JPS60174958A - Phase decision apparatus - Google Patents

Phase decision apparatus

Info

Publication number
JPS60174958A
JPS60174958A JP3070284A JP3070284A JPS60174958A JP S60174958 A JPS60174958 A JP S60174958A JP 3070284 A JP3070284 A JP 3070284A JP 3070284 A JP3070284 A JP 3070284A JP S60174958 A JPS60174958 A JP S60174958A
Authority
JP
Japan
Prior art keywords
phase
signal
line voltage
level
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3070284A
Other languages
Japanese (ja)
Other versions
JPH0367228B2 (en
Inventor
Teruo Suzuki
照夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3070284A priority Critical patent/JPS60174958A/en
Publication of JPS60174958A publication Critical patent/JPS60174958A/en
Publication of JPH0367228B2 publication Critical patent/JPH0367228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Phase Differences (AREA)

Abstract

PURPOSE:To enable accurate decision on the phase whether it is single or three phase by judging the phase based on a line voltage signal and a phase current signal. CONSTITUTION:Line voltages P12 and P32 are converted into line voltage signals V12 and V32 of a square waveform with comparators 1 and 2 and fed to single/three phase discriminator section 10, which sends a discrimination signal G of H level to a switching section 20b when judging it as single phase while that of L level, as three phase. When single phase is found, the switching section 20b sends a signal V12 to an input terminal D of an FF30 while when three phase is found, it sends a line voltage signal Vs delayed in the phase by 90 deg. with a delay section 20a to a terminal D of the FF30. Depending on the lag or advance of the phase between the voltages V12 and Vs and the phase current signal I obtained by the conversion of a phase current I1, an H-level signal is outputted from an input terminal Q of the FF30 when the phase is in lag while an L-level signal is outputted when it is in advance. Thus, whether the power source is single or three phase, it can be automatically judged by lag or advance in the phase. As the phase current I1 is amplified to a specified level with an amplifying section 40, the magnitude of the phase current I1 will not affect the decision on the phase however it may be limited.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電力が供給される負荷の力率を測定する装置
に係り、特に力率が遅相によるのか進相によるのかを判
定する位相判定装置に関するO 〔発明の技術的背景とその問題点〕 電力が彼給される負荷の力率改善は、負荷すなわち電気
設備の見直し、改善施策における重点項目の一つであシ
、実際には進相用コンデンサを用いて力率改善が行なわ
れている。ところで電気設備に用いられる従来の力率測
定装置は電力受電端つまシ三相3線式電源の受電端で測
定するのが主であったのに対し、現在の力率測定装置は
低圧系統における力率改善の必要性により単相電源およ
び三相3線式電源での両方の力率を測定する共用形のも
のが必要となっているに のような共用形の装置では、力率値が遅れ力率か進み力
率かを判別する場合、電圧と負荷電流との位相角のずれ
によシ判別する方法が一般的となっている。しかし電源
が単相と三相3線式とでは電圧(線間電圧)と負荷電流
との位相がそれぞれ異なるため従来の装置では、位相判
定回路をそれぞれ単相用と三相3線式用との2つに設け
て測定したシ、また、単相および三相3線式に応じて操
作者が外部の切換手段などを操作して測定している。こ
のため、装置の構成が複雑となり、また取扱いが不便と
なるなどしていた。さらに位相判定に用いる負荷電流は
、負荷の変動によシその電流値が小さくなることがあり
、これによシ位相判定に誤差を生ずることがあった。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a device for measuring the power factor of a load to which electric power is supplied, and in particular to a phase determination device for determining whether the power factor is due to a lagging phase or a leading phase. O Regarding the device [Technical background of the invention and its problems] Improving the power factor of the load to which electric power is supplied is one of the important items in the review and improvement measures of the load, that is, the electrical equipment, and in reality there is no progress. Power factor improvement is performed using phase capacitors. By the way, conventional power factor measuring devices used in electrical equipment mainly measure power at the receiving end of a three-phase, three-wire power source, whereas current power factor measuring devices measure in low-voltage systems. The need for power factor correction necessitates a dual-use device that measures the power factor for both single-phase and three-phase three-wire power supplies. When determining whether the power factor is a lagging power factor or a leading power factor, a common method is to use the difference in phase angle between the voltage and the load current to determine whether the power factor is lagging or leading. However, the phase of the voltage (line voltage) and load current is different between single-phase and three-phase three-wire power supplies, so in conventional equipment, phase determination circuits are used for single-phase and three-phase three-wire systems, respectively. In addition, the operator operated an external switching means depending on the single-phase and three-phase three-wire systems. For this reason, the configuration of the device becomes complicated and handling becomes inconvenient. Furthermore, the current value of the load current used for phase determination may become small due to variations in the load, which may cause errors in phase determination.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に基づいてなされたもので、電源が単
相、三相のいずれであっても、かつ負荷電流が小さくて
も自動的にしかも正確に位相の進み、遅れを判定し得る
位相判定装置全提供することを目的とする。
The present invention has been made based on the above-mentioned circumstances, and is capable of automatically and accurately determining phase lead or lag regardless of whether the power source is single-phase or three-phase, and even if the load current is small. The purpose is to provide a complete evaluation device.

〔発明の概要〕[Summary of the invention]

本発明は、単相電源か三相電源かを判別する単相三相判
別部から送出される判別信号によシ信号切換部は、単相
電源の場合前記単相の電圧の線間電圧信号をその位相を
変えずに送出し、かつ三相電源の場合三相のうちの所定
の線間電圧の線間電圧信号を所定の位相角だけ移相して
送出し、この送出された線間電圧信号と所定の相電流の
相電流信号とに基づいて判定部により遅相か進相かを判
定するようにした位相判定装置である。
The present invention provides a signal switching section that responds to a discrimination signal sent from a single-phase three-phase discrimination section that discriminates between a single-phase power supply and a three-phase power supply, and in the case of a single-phase power supply, a line voltage signal of the single-phase voltage. is sent out without changing its phase, and in the case of a three-phase power supply, the line voltage signal of a predetermined line voltage of the three phases is sent out with the phase shifted by a predetermined phase angle, and the This is a phase determination device in which a determination unit determines whether the phase is slow or advanced based on a voltage signal and a phase current signal of a predetermined phase current.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る位相判定装置の一実施例について第
1図ないし第4図を参照して説明する。第1図Fi位相
判定装置の構成図である。第1図において■(PI3 
)は第1相と第2相間の線間電圧、V(P3□)Fi第
3相と第2相間の線間電圧であって、これら線間電圧■
(PI3 ) +v(P32 )は力率測定装置におけ
る変圧部、交流部によ、!l) @b作可能な電圧レベ
ルに減衰されている。そして、線間電圧V(PI3)は
、コンパレータ1によ探方形波形の第1の線間電圧信号
V12に変換されてから単相三相判別部10に送られる
とともに、”信号切換部20に送られるようになってお
り、また線間電圧V (Psz )は、コンパレータ2
によ探方形波形の第2の線間電圧信号V32に変換され
て重相三相判定部JOに送ら九かつ信号切換部20の進
相部21に送られるようになっている。
An embodiment of the phase determination device according to the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a configuration diagram of the Fi phase determination device. In Figure 1, ■(PI3
) is the line voltage between the first phase and the second phase, V(P3□)Fi is the line voltage between the third phase and the second phase, and these line voltages ■
(PI3) +v(P32) is due to the transformer section and AC section in the power factor measuring device! l) It is attenuated to a voltage level that allows operation. The line voltage V (PI3) is converted by the comparator 1 into a first line voltage signal V12 having a rectangular waveform, and then sent to the single-phase and three-phase discriminator 10. The line voltage V (Psz) is sent to comparator 2.
The signal is converted into a second line voltage signal V32 having a rectangular waveform and sent to the multi-phase three-phase determining section JO, and then to the phase advance section 21 of the signal switching section 20.

単相三相判別部10は、線間電圧信号V1!およびV3
2により電源が単相か三相かを判別し、単相ならば「H
」レベル、三相ならば「L」レベルの判別信号Gを送出
する機能をもったもので、その判別は線間電圧信号V1
2 # VS2間の位相角の違いにより行なう。つまり
単相および三相の線間電圧V (PI3) * V (
pH2)と第1相の相電流V(I*)とをベクトルによ
って示すと、単相2線式では第2図(a)に示すように
第1相と第2相間の線間電圧ベクトルψ12と第1相の
電流ベクトルilとが同相となる。なお、第3相と第2
相間の線間電圧ベクトルヤ32は、装置の線間電圧v 
(Psz )の入力端子を線間電圧V(Pfi)の入力
端子に接続したものである。また単相3線式では、第2
図(b)に示すように線間電圧ベクトルや12とや32
との位相角が180度となシ、三相3線式では第2図(
c)に示すように線間電圧ベクトル※12と※32との
位相角が60度となる〇なお、i3は第3相の相電流ベ
クトルである。
The single-phase and three-phase discriminator 10 detects the line voltage signal V1! and V3
2 determines whether the power supply is single-phase or three-phase, and if it is single-phase, it is “H”.
” level, and if it is three-phase, it has the function of sending out a discrimination signal G of “L” level, and the discrimination is based on the line voltage signal V1.
2 # This is done based on the difference in phase angle between VS2. In other words, single-phase and three-phase line voltage V (PI3) * V (
pH2) and the phase current V(I*) of the first phase are represented by vectors. In a single-phase two-wire system, the line voltage vector ψ12 between the first and second phases is shown in Figure 2(a). and the first phase current vector il are in phase. In addition, the third phase and the second phase
The line voltage vector 32 between the phases is the line voltage v of the device.
The input terminal of (Psz) is connected to the input terminal of line voltage V (Pfi). In addition, in a single-phase three-wire system, the second
As shown in figure (b), the line voltage vector 12 and 32
If the phase angle between the
As shown in c), the phase angle between the line voltage vectors *12 and *32 is 60 degrees. Note that i3 is the phase current vector of the third phase.

なお、この第2図(a) (b) (c)は力率が1.
0の場合である。したがって、単相判別部10は、線間
電圧v (PI3 )とv (psz )との間の位相
差によって単相か三相かを判別する。
Note that the power factor in FIGS. 2(a), (b), and (c) is 1.
This is the case of 0. Therefore, the single-phase determining unit 10 determines whether the voltage is single-phase or three-phase based on the phase difference between the line voltages v (PI3) and v (psz).

信号切換部20ば、単相三相判別部1oがら送出される
判別信号GがrHJレベルならば線間電圧信号V12を
送出し、かつ判別信号がrLJレベルならば90度遅延
した線間電圧v(Po )を第3の線間電圧信号■8と
して送出する機能をもったもので、遅延部20hと切換
部2obとから構成されている。具体的に遅延部20a
は、線間電圧v (P32 )の位相を90度進める進
相部2ノ、この進相部21から出力される電圧を方形波
形に変換するコンパレータ22、このコンパレータ22
から送出される線間電圧信号V32を反転するインバー
タ23から構成されるいる。切換部20bは、一端に判
別信号をダート信号として入力し他端に線間電圧信号V
tZを入力するアンドダート24、一端にインバータ2
5を介して判別信号Gをダート信号として入力し他端に
インバータ23から送出される線間電圧信号Vを入力す
るアンドゲート26およびアンドダート24゜26を通
ってくる線間電圧信号V、、Vを通−して判定部として
のD型フリツノフロップ30のデータ入力端子りに送出
する。オアダート27から構成されている。
If the discrimination signal G sent from the single-phase three-phase discrimination section 1o is at rHJ level, the signal switching unit 20 sends out the line voltage signal V12, and if the discrimination signal is at rLJ level, it sends out the line voltage signal V12 delayed by 90 degrees. (Po) as the third line voltage signal 8, and is composed of a delay section 20h and a switching section 2ob. Specifically, the delay section 20a
is a phase advance part 2 which advances the phase of the line voltage v (P32) by 90 degrees, a comparator 22 which converts the voltage output from this phase advance part 21 into a square waveform, and this comparator 22.
It is composed of an inverter 23 that inverts the line voltage signal V32 sent from the line voltage signal V32. The switching unit 20b inputs the discrimination signal as a dirt signal to one end, and inputs the line voltage signal V to the other end.
And dart 24 to input tZ, inverter 2 at one end
5, the discrimination signal G is inputted as a dart signal, and the line voltage signal V sent from the inverter 23 is inputted to the other end of the AND gate 26, and the line voltage signal V passing through the AND gate 24. The signal is sent through V to the data input terminal of a D-type Fritzno flop 30 serving as a determining section. It consists of 27 ordarts.

一方、第1相の相電流V(Is)は、増幅部40および
コンル−タ50を介してフリップ70ツfsoのクロッ
ク入力端子CKに入力されるように構成されている。な
お、増幅部40は演算増幅器41、抵抗42.43から
構成されている。
On the other hand, the first phase current V (Is) is configured to be input to the clock input terminal CK of the flip 70 fso via the amplifier section 40 and the converter 50. Note that the amplifying section 40 includes an operational amplifier 41 and resistors 42 and 43.

次に上記の如く構成された装置の動作について説明する
。線間電圧v(PI3 )およびV(P32)は、それ
ぞれコンパレータ1,2により交流波形から方形波形の
線間電圧信号”12 + VS2に変換されて単相三相
判別部10に送られる。単相三相判別部10は、入力し
た線間電圧信号V121V32間の位相角に基づいて単
相か三相かを判別し、単相と判別すればrHJレベルの
判別信号Gを送出し、また三相と判別すればrLJレベ
ルの判別信号Gを送出する。
Next, the operation of the apparatus configured as described above will be explained. The line voltages v (PI3) and V (P32) are converted from AC waveforms into line voltage signals "12 + VS2" with square waveforms by comparators 1 and 2, respectively, and sent to the single-phase and three-phase discriminator 10. The phase/three-phase discrimination unit 10 discriminates whether the input line voltage signal V121V32 is a single phase or three phase based on the phase angle between them. If it is determined that it is the phase, a determination signal G of rLJ level is sent out.

そこで単相電源であればrHJレベルの判別信号Gによ
υアンドゲート24が開き、線間電圧信号V12がアン
ドr −ト、24およびオアゲート27を通って7リツ
プ70ツf30のデータ入力端子りに送られる。なお、
このときアンドダート26は、インバータ25によ#)
rHJレベルの判別信号Gが反転するので閉となってい
る。
Therefore, in the case of a single-phase power supply, the rHJ level discrimination signal G opens the υ AND gate 24, and the line voltage signal V12 passes through the AND gate 24 and the OR gate 27 to the data input terminal of the 7-rip 70-f30. sent to. In addition,
At this time, the AND dirt 26 is operated by the inverter 25)
Since the rHJ level discrimination signal G is inverted, it is closed.

また、三相電源であれば「L」レベルの判別信号Gはイ
ンバータ25により反転されてアンドゲート26に入力
するのでアンドr −) 26が開く。そこで、線間電
圧V(、P32)は、進相部21により90度位相が進
められコンパレータ22によ探方形波形に変換、され、
さらにインバータ22によシ反転されて線間電圧信号V
(つまシ線間電圧V(P32)の位相に対して90度遅
れた位相の線間電圧信号VS)としてアンドゲート26
およびオアゲート27を通ってフリップフロップ30の
データ入力端子りに送られる。
Further, in the case of a three-phase power supply, the discrimination signal G at the "L" level is inverted by the inverter 25 and input to the AND gate 26, so that the AND gate 26 is opened. Therefore, the phase of the line voltage V (, P32) is advanced by 90 degrees by the phase advance unit 21, and converted into a rectangular waveform by the comparator 22.
Furthermore, the line voltage signal V is inverted by the inverter 22.
(line voltage signal VS whose phase is delayed by 90 degrees with respect to the phase of the line voltage V (P32))
and is sent through the OR gate 27 to the data input terminal of the flip-flop 30.

一方、相電流V(Il)は、増幅部40によシ所定のレ
ベルに非反転増幅され、さらにコンパレータ50によ探
方形波形の相電流信号Itに変換されてフリップフロッ
グ30のクロック入力端子CKに送られる。
On the other hand, the phase current V (Il) is non-invertingly amplified to a predetermined level by the amplifier 40, and further converted by the comparator 50 into a phase current signal It having a rectangular waveform. sent to.

しかして、フリップフロッグ30のデータ入力端子りお
よびクロック入力端子CKにそれぞれ入力する線間電圧
信号V12およびVsと相電流信号1.との関係は、第
3図(a) (b)に示すようになる。なお、第3図(
a) (b)は力率が1.0の場合を示している。すな
わち単相電源の場合13図(、)に示すように線間電圧
ベクトル守12と相電流ベクトル〒1とが同相となり、
また三相3線式の場合も同様に第3図(b)に示す如く
線間電圧ベクトル÷8と相電流ベクトルilとが同相と
なる。っまシ、三相3線式では、第2図(e)に示す線
間電圧ベクトル※32の位相を90度だけ遅延すれば相
電流ベクトル11と同相となる。
Thus, the line voltage signals V12 and Vs and the phase current signals 1, . The relationship between the two is shown in FIGS. 3(a) and 3(b). In addition, Figure 3 (
a) (b) shows the case where the power factor is 1.0. In other words, in the case of a single-phase power supply, as shown in Figure 13 (, ), the line voltage vector 12 and the phase current vector 〒1 are in phase,
Similarly, in the case of a three-phase three-wire system, the line voltage vector ÷8 and the phase current vector il are in phase, as shown in FIG. 3(b). In a three-phase three-wire system, if the phase of the line voltage vector *32 shown in FIG. 2(e) is delayed by 90 degrees, it becomes in phase with the phase current vector 11.

この結果、遅れ力率であれば、フリッゾフロッ7°30
のデータ入力端子りおよびクロック入力端子CKにそれ
ぞれ入力する線間電圧信号v12 #Vおよび相電流信
号工1の位相関係は、第4図(a)に示すように相電流
信号■1が線間電圧信号V1..Vに対して遅れること
になシ、フリップフロップ30のQ出力端子からは、「
1月レベルの信号が出力される。
As a result, if the power factor is lagging, Frizzo Floss is 7°30
The phase relationship between the line voltage signal v12 #V and the phase current signal circuit 1 input to the data input terminal and clock input terminal CK, respectively, is as shown in Fig. 4(a). Voltage signal V1. .. Since there is no delay with respect to V, the Q output terminal of the flip-flop 30 outputs "
January level signals are output.

一方進み力率であ!れば、線間電圧信号V12sVSZ
と相電流信号との位相関係は、第4図(b)に示すよう
に相電流信号工1が線間電圧信号v12゜vaに対して
進むことになり、これによりフリップフロラ7°30の
Q出力端子からU rLJレベルの信号が出力される。
On the other hand, the leading power factor! If so, the line voltage signal V12sVSZ
The phase relationship between the phase current signal and the phase current signal is as shown in FIG. A signal at the U rLJ level is output from the output terminal.

このように本装置においては、単相三相判別部10から
送出される判別信号Gによフ切換部20bは、単相の場
合コンパレータlから出力される線間電圧信号V12を
7リップフ口ツノ30のD入力端子に送出し、かつ三相
の場合遅延部20aによ990度だけ位相を遅延して得
た線間電圧信号■8を7リツプフロツf30のデータ入
力端子りに送出し、これら線間電圧vtz 、v、と相
電流V(If)を変換して得た相電流信号工!との間の
位相の遅れ、進みによシフリッゾフロッf30の出力端
子Qから遅れの場合rHJレベルの信号、進みの場合r
LJレベルの信号を出力するので、電源が単相、三相の
いずれでちってもすなわち、単相2線式、単相3線式、
三相3線式のいずれであっても自動的に遅相か進相かを
判定し得る。そして、この判定にあっては、信号切換部
20がフリップフロップ30に送出する線間電圧信号V
tz+vsを切換えるだけなので、単相、三相に関係な
く同一条件で判定ができる。したがって本装置は、従来
のように単相用と三相用との位相判定回路をそれぞれ設
けることもなく、また操作員が外部の装置を操作するこ
ともなく、簡単な構成のものとなっている。
In this way, in this device, the switching unit 20b switches the line voltage signal V12 output from the comparator l in the case of a single phase to the 7-rip switch according to the discrimination signal G sent from the single-phase three-phase discrimination unit 10. The line voltage signal ■8 obtained by sending the signal to the D input terminal of F30 and delaying the phase by 990 degrees by the delay unit 20a in the case of three phases is sent to the data input terminal of F30, and these lines Phase current signal engineering obtained by converting the voltages vtz, v, and phase currents V(If)! Depending on whether the phase is delayed or advanced, the signal from the output terminal Q of the Frizzoflo f30 is rHJ level signal in the case of a delay, r in the case of a lead.
Since it outputs an LJ level signal, it can be used regardless of whether the power supply is single phase or three phase, i.e. single phase two wire, single phase three wire,
Regardless of the three-phase three-wire system, it is possible to automatically determine whether the phase is slow or fast. In this determination, the line voltage signal V that the signal switching unit 20 sends to the flip-flop 30 is
Since it is only necessary to switch tz+vs, determination can be made under the same conditions regardless of single phase or three phase. Therefore, this device does not require separate phase determination circuits for single-phase and three-phase use as in the past, and the operator does not have to operate external devices, resulting in a simple configuration. There is.

また、相電流V(Is )は増幅部4θによシ所定レベ
ルに増幅されるので、相電流V(11)が小さくても位
相の判定に影響を与えることはない。さらに増幅部40
とコンパレータ5oとにより、相電流V (It )の
交流波形を方形波形に変換する際の立上り、立下シ時間
の誤差を非常に小さくしたので、負荷電流の変動に対し
ても正確に、かつ安定して遅相、進相の判定ができる。
Further, since the phase current V(Is) is amplified to a predetermined level by the amplifier 4θ, even if the phase current V(11) is small, it does not affect the phase determination. Furthermore, the amplifying section 40
and comparator 5o, the error in the rise and fall times when converting the alternating current waveform of the phase current V (It) into a rectangular waveform is made extremely small. It is possible to stably determine whether the phase is slow or fast.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、単相三相判定部から送出される判定信
号に応じて信号切換部から線間電圧信号を移相し、また
移相せずに送出し、この線間電圧信号と相電流信号との
位相差に基づいて判定部によシ遅相か進相かを判定する
ので、電源が単相、三相のいずれであっても、かつ負荷
電流が小さくても自動的にしかも正確に位相の進み、遅
れを判定し得る位相判定装置を提供できる。
According to the present invention, the phase of the line voltage signal is shifted from the signal switching unit in accordance with the judgment signal sent from the single-phase three-phase judgment unit, and the line voltage signal is also sent out without phase shifting. Based on the phase difference with the current signal, the determination unit determines whether the phase is delayed or advanced, so whether the power supply is single-phase or three-phase, and the load current is small, it can be automatically and It is possible to provide a phase determination device that can accurately determine phase lead or lag.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る位相判定装置の一笑施例を示す構
成図、第2図(a) (b)(a)は線間電圧と相電流
との関係を示すベクトル図で、第2図(、)は単相2線
式のベクトル図、第2図(b)Fi単相3線式のベクト
ル図、第2図(c)は三相3線式のベクトル図、第3図
(a) (b)は第1図に示すフリップ70ツグに入力
する信号の一例を示すベクトル図、第4図(a) (b
)は第1図に示す7リツグフロツプによる判定の動作を
説明するための図である。 1.2・・・コンパレータ、10・・・単相三相判定部
、2o・・・信号切換部、20&・・・遅延部、2ob
・・・切換部、2ノ・・・進相部、22・・・コンパレ
ータ、23・・・インバータ、24.26・・・アンド
ゲート、25・・・インバータ、27・・・オアゲート
、4o・・・増幅部、41・・・演算増幅器、5o・・
・コンパレータ、30・・・D型フリッゾフロップ。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 (C) (a) □v12 1 第 (a) Q ニ ー 1 −−1 3図 (b) Vs 1 4図 (b) 一−−ベーーーーーーH O:
FIG. 1 is a block diagram showing an example of a phase determination device according to the present invention, and FIGS. 2(a), 2(b), and (a) are vector diagrams showing the relationship between line voltage and phase current. Figures (,) are vector diagrams for single-phase two-wire systems, Figure 2 (b) are vector diagrams for Fi single-phase three-wire systems, Figure 2 (c) is vector diagrams for three-phase three-wire systems, and Figure 3 ( a) (b) are vector diagrams showing an example of a signal input to the flip 70 shown in Fig. 1, and Fig. 4 (a) (b)
) is a diagram for explaining the operation of determination by the 7-rig flop shown in FIG. 1.2...Comparator, 10...Single-phase three-phase determination section, 2o...Signal switching section, 20&...Delay section, 2ob
...Switching section, 2 No. Phase advance section, 22... Comparator, 23... Inverter, 24.26... AND gate, 25... Inverter, 27... OR gate, 4o... ... Amplification section, 41... Operational amplifier, 5o...
・Comparator, 30...D type frizzo flop. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 (C) (a) □v12 1 No. (a) Q Knee 1 --1 Figure 3 (b) Vs 1 Figure 4 (b) 1 -- Beeeeeeeeeeeeeoooooooooooooooo

Claims (1)

【特許請求の範囲】[Claims] 線間電圧を変換し得られた少なくとも2つの線間電圧信
号の位相差によシミ源が単相か三相かを判別する単相三
相判別部と、この単相三相判別部から送出される判別信
号によシ前記電源が単相であれば前記線間電圧信号のう
ち所定の線間電圧信号を送出し、かつ前記電源が三相で
あれば前記線間電圧信号のうち前記所定の信号とは別の
所定の線間電圧信号を所定の位相角だけ移相して送出す
る信号切換部と、この信号切換部から送出される線間電
圧信号と所定の相電流を増幅し変換して得た相電流信号
とに基づいて遅相か進相かを判定する判定部とを具備し
たことを特徴とする位相判定装置。
A single-phase three-phase discrimination section that discriminates whether a stain source is single-phase or three-phase based on the phase difference between at least two line-to-line voltage signals obtained by converting the line voltage, and a signal sent from this single-phase three-phase discrimination section. If the power supply is single-phase, a predetermined line voltage signal among the line voltage signals is sent out, and if the power supply is three-phase, the predetermined line voltage signal is sent out among the line voltage signals. A signal switching unit that shifts a predetermined line voltage signal by a predetermined phase angle and sends out a predetermined line voltage signal different from the signal of and a determination unit that determines whether the phase is delayed or advanced based on the obtained phase current signal.
JP3070284A 1984-02-21 1984-02-21 Phase decision apparatus Granted JPS60174958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070284A JPS60174958A (en) 1984-02-21 1984-02-21 Phase decision apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070284A JPS60174958A (en) 1984-02-21 1984-02-21 Phase decision apparatus

Publications (2)

Publication Number Publication Date
JPS60174958A true JPS60174958A (en) 1985-09-09
JPH0367228B2 JPH0367228B2 (en) 1991-10-22

Family

ID=12310983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070284A Granted JPS60174958A (en) 1984-02-21 1984-02-21 Phase decision apparatus

Country Status (1)

Country Link
JP (1) JPS60174958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129991B2 (en) 2001-01-30 2006-10-31 Sony Corporation Transmission method of digital audio data with video data
US7327381B2 (en) 2000-09-25 2008-02-05 Matsushita Electric Industrial Co., Ltd. Signal transmission system, signal transmitter, and signal receiver
US7339959B2 (en) 2000-10-12 2008-03-04 Matsushita Electric Industrial Co., Ltd. Signal transmitter and signal receiver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756910B1 (en) 1996-12-10 1999-01-08 Commissariat Energie Atomique PROCESS FOR DYNAMIC SEPARATION OF TWO AREAS BY A CLEAN AIR CURTAIN

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327381B2 (en) 2000-09-25 2008-02-05 Matsushita Electric Industrial Co., Ltd. Signal transmission system, signal transmitter, and signal receiver
US7339959B2 (en) 2000-10-12 2008-03-04 Matsushita Electric Industrial Co., Ltd. Signal transmitter and signal receiver
US7129991B2 (en) 2001-01-30 2006-10-31 Sony Corporation Transmission method of digital audio data with video data
US7714934B2 (en) 2001-01-30 2010-05-11 Sony Corporation Transmission method, transmission system, sending device and reception device

Also Published As

Publication number Publication date
JPH0367228B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
US3999117A (en) Method and control apparatus for static VAR generator and compensator
US4047097A (en) Apparatus and method for transient free energization and deenergization of static VAR generators
US4068159A (en) Fast current measurement apparatus for static VAR generator compensator control circuit and method for using same
JP2828863B2 (en) Unbalance compensator for 3-phase / 2-phase converter
US3989999A (en) Load saving over current apparatus for shutdown in a reactive power generator
US4028607A (en) Inverter control system
EP0029447A1 (en) Frequency control for ac systems connected in parallel.
JPH06105267B2 (en) Zero cross detector
JP2661933B2 (en) Circuit for measuring the DC component of the current flowing through the primary winding of the output transformer of the inverter
US4589050A (en) Method and apparatus for the protection of a thyristor power conversion system
US3987359A (en) Phase angle function generator for static VAR control
US4000455A (en) Fast current measurement apparatus for static VAR generator compensator control circuit and method for using same
JPS60174958A (en) Phase decision apparatus
US4001671A (en) Apparatus for providing feedback to eliminate a dc component in the output of a static var generator
EP1204198B1 (en) Method and system for detecting a zero current level in a line commutated converter
US3987360A (en) High accuracy fast recovery reference timing generator for a static VAR generator
KR102468642B1 (en) Elcb(earth leakage circuit breaker) and control method for the elcb
US4947109A (en) Detector of quantity of electricity
JPH0843453A (en) Voltage drop detection circuit
Mur et al. Phase synchronization and measurement digital systems of AC mains for power converters
JPS6310535Y2 (en)
JP3553180B2 (en) Converter device
SU1374324A1 (en) Apparatus for locating faulty phases in three-phase a.c.mains
JPH05925B2 (en)
JPS62181630A (en) Distribution line phase difference detection