires treating and controlling, as the case may be, the entire clean area to be protected from the contaminating external atmosphere or the entire contaminated area. When the area to be treated and controlled is large, this entails a cost of equipment and particularly important functioning. Finally, this ventilation protection technique only provides one-way protection, that is to say that it only acts when transfers of contamination are only possible in one direction.
La technique de protection par rideau d'air consiste à injecter simultanément, dans la zone de séparation par laquelle les deux zones communiquent, un ou plusieurs jets d'air propre, adjacents et de même sens, qui forment une porte fictive entre la zone à protéger et la zone contaminante.The air curtain protection technique consists in simultaneously injecting, into the separation zone by which the two zones communicate, one or more jets of clean air, adjacent and of the same direction, which form a fictitious gate between the zone to protect and the contaminating area.
Conformément à la théorie des jets plans turbulents, il est rappelé qu'un jet d'air plan se décompose en deux zones distinctes : une zone de tran- sition (ou zone de coeur) et une zone de développement.In accordance with the theory of turbulent plane jets, it is recalled that a plane air jet breaks up into two distinct zones: a transition zone (or core zone) and a development zone.
La zone de transition correspond à la partie centrale du jet, appuyée sur la buse, dans laquelle le vecteur vitesse est constant. Cette zone correspond à la partie du jet dans laquelle aucun mélange entre l'air injecté et l'air présent de part et d'autre du jet ne se produit. En section selon un plan perpendiculaire au plan de la zone de séparation, la largeur de la zone de transition diminue progressivement en s 'éloignant de la buse. Pour cette raison, cette zone de transition sera appelée "dard" dans la suite du texte .The transition zone corresponds to the central part of the jet, supported on the nozzle, in which the speed vector is constant. This zone corresponds to the part of the jet in which no mixing between the injected air and the air present on either side of the jet occurs. In section along a plane perpendicular to the plane of the separation zone, the width of the transition zone gradually decreases as it moves away from the nozzle. For this reason, this transition zone will be called "dart" in the remainder of the text.
La zone de développement du jet est la partie de ce dernier située à l'extérieur de la zone de transition. Dans cette zone de développement du jet, l'air extérieur est entraîné par l'écoulement du jet. Cela se traduit par des variations du vecteur vitesse et par un brassage de l'air. L'entraînement de l'air par les deux faces du jet, dans cette zone de dévelop- pement, est appelé "induction". Un jet d'air induit ainsi, sur chacune de ses faces, un débit d'air qui dépend notamment du débit d'injection du jet considéré. Dans le document JP-B-36 7228, on a proposé de réaliser un rideau d'air en injectant simultanément dans la zone de séparation trois jets d'air adjacents et de même sens. Plus précisément, un jet d'air relativement rapide est injecté entre deux jets d'air relativement lents. Cet agencement est supposé assurer un confinement plus efficace qu'un jet d'air unique, par le fait que l'air entraîné et brassé par le jet central est de l'air faiblement contaminé, provenant des jets relativement lents injectés de part et d'autre de ce jet d'air central. Cependant, ce document ne tient compte ni de la longueur des dards de chacun des jets, ni de leurs débits d'injection, de sorte que l'efficacité du confinement est très aléatoire.The jet development zone is the part of the jet located outside the transition zone. In this jet development zone, the outside air is entrained by the flow of the jet. This results in variations in the speed vector and in air mixing. The entrainment of air by the two faces of the jet, in this development zone pement, is called "induction". An air jet thus induces, on each of its faces, an air flow which depends in particular on the injection flow rate of the jet considered. In document JP-B-36 7228, it has been proposed to produce an air curtain by simultaneously injecting into the separation zone three adjacent air jets of the same direction. More specifically, a relatively fast air jet is injected between two relatively slow air jets. This arrangement is supposed to provide more effective confinement than a single air jet, by the fact that the air entrained and stirred by the central jet is lightly contaminated air, coming from the relatively slow jets injected from both sides. other of this central air jet. However, this document does not take into account either the length of the darts of each of the jets, nor their injection rates, so that the effectiveness of the confinement is very random.
Dans le document FR-A-2 530 163, il est proposé d'assurer le confinement d'un local pollué, comportant une ouverture, en injectant dans celle-ci un rideau d'air formé de deux jets d'air propre adjacents et de même sens. De façon plus précise, la séparation dynamique est assurée par un premier jet relativement lent (appelé "jet lent"), dont le dard recouvre en totalité l'ouverture. Le deuxième jet (appelé "jet rapide"), relativement rapide par rapport au jet lent, est installé entre le jet lent et la zone à protéger. Il a pour fonction de stabiliser le jet lent, par un effet d'aspiration qui plaque ce jet lent contre le jet rapide.In document FR-A-2 530 163, it is proposed to ensure the containment of a polluted room, comprising an opening, by injecting into it an air curtain formed by two adjacent clean air jets and in the same sense. More precisely, the dynamic separation is ensured by a relatively slow first jet (called "slow jet"), the sting of which completely covers the opening. The second jet (called "fast jet"), relatively fast compared to the slow jet, is installed between the slow jet and the area to be protected. Its function is to stabilize the slow jet, by a suction effect which presses this slow jet against the fast jet.
Dans ce document FR-A-2 530 163, il est précisé que le dard du jet lent est suffisamment long pour recouvrir toute l'ouverture lorsque la largeur de la buse d'injection de ce jet lent est au moins égale à l/6ème de la hauteur de l'ouverture à protéger. Il est également indiqué que les débits d'injection des deux jets d'air doivent être tels que le débit d'air induit par la face du jet rapide qui est en contact avec le jet lent soit sensiblement égal au débit d'injection de ce dernier.In this document FR-A-2 530 163, it is specified that the dart of the slow jet is sufficiently long to cover the entire opening when the width of the injection nozzle of this slow jet is at least equal to 1/6 of the height of the opening to be protected. It is also indicated that the injection flows of the two air jets must be such that the air flow induced by the face of the fast jet which is in contact with the slow jet is substantially equal to the injection flow of this latest.
Dans le document FR-A-2 652 520, il est proposé d'utiliser un rideau d'air pour protéger une zone de travail propre, munie d'une ouverture, vis-à- vis du milieu extérieur contaminant. Les principales caractéristiques du rideau d'air sont comparables à celles qui sont décrites dans le document FR-A- 2 530 163. Il est précisé en outre que la vitesse d'injection du jet lent doit être de l'ordre de 0,4 m/s ou 0,5 m/s. Il est également précisé que les jets sont émis de façon à ce que la face externe du jet rapide arrive en limite du plan de l'ouverture. Compte tenu des angles d'expansion des jets, cela se traduit par un angle d'environ 12° entre le plan médian des jets et le plan de l'ouverture.In document FR-A-2 652 520, it is proposed to use an air curtain to protect a clean work area, provided with an opening, vis-à-vis the contaminating external environment. The main characteristics of the air curtain are comparable to those described in document FR-A-2,530,163. It is further specified that the injection speed of the slow jet must be of the order of 0.4 m / s or 0.5 m / s. It is also specified that the jets are emitted so that the external face of the rapid jet arrives at the limit of the plane of the opening. Given the angles of expansion of the jets, this results in an angle of approximately 12 ° between the median plane of the jets and the plane of the opening.
Dans le document FR-A-2 652 520, il est aussi proposé d'injecter simultanément de l'air propre de ventilation, à une température adaptée aux besoins, à l'intérieur de la zone de travail à protéger. Il est indiqué que cet air propre de ventilation doit être injecté à un débit sensiblement égal au débit induit par la face du jet rapide qui est en contact avec l'air propre de ventilation.In document FR-A-2 652 520, it is also proposed to simultaneously inject clean ventilation air, at a temperature adapted to the needs, inside the work area to be protected. It is indicated that this clean ventilation air must be injected at a flow rate substantially equal to the flow induced by the face of the rapid jet which is in contact with the clean ventilation air.
Par ailleurs, il est aussi indiqué dans le document FR-A-2 652 520 que la grille de reprise par laquelle on récupère les deux jets est disposée à 1 ' ex- térieur de l'ouverture, et au-dessous du poste de travail, de façon à contrôler la ventilation de la zone contaminée. En outre, les deux parois latérales qui délimitent l'ouverture sont prolongées vers l'extérieur sur une distance au moins égale à l'épaisseur du rideau d' air.Furthermore, it is also indicated in document FR-A-2 652 520 that the return grid by which the two jets are recovered is arranged at the ex- inside the opening, and below the workstation, to control the ventilation of the contaminated area. In addition, the two side walls which delimit the opening are extended outward over a distance at least equal to the thickness of the air curtain.
Dans le document FR-A-2 659 782, il est proposé d'adjoindre aux deux jets d'air propre décrits dans le document FR-A-2 530 163 un troisième jet d'air propre relativement lent, afin que le jet d'air rapide se trouve situé entre deux jets lents adjacents et de même sens.In document FR-A-2 659 782, it is proposed to add to the two clean air jets described in document FR-A-2 530 163 a third relatively slow clean air jet, so that the jet of rapid air is located between two adjacent slow jets of the same direction.
Dans cet agencement, qui reprend les principales caractéristiques des documents FR-A- 2 530 163 et FR-A-2 652 520, le débit d'injection de l'air propre de ventilation à l'intérieur de la zone à protéger est considérablement diminué. De plus, le confinement dynamique est assuré dans les deux sens, ce qui n'était pas le cas dans les documents précédents. La réduction du débit d'injection de l'air propre de ventilation à l'intérieur de la zone à protéger découle du fait que l'induction dans cette zone est produite par la zone de développement de l'un des jets lents et non plus par la zone de développement du jet rapide comme dans le cas d'un rideau d'air à deux jets.In this arrangement, which incorporates the main characteristics of documents FR-A-2,530,163 and FR-A-2,652,520, the rate of injection of clean ventilation air inside the area to be protected is considerably decreases. In addition, dynamic confinement is ensured in both directions, which was not the case in the previous documents. The reduction in the injection rate of clean ventilation air inside the zone to be protected results from the fact that the induction in this zone is produced by the development zone of one of the slow jets and no longer by the rapid jet development zone as in the case of an air curtain with two jets.
En dépit des améliorations apportées à la technique du rideau d'air par ces différents documents, des expériences et des simulations faites par les demandeurs ont montré que l'efficacité du confinement obtenu avec les dispositifs à rideau d'air décrits dans les documents FR-A-2 530 163, FR-A-2 652 520 et FR-A- 2 659 782 restait très perfectible, notamment en situation d'effractions. Exposé de 1 ' inventionDespite the improvements made to the air curtain technique by these various documents, experiments and simulations made by the applicants have shown that the effectiveness of the confinement obtained with the air curtain devices described in the documents FR- A-2 530 163, FR-A-2 652 520 and FR-A- 2 659 782 remained very perfectible, especially in the event of break-ins. Statement of the invention
L'invention a précisément pour objet un procédé de séparation dynamique de deux zones communiquant entre elles par au moins une zone de séparation, utilisant un rideau d'air dont le principe est comparable à celui qui est décrit dans les documents FR-A-2 530 163, FR-A-2 652 520 et FR-A-2 659 782 , mais dont l'efficacité de confinement est sensiblement améliorée, notamment en situation d'effractions. Conformément à l'invention, ce résultat est obtenu au moyen d'un procédé de séparation dynamique d'une zone contaminante et d'une zone à protéger, communiquant entre elles par au moins une zone de séparation, ce procédé comprenant les étapes suivantes :The subject of the invention is precisely a method of dynamic separation of two zones communicating with each other by at least one separation zone, using an air curtain whose principle is comparable to that which is described in documents FR-A-2 530 163, FR-A-2 652 520 and FR-A-2 659 782, but the containment efficiency of which is significantly improved, especially in the event of break-ins. In accordance with the invention, this result is obtained by means of a process for dynamic separation of a contaminating zone and a zone to be protected, communicating with one another by at least one separation zone, this method comprising the following steps:
- on injecte dans ladite zone de séparation, à un premier débit d'injection, un premier jet d'air propre relativement lent, comprenant un dard apte à recouvrir toute la zone de séparation ; - on injecte simultanément dans la zone de séparation, à un deuxième débit d'injection, un deuxième jet d'air propre relativement rapide, adjacent au premier jet et de même sens que celui-ci, entre la zone à protéger et le premier jet ; ce procédé étant caractérisé par le fait qu'on règle le deuxième débit d'injection, afin que le débit d'air induit par la face du deuxième jet en contact avec le premier jet, soit au plus sensiblement égal à la moitié du premier débit d'injection. Les demandeurs ont découvert et vérifié, par l'expérience et par le calcul, que toutes ces caractéristiques sont indispensables à l'obtention d'un "effet barrière" entre les deux zones, c'est-à-dire pour que le dard recouvre effectivement toute la zone de séparation.- Is injected into said separation zone, at a first injection rate, a first jet of relatively slow clean air, comprising a dart capable of covering the entire separation zone; - A second relatively rapid jet of clean air is injected simultaneously into the separation zone, at a second injection rate, adjacent to the first jet and in the same direction as the latter, between the zone to be protected and the first jet ; this process being characterized by the fact that the second injection flow is adjusted, so that the air flow induced by the face of the second jet in contact with the first jet is at most substantially equal to half of the first flow injection. The applicants have discovered and verified, by experience and by calculation, that all these characteristics are essential for obtaining a "barrier effect" between the two zones, that is to say so that the dart effectively covers the entire separation zone.
En effet, si l'induction de la face du jet rapide, créée par le débit de soufflage de celui-ci, est trop importante, on peut considérer qu'il y a surconsommation du dard du jet lent et cela a pour conséquence une diminution de la longueur du jet lent ; de ce fait, la couverture de l'ouverture à protéger est imparfaite (cas de tous les documents de l'art antérieur) . En revanche, si le débit du jet rapide est trop faible, la stabilisation du jet lent par induction de la face du jet rapide en contact avec le jet lent n'est pas maximale. C'est pourquoi, les demandeurs ont établi qu'il est essentiel que le débit d'air induit par la face du deuxième jet (rapide) en contact avec le premier jet (lent) soit inférieur ou, de préférence, sensiblement égal à la moitié du débit d'injection de ce premier jet et non égal à la totalité de ce débit d'injection, comme l'enseignent les documents FR-A-2 530 163, FR-A- 89 12861 et FR-A-2 659 782.In fact, if the induction of the face of the fast jet, created by the blowing rate of the latter, is too high, we can consider that there is an overconsumption of the dart of the slow jet and this results in a reduction the length of the slow jet; therefore, the cover of the opening to be protected is imperfect (case of all documents of the prior art). On the other hand, if the speed of the fast jet is too low, the stabilization of the slow jet by induction of the face of the fast jet in contact with the slow jet is not maximum. This is why, the applicants have established that it is essential that the air flow induced by the face of the second jet (fast) in contact with the first jet (slow) is less or, preferably, substantially equal to the half of the injection rate of this first jet and not equal to the totality of this injection rate, as taught in documents FR-A-2 530 163, FR-A- 89 12861 and FR-A-2 659 782.
Le rideau d'air peut assurer un confinement dynamique dans l'un et l'autre sens, si l'on adjoint aux deux premiers jets un troisième jet relativement lent. Dans ce cas, on injecte dans la zone de séparation, à un troisième débit d'injection, un troisième jet d'air propre relativement lent, adjacent au deuxième jet et de même sens que les premier et deuxième jets, entre la zone à protéger et le deuxième jet. Le troisième jet comprend un dard apte à recouvrir toute la zone de séparation. On règle alors le troisième débit d'injection pour qu'il soit sensiblement égal au premier débit d'injection, afin que les débits d'air induits par les faces du deuxième jet respectivement en contact avec le premier et le troisième jets soient au plus sensiblement égaux à la moitié des premier et troisième débits d'injection. Grâce à ces caractéristiques, le troisième jet recouvre, effectivement, toute la zone de séparation.The air curtain can provide dynamic containment in either direction, if we add a relatively slow third jet to the first two jets. In this case, a third relatively slow jet of clean air is injected into the separation zone, at a third injection rate, adjacent to the second jet and in the same direction as the first and second jets, between the zone to be protected and the second draft. The third jet comprises a dart capable of covering the entire separation zone. The third injection flow is then adjusted so that it is substantially equal to the first injection flow, so that the air flows induced by the faces of the second jet respectively in contact with the first and third jets are at most substantially equal to half of the first and third injection rates. Thanks to these characteristics, the third jet effectively covers the entire separation zone.
De préférence, on injecte simultanément de l'air propre de ventilation à l'intérieur de la zone à protéger, à un débit d'injection au moins égal au débit d'air induit par le deuxième ou le troisième jet (selon que le rideau d'air comprend deux ou trois jets), sur la face de celui-ci en contact avec l'air propre de ventilation. Les demandeurs ont découvert que cette caractéristique permet d'obtenir un "effet épurateur" dans la zone à protéger, notamment en situation d'ef- fractions au travers du rideau d'air.Preferably, clean ventilation air is simultaneously injected inside the area to be protected, at an injection rate at least equal to the air flow induced by the second or third jet (depending on whether the curtain includes two or three jets), on the face of it in contact with the clean ventilation air. The applicants have discovered that this characteristic makes it possible to obtain a "purifying effect" in the area to be protected, in particular in the event of fractions through the air curtain.
Afin d'optimiser l'effet épurateur et quel que soit le nombre de jets formant le rideau d'air, on injecte avantageusement l'air propre de ventilation à une vitesse telle que la vitesse de cet air propre de ventilation, rapportée à la surface du plan de la zone de séparation, soit au moins égale à 0,1 m/s.In order to optimize the purifying effect and whatever the number of jets forming the air curtain, the clean ventilation air is advantageously injected at a speed such that the speed of this clean ventilation air, brought to the surface. of the plan of the separation zone, ie at least equal to 0.1 m / s.
Dans le cas où une ventilation interne est utilisée, on injecte l'air propre de ventilation sur la totalité d'une paroi arrière ou supérieure de la zone à protéger, en direction de la zone de séparation. La paroi par laquelle est injecté l'air propre de ventilation est donc orientée parallèlement ou sensiblement perpendiculairement au plan de la zone de séparation . Si l'on désire en outre maîtriser la température à l'intérieur de la zone protégée, on injecte l'air propre de ventilation à une température régulée. Afin d'optimiser encore l'effet barrière procuré par le rideau d'air, tous les jets d'air propre sont de préférence injectés selon des directions sensiblement parallèles au plan de la zone de séparation. De plus, on récupère avantageusement tous les jets d'air propre par une grille de reprise installée en face des buses d'injection de ces jets et située dans un plan sensiblement perpendiculaire à la direction des jets d'air propre. Une optimisation de l'effet barrière procurée par le rideau d'air peut aussi être obtenue en prolongeant les parois latérales de l'ouverture, situées de part et d'autre des jets d'air propre, afin qu'elles s'étendent vers la zone contaminante sur une distance au moins égale à l'épaisseur maximale des jets.If internal ventilation is used, clean ventilation air is injected over an entire rear or upper wall of the area to be protected, in the direction of the separation area. The wall through which the clean ventilation air is injected is therefore oriented parallel or substantially perpendicular to the plane of the separation zone. If it is also desired to control the temperature inside the protected area, clean ventilation air is injected at a regulated temperature. To further optimize the barrier effect provided by the air curtain, all the clean air jets are preferably injected in directions substantially parallel to the plane of the separation zone. In addition, all of the clean air jets are advantageously recovered by a return grid installed opposite the injection nozzles of these jets and situated in a plane substantially perpendicular to the direction of the clean air jets. Optimization of the barrier effect provided by the air curtain can also be obtained by extending the side walls of the opening, located on either side of the clean air jets, so that they extend towards the contaminating zone over a distance at least equal to the maximum thickness of the jets.
Brève description des dessinsBrief description of the drawings
On décrira à présent, à titre d'exemples non limitatifs, deux formes de mise en oeuvre de 1 ' in- vention, en se référant aux dessins annexés, dans lesquels :We will now describe, by way of nonlimiting examples, two embodiments of the invention, with reference to the appended drawings, in which:
- la figure 1 est une vue en perspective, qui illustre de façon schématique la protection d'une zone de travail propre au moyen d'un rideau d'air formé de deux jets d'air adjacents, selon une première forme de mise en oeuvre du procédé de l'invention ; et- Figure 1 is a perspective view, which schematically illustrates the protection of a clean work area by means of an air curtain formed of two adjacent air jets, according to a first embodiment the method of the invention; and
- la figure 2 est une vue en perspective comparable à la figure 1, qui illustre schématiquement la protection d'une zone de travail propre au moyen d'un rideau d'air formée de trois jets d'air adjacents, selon une deuxième forme de mise en oeuvre du procédé de l'invention. Exposé détaillé de deux formes de mise en oeuvre- Figure 2 is a perspective view comparable to Figure 1, which schematically illustrates the protection of a clean work area by means of an air curtain formed of three adjacent air jets, according to a second form of implementation of the method of the invention. Detailed description of two forms of implementation
Sur la figure 1, on a désigné respectivement par les références 10 et 12 une zone à protéger et une zone contaminante. Dans la forme de réalisation représentée, la zone 10 à protéger est constituée par l'espace intérieur propre d'un poste de travail et la zone contaminante 12 est constituée par l'espace extérieur à ce poste de travail. Cet espace extérieur constitue une source de contamination thermique, particulaire, gazeuse et/ou microbienne vis-à-vis de l'espace intérieur du poste de travail.In FIG. 1, the areas 10 and 12 have been designated respectively by an area to be protected and a contaminating area. In the embodiment shown, the zone 10 to be protected is constituted by the clean interior space of a work station and the contaminating zone 12 is constituted by the space external to this work station. This external space constitutes a source of thermal, particulate, gaseous and / or microbial contamination with respect to the internal space of the work station.
Le poste de travail qui forme la zone 10 à protéger est délimité par des parois étanches dans tou- tes les directions, sauf vers la droite en considérant la figure 1. Plus précisément, la face du poste de travail tournée vers la droite sur la figure 1 forme une zone de séparation, constituée par une ouverture 11, par laquelle la zone 10 à protéger communique avec la zone extérieure contaminante 12. Cette ouverture 11 est destinée, par exemple, à permettre l'entrée et la sortie d'objets dans la zone 10 à protéger, ainsi que des manutentions éventuelles à l'intérieur de cette zone, depuis la zone extérieure contaminante 12. Il est à noter que cette illustration ne constitue qu'un exemple de réalisation, nullement limitatif, les zones 10 et 12 pouvant communiquer par une ou plusieurs zones de séparation d'orientations quelconques et qui ne sont pas nécessairement matérialisées par des ouvertures, sans sortir du cadre de l'invention.The work station which forms the zone 10 to be protected is delimited by watertight walls in all directions, except to the right when considering figure 1. More precisely, the face of the work station turned to the right in the figure 1 forms a separation zone, constituted by an opening 11, through which the zone 10 to be protected communicates with the contaminating external zone 12. This opening 11 is intended, for example, to allow entry and exit of objects into the zone 10 to be protected, as well as possible handling inside this zone, from the contaminating external zone 12. It should be noted that this illustration is only an exemplary embodiment, in no way limiting, zones 10 and 12 being able to communicate by one or more separation zones of any orientation and which are not necessarily materialized by openings, without departing from the scope of the invention.
En particulier, dans un mode de réalisation non représenté, selon lequel la zone à protéger est un convoyeur en défilement suivant un trajet en ligne, circulaire ou encore sinueux, la zone de séparation entre la zone contaminante et la zone à protéger s'étend longitudinale ent le long du trajet dudit convoyeur. Afin de préserver la séparation dynamique des zones 10 et 12 malgré la présence de l'ouverture 11, un rideau d'air 14 est formé en permanence dans cette ouverture lorsque l'installation est utilisée. Dans la forme de réalisation illustrée schématiquement sur la figure 1, ce rideau d'air 14 est formé en injectant simultanément dans l'ouverture deux jets d'air propre adjacents et de même sens.In particular, in an embodiment not shown, according to which the zone to be protected is a scrolling conveyor along a line path, circular or even sinuous, the separation zone between the contaminating zone and the zone to be protected extends longitudinally along the path of said conveyor. In order to preserve the dynamic separation of the zones 10 and 12 despite the presence of the opening 11, an air curtain 14 is permanently formed in this opening when the installation is used. In the embodiment illustrated schematically in Figure 1, this air curtain 14 is formed by simultaneously injecting into the opening two adjacent clean air jets and in the same direction.
De façon plus précise, on injecte dans l'ouverture 11 un premier jet d'air propre, relative- ment lent, dont seul le dard 16 est représenté, et un deuxième jet d'air propre, relativement rapide par rapport au premier jet, dont seul le dard 18 est représenté. Le deuxième jet est injecté entre le premier jet et la zone 10 à protéger. Pour simplifier, le premier jet et le deuxième jet sont appelés respectivement "jet lent" et "jet rapide" dans la suite du texte.More specifically, a relatively slow first jet of clean air is injected into the opening 11, of which only the sting 16 is shown, and a second jet of clean air, relatively fast compared to the first jet, of which only the sting 18 is represented. The second jet is injected between the first jet and the zone 10 to be protected. For simplicity, the first jet and the second jet are called respectively "slow jet" and "fast jet" in the remainder of the text.
Les injections du jet lent et du jet rapide dans l'ouverture 11 sont faites respectivement par des buses juxtaposées 20 et 22. Dans la forme de réalisation représentée, dans laquelle l'ouverture est rectangulaire et comporte deux bords horizontaux et deux bords verticaux, et de façon non limitative, les buses d'injection 20 et 22 s'étendent sur toute la longueur du bord supérieur de l'ouverture 11, de telle sorte que le rideau d'air 14 soit formé sur toute la largeur de celle-ci. Les deux jets formant le rideau d'air 14 sont alors récupérés en totalité par une grille de reprise unique 24 qui s'étend le long du bord inférieur de l'ouverture et sur toute la longueur de ce bord. Les bords verticaux de l'ouverture 11, sont matérialisés par deux parois latérales 26, situées de part et d'autre des deux jets for- mant le rideau d'air 14. Ces deux parois latérales 26 se prolongent dans la zone contaminante 12 sur une distance au moins égale à l'épaisseur maximale des jets.The injections of the slow jet and the rapid jet into the opening 11 are made respectively by juxtaposed nozzles 20 and 22. In the embodiment shown, in which the opening is rectangular and has two horizontal edges and two vertical edges, and without limitation, the injection nozzles 20 and 22 extend over the entire length of the upper edge of the opening 11, so that the air curtain 14 is formed over the entire width of the latter. The two jets forming the air curtain 14 are then completely recovered by a single return grid 24 which extends along the lower edge of the opening and along the entire length of this edge. The vertical edges of the opening 11 are materialized by two side walls 26, located on either side of the two jets forming the air curtain 14. These two side walls 26 extend into the contaminating zone 12 on a distance at least equal to the maximum thickness of the jets.
Comme on l'a illustré schématiquement sur la figure 1, le jet lent, injecté par la buse 20, est dimensionné afin que son dard 16 couvre la totalité du plan de l'ouverture 11 à protéger. Ce résultat est obtenu en faisant en sorte que la portée, ou longueur, du dard 16 soit au moins égale à la hauteur de l'ouverture 11. A cet effet, la largeur de la buse 20, paral- lèlement au plan de la figure 1, est au moins égale àAs illustrated schematically in Figure 1, the slow jet, injected by the nozzle 20, is dimensioned so that its dart 16 covers the entire plane of the opening 11 to be protected. This result is obtained by ensuring that the range, or length, of the dart 16 is at least equal to the height of the opening 11. For this purpose, the width of the nozzle 20, parallel to the plane of the figure 1, is at least equal to
1/6 et, de préférence, à 1/5 de la hauteur de l'ouverture 11 à protéger. Ainsi, et uniquement à titre d'exemple, pour une ouverture de 1 m de haut, la largeur de la buse 20 sera d'au moins 0,20 m. Par ailleurs, de façon à éviter au maximum les turbulences et pour des raisons économiques, la vitesse du jet lent émis par la buse 20 est fixée avantageusement à 0,5 m/s. Du fait que la longueur du dard 16 du jet lent est au moins égale à la hauteur de 1 ' ou- verture à protéger et que ce jet est relativement lent, les filets d'air suivent le contour des objets qui passent au travers du rideau d'air 14, sans rupture du confinement .1/6 and preferably 1/5 of the height of the opening 11 to be protected. Thus, and only by way of example, for an opening 1 m high, the width of the nozzle 20 will be at least 0.20 m. Furthermore, in order to avoid turbulence as much as possible and for economic reasons, the speed of the slow jet emitted by the nozzle 20 is advantageously fixed at 0.5 m / s. Because the length of the dart 16 of the slow jet is at least equal to the height of the opening to be protected and that this jet is relatively slow, the air streams follow the outline of the objects which pass through the curtain of air 14, without breaking the confinement.
La faible vitesse du jet lent injecté par la buse 20 a cependant pour conséquence que ce jet, s'il était seul, risquerait d'être déstabilisé par les perturbations aérauliques ou mécaniques qui peuvent se produire près du rideau d'air, entraînant ainsi la rup- ture du confinement du poste de travail. C'est pourquoi l'on adjoint au jet lent le jet rapide injecté par la buse 22 et dont la plus grande vitesse permet d'assurer la stabilité du premier jet et, par conséquent, d'amé- liorer l'efficacité du confinement en situation d'effractions au travers de la barrière dynamique formée par le rideau d'air 14. A titre d'exemple nullement limitatif, la largeur de la buse 22 par laquelle est injecté le j et rapide peut être égale à environ 1/40 de la largeur de la buse 20, ce qui correspond à 0,005 m dans l'exemple décrit.The low speed of the slow jet injected by the nozzle 20 however has the consequence that this jet, if it were alone, would risk being destabilized by the aeraulic or mechanical disturbances which may occur near the air curtain, thus causing the rup- containment of the workplace. This is why the rapid jet injected by the nozzle 22 is added to the slow jet, the higher speed of which makes it possible to ensure the stability of the first jet and, consequently, to improve the efficiency of the confinement in situation of break-ins through the dynamic barrier formed by the air curtain 14. By way of nonlimiting example, the width of the nozzle 22 by which is injected the j and fast can be equal to about 1/40 of the width of the nozzle 20, which corresponds to 0.005 m in the example described.
Afin d'optimiser l'effet barrière assuré par l'association des deux jets, les demandeurs ont établi que le débit d'injection du jet rapide, injecté par la buse 22, doit être réglé afin que le débit d'air induit par la face de ce jet rapide qui est en contact avec le jet lent, injecté par la buse 20, soit inférieur ou, de préférence, sensiblement égal à la moitié du débit d'injection de ce jet lent. Des expériences et des simulations ont montré que cette caractéristique conduisait à une amélioration notable de l'effet barrière par rapport à l'art antérieur, dans lequel le débit du jet rapide est réglé afin que le débit d'air induit par la face de ce jet rapide en contact avec le jet lent, soit sensiblement égal au débit d'injection du jet lent.In order to optimize the barrier effect provided by the association of the two jets, the applicants have established that the speed of injection of the fast jet injected by the nozzle 22 must be adjusted so that the air flow induced by the face of this fast jet which is in contact with the slow jet, injected by the nozzle 20, either lower or, preferably, substantially equal to half the injection rate of this slow jet. Experiments and simulations have shown that this characteristic leads to a significant improvement in the barrier effect compared to the prior art, in which the speed of the rapid jet is adjusted so that the air flow induced by the face of this fast jet in contact with the slow jet, ie substantially equal to the injection rate of the slow jet.
A titre d'illustration nullement limitative, si le débit de soufflage du jet lent injecté parBy way of non-limiting illustration, if the blowing rate of the slow jet injected by
3 la buse 22 est de 360 m /h, le débit de soufflage du jet rapide, injecté par la buse 22, doit être d'environ3 the nozzle 22 is 360 m / h, the blowing rate of the rapid jet injected by the nozzle 22 must be approximately
3 42 m /h. Cette dernière valeur est à comparer à la 3 valeur de 84 m /h environ préconisée dans l'art antérieur.3 42 m / h. This last value is to be compared to the 3 value of approximately 84 m / h recommended in the prior art.
Afin d'assurer la récupération de tout l'air soufflé par les buses 20 et 22 et de l'air entraîné par le rideau d'air 14, la grille de reprise 24 communique avec des moyens d'aspiration (non représentés), dimensionnés à cet effet. Dans la pratique, l'air récupéré par la grille de reprise 24 est avantageusement épuré par des moyens d'épuration spécifiques (non représentés) avant d'être recyclé vers les buses d'injection 20 et 22. L'excédent d'air est alors rejeté à l'extérieur après une seconde épuration spécifique.In order to ensure the recovery of all the air blown by the nozzles 20 and 22 and of the air entrained by the air curtain 14, the return grille 24 communicates with suction means (not shown), dimensioned for this purpose. In practice, the air recovered by the return grille 24 is advantageously purified by specific purification means (not shown) before being recycled to the injection nozzles 20 and 22. The excess air is then rejected outside after a second specific purification.
Dans l'exemple numérique donné précédemment, le débit d'aspiration de l'air par la grille deIn the digital example given above, the air suction rate through the grate
3 reprise 24 est de 825 m /h.3 rework 24 is 825 m / h.
Les demandeurs ont également établi que l'effet barrière est encore optimisé lorsque chacun des deux jets est injecté selon une direction sensiblement parallèle au plan vertical de l'ouverture 11 et lorsque la grille de reprise 24 est perpendiculaire à cette direction. En d'autres termes, il est souhaitable que les orifices de sortie des buses 20 et 22 soient situées dans un même plan horizontal et que la grille de reprise 24 soit située en dessous des buses 20 et 22 dans un autre plan horizontal.The applicants have also established that the barrier effect is further optimized when each of the two jets is injected in a direction substantially parallel to the vertical plane of the opening 11 and when the return grid 24 is perpendicular to this direction. In other words, it is desirable that the outlet orifices of the nozzles 20 and 22 are located in the same horizontal plane and that the return grille 24 is located below the nozzles 20 and 22 in another horizontal plane.
Par ailleurs, un effet épurateur de la zone 10 à protéger est obtenu en assurant une ventilation interne de cette zone et en respectant un débit d'injection déterminé pour cette ventilation interne. Cet effet épurateur, ajouté à l'effet barrière procuré par le rideau d'air 14, améliore sensiblement l'efficacité du confinement, notamment en situation d'effrac- tions .Furthermore, a purifying effect of the zone 10 to be protected is obtained by ensuring internal ventilation of this zone and by respecting an injection flow rate determined for this internal ventilation. This purifying effect, added to the barrier effect provided by the air curtain 14, appreciably improves the efficiency of the confinement, in particular in a crumbling situation. tions.
De façon plus précise, dans la forme de réalisation de la figure 1 qui concerne un rideau d'air 14 formé de deux jets adjacents et de même sens, le débit d'injection de l'air propre de ventilation à l'intérieur de la zone 10 à protéger est au moins égal au débit d'air induit par le jet rapide, injecté par la buse 22, sur la face de ce jet rapide qui est en contact avec l'air propre de ventilation, c'est-à-dire sur la face du jet rapide tournée vers la zone 10 à protéger. De plus, l'air propre de ventilation est injecté à une vitesse telle que la vitesse de cet air, rapportée à la surface du plan de l'ouverture 11 soit au moins égale à 0,1 m/s. Dans la forme de réalisation illustrée schématiquement sur la figure 1, l'injection de l'air propre de ventilation à l'intérieur de la zone 10 à protéger s'effectue par une grille de soufflage 28 qui s'étend sur la totalité de la paroi arrière de la zone à protéger, c'est-à-dire sur toute la paroi de la zone de travail faisant face à l'ouverture 11 et orientée parallèlement au plan vertical de celle-ci. La grille de soufflage 28 par laquelle est injecté l'air propre de ventilation est située sur la gauche en considérant la figure 1.More precisely, in the embodiment of FIG. 1 which relates to an air curtain 14 formed from two adjacent jets and in the same direction, the rate of injection of clean ventilation air inside the zone 10 to be protected is at least equal to the air flow induced by the rapid jet, injected by the nozzle 22, on the face of this rapid jet which is in contact with the clean ventilation air, that is to say say on the face of the rapid jet facing the zone 10 to be protected. In addition, the clean ventilation air is injected at a speed such that the speed of this air, relative to the surface of the plane of the opening 11, is at least equal to 0.1 m / s. In the embodiment illustrated schematically in FIG. 1, the injection of clean ventilation air inside the zone 10 to be protected is carried out by a blowing grille 28 which extends over the entire rear wall of the area to be protected, that is to say over the entire wall of the working area facing the opening 11 and oriented parallel to the vertical plane thereof. The supply grille 28 through which the clean ventilation air is injected is located on the left, considering FIG. 1.
Dans un mode de réalisation (non représenté) déjà mentionné, selon lequel la zone à protéger est un convoyeur en défilement suivant un trajet donné, la paroi par laquelle est injecté l'air propre de ventilation formant le flux épurateur, est la paroi supérieure de la zone à protéger. Cette paroi est disposée en regard du convoyeur et orientée alors sensiblement perpendiculairement au plan de la zone de séparation .In an embodiment (not shown) already mentioned, according to which the zone to be protected is a conveyor running along a given path, the wall through which the clean ventilation air is injected forming the purifying flow, is the upper wall of the area to be protected. This wall is arranged opposite the conveyor and then oriented substantially perpendicular to the plane of the separation zone.
Lorsque la température qui règne dans la zone 10 à protéger doit être maintenue à une valeur uniforme déterminée, l'air propre de ventilation est injecté par la grille de soufflage 28 à une température régulée. A cet effet, des moyens de régulation de température, tels qu'un échangeur de chaleur (non représenté) , sont placés dans le circuit de ventilation, en amont de la grille de soufflage 28.When the temperature prevailing in the zone 10 to be protected must be maintained at a determined uniform value, the clean ventilation air is injected through the blowing grille 28 at a regulated temperature. To this end, temperature regulation means, such as a heat exchanger (not shown), are placed in the ventilation circuit, upstream of the blowing grid 28.
Dans l'exemple non limitatif décrit précédemment, le débit de soufflage de la ventilationIn the nonlimiting example described above, the blowing rate of the ventilation
3 interne est de 360 m /h.3 internal is 360 m / h.
Des expérimentations et des simulations ont montré que le respect des caractéristiques qui viennent d'être décrites garantit des efficacités de confinement 10 à 100 fois meilleures que celles qui sont obtenues selon l'art antérieur. Ainsi, l'efficacité de confinement d'une barrière dynamique étant définie comme le rapport de la concentration en polluants, particulaires ou gazeux, dans la zone contaminante à la concentration des mêmes polluants dans la zone à protéger, les caractéristiques sus décrites permettent d'atteindre desExperiments and simulations have shown that compliance with the characteristics which have just been described guarantees confinement efficiencies 10 to 100 times better than those obtained according to the prior art. Thus, the confinement efficiency of a dynamic barrier being defined as the ratio of the concentration of pollutants, particulate or gaseous, in the contaminating zone to the concentration of the same pollutants in the zone to be protected, the characteristics described above make it possible to achieve
4 6 efficacités de confinement comprises entre 10 et 10 . Sur la figure 2, on a illustré une deuxième forme de mise en oeuvre du procédé selon l'invention. Cette deuxième forme de mise en oeuvre reprend, pour l'essentiel, les caractéristiques décrites précédemment en se référant à la figure 1, en ajoutant un troisième jet, relativement lent, entre le jet rapide et la zone à protéger. Pour cette raison, les éléments de l'installation illustrée sur la figure 2 qui sont identiques à ceux de l'installation décrite précédemment en se référant à la figure 1 sont désignés par les mêmes chiffres de référence et il n'en sera pas fait de description détaillée. Ainsi, on reconnaît sur la figure 2 la zone4 6 containment efficiencies between 10 and 10. In FIG. 2, a second form of implementation of the method according to the invention is illustrated. This second form of implementation essentially takes up the characteristics described above with reference to FIG. 1, by adding a third jet, relatively slow, between the rapid jet and the area to be protected. For this reason, the elements of the installation illustrated in FIG. 2 which are identical to those of the installation described above with reference to FIG. 1 are designated by the same reference numbers and no detailed description will be made of them. Thus, we recognize in Figure 2 the area
10 à protéger, la zone contaminante 12, l'ouverture 11, les buses 20 et 22 par lesquelles sont respectivement injectés le jet lent et le jet rapide dont les dards respectifs sont illustrés en 16 et 18, les parois laté- raies 26 de l'ouverture 11 et la grille de soufflage 28 assurant la ventilation interne de la zone 10 à protéger.10 to be protected, the contaminating zone 12, the opening 11, the nozzles 20 and 22 through which the slow jet and the fast jet are injected respectively, the respective darts of which are illustrated in 16 and 18, the side walls 26 of the opening 11 and the blowing grid 28 ensuring the internal ventilation of the zone 10 to be protected.
Le rideau d'air, désigné dans ce cas par la référence 14', comprend en outre un troisième jet d'air propre, relativement lent par rapport au jet rapide, qui est émis par une buse 30 adjacente à la buse 22, entre le jet rapide et la zone 10 à protéger, de façon à être adjacent au jet rapide et de même sens que les autres jets. Le dard de ce troisième jet est illustré en 32 sur la figure 2.The air curtain, designated in this case by the reference 14 ', further comprises a third jet of clean air, relatively slow compared to the rapid jet, which is emitted by a nozzle 30 adjacent to the nozzle 22, between the rapid jet and zone 10 to be protected, so as to be adjacent to the rapid jet and in the same direction as the other jets. The sting of this third jet is illustrated at 32 in FIG. 2.
Les dimensions de la buse 30 sont choisies afin que le dard 32 du troisième jet recouvre toute l'ouverture. A cet effet, la buse 30 s'étend, comme les buses 20 et 22, sur toute la longueur du bord supérieur de l'ouverture 11, et la largeur de cette buse 30 est η , . , ,-ème , , , _. , s Λ /cème , au moins égale a 1/6 et , de préférence, a 1/5 de la hauteur de l'ouverture 11. Dans la pratique, les largeurs des buses 20 et 30 sont les mêmes et, par exemple, de 0,20 m dans le cas de l'illustration numé- rique données précédemment, de façon non limitative, en se référant à la figure 1.The dimensions of the nozzle 30 are chosen so that the dart 32 of the third jet covers the entire opening. For this purpose, the nozzle 30 extends, like the nozzles 20 and 22, over the entire length of the upper edge of the opening 11, and the width of this nozzle 30 is η,. ,, -ème,,, _. , s Λ / c th, at least equal to 1/6 and preferably 1/5 of the height of the opening 11. In practice, the widths of the nozzles 20 and 30 are the same and, for example , of 0.20 m in the case of the digital illustration given above, without limitation, with reference to FIG. 1.
Dans la deuxième forme de mise en oeuvre du procédé selon l'invention, on règle le débit d'injec- tion du jet lent délivré par la buse 30, afin que ce débit soit sensiblement égal au débit d'injection du jet lent délivré par la buse 20. Ainsi, les débits d'air induits par les faces du jet rapide, émis par la buse 22, respectivement en contact avec chacun des jets lents, sont inférieurs ou, de préférence, sensiblement égaux à la moitié des débits d'injection de ces jets lents .In the second embodiment of the method according to the invention, the injection rate is adjusted tion of the slow jet delivered by the nozzle 30, so that this flow is substantially equal to the injection flow of the slow jet delivered by the nozzle 20. Thus, the air flows induced by the faces of the fast jet, emitted by the nozzle 22, respectively in contact with each of the slow jets, are less than or, preferably, substantially equal to half the injection rates of these slow jets.
Comme l'illustre la figure 2, il est à noter que la largeur de la grille de reprise, désignée dans ce cas par la référence 24 ' , est adaptée à la largeur du rideau d'air, afin que tous les jets soient récupérés par cette grille 24'. Plus précisément, la grille 24' de reprise du rideau d'air 14' formé de trois jets, est plus large que la grille 24 de reprise du rideau d'air 14, formé de deux jets.As illustrated in FIG. 2, it should be noted that the width of the return grille, designated in this case by the reference 24 ′, is adapted to the width of the air curtain, so that all the jets are recovered by this grid 24 '. More precisely, the grid 24 'for the return of the air curtain 14' formed by three jets is wider than the grid 24 for the return of the air curtain 14, formed by two jets.
L'utilisation d'un rideau d'air 14' formé de trois jets adjacents et de même sens permet une séparation dynamique efficace des deux zones dans l'un et l'autre sens.The use of an air curtain 14 'formed from three adjacent jets and in the same direction allows an effective dynamic separation of the two zones in both directions.
De plus, dans la deuxième forme de mise en oeuvre illustrée sur la figure 2, la présence d'un autre jet lent, entre le jet rapide et la zone 10 à protéger, permet de diminuer le débit d'injection de la ventilation interne par rapport à la première forme de mise en oeuvre. En effet, le débit d'injection de l'air propre de ventilation par la grille de soufflage 28 est alors au moins égal au débit d'air induit par le jet lent émis par la buse 30, sur la face de ce troisième jet qui est en contact avec l'air propre de ventilation.In addition, in the second embodiment illustrated in FIG. 2, the presence of another slow jet, between the rapid jet and the zone 10 to be protected, makes it possible to reduce the injection rate of the internal ventilation by compared to the first form of implementation. In fact, the rate of injection of clean ventilation air by the blowing grid 28 is then at least equal to the air flow induced by the slow jet emitted by the nozzle 30, on the face of this third jet which is in contact with clean ventilation air.
Dans l'exemple numérique donné précédemment, le débit d'injection de chacun des jets lents est 3 de 360 m /h, le débit de soufflage de la ventilationIn the numerical example given above, the injection rate of each of the slow jets is 3 of 360 m / h, the blowing speed of the ventilation
3 interne est de 360 m /h et le débit d'aspiration de la3 internal is 360 m / h and the suction flow of the
3 grille de reprise 24' est de 1185 m /h.3 24 'return grid is 1185 m / h.
Comme dans la première forme de mise en oeuvre de l'invention, les trois jets sont, de préférence, injectés dans des directions parallèles au plan de l'ouverture 11 et la grille de reprise est placée en dessous des buses d'injection 20, 22 et 30 et orientée perpendiculairement à ce plan. Par ailleurs, la vitesse à laquelle l'air de ventilation est injecté dans la zone 10 à protéger est avantageusement au moins égale à 0, 1 m/s.As in the first embodiment of the invention, the three jets are preferably injected in directions parallel to the plane of the opening 11 and the return grid is placed below the injection nozzles 20, 22 and 30 and oriented perpendicular to this plane. Furthermore, the speed at which the ventilation air is injected into the zone 10 to be protected is advantageously at least equal to 0.1 m / s.
Les efficacités de confinement obtenues dans la deuxième forme de mise en oeuvre de 1 ' inven- tion, illustrée sur la figure 2, sont comparables à celles qui ont été données dans le cas de la première forme de mise en oeuvre, décrite précédemment en référence à la figure 1.The containment efficiencies obtained in the second embodiment of the invention, illustrated in FIG. 2, are comparable to those which have been given in the case of the first embodiment, described previously with reference in Figure 1.
Il est à noter que de nombreuses modifica- tions peuvent être effectuées sur les installations décrites, sans sortir du cadre de l'invention.It should be noted that numerous modifications can be made to the installations described, without departing from the scope of the invention.
Ces modifications concernent en premier lieu les applications, qui sont nombreuses et concernent tous les cas dans lesquels il est nécessaire d'as- surer la séparation thermique et dynamique de deux ambiances à concentrations gazeuses, particulaires et/ou bactériologiques différentes (une ambiance propre et l'autre contaminée, ainsi qu'à une température pouvant être différente) , tout en permettant le passage répété d'objets d'une zone vers l'autre, sans que la zone propre ne devienne contaminée. Des exemples de ces applications sont la protection de postes de travail agro-alimentaire, médical, biotechnologique ou à hautes technologies, de présentoirs pour la distribution de produits sensibles, etc..These modifications concern first of all the applications, which are numerous and concern all the cases in which it is necessary to ensure the thermal and dynamic separation of two atmospheres with gaseous, particulate and / or bacteriological concentrations (a clean and the other contaminated, as well as at a temperature which may be different), while allowing the repeated passage of objects from one zone to the other, without the clean zone becoming contaminated. Examples of these applications are the protection of workstations food, medical, biotechnology or high technology, displays for the distribution of sensitive products, etc.
Les modifications possibles concernent aussi la forme, l'orientation et le nombre des zones de séparation par lesquelles les deux zones communiquent, ainsi que le choix des bords de la zone de séparation sur lesquels sont implantées les buses d'injection et la grille de reprise, qui peuvent être différents de ceux qui ont été décrits. The possible modifications also relate to the shape, the orientation and the number of the separation zones by which the two zones communicate, as well as the choice of the edges of the separation zone on which the injection nozzles and the return grid are located. , which may be different from those which have been described.

Claims

REVENDICATIONS
1. Procédé de séparation dynamique d'une zone contaminante (12) et d'une zone à protéger (10), communiquant entre elles par au moins une zone de séparation (11) , ce procédé comprenant les étapes suivantes :1. Method for dynamic separation of a contaminating zone (12) and a zone to be protected (10), communicating with each other by at least one separation zone (11), this method comprising the following steps:
- on injecte dans ladite zone de séparation (11), à un premier débit d'injection, un premier jet d'air propre relativement lent, comprenant un dard (16) apte à recouvrir toute la zone de séparation ;- Is injected into said separation zone (11), at a first injection rate, a first relatively slow clean air jet, comprising a dart (16) capable of covering the entire separation zone;
- on injecte simultanément dans la zone de séparation (11), à un deuxième débit d'injection, un deuxième jet d'air propre relativement rapide, adjacent au premier jet et de même sens que celui-ci, entre la zone à protéger (10) et le premier jet ; ledit procédé étant caractérisé par le fait qu'on règle le deuxième débit d'injection, afin que le débit d'air induit par la face du deuxième jet en contact avec le premier jet, soit au plus sensiblement égal à la moitié du premier débit d'injection.- a second relatively rapid jet of clean air is injected simultaneously into the separation zone (11), at a second injection rate, adjacent to the first jet and in the same direction as the latter, between the zone to be protected ( 10) and the first draft; said method being characterized by the fact that the second injection rate is adjusted, so that the air flow induced by the face of the second jet in contact with the first jet is at most substantially equal to half of the first flow injection.
2. Procédé selon la revendication, dans lequel on règle le deuxième débit d'injection, afin que le débit d'air induit par la face du deuxième jet en contact avec le premier jet soit sensiblement égal à la moitié du premier débit d'injection.2. Method according to claim, in which the second injection flow is adjusted, so that the air flow induced by the face of the second jet in contact with the first jet is substantially equal to half of the first injection flow. .
3. Procédé selon l'une quelconque des revendications 1 et 2, dans lequel on injecte simultanément de l'air propre de ventilation à l'intérieur de la zone à protéger (10), à un débit d'injection au moins égal au débit d'air induit par le deuxième jet, sur la face de celui-ci en contact avec l'air propre de ventilation. 3. Method according to any one of claims 1 and 2, in which clean ventilation air is simultaneously injected inside the zone to be protected (10), at an injection rate at least equal to the rate of air induced by the second jet, on the face thereof in contact with the clean ventilation air.
4. Procédé selon l'une quelconque des revendications 1 et 2, dans lequel on injecte dans la zone de séparation (11), à un troisième débit d'injection, un troisième jet relativement lent, adjacent au deuxième jet et de même sens que les premier et deuxième jets, entre la zone à protéger (10) et le deuxième jet, le troisième jet comprenant un dard (32) apte à recouvrir toute la zone de séparation (11), et on règle le troisième débit d'injection pour qu'il soit sensiblement égal au premier débit d'injection, afin que les débits d'air induits par les faces du deuxième jet respectivement en contact avec le premier et le troisième jets, soient au plus sensiblement égaux à la moitié des premier et troisième débits d'injection. 4. Method according to any one of claims 1 and 2, in which is injected into the separation zone (11), at a third injection rate, a third relatively slow jet, adjacent to the second jet and in the same direction as the first and second jets, between the zone to be protected (10) and the second jet, the third jet comprising a dart (32) capable of covering the entire separation zone (11), and the third injection rate is adjusted for that it is substantially equal to the first injection flow, so that the air flows induced by the faces of the second jet respectively in contact with the first and the third jets, are at most substantially equal to half of the first and third injection rates.
5. Procédé selon la revendication 4, dans lequel on règle le troisième débit d'injection afin que les débits d'air induits par les faces du deuxième jet respectivement en contact avec le premier et le troisième jets soient sensiblement égaux à la moitié des premier et troisième débits d'injection.5. Method according to claim 4, in which the third injection flow is adjusted so that the air flows induced by the faces of the second jet respectively in contact with the first and the third jets are substantially equal to half of the first and third injection rates.
6. Procédé selon l'une quelconque des revendications 4 et 5, caractérisé en ce que l'on injecte simultanément de l'air propre de ventilation à l'intérieur de la zone à protéger (10), à un débit d'injection au moins égal au débit d'air induit par le troisième jet sur la face de celui-ci en contact avec l'air propre de ventilation.6. Method according to any one of claims 4 and 5, characterized in that clean ventilation air is simultaneously injected inside the zone to be protected (10), at an injection rate at less equal to the air flow induced by the third jet on the face thereof in contact with the clean ventilation air.
7. Procédé selon l'une quelconque des revendications 3 et 6, caractérisé en ce que l'air pro- pre de ventilation est injecté à une vitesse telle que la vitesse de cet air propre de ventilation, rapportée à la surface du plan de la zone de séparation (11), soit au moins égale à 0,1 m/s. 7. Method according to any one of claims 3 and 6, characterized in that the clean ventilation air is injected at a speed such that the speed of this clean ventilation air, relative to the surface of the plane of the separation zone (11), at least equal to 0.1 m / s.
8. Procédé selon l'une quelconque des revendications 3, 6 et 7, caractérisé en ce que l'on injecte l'air propre de ventilation sur la totalité d'une paroi de la zone à protéger (10), en direction la zone de séparation (11) .8. Method according to any one of claims 3, 6 and 7, characterized in that clean ventilation air is injected over an entire wall of the zone to be protected (10), in the direction of the zone separation (11).
9. Procédé selon la revendication 8, caractérisé en ce que la paroi par laquelle est injecté l'air propre de ventilation est la paroi arrière de la zone à protéger (10) , orientée parallèlement au plan de la zone de séparation (11) .9. Method according to claim 8, characterized in that the wall through which the clean ventilation air is injected is the rear wall of the zone to be protected (10), oriented parallel to the plane of the separation zone (11).
10. Procédé selon la revendication 8, caractérisé en ce que la paroi par laquelle est injecté l'air propre de ventilation est la paroi supérieure de la zone à protéger (10), orientée sensiblement perpendiculairement au plan de la zone de séparation (11) •10. Method according to claim 8, characterized in that the wall through which the clean ventilation air is injected is the upper wall of the area to be protected (10), oriented substantially perpendicular to the plane of the separation area (11) •
11. Procédé selon l'une quelconque des revendications 3 et 6 à 10, caractérisé en ce que l'air propre de ventilation est injecté à une température régulée.11. Method according to any one of claims 3 and 6 to 10, characterized in that the clean ventilation air is injected at a regulated temperature.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que tous les jets d'air propre sont injectés selon des directions sensiblement parallèles au plan de la zone de séparation (11) .12. Method according to any one of the preceding claims, characterized in that all the clean air jets are injected in directions substantially parallel to the plane of the separation zone (11).
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on récupère tous les jets d'air propre par une grille de reprise (24,24') installée en face de buses d'injection (20,22,30) desdits jets et située dans un plan sensiblement perpendiculaire à la direction des jets d'air propre. 13. Method according to any one of the preceding claims, characterized in that all the clean air jets are recovered by a return grid (24,24 ') installed opposite the injection nozzles (20,22 , 30) of said jets and situated in a plane substantially perpendicular to the direction of the clean air jets.
14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la zone de séparation (11) est bordée par des parois latérales (26), situées de part et d'autre des jets d'air propre s ' étendant vers la zone contaminante (12) sur une distance au moins égale à l'épaisseur maximale des jets. 14. Method according to any one of the preceding claims, characterized in that the separation zone (11) is bordered by side walls (26), situated on either side of the clean air jets extending towards the contaminating zone (12) over a distance at least equal to the maximum thickness of the jets.
EP97951278A 1996-12-10 1997-12-09 Method for dynamic separation into two zones with a screen of clean air Expired - Lifetime EP0944802B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9615151 1996-12-10
FR9615151A FR2756910B1 (en) 1996-12-10 1996-12-10 PROCESS FOR DYNAMIC SEPARATION OF TWO AREAS BY A CLEAN AIR CURTAIN
PCT/FR1997/002238 WO1998026226A1 (en) 1996-12-10 1997-12-09 Method for dynamic separation into two zones with a screen of clean air

Publications (2)

Publication Number Publication Date
EP0944802A1 true EP0944802A1 (en) 1999-09-29
EP0944802B1 EP0944802B1 (en) 2001-11-07

Family

ID=9498506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951278A Expired - Lifetime EP0944802B1 (en) 1996-12-10 1997-12-09 Method for dynamic separation into two zones with a screen of clean air

Country Status (13)

Country Link
US (1) US6334812B2 (en)
EP (1) EP0944802B1 (en)
JP (1) JP3651805B2 (en)
CN (1) CN1240022A (en)
AT (1) ATE208484T1 (en)
AU (1) AU725184B2 (en)
CA (1) CA2274147C (en)
DE (1) DE69708144T2 (en)
DK (1) DK0944802T3 (en)
ES (1) ES2167803T3 (en)
FR (1) FR2756910B1 (en)
PT (1) PT944802E (en)
WO (1) WO1998026226A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020188A1 (en) 2010-08-10 2012-02-16 Solios Environnement Method and device for confining cell gases in an aluminium electrolysis cell
EP3848646A4 (en) * 2018-09-06 2021-11-10 Nihon Spindle Manufacturing Co., Ltd. Booth and spouting device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046200C1 (en) * 2000-09-19 2002-05-23 Alfred Schneider Channel for pure air conditions
DE10254762A1 (en) * 2002-11-22 2004-06-09 Transcoject Gesellschaft für medizinische Geräte mbH & Co. KG Process for producing and / or handling a high-purity object
DE10320490A1 (en) * 2003-03-25 2004-10-14 Kampmann Gmbh Device for generating an air curtain
EP1462730B1 (en) * 2003-03-25 2015-09-09 Kampmann GmbH Device for creating an air curtain
FR2865406B1 (en) * 2004-01-22 2007-11-30 Acanthe DIFFUSER WITH PARIETAL EFFECT
US20100267321A1 (en) * 2007-06-22 2010-10-21 Institute Of Occupational Safety And Health, Council Of Labor Affairs, Executive Yuan Air curtain-isolated biosafety cabinet
US10029797B2 (en) * 2008-09-30 2018-07-24 The Boeing Company Personal ventilation in an aircraft environment
US8506367B2 (en) * 2009-07-30 2013-08-13 Thermo King Corporation Mobile air cleaning unit and distribution system
FR2968384B1 (en) * 2010-12-01 2013-12-27 Robert Guetron DEVICE FOR FLUID SEPARATION FROM 2 REGIONS
ITPI20110138A1 (en) * 2011-12-06 2013-06-07 A R I A Engineering S R L METHOD AND EQUIPMENT FOR REALIZING ENVIRONMENTS ENCLOSED BY AIR WALLS
WO2013128083A1 (en) * 2012-02-28 2013-09-06 Robert Guetron Device for fluidically separating two regions
CN102905507B (en) * 2012-10-17 2013-08-28 深圳市英维克科技有限公司 Hot environment controlling system
FR3032391B1 (en) * 2015-02-06 2018-09-21 Alstom Transport Technologies DEVICE FOR GENERATING AN AIR CURTAIN, ESPECIALLY FOR EQUIPPING A RAILWAY VEHICLE
CN104818931B (en) * 2015-04-23 2017-03-29 中天道成(苏州)洁净技术有限公司 A kind of operating room air-flow obstruct door
JP6576698B2 (en) * 2015-06-11 2019-09-18 株式会社ニットー冷熱製作所 Blowing device and air curtain device
CN105973742B (en) * 2016-04-19 2019-07-16 中国石油化工股份有限公司 The detection device and its detection method of flue gas content in a kind of pitch
US11015824B2 (en) 2016-09-02 2021-05-25 Inertechip Llc Air curtain containment system and assembly for data centers
CN110836398B (en) * 2018-08-17 2021-06-15 青岛海尔智慧厨房电器有限公司 Method for controlling effective distance of air curtain range hood

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2515319B1 (en) * 1981-10-26 1986-12-26 Air Ind VENTILATION AIR DISTRIBUTION WALL FOR WORK SPEAKERS
FR2530163B1 (en) * 1982-07-15 1986-08-29 Commissariat Energie Atomique METHOD FOR CONTAINING THE POLLUTION OF A PREMISES USING A GAS VEIN
JPS60174958A (en) 1984-02-21 1985-09-09 Toshiba Corp Phase decision apparatus
JPH068887B2 (en) * 1988-10-27 1994-02-02 中国電力株式会社 Opening shielding device
FR2652520B1 (en) * 1989-10-02 1992-02-07 Sgn Soc Gen Tech Nouvelle METHOD AND DEVICE FOR MAINTAINING A CLEAN ATMOSPHERE WITH REGULATED TEMPERATURE ON A WORKSTATION.
FR2659782B1 (en) * 1990-03-14 1992-06-12 Sgn Soc Gen Tech Nouvelle METHOD AND DEVICE FOR DYNAMIC SEPARATION OF TWO ZONES.
FR2730297B1 (en) * 1995-02-02 1997-05-09 Soc Generale Pour Les Techniques Nouvelles Sgn CONTAINMENT METHOD AND DEVICE, ESPECIALLY OF A PARTICULAR ATMOSPHERE IN A CONTINUOUS PROCESSING SPACE OF THROUGHPUT PRODUCTS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9826226A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020188A1 (en) 2010-08-10 2012-02-16 Solios Environnement Method and device for confining cell gases in an aluminium electrolysis cell
DE102011052543A1 (en) 2010-08-10 2012-02-16 Solios Environnement Method and device for enclosing the well gases in an aluminum electrolysis tank
EP3848646A4 (en) * 2018-09-06 2021-11-10 Nihon Spindle Manufacturing Co., Ltd. Booth and spouting device

Also Published As

Publication number Publication date
EP0944802B1 (en) 2001-11-07
ATE208484T1 (en) 2001-11-15
AU725184B2 (en) 2000-10-05
DE69708144T2 (en) 2002-06-20
DK0944802T3 (en) 2002-02-18
CA2274147A1 (en) 1998-06-18
WO1998026226A1 (en) 1998-06-18
FR2756910B1 (en) 1999-01-08
JP3651805B2 (en) 2005-05-25
US20010002363A1 (en) 2001-05-31
FR2756910A1 (en) 1998-06-12
ES2167803T3 (en) 2002-05-16
CN1240022A (en) 1999-12-29
DE69708144D1 (en) 2001-12-13
JP2001510548A (en) 2001-07-31
AU5486798A (en) 1998-07-03
PT944802E (en) 2002-04-29
US6334812B2 (en) 2002-01-01
CA2274147C (en) 2007-02-06

Similar Documents

Publication Publication Date Title
EP0944802B1 (en) Method for dynamic separation into two zones with a screen of clean air
CA2275950C (en) Device for dynamic separation of two zones
EP2580045B1 (en) Method of recycling air containing a sterilizing agent, and container manufacturing plant comprising an air recycling circuit
EP0099818B1 (en) Method of confining the pollution of an area by making use of an air curtain
EP2580044B1 (en) Apparatus for manufacturing containers with a recycling loop and recycling method
EP0447314A1 (en) Process and device for dynamic separation of two areas
EP0807228B1 (en) Confinement method and device, in particular for a special atmosphere in a space for continuously processing articles fed therethrough
EP0199649B1 (en) Coating of float glass by pyrolysable powder compounds
EP0966638B1 (en) Device for separating two zones with different environment
EP0313455B1 (en) Space protected against exterior pollution
EP2198931A1 (en) Method and apparatus for extinguishing sparks transported by a stream of gas
EP2689196B1 (en) Equipment for diffusing airflow
BE672267A (en)
EP0307284B1 (en) System for dismantling installations present in a building, and process for using this system
EP1644680B1 (en) Method and device for drying a non-metallic coating on a steel band
FR3071493B1 (en) METHOD AND DEVICE FOR VITRIFICATION OF A PULVERULENT MATERIAL
FR2821834A1 (en) METHOD AND CONVEYOR FOR THE TRANSPORT OF LIGHT ITEMS UNDER THE ACTION OF AIR JETS, USING AN AIRFLOW FOR PROTECTING ARTICLES AGAINST CONTAMINATION
EP2507400A1 (en) Device for maintaining the dryness of the atmosphere of an annealing furnace for metal strips, and furnace provided with said device
EP0390678A1 (en) Gutter for the evacuation of pieces, equipped with an aeriform barrier and its fitting to an irradiated fuel assembly reprocessing facility

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

REF Corresponds to:

Ref document number: 208484

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69708144

Country of ref document: DE

Date of ref document: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020206

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2167803

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020400069

Country of ref document: GR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20061129

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061203

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20061211

Year of fee payment: 10

Ref country code: PT

Payment date: 20061211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20061212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20061213

Year of fee payment: 10

Ref country code: AT

Payment date: 20061213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20061214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20061227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070222

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20080609

BERE Be: lapsed

Owner name: *UNIR ULTRA PROPRE NUTRITION INDUSTRIE RECHERCHE

Effective date: 20071231

Owner name: COMMISSARIAT A L'ENERGIE *ATOMIQUE

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080606

Year of fee payment: 11

Ref country code: CH

Payment date: 20080605

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080701

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080609

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080630

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080628

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080611

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081209