EP0944802B1 - Method for dynamic separation into two zones with a screen of clean air - Google Patents

Method for dynamic separation into two zones with a screen of clean air Download PDF

Info

Publication number
EP0944802B1
EP0944802B1 EP97951278A EP97951278A EP0944802B1 EP 0944802 B1 EP0944802 B1 EP 0944802B1 EP 97951278 A EP97951278 A EP 97951278A EP 97951278 A EP97951278 A EP 97951278A EP 0944802 B1 EP0944802 B1 EP 0944802B1
Authority
EP
European Patent Office
Prior art keywords
jet
air
zone
clean
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97951278A
Other languages
German (de)
French (fr)
Other versions
EP0944802A1 (en
Inventor
Jean-Claude Laborde
Victor Manuel Mocho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIR Ultra Propre Nutrition Industrie Recherche
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
UNIR Ultra Propre Nutrition Industrie Recherche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, UNIR Ultra Propre Nutrition Industrie Recherche filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0944802A1 publication Critical patent/EP0944802A1/en
Application granted granted Critical
Publication of EP0944802B1 publication Critical patent/EP0944802B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • F24F2009/007Use of air currents for screening, e.g. air curtains using more than one jet or band in the air curtain

Definitions

  • the invention relates to a method for ensure the dynamic separation of a contaminating zone and an area to be protected, communicating between them by at least one separation zone, by means of a clean air curtain obtained by injecting into the separation area at least two clean air jets adjacent and in the same direction.
  • the method according to the invention can be used in many industrial sectors.
  • a first family of industries concerned by this process includes all industries (agrifood, medical, biotechnology, high technology, etc.), in which it is necessary prevent the atmosphere in a given work area either contaminated by ambient air, carrying a thermal, microbial, particulate contamination and / or gas.
  • Another family of industries concerned by the process according to the invention includes industries (nuclear, chemical, medical, etc.) in which man and his environment must be protected vis-à-vis toxic or dangerous products placed inside a containment.
  • Ventilation protection consists of artificially create a pressure difference between the two zones, so that the pressure in the area to be protected is greater than the prevailing pressure inside the contaminating zone. So in the case where the area to be protected contains a product susceptible to be contaminated by the ambient air, we inject into the zone to protect a laminar flow which blows towards outside through the separation zone. In the opposite case where it is a question of protecting the personnel and the environment located outside a space contaminated, dynamic containment is ensured by using exhaust ventilation in this contaminated space. In either case, a rule empirical imposes a minimum speed of ventilated air 0.5 m / s, in the plane of the separation zone by which the two zones communicate, in order to avoid the transfer of contamination to the area to be protected.
  • this protection technique ventilation is not perfect, especially in a so-called "break-in" situation, that is to say when objects are transferred across the separation zone interposed between the two zones.
  • this type of protection requires treating and check, as appropriate, the entire area suitable for protect from the outside atmosphere contaminant or the entire contaminated area. When the area to be treated and controlled is large dimensions, this entails a cost of equipment and particularly important functioning.
  • this ventilation protection technique only provides one-way protection, that is, it does not act only when contamination transfers are not only possible in one direction.
  • the air curtain protection technique consists of injecting simultaneously, in the area of separation by which the two zones communicate, a or several jets of clean air, adjacent and likewise meaning, which form a fictitious gate between the area to protect and the contaminating area.
  • a plane air jet is breaks down into two distinct zones: a transition zone (or heart zone) and a development zone.
  • the transition zone corresponds to the part jet center, supported on the nozzle, in which the velocity vector is constant. This area corresponds to the part of the jet in which no mixture enters the injected air and the air present on either side of the jet does not occur. In section along a perpendicular plane in terms of the separation zone, the width of the transition zone gradually decreases in moving away from the nozzle. For this reason, this area transition will be called "dart" in the rest of the text.
  • the jet development area is the part of the latter located outside the area of transition. In this jet development area, the outside air is entrained by the flow of the jet. This results in variations in the velocity vector and by air mixing. Air entrainment by the two faces of the jet, in this development zone, is called "induction". An induced air jet thus, on each of its faces, an air flow which depends in particular on the injection rate of the jet in question.
  • JP-B-36 7228 it was proposed create an air curtain by simultaneously injecting in the separation zone three adjacent air jets and in the same sense. More specifically, an air jet relatively fast is injected between two air jets relatively slow. This arrangement is supposed to ensure more efficient containment than a single air jet, by the fact that the air entrained and stirred by the jet central is slightly contaminated air from relatively slow jets injected on both sides of this central air jet.
  • the dart of the slow jet is long enough to cover the entire opening when the width of the injection nozzle of this slow jet is at least equal to 1 / 6th of the height of the opening to be protected. It is also indicated that the injection rates of the two air jets must be such that the induced air flow by the face of the rapid jet which is in contact with the slow jet is substantially equal to the injection rate of this last.
  • the rework grid by which we recover the two jets is arranged outside from the opening, and below the workstation, so as to control the ventilation of the area contaminated.
  • the two side walls which delimit the opening are extended outwards over a distance at least equal to the thickness of the curtain of air.
  • the subject of the invention is precisely a process of dynamic separation of two communicating zones between them by at least one separation zone, using an air curtain, the principle of which is comparable to that described in the documents FR-A-2 530 163, FR-A-2 652 520 and FR-A-2 659 782, but whose containment efficiency is appreciably improved, especially in the event of break-ins.
  • Air curtain can provide containment dynamic in either direction, if we add on the first two jets a third relatively slow.
  • the third jet includes a dart capable of covering the whole separation zone.
  • clean ventilation air is injected into the an entire rear or upper wall of the area to protect, towards the separation zone.
  • the wall through which clean air is injected ventilation is therefore oriented parallel or substantially perpendicular to the plane of the area of separation.
  • all clean air jets are preferably injected in directions substantially parallel to the plane of the area of separation.
  • optimization of the barrier effect provided by the air curtain can also be obtained by extending the side walls of the opening, located on both sides of the clean air jets, so that they extend to the contaminating area over a distance at least equal to the maximum thickness of the jets.
  • the zone 10 to be protected consists of the interior space clean of a work station and the contaminating area 12 is constituted by the space outside this workplace.
  • This outdoor space is a source of thermal, particulate contamination, gaseous and / or microbial vis-à-vis the interior space of the work station.
  • zone 10 to protect is delimited by watertight walls in all directions except to the right considering Figure 1. More specifically, the face of the workstation turned to the right in Figure 1 forms a separation zone, constituted by an opening 11, by which zone 10 to be protected communicates with the contaminating external zone 12. This opening 11 is intended, for example, to allow entry and exit of objects in zone 10 to be protected, as well as possible handling within this area, from the contaminating outdoor area 12. It is note that this illustration is only a example of implementation, in no way limiting, the zones 10 and 12 can communicate through one or more zones of separation of any orientations and which are not not necessarily materialized by openings, without departing from the scope of the invention.
  • the separation zone between the contaminating zone and the zone to be protected extends longitudinally along the path of said conveyor.
  • an air curtain 14 is permanently formed in this opening when the installation is used.
  • this air curtain 14 is formed by injecting simultaneously in the opening two air jets own adjacent and the same direction.
  • a first jet of clean air relatively slow, of which only the sting 16 is represented
  • a second jet of clean air relatively fast compared to on the first draft, of which only the sting 18 is represented.
  • the second jet is injected between the first jet and zone 10 to be protected.
  • the first jet and the second jet are respectively called “jet slow "and” rapid jet "in the rest of the text.
  • the injection nozzles 20 and 22 extend over the entire length of the top edge of the opening 11, so that the air curtain 14 is formed over the entire width thereof. Both jets forming the air curtain 14 are then recovered in all by a single rework grid 24 which extends along the bottom edge of the opening and over the entire length of this edge.
  • the vertical edges of the opening 11, are materialized by two side walls 26, located on either side of the two jets forming the air curtain 14. These two side walls 26 extend into contaminating zone 12 over a distance at least equal to the maximum thickness of the jets.
  • the slow jet, injected by the nozzle 20 is dimensioned so that its dart 16 covers the entire plane of the opening 11 to be protected.
  • This result is obtained by ensuring that the range, or length, of the dart 16 is at least equal to the height of the opening 11.
  • the width of the nozzle 20, parallel to the plane of FIG. 1 is at least 1/6 th and preferably 1/5 th of the height of the opening 11 to be protected.
  • the width of the nozzle 20 will be at least 0.20 m.
  • the speed of the slow jet emitted by the nozzle 20 is advantageously fixed at 0.5 m / s. Because the length of the stinger 16 of the slow jet is at least equal to the height of the opening to protect and that this jet is relatively slow, the air streams follow the outline of passing objects through the air curtain 14, without breaking the confinement.
  • the width of the nozzle 22 by which the rapid jet is injected can be equal to approximately 1/40 th of the width of the nozzle 20, which corresponds to 0.005 m in the example described.
  • this characteristic led to a noticeable improvement of the barrier effect compared to the prior art, in which the rapid jet flow is adjusted so that the air flow induced by the face of this rapid jet in contact with the slow jet, i.e. substantially equal to slow jet injection rate.
  • blowing rate of the slow jet injected through the nozzle 22 is 360 m 3 / h
  • the blowing rate of the fast jet injected through the nozzle 22 must be around 42 m 3 / h. This latter value is to be compared with the value of approximately 84 m 3 / h recommended in the prior art.
  • the return grille 24 communicates with suction means (not shown), designed for this purpose.
  • suction means not shown
  • the air recovered by the return grille 24 is advantageously purified by specific purification means (not shown) before being recycled to the nozzles 20 and 22. The excess air is then rejected outside after a second specific purification.
  • the air suction flow rate through the intake grille 24 is 825 m 3 / h.
  • the barrier effect is further optimized when each of the two jets is injected in a substantially direction parallel to the vertical plane of the opening 11 and when the return grid 24 is perpendicular to this direction.
  • a purifying effect on the area 10 to be protected is obtained by ensuring ventilation internal of this zone and respecting a flow injection determined for this internal ventilation.
  • This purifying effect added to the barrier effect provided by air curtain 14, significantly improves efficiency containment, especially in the event of break-ins.
  • the injection rate of clean ventilation air at the interior of zone 10 to be protected is at least equal at the air flow induced by the rapid jet, injected by the nozzle 22, on the face of this rapid jet which is in contact with clean ventilation air, i.e. on the face of the rapid jet facing zone 10 to protect.
  • clean ventilation air is injected at a speed such as the speed of this air, related to the surface of the plane of the opening 11 either at least equal to 0.1 m / s.
  • the injection of air clean ventilation inside zone 10 to protect is effected by a blast grille 28 which extends over the entire rear wall of the area to protect, i.e. over the entire wall of the area working facing opening 11 and oriented parallel to the vertical plane thereof.
  • Grid supply air 28 through which clean air is injected ventilation is located on the left considering Figure 1.
  • the wall through which air is injected clean ventilation forming the purifying flow is the upper wall of the area to be protected. This wall is arranged opposite the conveyor and oriented then substantially perpendicular to the plane of the area of separation.
  • temperature regulation means such as a heat exchanger (not shown), are placed in the ventilation circuit, upstream of the discharge grille 28.
  • the blowing rate of the internal ventilation is 360 m 3 / h.
  • the confinement efficiency of a dynamic barrier being defined as the ratio of the concentration of pollutants, particulate or gaseous, in the contaminating zone to the concentration of the same pollutants in the zone to be protected, the characteristics described above make it possible to achieve containment efficiencies between 10 4 and 10 6 .
  • the air curtain designated in this case by the reference 14 ', further includes a third air jet clean, relatively slow compared to the fast jet, which is emitted by a nozzle 30 adjacent to the nozzle 22, between the fast jet and the zone 10 to be protected, so to be adjacent to the rapid jet and in the same direction as the other jets.
  • the sting of this third jet is illustrated at 32 in Figure 2.
  • the dimensions of the nozzle 30 are chosen so that the dart 32 of the third jet covers the entire opening.
  • the nozzle 30 extends, like the nozzles 20 and 22, over the entire length of the upper edge of the opening 11, and the width of this nozzle 30 is at least equal to 1/6 th and, from preferably, 1/5 th of the height of the opening 11.
  • the widths of the nozzles 20 and 30 are the same and, for example, 0.20 m in the case of the digital illustration given above. , without limitation, with reference to FIG. 1.
  • the injection rate is adjusted of the slow jet delivered by the nozzle 30, so that this flow rate is substantially equal to the injection flow rate of the slow jet delivered by the nozzle 20.
  • the flow rates of air induced by the faces of the fast jet, emitted by the nozzle 22, respectively in contact with each of the jets slow are lower or, preferably, substantially equal to half the injection rates of these jets slow.
  • the width of the return grille is adapted to the width air curtain, so that all jets are recovered by this 24 'grid. More specifically, the grille 24 'for the return of the air curtain 14' formed of three jets, is wider than the rework grid 24 the air curtain 14, formed of two jets.
  • the presence of a another slow jet, between the fast jet and zone 10 to protect reduces the injection rate of the internal ventilation compared to the first form of Implementation.
  • the air injection rate clean ventilation through the supply grille 28 is then at least equal to the air flow induced by the jet slow emitted by nozzle 30, on the face of this third jet which is in contact with clean ventilation air.
  • the injection rate of each of the slow jets is 360 m 3 / h
  • the blowing rate of the internal ventilation is 360 m 3 / h
  • the suction rate of the grid 24 'recovery is 1185 m 3 / h.
  • the three jets are preferably injected in directions parallel to the plane of opening 11 and the return grid is placed in below the injection nozzles 20, 22 and 30 and oriented perpendicular to this plane.
  • the speed to which ventilation air is injected into the zone 10 to be protected is advantageously at least equal to 0.1 m / s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Duct Arrangements (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

An air curtain (14) is used to dynamically separate a zone (10) to be protected and a contaminating zone (12) communicating with each other through at least one separation zone (11), the air curtain being formed by simultaneously injecting at least two adjacent clean air jets into the same direction in the separation zone (11). More precisely, the air curtain (14) comprises a slow jet, in which the tongue (16) covers the entire separation zone (11) and a fast jet inserted between the slow jet and the zone (10) to be protected and for which the injection flow is such that it induces an air flow equal to approximately half the injection flow of the slow jet, on its surface in contact with the slow jet. Preferably, clean ventilation air is also injected into the zone (10) to be protected at a flow equal to at least the air flow induced by the surface of the air curtain in contact with the ventilation air, and in any case at a speed not less than 0.1 m/s.

Description

Domaine techniqueTechnical area

L'invention concerne un procédé permettant d'assurer la séparation dynamique d'une zone contaminante et d'une zone à protéger, communiquant entre elles par au moins une zone de séparation, au moyen d'un rideau d'air propre obtenu en injectant dans la zone de séparation au moins deux jets d'air propre adjacents et de même sens.The invention relates to a method for ensure the dynamic separation of a contaminating zone and an area to be protected, communicating between them by at least one separation zone, by means of a clean air curtain obtained by injecting into the separation area at least two clean air jets adjacent and in the same direction.

Le procédé selon l'invention peut être utilisé dans de nombreux secteurs industriels.The method according to the invention can be used in many industrial sectors.

Une première famille d'industries concernée par ce procédé inclut toutes les industries (agroalimentaires, médicales, biotechnologies, hautes technologies, etc.), dans lesquelles il est nécessaire d'empêcher que l'atmosphère d'une zone de travail donnée soit contaminée par l'air ambiant, porteur d'une contamination thermique, microbienne, particulaire et/ou gazeuse.A first family of industries concerned by this process includes all industries (agrifood, medical, biotechnology, high technology, etc.), in which it is necessary prevent the atmosphere in a given work area either contaminated by ambient air, carrying a thermal, microbial, particulate contamination and / or gas.

Une autre famille d'industries concernée par le procédé selon l'invention inclut les industries (nucléaires, chimiques, médicales, etc.) dans lesquelles l'homme et son environnement doivent être protégés vis-à-vis de produits toxiques ou dangereux placés à l'intérieur d'une enceinte de confinement.Another family of industries concerned by the process according to the invention includes industries (nuclear, chemical, medical, etc.) in which man and his environment must be protected vis-à-vis toxic or dangerous products placed inside a containment.

Etat de la techniqueState of the art

Il existe actuellement deux types de solutions pour assurer la séparation dynamique de deux zones communiquant entre elles par une ou plusieurs zones de séparation afin, par exemple, de permettre l'entrée et la sortie d'objets : la protection par ventilation et la protection par rideau d'air.There are currently two types of solutions to ensure the dynamic separation of two zones communicating with each other by one or more separation zones in order, for example, to allow entry and exit of objects: protection by ventilation and air curtain protection.

La protection par ventilation consiste à créer artificiellement une différence de pression entre les deux zones, pour que la pression régnant dans la zone à protéger soit supérieure à la pression qui règne à l'intérieur de la zone contaminante. Ainsi, dans le cas où la zone à protéger contient un produit susceptible d'être contaminé par l'air ambiant, on injecte dans la zone à protéger un flux laminaire qui souffle vers l'extérieur au travers de la zone de séparation. Dans le cas inverse où il s'agit de protéger le personnel et l'environnement situés à l'extérieur d'un espace contaminé, le confinement dynamique est assuré en mettant en oeuvre une ventilation d'extraction dans cet espace contaminé. Dans l'un et l'autre cas, une règle empirique impose une vitesse minimale de l'air ventilé de 0,5 m/s, dans le plan de la zone de séparation par laquelle les deux zones communiquent, afin d'éviter le transfert de la contamination dans la zone à protéger.Ventilation protection consists of artificially create a pressure difference between the two zones, so that the pressure in the area to be protected is greater than the prevailing pressure inside the contaminating zone. So in the case where the area to be protected contains a product susceptible to be contaminated by the ambient air, we inject into the zone to protect a laminar flow which blows towards outside through the separation zone. In the opposite case where it is a question of protecting the personnel and the environment located outside a space contaminated, dynamic containment is ensured by using exhaust ventilation in this contaminated space. In either case, a rule empirical imposes a minimum speed of ventilated air 0.5 m / s, in the plane of the separation zone by which the two zones communicate, in order to avoid the transfer of contamination to the area to be protected.

L'efficacité de cette technique de protection par ventilation n'est cependant pas parfaite, surtout en situation dite "d'effractions", c'est-à-dire lorsque des objets sont transférés au travers de la zone de séparation interposée entre les deux zones. De plus, ce type de protection impose de traiter et de contrôler, selon le cas, toute la zone propre à protéger vis-à-vis de l'atmosphère extérieure contaminante ou toute la zone contaminée. Lorsque la zone à traiter et à contrôler est de grandes dimensions, cela entraíne un coût d'équipement et de fonctionnement particulièrement important. Enfin, cette technique de protection par ventilation n'assure qu'une protection à sens unique, c'est-à-dire qu'elle n'agit que lorsque les transferts de contamination ne sont possibles que dans un seul sens.The effectiveness of this protection technique ventilation is not perfect, especially in a so-called "break-in" situation, that is to say when objects are transferred across the separation zone interposed between the two zones. Of more, this type of protection requires treating and check, as appropriate, the entire area suitable for protect from the outside atmosphere contaminant or the entire contaminated area. When the area to be treated and controlled is large dimensions, this entails a cost of equipment and particularly important functioning. Finally, this ventilation protection technique only provides one-way protection, that is, it does not act only when contamination transfers are not only possible in one direction.

La technique de protection par rideau d'air consiste à injecter simultanément, dans la zone de séparation par laquelle les deux zones communiquent, un ou plusieurs jets d'air propre, adjacents et de même sens, qui forment une porte fictive entre la zone à protéger et la zone contaminante.The air curtain protection technique consists of injecting simultaneously, in the area of separation by which the two zones communicate, a or several jets of clean air, adjacent and likewise meaning, which form a fictitious gate between the area to protect and the contaminating area.

Conformément à la théorie des jets plans turbulents, il est rappelé qu'un jet d'air plan se décompose en deux zones distinctes : une zone de transition (ou zone de coeur) et une zone de développement.According to the theory of jet planes turbulent, it is recalled that a plane air jet is breaks down into two distinct zones: a transition zone (or heart zone) and a development zone.

La zone de transition correspond à la partie centrale du jet, appuyée sur la buse, dans laquelle le vecteur vitesse est constant. Cette zone correspond à la partie du jet dans laquelle aucun mélange entre l'air injecté et l'air présent de part et d'autre du jet ne se produit. En section selon un plan perpendiculaire au plan de la zone de séparation, la largeur de la zone de transition diminue progressivement en s'éloignant de la buse. Pour cette raison, cette zone de transition sera appelée "dard" dans la suite du texte.The transition zone corresponds to the part jet center, supported on the nozzle, in which the velocity vector is constant. This area corresponds to the part of the jet in which no mixture enters the injected air and the air present on either side of the jet does not occur. In section along a perpendicular plane in terms of the separation zone, the width of the transition zone gradually decreases in moving away from the nozzle. For this reason, this area transition will be called "dart" in the rest of the text.

La zone de développement du jet est la partie de ce dernier située à l'extérieur de la zone de transition. Dans cette zone de développement du jet, l'air extérieur est entraíné par l'écoulement du jet. Cela se traduit par des variations du vecteur vitesse et par un brassage de l'air. L'entraínement de l'air par les deux faces du jet, dans cette zone de développement, est appelé "induction". Un jet d'air induit ainsi, sur chacune de ses faces, un débit d'air qui dépend notamment du débit d'injection du jet considéré.The jet development area is the part of the latter located outside the area of transition. In this jet development area, the outside air is entrained by the flow of the jet. This results in variations in the velocity vector and by air mixing. Air entrainment by the two faces of the jet, in this development zone, is called "induction". An induced air jet thus, on each of its faces, an air flow which depends in particular on the injection rate of the jet in question.

Dans le document JP-B-36 7228, on a proposé de réaliser un rideau d'air en injectant simultanément dans la zone de séparation trois jets d'air adjacents et de même sens. Plus précisément, un jet d'air relativement rapide est injecté entre deux jets d'air relativement lents. Cet agencement est supposé assurer un confinement plus efficace qu'un jet d'air unique, par le fait que l'air entraíné et brassé par le jet central est de l'air faiblement contaminé, provenant des jets relativement lents injectés de part et d'autre de ce jet d'air central.In JP-B-36 7228, it was proposed create an air curtain by simultaneously injecting in the separation zone three adjacent air jets and in the same sense. More specifically, an air jet relatively fast is injected between two air jets relatively slow. This arrangement is supposed to ensure more efficient containment than a single air jet, by the fact that the air entrained and stirred by the jet central is slightly contaminated air from relatively slow jets injected on both sides of this central air jet.

Cependant, ce document ne tient compte ni de la longueur des dards de chacun des jets, ni de leurs débits d'injection, de sorte que l'efficacité du confinement est très aléatoire.However, this document does not take into account or the length of the darts of each jet, or their injection rates, so that the efficiency of the confinement is very random.

Dans le document FR-A-2 530 163, il est proposé d'assurer le confinement d'un local pollué, comportant une ouverture, en injectant dans celle-ci un rideau d'air formé de deux jets d'air propre adjacents et de même sens. De façon plus précise, la séparation dynamique est assurée par un premier jet relativement lent (appelé "jet lent"), dont le dard recouvre en totalité l'ouverture. Le deuxième jet (appelé "jet rapide"), relativement rapide par rapport au jet lent, est installé entre le jet lent et la zone à protéger. Il a pour fonction de stabiliser le jet lent, par un effet d'aspiration qui plaque ce jet lent contre le jet rapide.In document FR-A-2 530 163, it is proposed to ensure the containment of a polluted room, having an opening, by injecting therein a air curtain formed by two adjacent clean air jets and in the same sense. More specifically, the separation dynamic is ensured by a relatively first draft slow (called "slow jet"), the sting of which covers in the whole opening. The second jet (called "jet fast "), relatively fast compared to the slow jet, is installed between the slow jet and the area to be protected. Its function is to stabilize the slow jet, by a suction effect which presses this slow jet against the jet fast.

Dans ce document FR-A-2 530 163, il est précisé que le dard du jet lent est suffisamment long pour recouvrir toute l'ouverture lorsque la largeur de la buse d'injection de ce jet lent est au moins égale à 1/6ème de la hauteur de l'ouverture à protéger. Il est également indiqué que les débits d'injection des deux jets d'air doivent être tels que le débit d'air induit par la face du jet rapide qui est en contact avec le jet lent soit sensiblement égal au débit d'injection de ce dernier.In this document FR-A-2 530 163, it is clarified that the dart of the slow jet is long enough to cover the entire opening when the width of the injection nozzle of this slow jet is at least equal to 1 / 6th of the height of the opening to be protected. It is also indicated that the injection rates of the two air jets must be such that the induced air flow by the face of the rapid jet which is in contact with the slow jet is substantially equal to the injection rate of this last.

Dans le document FR-A-2 652 520, il est proposé d'utiliser un rideau d'air pour protéger une zone de travail propre, munie d'une ouverture, vis-à-vis du milieu extérieur contaminant. Les principales caractéristiques du rideau d'air sont comparables à celles qui sont décrites dans le document FR-A-2 530 163. Il est précisé en outre que la vitesse d'injection du jet lent doit être de l'ordre de 0,4 m/s ou 0,5 m/s. Il est également précisé que les jets sont émis de façon à ce que la face externe du jet rapide arrive en limite du plan de l'ouverture. Compte tenu des angles d'expansion des jets, cela se traduit par un angle d'environ 12° entre le plan médian des jets et le plan de l'ouverture.In document FR-A-2 652 520, it is offered to use an air curtain to protect a clean work area, with an opening, opposite contaminating external environment. The main characteristics of the air curtain are comparable to those described in document FR-A-2 530 163. It is further specified that the speed slow jet injection should be around 0.4 m / s or 0.5 m / s. It is also specified that the jets are emitted so that the outer face of the rapid jet arrives at the limit of the plane of the opening. Considering expansion angles of the jets, this results in a angle of approximately 12 ° between the median plane of the jets and the plan of the opening.

Dans le document FR-A-2 652 520, il est aussi proposé d'injecter simultanément de l'air propre de ventilation, à une température adaptée aux besoins, à l'intérieur de la zone de travail à protéger. Il est indiqué que cet air propre de ventilation doit être injecté à un débit sensiblement égal au débit induit par la face du jet rapide qui est en contact avec l'air propre de ventilation.In document FR-A-2 652 520, it is also proposed to simultaneously inject clean air ventilation, at a temperature adapted to the needs, inside the work area to be protected. It is indicated that this clean ventilation air should be injected at a flow rate substantially equal to the induced flow rate by the face of the rapid jet which is in contact with air clean ventilation.

Par ailleurs, il est aussi indiqué dans le document FR-A-2 652 520 que la grille de reprise par laquelle on récupère les deux jets est disposée à l'extérieur de l'ouverture, et au-dessous du poste de travail, de façon à contrôler la ventilation de la zone contaminée. En outre, les deux parois latérales qui délimitent l'ouverture sont prolongées vers l'extérieur sur une distance au moins égale à l'épaisseur du rideau d'air.Furthermore, it is also indicated in the document FR-A-2 652 520 that the rework grid by which we recover the two jets is arranged outside from the opening, and below the workstation, so as to control the ventilation of the area contaminated. In addition, the two side walls which delimit the opening are extended outwards over a distance at least equal to the thickness of the curtain of air.

Dans le document FR-A-2 659 782, il est proposé d'adjoindre aux deux jets d'air propre décrits dans le document FR-A-2 530 163 un troisième jet d'air propre relativement lent, afin que le jet d'air rapide se trouve situé entre deux jets lents adjacents et de même sens.In document FR-A-2 659 782, it is proposed to add to the two clean air jets described in document FR-A-2 530 163 a third air jet clean relatively slow, so the fast air jet is located between two adjacent slow jets and Same direction.

Dans cet agencement, qui reprend les principales caractéristiques des documents FR-A- 2 530 163 et FR-A-2 652 520, le débit d'injection de l'air propre de ventilation à l'intérieur de la zone à protéger est considérablement diminué. De plus, le confinement dynamique est assuré dans les deux sens, ce qui n'était pas le cas dans les documents précédents.In this arrangement, which incorporates the main characteristics of documents FR-A- 2 530 163 and FR-A-2 652 520, the injection rate of clean air ventilation inside the area to be protected is considerably decreased. In addition, dynamic containment is insured in both directions, which was not the case in previous documents.

La réduction du débit d'injection de l'air propre de ventilation à l'intérieur de la zone à protéger découle du fait que l'induction dans cette zone est produite par la zone de développement de l'un des jets lents et non plus par la zone de développement du jet rapide comme dans le cas d'un rideau d'air à deux jets.Reducing the air injection rate clean ventilation inside the area to be protected follows from the fact that the induction in this zone is produced by the development area of one of the jets slow and no longer by the jet development zone fast as in the case of an air curtain with two jets.

En dépit des améliorations apportées à la technique du rideau d'air par ces différents documents, des expériences et des simulations faites par les demandeurs ont montré que l'efficacité du confinement obtenu avec les dispositifs à rideau d'air décrits dans les documents FR-A-2 530 163, FR-A-2 652 520 et FR-A-2 659 782 restait très perfectible, notamment en situation d'effractions. Despite improvements to the air curtain technique by these different documents, experiments and simulations made by applicants have shown that the effectiveness of containment obtained with the air curtain devices described in documents FR-A-2 530 163, FR-A-2 652 520 and FR-A-2 659,782 remained very perfectible, especially in situation of break-ins.

Exposé de l'inventionStatement of the invention

L'invention a précisément pour objet un procédé de séparation dynamique de deux zones communiquant entre elles par au moins une zone de séparation, utilisant un rideau d'air dont le principe est comparable à celui qui est décrit dans les documents FR-A-2 530 163, FR-A-2 652 520 et FR-A-2 659 782 , mais dont l'efficacité de confinement est sensiblement améliorée, notamment en situation d'effractions.The subject of the invention is precisely a process of dynamic separation of two communicating zones between them by at least one separation zone, using an air curtain, the principle of which is comparable to that described in the documents FR-A-2 530 163, FR-A-2 652 520 and FR-A-2 659 782, but whose containment efficiency is appreciably improved, especially in the event of break-ins.

Conformément à l'invention, ce résultat est obtenu au moyen d'un procédé de séparation dynamique d'une zone contaminante et d'une zone à protéger, communiquant entre elles par au moins une zone de séparation, ce procédé comprenant les étapes suivantes :

  • on injecte dans ladite zone de séparation, à un premier débit d'injection, un premier jet d'air propre relativement lent, comprenant un dard apte à recouvrir toute la zone de séparation ;
  • on injecte simultanément dans la zone de séparation, à un deuxième débit d'injection, un deuxième jet d'air propre relativement rapide, adjacent au premier jet et de même sens que celui-ci, entre la zone à protéger et le premier jet ;
ce procédé étant caractérisé par le fait qu'on règle le deuxième débit d'injection, afin que le débit d'air induit par la face du deuxième jet en contact avec le premier jet, soit au plus sensiblement égal à la moitié du premier débit d'injection.In accordance with the invention, this result is obtained by means of a process for dynamic separation of a contaminating zone and a zone to be protected, communicating with one another by at least one separation zone, this method comprising the following steps:
  • a relatively slow first jet of clean air is injected into said separation zone, at a first injection rate, comprising a dart capable of covering the entire separation zone;
  • a relatively fast second jet of clean air is injected simultaneously into the separation zone, at a second injection rate, adjacent to the first jet and in the same direction as the latter, between the zone to be protected and the first jet;
this process being characterized by the fact that the second injection flow is adjusted, so that the air flow induced by the face of the second jet in contact with the first jet is at most substantially equal to half of the first flow injection.

Les demandeurs ont découvert et vérifié, par l'expérience et par le calcul, que toutes ces caractéristiques sont indispensables à l'obtention d'un "effet barrière" entre les deux zones, c'est-à-dire pour que le dard recouvre effectivement toute la zone de séparation.The applicants have discovered and verified, by experience and by calculation, that all these characteristics are essential for obtaining a "barrier effect" between the two zones, ie so that the sting actually covers the entire area of seperation.

En effet, si l'induction de la face du jet rapide, créée par le débit de soufflage de celui-ci, est trop importante, on peut considérer qu'il y a surconsommation du dard du jet lent et cela a pour conséquence une diminution de la longueur du jet lent ; de ce fait, la couverture de l'ouverture à protéger est imparfaite (cas de tous les documents de l'art antérieur) . En revanche, si le débit du jet rapide est trop faible, la stabilisation du jet lent par induction de la face du jet rapide en contact avec le jet lent n'est pas maximale. C'est pourquoi, les demandeurs ont établi qu'il est essentiel que le débit d'air induit par la face du deuxième jet (rapide) en contact avec le premier jet (lent) soit inférieur ou, de préférence, sensiblement égal à la moitié du débit d'injection de ce premier jet et non égal à la totalité de ce débit d'injection, comme l'enseignent les documents FR-A-2 530 163, FR-A- 89 12861 et FR-A-2 659 782.Indeed, if the induction of the face of the jet fast, created by the blowing rate thereof, is too important, we can consider that there is overconsumption of the slow jet sting and this has consequently a decrease in the length of the slow jet; therefore, the cover of the opening to be protected is imperfect (case of all art documents previous). On the other hand, if the speed of the fast jet is too weak, stabilization of the slow jet by induction of the face of the fast jet in contact with the slow jet is not maximum. Therefore, the applicants have established that it is essential that the induced air flow by the face of the second (fast) jet in contact with the first jet (slow) either lower or, preferably, substantially equal to half the injection rate of this first jet and not equal to the totality of this flow injection, as the documents teach FR-A-2 530 163, FR-A- 89 12861 and FR-A-2 659 782.

Le rideau d'air peut assurer un confinement dynamique dans l'un et l'autre sens, si l'on adjoint aux deux premiers jets un troisième jet relativement lent. Dans ce cas, on injecte dans la zone de séparation, à un troisième débit d'injection, un troisième jet d'air propre relativement lent, adjacent au deuxième jet et de même sens que les premier et deuxième jets, entre la zone à protéger et le deuxième jet. Le troisième jet comprend un dard apte à recouvrir toute la zone de séparation. On règle alors le troisième débit d'injection pour qu'il soit sensiblement égal au premier débit d'injection, afin que les débits d'air induits par les faces du deuxième jet respectivement en contact avec le premier et le troisième jets soient au plus sensiblement égaux à la moitié des premier et troisième débits d'injection. Grâce à ces caractéristiques, le troisième jet recouvre, effectivement, toute la zone de séparation.Air curtain can provide containment dynamic in either direction, if we add on the first two jets a third relatively slow. In this case, we inject into the separation, at a third injection rate, a third relatively slow clean air stream, adjacent on the second roll and in the same direction as the first and second jet, between the area to be protected and the second jet. The third jet includes a dart capable of covering the whole separation zone. We then set the third injection rate so that it is substantially equal to the first injection rate, so that the air flows induced by the faces of the second jet respectively in contact with the first and the third jets are at most substantially equal to the half of the first and third injection rates. Thanks to these features, the third jet effectively covers the entire separation zone.

De préférence, on injecte simultanément de l'air propre de ventilation à l'intérieur de la zone à protéger, à un débit d'injection au moins égal au débit d'air induit par le deuxième ou le troisième jet (selon que le rideau d'air comprend deux ou trois jets), sur la face de celui-ci en contact avec l'air propre de ventilation. Les demandeurs ont découvert que cette caractéristique permet d'obtenir un "effet épurateur" dans la zone à protéger, notamment en situation d'effractions au travers du rideau d'air.Preferably, simultaneously injected clean ventilation air inside the area to be protect, at an injection rate at least equal to the rate air induced by the second or third jet (depending on that the air curtain includes two or three jets), on the face of it in contact with the clean air of ventilation. The plaintiffs have discovered that this characteristic allows to obtain a "purifying effect" in the area to be protected, especially in the event of break-ins through the air curtain.

Afin d'optimiser l'effet épurateur et quel que soit le nombre de jets formant le rideau d'air, on injecte avantageusement l'air propre de ventilation à une vitesse telle que la vitesse de cet air propre de ventilation, rapportée à la surface du plan de la zone de séparation, soit au moins égale à 0,1 m/s.In order to optimize the purifying effect and what whatever the number of jets forming the air curtain, we advantageously injects clean ventilation air to a speed such as the speed of this clean air of ventilation, related to the area plan surface separation, at least equal to 0.1 m / s.

Dans le cas où une ventilation interne est utilisée, on injecte l'air propre de ventilation sur la totalité d'une paroi arrière ou supérieure de la zone à protéger, en direction de la zone de séparation. La paroi par laquelle est injecté l'air propre de ventilation est donc orientée parallèlement ou sensiblement perpendiculairement au plan de la zone de séparation.In case internal ventilation is used, clean ventilation air is injected into the an entire rear or upper wall of the area to protect, towards the separation zone. The wall through which clean air is injected ventilation is therefore oriented parallel or substantially perpendicular to the plane of the area of separation.

Si l'on désire en outre maítriser la température à l'intérieur de la zone protégée, on injecte l'air propre de ventilation à une température régulée. If you also want to control the temperature inside the protected area, we inject clean ventilation air at a regulated temperature.

Afin d'optimiser encore l'effet barrière procuré par le rideau d'air, tous les jets d'air propre sont de préférence injectés selon des directions sensiblement parallèles au plan de la zone de séparation. De plus, on récupère avantageusement tous les jets d'air propre par une grille de reprise installée en face des buses d'injection de ces jets et située dans un plan sensiblement perpendiculaire à la direction des jets d'air propre.To further optimize the barrier effect provided by the air curtain, all clean air jets are preferably injected in directions substantially parallel to the plane of the area of separation. In addition, we advantageously recover all clean air jets through a return grille installed opposite the injection nozzles of these jets and located in a plane substantially perpendicular to the direction of clean air jets.

Une optimisation de l'effet barrière procurée par le rideau d'air peut aussi être obtenue en prolongeant les parois latérales de l'ouverture, situées de part et d'autre des jets d'air propre, afin qu'elles s'étendent vers la zone contaminante sur une distance au moins égale à l'épaisseur maximale des jets.Optimization of the barrier effect provided by the air curtain can also be obtained by extending the side walls of the opening, located on both sides of the clean air jets, so that they extend to the contaminating area over a distance at least equal to the maximum thickness of the jets.

Brève description des dessinsBrief description of the drawings

On décrira à présent, à titre d'exemples non limitatifs, deux formes de mise en oeuvre de l'invention, en se référant aux dessins annexés, dans lesquels :

  • la figure 1 est une vue en perspective, qui illustre de façon schématique la protection d'une zone de travail propre au moyen d'un rideau d'air formé de deux jets d'air adjacents, selon une première forme de mise en oeuvre du procédé de l'invention ; et
  • la figure 2 est une vue en perspective comparable à la figure 1, qui illustre schématiquement la protection d'une zone de travail propre au moyen d'un rideau d'air formée de trois jets d'air adjacents, selon une deuxième forme de mise en oeuvre du procédé de l'invention.
Two forms of implementation of the invention will now be described, by way of nonlimiting examples, with reference to the appended drawings, in which:
  • Figure 1 is a perspective view, which schematically illustrates the protection of a clean work area by means of an air curtain formed of two adjacent air jets, according to a first embodiment of the method of the invention; and
  • Figure 2 is a perspective view comparable to Figure 1, which schematically illustrates the protection of a clean work area by means of an air curtain formed of three adjacent air jets, according to a second form of setting implementing the method of the invention.

Exposé détaillé de deux formes de mise en oeuvreDetailed description of two forms of implementation

Sur la figure 1, on a désigné respectivement par les références 10 et 12 une zone à protéger et une zone contaminante.In Figure 1, we have respectively designated by references 10 and 12 an area to be protected and a contaminating area.

Dans la forme de réalisation représentée, la zone 10 à protéger est constituée par l'espace intérieur propre d'un poste de travail et la zone contaminante 12 est constituée par l'espace extérieur à ce poste de travail. Cet espace extérieur constitue une source de contamination thermique, particulaire, gazeuse et/ou microbienne vis-à-vis de l'espace intérieur du poste de travail.In the embodiment shown, the zone 10 to be protected consists of the interior space clean of a work station and the contaminating area 12 is constituted by the space outside this workplace. This outdoor space is a source of thermal, particulate contamination, gaseous and / or microbial vis-à-vis the interior space of the work station.

Le poste de travail qui forme la zone 10 à protéger est délimité par des parois étanches dans toutes les directions, sauf vers la droite en considérant la figure 1. Plus précisément, la face du poste de travail tournée vers la droite sur la figure 1 forme une zone de séparation, constituée par une ouverture 11, par laquelle la zone 10 à protéger communique avec la zone extérieure contaminante 12. Cette ouverture 11 est destinée, par exemple, à permettre l'entrée et la sortie d'objets dans la zone 10 à protéger, ainsi que des manutentions éventuelles à l'intérieur de cette zone, depuis la zone extérieure contaminante 12. Il est à noter que cette illustration ne constitue qu'un exemple de réalisation, nullement limitatif, les zones 10 et 12 pouvant communiquer par une ou plusieurs zones de séparation d'orientations quelconques et qui ne sont pas nécessairement matérialisées par des ouvertures, sans sortir du cadre de l'invention.The workstation that forms zone 10 to protect is delimited by watertight walls in all directions except to the right considering Figure 1. More specifically, the face of the workstation turned to the right in Figure 1 forms a separation zone, constituted by an opening 11, by which zone 10 to be protected communicates with the contaminating external zone 12. This opening 11 is intended, for example, to allow entry and exit of objects in zone 10 to be protected, as well as possible handling within this area, from the contaminating outdoor area 12. It is note that this illustration is only a example of implementation, in no way limiting, the zones 10 and 12 can communicate through one or more zones of separation of any orientations and which are not not necessarily materialized by openings, without departing from the scope of the invention.

En particulier, dans un mode de réalisation non représenté, selon lequel la zone à protéger est un convoyeur en défilement suivant un trajet en ligne, circulaire ou encore sinueux, la zone de séparation entre la zone contaminante et la zone à protéger s'étend longitudinalement le long du trajet dudit convoyeur.In particular, in one embodiment not shown, according to which the area to be protected is a conveyor running along a line path, circular or even winding, the separation zone between the contaminating zone and the zone to be protected extends longitudinally along the path of said conveyor.

Afin de préserver la séparation dynamique des zones 10 et 12 malgré la présence de l'ouverture 11, un rideau d'air 14 est formé en permanence dans cette ouverture lorsque l'installation est utilisée. Dans la forme de réalisation illustrée schématiquement sur la figure 1, ce rideau d'air 14 est formé en injectant simultanément dans l'ouverture deux jets d'air propre adjacents et de même sens.In order to preserve dynamic separation zones 10 and 12 despite the presence of the opening 11, an air curtain 14 is permanently formed in this opening when the installation is used. In the embodiment illustrated schematically in FIG. 1, this air curtain 14 is formed by injecting simultaneously in the opening two air jets own adjacent and the same direction.

De façon plus précise, on injecte dans l'ouverture 11 un premier jet d'air propre, relativement lent, dont seul le dard 16 est représenté, et un deuxième jet d'air propre, relativement rapide par rapport au premier jet, dont seul le dard 18 est représenté. Le deuxième jet est injecté entre le premier jet et la zone 10 à protéger. Pour simplifier, le premier jet et le deuxième jet sont appelés respectivement "jet lent" et "jet rapide" dans la suite du texte.More precisely, we inject into opening 11 a first jet of clean air, relatively slow, of which only the sting 16 is represented, and a second jet of clean air, relatively fast compared to on the first draft, of which only the sting 18 is represented. The second jet is injected between the first jet and zone 10 to be protected. To simplify, the first jet and the second jet are respectively called "jet slow "and" rapid jet "in the rest of the text.

Les injections du jet lent et du jet rapide dans l'ouverture 11 sont faites respectivement par des buses juxtaposées 20 et 22.Slow jet and fast jet injections in the opening 11 are made respectively by juxtaposed nozzles 20 and 22.

Dans la forme de réalisation représentée, dans laquelle l'ouverture est rectangulaire et comporte deux bords horizontaux et deux bords verticaux, et de façon non limitative, les buses d'injection 20 et 22 s'étendent sur toute la longueur du bord supérieur de l'ouverture 11, de telle sorte que le rideau d'air 14 soit formé sur toute la largeur de celle-ci. Les deux jets formant le rideau d'air 14 sont alors récupérés en totalité par une grille de reprise unique 24 qui s'étend le long du bord inférieur de l'ouverture et sur toute la longueur de ce bord. Les bords verticaux de l'ouverture 11, sont matérialisés par deux parois latérales 26, situées de part et d'autre des deux jets formant le rideau d'air 14. Ces deux parois latérales 26 se prolongent dans la zone contaminante 12 sur une distance au moins égale à l'épaisseur maximale des jets.In the embodiment shown, in which the opening is rectangular and has two horizontal edges and two vertical edges, and without limitation, the injection nozzles 20 and 22 extend over the entire length of the top edge of the opening 11, so that the air curtain 14 is formed over the entire width thereof. Both jets forming the air curtain 14 are then recovered in all by a single rework grid 24 which extends along the bottom edge of the opening and over the entire length of this edge. The vertical edges of the opening 11, are materialized by two side walls 26, located on either side of the two jets forming the air curtain 14. These two side walls 26 extend into contaminating zone 12 over a distance at least equal to the maximum thickness of the jets.

Comme on l'a illustré schématiquement sur la figure 1, le jet lent, injecté par la buse 20, est dimensionné afin que son dard 16 couvre la totalité du plan de l'ouverture 11 à protéger. Ce résultat est obtenu en faisant en sorte que la portée, ou longueur, du dard 16 soit au moins égale à la hauteur de l'ouverture 11. A cet effet, la largeur de la buse 20, parallèlement au plan de la figure 1, est au moins égale à 1/6ème et, de préférence, à 1/5ème de la hauteur de l'ouverture 11 à protéger. Ainsi, et uniquement à titre d'exemple, pour une ouverture de 1 m de haut, la largeur de la buse 20 sera d'au moins 0,20 m.As illustrated schematically in Figure 1, the slow jet, injected by the nozzle 20, is dimensioned so that its dart 16 covers the entire plane of the opening 11 to be protected. This result is obtained by ensuring that the range, or length, of the dart 16 is at least equal to the height of the opening 11. For this purpose, the width of the nozzle 20, parallel to the plane of FIG. 1, is at least 1/6 th and preferably 1/5 th of the height of the opening 11 to be protected. Thus, and only by way of example, for an opening 1 m high, the width of the nozzle 20 will be at least 0.20 m.

Par ailleurs, de façon à éviter au maximum les turbulences et pour des raisons économiques, la vitesse du jet lent émis par la buse 20 est fixée avantageusement à 0,5 m/s. Du fait que la longueur du dard 16 du jet lent est au moins égale à la hauteur de l'ouverture à protéger et que ce jet est relativement lent, les filets d'air suivent le contour des objets qui passent au travers du rideau d'air 14, sans rupture du confinement.In addition, in order to avoid as much as possible turbulence and for economic reasons the speed of the slow jet emitted by the nozzle 20 is advantageously fixed at 0.5 m / s. Because the length of the stinger 16 of the slow jet is at least equal to the height of the opening to protect and that this jet is relatively slow, the air streams follow the outline of passing objects through the air curtain 14, without breaking the confinement.

La faible vitesse du jet lent injecté par la buse 20 a cependant pour conséquence que ce jet, s'il était seul, risquerait d'être déstabilisé par les perturbations aérauliques ou mécaniques qui peuvent se produire près du rideau d'air, entraínant ainsi la rupture du confinement du poste de travail. C'est pourquoi l'on adjoint au jet lent le jet rapide injecté par la buse 22 et dont la plus grande vitesse permet d'assurer la stabilité du premier jet et, par conséquent, d'améliorer l'efficacité du confinement en situation d'effractions au travers de la barrière dynamique formée par le rideau d'air 14. A titre d'exemple nullement limitatif, la largeur de la buse 22 par laquelle est injecté le jet rapide peut être égale à environ 1/40ème de la largeur de la buse 20, ce qui correspond à 0,005 m dans l'exemple décrit.The low speed of the slow jet injected by the nozzle 20, however, has the consequence that this jet, if it were alone, would risk being destabilized by the aeraulic or mechanical disturbances which can occur near the air curtain, thus causing the break in the confinement of the work station. This is why we add to the slow jet the fast jet injected by the nozzle 22 and whose higher speed allows to ensure the stability of the first jet and, consequently, to improve the efficiency of the confinement in situation of 'break-ins through the dynamic barrier formed by the air curtain 14. By way of nonlimiting example, the width of the nozzle 22 by which the rapid jet is injected can be equal to approximately 1/40 th of the width of the nozzle 20, which corresponds to 0.005 m in the example described.

Afin d'optimiser l'effet barrière assuré par l'association des deux jets, les demandeurs ont établi que le débit d'injection du jet rapide, injecté par la buse 22, doit être réglé afin que le débit d'air induit par la face de ce jet rapide qui est en contact avec le jet lent, injecté par la buse 20, soit inférieur ou, de préférence, sensiblement égal à la moitié du débit d'injection de ce jet lent. Des expériences et des simulations ont montré que cette caractéristique conduisait à une amélioration notable de l'effet barrière par rapport à l'art antérieur, dans lequel le débit du jet rapide est réglé afin que le débit d'air induit par la face de ce jet rapide en contact avec le jet lent, soit sensiblement égal au débit d'injection du jet lent.In order to optimize the barrier effect guaranteed by the combination of the two jets, the applicants established that the injection rate of the fast jet, injected via nozzle 22, must be adjusted so that the air flow induced by the face of this rapid jet which is in contact with the slow jet, injected through nozzle 20, i.e. less than or preferably substantially equal to the half the injection rate of this slow jet. Of experiments and simulations have shown that this characteristic led to a noticeable improvement of the barrier effect compared to the prior art, in which the rapid jet flow is adjusted so that the air flow induced by the face of this rapid jet in contact with the slow jet, i.e. substantially equal to slow jet injection rate.

A titre d'illustration nullement limitative, si le débit de soufflage du jet lent injecté par la buse 22 est de 360 m3/h, le débit de soufflage du jet rapide, injecté par la buse 22, doit être d'environ 42 m3/h. Cette dernière valeur est à comparer à la valeur de 84 m3/h environ préconisée dans l'art antérieur.By way of illustration, which is in no way limitative, if the blowing rate of the slow jet injected through the nozzle 22 is 360 m 3 / h, the blowing rate of the fast jet injected through the nozzle 22 must be around 42 m 3 / h. This latter value is to be compared with the value of approximately 84 m 3 / h recommended in the prior art.

Afin d'assurer la récupération de tout l'air soufflé par les buses 20 et 22 et de l'air entraíné par le rideau d'air 14, la grille de reprise 24 communique avec des moyens d'aspiration (non représentés), dimensionnés à cet effet. Dans la pratique, l'air récupéré par la grille de reprise 24 est avantageusement épuré par des moyens d'épuration spécifiques (non représentés) avant d'être recyclé vers les buses d'injection 20 et 22. L'excédent d'air est alors rejeté à l'extérieur après une seconde épuration spécifique.In order to ensure the recovery of everything the air blown by nozzles 20 and 22 and air driven by the air curtain 14, the return grille 24 communicates with suction means (not shown), designed for this purpose. In practice, the air recovered by the return grille 24 is advantageously purified by specific purification means (not shown) before being recycled to the nozzles 20 and 22. The excess air is then rejected outside after a second specific purification.

Dans l'exemple numérique donné précédemment, le débit d'aspiration de l'air par la grille de reprise 24 est de 825 m3/h.In the digital example given above, the air suction flow rate through the intake grille 24 is 825 m 3 / h.

Les demandeurs ont également établi que l'effet barrière est encore optimisé lorsque chacun des deux jets est injecté selon une direction sensiblement parallèle au plan vertical de l'ouverture 11 et lorsque la grille de reprise 24 est perpendiculaire à cette direction. En d'autres termes, il est souhaitable que les orifices de sortie des buses 20 et 22 soient situées dans un même plan horizontal et que la grille de reprise 24 soit située en dessous des buses 20 et 22 dans un autre plan horizontal.The applicants also established that the barrier effect is further optimized when each of the two jets is injected in a substantially direction parallel to the vertical plane of the opening 11 and when the return grid 24 is perpendicular to this direction. In other words, it is desirable that the outlet openings of the nozzles 20 and 22 are located in the same horizontal plane and as the grid 24 is located below the nozzles 20 and 22 in another horizontal plane.

Par ailleurs, un effet épurateur de la zone 10 à protéger est obtenu en assurant une ventilation interne de cette zone et en respectant un débit d'injection déterminé pour cette ventilation interne. Cet effet épurateur, ajouté à l'effet barrière procuré par le rideau d'air 14, améliore sensiblement l'efficacité du confinement, notamment en situation d'effractions. In addition, a purifying effect on the area 10 to be protected is obtained by ensuring ventilation internal of this zone and respecting a flow injection determined for this internal ventilation. This purifying effect, added to the barrier effect provided by air curtain 14, significantly improves efficiency containment, especially in the event of break-ins.

De façon plus précise, dans la forme de réalisation de la figure 1 qui concerne un rideau d'air 14 formé de deux jets adjacents et de même sens, le débit d'injection de l'air propre de ventilation à l'intérieur de la zone 10 à protéger est au moins égal au débit d'air induit par le jet rapide, injecté par la buse 22, sur la face de ce jet rapide qui est en contact avec l'air propre de ventilation, c'est-à-dire sur la face du jet rapide tournée vers la zone 10 à protéger. De plus, l'air propre de ventilation est injecté à une vitesse telle que la vitesse de cet air, rapportée à la surface du plan de l'ouverture 11 soit au moins égale à 0,1 m/s.More specifically, in the form of embodiment of Figure 1 which relates to an air curtain 14 formed of two adjacent jets of the same direction, the injection rate of clean ventilation air at the interior of zone 10 to be protected is at least equal at the air flow induced by the rapid jet, injected by the nozzle 22, on the face of this rapid jet which is in contact with clean ventilation air, i.e. on the face of the rapid jet facing zone 10 to protect. In addition, clean ventilation air is injected at a speed such as the speed of this air, related to the surface of the plane of the opening 11 either at least equal to 0.1 m / s.

Dans la forme de réalisation illustrée schématiquement sur la figure 1, l'injection de l'air propre de ventilation à l'intérieur de la zone 10 à protéger s'effectue par une grille de soufflage 28 qui s'étend sur la totalité de la paroi arrière de la zone à protéger, c'est-à-dire sur toute la paroi de la zone de travail faisant face à l'ouverture 11 et orientée parallèlement au plan vertical de celle-ci. La grille de soufflage 28 par laquelle est injecté l'air propre de ventilation est située sur la gauche en considérant la figure 1.In the illustrated embodiment schematically in Figure 1, the injection of air clean ventilation inside zone 10 to protect is effected by a blast grille 28 which extends over the entire rear wall of the area to protect, i.e. over the entire wall of the area working facing opening 11 and oriented parallel to the vertical plane thereof. Grid supply air 28 through which clean air is injected ventilation is located on the left considering Figure 1.

Dans un mode de réalisation (non représenté) déjà mentionné, selon lequel la zone à protéger est un convoyeur en défilement suivant un trajet donné, la paroi par laquelle est injecté l'air propre de ventilation formant le flux épurateur, est la paroi supérieure de la zone à protéger. Cette paroi est disposée en regard du convoyeur et orientée alors sensiblement perpendiculairement au plan de la zone de séparation.In one embodiment (not already mentioned), according to which the area to protect is a moving conveyor following a given path, the wall through which air is injected clean ventilation forming the purifying flow, is the upper wall of the area to be protected. This wall is arranged opposite the conveyor and oriented then substantially perpendicular to the plane of the area of separation.

Lorsque la température qui règne dans la zone 10 à protéger doit être maintenue à une valeur uniforme déterminée, l'air propre de ventilation est injecté par la grille de soufflage 28 à une température régulée. A cet effet, des moyens de régulation de température, tels qu'un échangeur de chaleur (non représenté), sont placés dans le circuit de ventilation, en amont de la grille de soufflage 28.When the temperature in the zone 10 to be protected must be maintained at a value determined uniform, clean ventilation air is injected through the air outlet grille 28 at a temperature regulated. To this end, temperature regulation means, such as a heat exchanger (not shown), are placed in the ventilation circuit, upstream of the discharge grille 28.

Dans l'exemple non limitatif décrit précédemment, le débit de soufflage de la ventilation interne est de 360 m3/h.In the nonlimiting example described above, the blowing rate of the internal ventilation is 360 m 3 / h.

Des expérimentations et des simulations ont montré que le respect des caractéristiques qui viennent d'être décrites garantit des efficacités de confinement 10 à 100 fois meilleures que celles qui sont obtenues selon l'art antérieur. Ainsi, l'efficacité de confinement d'une barrière dynamique étant définie comme le rapport de la concentration en polluants, particulaires ou gazeux, dans la zone contaminante à la concentration des mêmes polluants dans la zone à protéger, les caractéristiques sus décrites permettent d'atteindre des efficacités de confinement comprises entre 104 et 106.Experiments and simulations have shown that compliance with the characteristics which have just been described guarantees confinement efficiencies 10 to 100 times better than those obtained according to the prior art. Thus, the confinement efficiency of a dynamic barrier being defined as the ratio of the concentration of pollutants, particulate or gaseous, in the contaminating zone to the concentration of the same pollutants in the zone to be protected, the characteristics described above make it possible to achieve containment efficiencies between 10 4 and 10 6 .

Sur la figure 2, on a illustré une deuxième forme de mise en oeuvre du procédé selon l'invention. Cette deuxième forme de mise en oeuvre reprend, pour l'essentiel, les caractéristiques décrites précédemment en se référant à la figure 1, en ajoutant un troisième jet, relativement lent, entre le jet rapide et la zone à protéger. Pour cette raison, les éléments de l'installation illustrée sur la figure 2 qui sont identiques à ceux de l'installation décrite précédemment en se référant à la figure 1 sont désignés par les mêmes chiffres de référence et il n'en sera pas fait de description détaillée.In Figure 2, a second illustrated form of implementation of the method according to the invention. This second form of implementation resumes, for the essentials, the characteristics described above referring to figure 1, adding a third relatively slow jet between the fast jet and the area to protect. For this reason, the elements of the installation illustrated in Figure 2 which are identical to those of the installation described above in se referring to figure 1 are designated by the same reference figures and no description will be given detailed.

Ainsi, on reconnaít sur la figure 2 la zone 10 à protéger, la zone contaminante 12, l'ouverture 11, les buses 20 et 22 par lesquelles sont respectivement injectés le jet lent et le jet rapide dont les dards respectifs sont illustrés en 16 et 18, les parois latérales 26 de l'ouverture 11 et la grille de soufflage 28 assurant la ventilation interne de la zone 10 à protéger.Thus, we recognize in Figure 2 the area 10 to be protected, the contaminating zone 12, the opening 11, nozzles 20 and 22 through which are respectively injected the slow jet and the fast jet including the darts are shown in 16 and 18, the side walls 26 of the opening 11 and the air grille 28 ensuring internal ventilation of zone 10 to be protected.

Le rideau d'air, désigné dans ce cas par la référence 14', comprend en outre un troisième jet d'air propre, relativement lent par rapport au jet rapide, qui est émis par une buse 30 adjacente à la buse 22, entre le jet rapide et la zone 10 à protéger, de façon à être adjacent au jet rapide et de même sens que les autres jets. Le dard de ce troisième jet est illustré en 32 sur la figure 2.The air curtain, designated in this case by the reference 14 ', further includes a third air jet clean, relatively slow compared to the fast jet, which is emitted by a nozzle 30 adjacent to the nozzle 22, between the fast jet and the zone 10 to be protected, so to be adjacent to the rapid jet and in the same direction as the other jets. The sting of this third jet is illustrated at 32 in Figure 2.

Les dimensions de la buse 30 sont choisies afin que le dard 32 du troisième jet recouvre toute l'ouverture. A cet effet, la buse 30 s'étend, comme les buses 20 et 22, sur toute la longueur du bord supérieur de l'ouverture 11, et la largeur de cette buse 30 est au moins égale à 1/6ème et , de préférence, à 1/5ème de la hauteur de l'ouverture 11. Dans la pratique, les largeurs des buses 20 et 30 sont les mêmes et, par exemple, de 0,20 m dans le cas de l'illustration numérique données précédemment, de façon non limitative, en se référant à la figure 1.The dimensions of the nozzle 30 are chosen so that the dart 32 of the third jet covers the entire opening. For this purpose, the nozzle 30 extends, like the nozzles 20 and 22, over the entire length of the upper edge of the opening 11, and the width of this nozzle 30 is at least equal to 1/6 th and, from preferably, 1/5 th of the height of the opening 11. In practice, the widths of the nozzles 20 and 30 are the same and, for example, 0.20 m in the case of the digital illustration given above. , without limitation, with reference to FIG. 1.

Dans la deuxième forme de mise en oeuvre du procédé selon l'invention, on règle le débit d'injection du jet lent délivré par la buse 30, afin que ce débit soit sensiblement égal au débit d'injection du jet lent délivré par la buse 20. Ainsi, les débits d'air induits par les faces du jet rapide, émis par la buse 22, respectivement en contact avec chacun des jets lents, sont inférieurs ou, de préférence, sensiblement égaux à la moitié des débits d'injection de ces jets lents.In the second form of implementation of the method according to the invention, the injection rate is adjusted of the slow jet delivered by the nozzle 30, so that this flow rate is substantially equal to the injection flow rate of the slow jet delivered by the nozzle 20. Thus, the flow rates of air induced by the faces of the fast jet, emitted by the nozzle 22, respectively in contact with each of the jets slow, are lower or, preferably, substantially equal to half the injection rates of these jets slow.

Comme l'illustre la figure 2, il est à noter que la largeur de la grille de reprise, désignée dans ce cas par la référence 24', est adaptée à la largeur du rideau d'air, afin que tous les jets soient récupérés par cette grille 24'. Plus précisément, la grille 24' de reprise du rideau d'air 14' formé de trois jets, est plus large que la grille 24 de reprise du rideau d'air 14, formé de deux jets.As illustrated in Figure 2, it is note that the width of the return grille, designated in this case by the reference 24 ', is adapted to the width air curtain, so that all jets are recovered by this 24 'grid. More specifically, the grille 24 'for the return of the air curtain 14' formed of three jets, is wider than the rework grid 24 the air curtain 14, formed of two jets.

L'utilisation d'un rideau d'air 14' formé de trois jets adjacents et de même sens permet une séparation dynamique efficace des deux zones dans l'un et l'autre sens.The use of a 14 'air curtain formed of three adjacent jets and in the same direction allows a effective dynamic separation of the two zones in one and the other direction.

De plus, dans la deuxième forme de mise en oeuvre illustrée sur la figure 2, la présence d'un autre jet lent, entre le jet rapide et la zone 10 à protéger, permet de diminuer le débit d'injection de la ventilation interne par rapport à la première forme de mise en oeuvre. En effet, le débit d'injection de l'air propre de ventilation par la grille de soufflage 28 est alors au moins égal au débit d'air induit par le jet lent émis par la buse 30, sur la face de ce troisième jet qui est en contact avec l'air propre de ventilation.In addition, in the second form of implementation work illustrated in Figure 2, the presence of a another slow jet, between the fast jet and zone 10 to protect, reduces the injection rate of the internal ventilation compared to the first form of Implementation. Indeed, the air injection rate clean ventilation through the supply grille 28 is then at least equal to the air flow induced by the jet slow emitted by nozzle 30, on the face of this third jet which is in contact with clean ventilation air.

Dans l'exemple numérique donné précédemment, le débit d'injection de chacun des jets lents est de 360 m3/h, le débit de soufflage de la ventilation interne est de 360 m3/h et le débit d'aspiration de la grille de reprise 24' est de 1185 m3/h.In the digital example given above, the injection rate of each of the slow jets is 360 m 3 / h, the blowing rate of the internal ventilation is 360 m 3 / h and the suction rate of the grid 24 'recovery is 1185 m 3 / h.

Comme dans la première forme de mise en oeuvre de l'invention, les trois jets sont, de préférence, injectés dans des directions parallèles au plan de l'ouverture 11 et la grille de reprise est placée en dessous des buses d'injection 20, 22 et 30 et orientée perpendiculairement à ce plan. Par ailleurs, la vitesse à laquelle l'air de ventilation est injecté dans la zone 10 à protéger est avantageusement au moins égale à 0,1 m/s.As in the first form of implementation work of the invention, the three jets are preferably injected in directions parallel to the plane of opening 11 and the return grid is placed in below the injection nozzles 20, 22 and 30 and oriented perpendicular to this plane. By the way, the speed to which ventilation air is injected into the zone 10 to be protected is advantageously at least equal to 0.1 m / s.

Les efficacités de confinement obtenues dans la deuxième forme de mise en oeuvre de l'invention, illustrée sur la figure 2, sont comparables à celles qui ont été données dans le cas de la première forme de mise en oeuvre, décrite précédemment en référence à la figure 1.The containment efficiencies obtained in the second embodiment of the invention, illustrated in Figure 2, are comparable to those that were given in the case of the first form of implementation, described previously with reference in Figure 1.

Il est à noter que de nombreuses modifications peuvent être effectuées sur les installations décrites, sans sortir du cadre de l'invention.It should be noted that many modifications can be performed on facilities described, without departing from the scope of the invention.

Ces modifications concernent en premier lieu les applications, qui sont nombreuses et concernent tous les cas dans lesquels il est nécessaire d'assurer la séparation thermique et dynamique de deux ambiances à concentrations gazeuses, particulaires et/ou bactériologiques différentes (une ambiance propre et l'autre contaminée, ainsi qu'à une température pouvant être différente), tout en permettant le passage répété d'objets d'une zone vers l'autre, sans que la zone propre ne devienne contaminée. Des exemples de ces applications sont la protection de postes de travail agro-alimentaire, médical, biotechnologique ou à hautes technologies, de présentoirs pour la distribution de produits sensibles, etc..These changes relate first place the applications, which are numerous and concern all cases in which it is necessary to ensure the thermal and dynamic separation of two atmospheres with gas concentrations, particulate and / or different bacteriological (a clean atmosphere and the other contaminated, as well as at a temperature be different), while allowing the passage repeated objects from one area to another, without the clean area does not become contaminated. Examples of these applications are the protection of workstations food, medical, biotechnology or high technologies, displays for the distribution of sensitive products, etc.

Les modifications possibles concernent aussi la forme, l'orientation et le nombre des zones de séparation par lesquelles les deux zones communiquent, ainsi que le choix des bords de la zone de séparation sur lesquels sont implantées les buses d'injection et la grille de reprise, qui peuvent être différents de ceux qui ont été décrits.Possible modifications concern also the shape, orientation and number of areas of separation by which the two zones communicate, as well as the choice of the edges of the separation zone on which the injection nozzles are installed and the rework grid, which may be different from those that have been described.

Claims (14)

  1. Process for dynamic separation of a contaminating zone (12) and a zone to be protected (10), communicating with each other through at least one separation zone (11), this process comprising the following steps:
    a first relatively slow clean air jet is injected into the said separation zone (11) at a first injection flow, comprising a tongue (16) capable of covering the entire separation zone;
    a second relatively fast clean air jet is injected at the same time into the separation zone (11) at a second injection flow, adjacent to and in the same direction as the first jet, between the zone to be protected (10) and the first jet;
    the said process being characterized by the fact that the second injection flow is adjusted so that the air flow induced by the surface of the second jet in contact with the first jet is not greater than about half of the first injection flow.
  2. Process according to claim 1, in which the second injection flow is adjusted so that the air flow induced by the surface of the second jet in contact with the first jet is equal to approximately half of the first injection flow.
  3. Process according to either of claims 1 and 2, in which clean ventilation air is injected simultaneously inside the zone to be protected (10) at an injection flow equal to at least the air flow induced by the second jet, the surface of which is in contact with clean ventilation air.
  4. Process according to either of claims 1 and 2, in which a third relatively slow jet is injected into the separation zone (11) at a third injection rate, adjacent to the second jet and in the same direction as the first and second jets, between the zone to be protected (10) and the second jet, the third jet comprising a tongue (32) capable of covering the entire separation zone (11), and the third injection flow is adjusted so that it is approximately equal to the first injection flow, such that the air flows induced by the surfaces of the second jet in contact with the first and the third jets respectively, are not more than approximately half the first and third injection flows.
  5. Process according to claim 4, in which the third injection flow is adjusted such that the air flows induced by the surfaces of the second jet in contact with the first and third jets respectively are equal to approximately half of the first and third injection flows.
  6. Process according to either of claims 4 and 5, characterized in that clean ventilation air is injected simultaneously inside the zone to be protected (10), at an injection flow equal to at least the air flow induced by the third jet on the surface of the air flow in contact with the clean ventilation air.
  7. Process according to any one of claims 3 and 6, characterized in that clean ventilation air is injected at a speed such that the speed of this clean ventilation air divided by the area of the plane of the separation zone (11) is equal to at least 0.1 m/s.
  8. Process according to any one of claims 3, 6 and 7, characterized in that clean ventilation air is injected over the entire surface of a wall of the zone to be protected (10), in the direction of the separation zone (11).
  9. Process according to claim 8, characterized in that the wall on which the clean ventilation air is injected is the rear wall of the zone to be protected (10), which is parallel to the plane of the separation zone (11).
  10. Process according to claim 8, characterized in that the wall on which the clean ventilation air is injected is the top of the zone to be protected (10), laid out approximately perpendicular to the plane of the separation zone (11).
  11. Process according to any one of claims 3 and 6 to 10, characterized in that the temperature of the clean ventilation air is regulated.
  12. Process according to any one of the previous claims, characterized in that all clean air jets are injected in directions approximately parallel to the plane of the separation zone (11).
  13. Process according to any one of the previous claims, characterized in that all clean air jets are recovered through an intake grille (24, 24') installed facing the injection nozzles (20, 22, 30) through which the said jets are injected and located in a plane approximately perpendicular to the direction of the clean air jets.
  14. Process according to any one of the previous claims, characterized in that the separation zone (11) is bounded by side walls (26) located on each side of the clean air jets extending towards the contaminating zone (12) over a distance equal to at least the maximum thickness of the jets.
EP97951278A 1996-12-10 1997-12-09 Method for dynamic separation into two zones with a screen of clean air Expired - Lifetime EP0944802B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9615151 1996-12-10
FR9615151A FR2756910B1 (en) 1996-12-10 1996-12-10 PROCESS FOR DYNAMIC SEPARATION OF TWO AREAS BY A CLEAN AIR CURTAIN
PCT/FR1997/002238 WO1998026226A1 (en) 1996-12-10 1997-12-09 Method for dynamic separation into two zones with a screen of clean air

Publications (2)

Publication Number Publication Date
EP0944802A1 EP0944802A1 (en) 1999-09-29
EP0944802B1 true EP0944802B1 (en) 2001-11-07

Family

ID=9498506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951278A Expired - Lifetime EP0944802B1 (en) 1996-12-10 1997-12-09 Method for dynamic separation into two zones with a screen of clean air

Country Status (13)

Country Link
US (1) US6334812B2 (en)
EP (1) EP0944802B1 (en)
JP (1) JP3651805B2 (en)
CN (1) CN1240022A (en)
AT (1) ATE208484T1 (en)
AU (1) AU725184B2 (en)
CA (1) CA2274147C (en)
DE (1) DE69708144T2 (en)
DK (1) DK0944802T3 (en)
ES (1) ES2167803T3 (en)
FR (1) FR2756910B1 (en)
PT (1) PT944802E (en)
WO (1) WO1998026226A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046200C1 (en) * 2000-09-19 2002-05-23 Alfred Schneider Channel for pure air conditions
DE10254762A1 (en) * 2002-11-22 2004-06-09 Transcoject Gesellschaft für medizinische Geräte mbH & Co. KG Process for producing and / or handling a high-purity object
EP1462730B1 (en) * 2003-03-25 2015-09-09 Kampmann GmbH Device for creating an air curtain
DE10320490A1 (en) * 2003-03-25 2004-10-14 Kampmann Gmbh Device for generating an air curtain
FR2865406B1 (en) * 2004-01-22 2007-11-30 Acanthe DIFFUSER WITH PARIETAL EFFECT
US20100267321A1 (en) * 2007-06-22 2010-10-21 Institute Of Occupational Safety And Health, Council Of Labor Affairs, Executive Yuan Air curtain-isolated biosafety cabinet
US10029797B2 (en) * 2008-09-30 2018-07-24 The Boeing Company Personal ventilation in an aircraft environment
US8506367B2 (en) * 2009-07-30 2013-08-13 Thermo King Corporation Mobile air cleaning unit and distribution system
FR2963793B1 (en) 2010-08-10 2012-09-07 Solios Environnement METHOD AND DEVICE FOR CONTAINING TANK GASES IN AN ALUMINUM ELECTROLYSIS TANK
FR2968384B1 (en) * 2010-12-01 2013-12-27 Robert Guetron DEVICE FOR FLUID SEPARATION FROM 2 REGIONS
ITPI20110138A1 (en) * 2011-12-06 2013-06-07 A R I A Engineering S R L METHOD AND EQUIPMENT FOR REALIZING ENVIRONMENTS ENCLOSED BY AIR WALLS
WO2013128083A1 (en) * 2012-02-28 2013-09-06 Robert Guetron Device for fluidically separating two regions
CN102905507B (en) * 2012-10-17 2013-08-28 深圳市英维克科技有限公司 Hot environment controlling system
FR3032391B1 (en) * 2015-02-06 2018-09-21 Alstom Transport Technologies DEVICE FOR GENERATING AN AIR CURTAIN, ESPECIALLY FOR EQUIPPING A RAILWAY VEHICLE
CN104818931B (en) * 2015-04-23 2017-03-29 中天道成(苏州)洁净技术有限公司 A kind of operating room air-flow obstruct door
JP6576698B2 (en) * 2015-06-11 2019-09-18 株式会社ニットー冷熱製作所 Blowing device and air curtain device
CN105973742B (en) * 2016-04-19 2019-07-16 中国石油化工股份有限公司 The detection device and its detection method of flue gas content in a kind of pitch
US11015824B2 (en) 2016-09-02 2021-05-25 Inertechip Llc Air curtain containment system and assembly for data centers
CN110836398B (en) * 2018-08-17 2021-06-15 青岛海尔智慧厨房电器有限公司 Method for controlling effective distance of air curtain range hood
EP3848646B1 (en) * 2018-09-06 2024-03-27 Nihon Spindle Manufacturing Co., Ltd. Booth and spouting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2515319B1 (en) * 1981-10-26 1986-12-26 Air Ind VENTILATION AIR DISTRIBUTION WALL FOR WORK SPEAKERS
FR2530163B1 (en) * 1982-07-15 1986-08-29 Commissariat Energie Atomique METHOD FOR CONTAINING THE POLLUTION OF A PREMISES USING A GAS VEIN
JPS60174958A (en) 1984-02-21 1985-09-09 Toshiba Corp Phase decision apparatus
JPH068887B2 (en) * 1988-10-27 1994-02-02 中国電力株式会社 Opening shielding device
FR2652520B1 (en) * 1989-10-02 1992-02-07 Sgn Soc Gen Tech Nouvelle METHOD AND DEVICE FOR MAINTAINING A CLEAN ATMOSPHERE WITH REGULATED TEMPERATURE ON A WORKSTATION.
FR2659782B1 (en) * 1990-03-14 1992-06-12 Sgn Soc Gen Tech Nouvelle METHOD AND DEVICE FOR DYNAMIC SEPARATION OF TWO ZONES.
FR2730297B1 (en) * 1995-02-02 1997-05-09 Soc Generale Pour Les Techniques Nouvelles Sgn CONTAINMENT METHOD AND DEVICE, ESPECIALLY OF A PARTICULAR ATMOSPHERE IN A CONTINUOUS PROCESSING SPACE OF THROUGHPUT PRODUCTS

Also Published As

Publication number Publication date
PT944802E (en) 2002-04-29
CA2274147C (en) 2007-02-06
AU5486798A (en) 1998-07-03
WO1998026226A1 (en) 1998-06-18
AU725184B2 (en) 2000-10-05
DE69708144T2 (en) 2002-06-20
EP0944802A1 (en) 1999-09-29
CA2274147A1 (en) 1998-06-18
FR2756910B1 (en) 1999-01-08
US6334812B2 (en) 2002-01-01
FR2756910A1 (en) 1998-06-12
US20010002363A1 (en) 2001-05-31
DK0944802T3 (en) 2002-02-18
JP3651805B2 (en) 2005-05-25
JP2001510548A (en) 2001-07-31
CN1240022A (en) 1999-12-29
ATE208484T1 (en) 2001-11-15
DE69708144D1 (en) 2001-12-13
ES2167803T3 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
EP0944802B1 (en) Method for dynamic separation into two zones with a screen of clean air
CA2275950C (en) Device for dynamic separation of two zones
EP0494921B1 (en) Method and device for maintaining a clean atmosphere at controlled temperature at a workstation
EP0447314B1 (en) Process and device for dynamic separation of two areas
EP0807228B1 (en) Confinement method and device, in particular for a special atmosphere in a space for continuously processing articles fed therethrough
FR2530163A1 (en) METHOD FOR CONFINING POLLUTION OF A LOCAL USING A GASOLINE VEIN
CA1306357C (en) Coating of floated glass with a powdered porolysable composites
EP0966638B1 (en) Device for separating two zones with different environment
NL1030372C2 (en) Ventilation system and method for ventilating covered traffic routes.
EP2198931B1 (en) Method and apparatus for extinguishing sparks transported by a stream of gas
FR2621887A1 (en) DYNAMIC CONFINEMENT AND CONTACT-FREE ACCOMMODATION
WO2000053985A1 (en) Device for high temperature heat treatment of ligneous material
EP2507400B1 (en) Device for maintaining the dryness of the atmosphere of an annealing furnace for metal strips, and furnace provided with said device
BE672267A (en)
EP2689196B1 (en) Equipment for diffusing airflow
EP1644680B1 (en) Method and device for drying a non-metallic coating on a steel band
MXPA99005329A (en) Method for dynamic separation into two zones with a screen of clean air
WO2002070381A1 (en) Method for transporting light articles and pneumatic conveyor therefor
FR2619953A1 (en) SYSTEM FOR DISMANTLING INSTALLATIONS PRESENT IN A LOCAL, ITS METHOD OF IMPLEMENTATION AND HOOD USED IN THIS SYSTEM
EP0390678A1 (en) Gutter for the evacuation of pieces, equipped with an aeriform barrier and its fitting to an irradiated fuel assembly reprocessing facility
JP2006022993A (en) Foreign matter intrusion prevention facility

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20000307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

REF Corresponds to:

Ref document number: 208484

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69708144

Country of ref document: DE

Date of ref document: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020206

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2167803

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020400069

Country of ref document: GR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20061129

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061203

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20061206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20061211

Year of fee payment: 10

Ref country code: PT

Payment date: 20061211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20061212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20061213

Year of fee payment: 10

Ref country code: AT

Payment date: 20061213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20061214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20061227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070222

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20080609

BERE Be: lapsed

Owner name: *UNIR ULTRA PROPRE NUTRITION INDUSTRIE RECHERCHE

Effective date: 20071231

Owner name: COMMISSARIAT A L'ENERGIE *ATOMIQUE

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080606

Year of fee payment: 11

Ref country code: CH

Payment date: 20080605

Year of fee payment: 11

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080701

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080609

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080630

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080628

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080611

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081209