EP0943957A1 - Thermographisches Aufzeichnungsmaterial - Google Patents

Thermographisches Aufzeichnungsmaterial Download PDF

Info

Publication number
EP0943957A1
EP0943957A1 EP99200715A EP99200715A EP0943957A1 EP 0943957 A1 EP0943957 A1 EP 0943957A1 EP 99200715 A EP99200715 A EP 99200715A EP 99200715 A EP99200715 A EP 99200715A EP 0943957 A1 EP0943957 A1 EP 0943957A1
Authority
EP
European Patent Office
Prior art keywords
imaging element
reducing agent
element according
imaging
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99200715A
Other languages
English (en)
French (fr)
Other versions
EP0943957B1 (de
Inventor
Thomas Dean Eastman Kodak Company Weaver
David F. Eastman Kodak Company Jennings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of EP0943957A1 publication Critical patent/EP0943957A1/de
Application granted granted Critical
Publication of EP0943957B1 publication Critical patent/EP0943957B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/494Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
    • G03C1/498Photothermographic systems, e.g. dry silver
    • G03C1/49827Reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/30Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers
    • B41M5/32Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using chemical colour formers one component being a heavy metal compound, e.g. lead or iron
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/494Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
    • G03C1/498Photothermographic systems, e.g. dry silver
    • G03C1/4989Photothermographic systems, e.g. dry silver characterised by a thermal imaging step, with or without exposure to light, e.g. with a thermal head, using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/42Mixtures in general

Definitions

  • the present invention relates to a thermographic imaging element for use in direct thermal imaging.
  • Thermal imaging is a process in which images are recorded by the use of imagewise modulated thermal energy.
  • thermal recording processes one in which the image is generated by thermally activated transfer of a light absorbing material, the other generates the light absorbing species by thermally activated chemical or physical modification of components of the imaging medium.
  • thermal imaging methods is found in "Imaging Systems" by K.I. Jacobson R.E.Jacobson - Focal Press 1976.
  • Thermal energy can be delivered in a number of ways, for example by direct thermal contact or by absorption of electromagnetic radiation.
  • radiant energy include infra-red lasers.
  • Modulation of thermal energy can be by intensity or duration or both.
  • a thermal print head comprising microscopic resistor elements is fed pulses of electrical energy which are converted into heat by the Joule effect.
  • the pulses are of fixed voltage and duration and the thermal energy delivered is then controlled by the number of such pulses sent.
  • Radiant energy can be modulated directly by means of the energy source e.g. the voltage applied to a solid state laser.
  • Direct imaging by chemical change in the imaging medium usually involves an irreversible chemical reaction which takes place very rapidly at elevated temperatures - say above 100°C - but at room temperature the rate is orders of magnitude slower such that effectively the material is stable.
  • a particularly useful direct thermal imaging element uses an organic silver salt in combination with a reducing agent.
  • a reducing agent such systems are often referred to as 'dry silver'.
  • the chemical change induced by the application of thermal energy is the reduction of the transparent silver salt to a metallic silver image.
  • thermographic imaging system In a thermographic imaging system the range of energies available for the imaging process is quite restricted. An imaging system that requires excessive energy for the onset of imaging cannot simply have more energy applied. At high thermal energies the materials of the imaging medium can be distorted or chemically degraded. Thus the medium has to be designed to fit within the acceptable range of thermal imaging energies. Imaging time does not allow any great relief from this problem since imaging must be accomplished in a reasonable time for it to have practical use. For example, a seventeen inch image with 300 lines per inch resolution requires 5100 lines to be written per page. With a line write time of 15 milliseconds the whole page will be written in 77 seconds. It is not acceptable to end users to wait much longer than this, indeed shorter times are preferred. Thus there is a need for developers with the fastest imaging 'speed' and any improvement in system speed will be of value to the end user.
  • thermographic imaging element comprising:
  • thermographic elements having improved speed.
  • Fig. 1 shows the sensitometric curves obtained using a first reducing agent, a second reducing agent or a combination of a first reducing agent and a second reducing agent, as discussed more fully below.
  • thermographic element and composition according to the invention comprise an oxidation-reduction image-forming composition which contains an oxidizing agent, a first reducing agent and a second reducing agent which comprises a silicon compound containing at least one silicon-hydrogen bond.
  • the oxidizing agent is preferably a silver salt. of an organic acid.
  • Suitable silver salts include, for example, silver behenate, silver stearate, silver oleate, silver laureate, silver hydroxy stearate, silver caprate, silver myristate, silver palmitate silver benzoate, silver benzotriazole, silver terephthalate, silver phthalate saccharin silver, phthalazionone silver, benzotriazole silver, silver salt of 3-(2-carboxyethyl-4-4-hydroxymethyl-4-thiazoline-2-thione, or silver salt of 3-mercapto-4-phenyl-1,2,4-triazole. In most instances silver behenate is most useful.
  • the first reducing agent can be selected from a variety of reducing agents (also known as developing agent or developer) known in the art for use in thermographic imaging elements.
  • Preferred compounds for use as the first reducing agent include, for example:
  • the amount of first reducing agent used in the thermal imaging material of this invention is preferably 0.05 to 5 moles/mole Ag, more preferably 0.1 to 2 and most preferable 0.5 to 1.5 moles/mole Ag.
  • Silicon compounds useful in the practice of this invention are represented by the general Structures I and II, below: wherein: R 1 , R 2 and R 3 can be the same or different, and are selected from the group consisting of hydrogen, halogen, alkyl, cycloalkyl, arylalkyl, and aryl; or R 1 and R 2 , R 2 and R 3 , or R 1 and R 3 or R 1 , R 2 and R 3 , are joined to form one or more ring sturcutres, or at least 1 of R 1 , R 2 or R 3 is a polymer backbone; A is a noncarbon atom, such as N, O, P, S; and m is 0 or 1. wherein:
  • substituent groups when reference in this application is made to a particular moiety as a "group”, this means that the moiety may itself be unsubstituted or substituted with one or more substituents (up to the maximum possible number).
  • alkyl group refers to a substituted or unsubstituted alkyl
  • benzene group refers to a substituted or unsubstituted benzene (with up to six substituents).
  • substituent groups usable on molecules herein include any groups, whether substituted or unsubstituted, which do not destroy properties necessary for the photographic utility.
  • substituents on any of the mentioned groups can include known substituents, such as: halogen, for example, chloro, fluoro, bromo, iodo; alkoxy, particularly those "lower alkyl" (that is, with 1 to 6 carbon atoms, for example, methoxy, ethoxy; substituted or unsubstituted alkyl, particularly lower alkyl (for example, methyl, trifluoromethyl); thioalkyl (for example, methylthio or ethylthio), particularly either of those with 1 to 6 carbon atoms; substituted and unsubstituted aryl, particularly those having from 6 to 20 carbon atoms (for example, phenyl); and substituted or unsubstituted heteroaryl, particularly those having a 5 or 6-membered ring containing 1 to 3 heteroatoms selected from N, O, or S (for example, pyridyl, thienyl, furyl, pyrrolyl); acid groups,
  • Preferred silicon compounds include, for example, the silicon compounds S1 and S2 which are shown in Table 2. Comparative silicon-containing compounds C1 and C2, which do not containing a silicon-hydrogen bond, are also shown in Table 2.
  • the amount of silicon compound used in the thermal imaging material of this invention is preferably 0.005 to 2 moles/mole Ag, more preferably 0.005 to 0.5 and most preferable 0.005 to 0.2 moles/mole Ag.
  • the imaging element of the invention can also contain a so-called activator-toning agent, also known as an accelerator-toning agent or toner.
  • the activator-toning agent can be a cyclic imide and is typically useful in a range of concentration such as a concentration of 0.10 mole to 1.1 mole of activator -toning agent per mole of silver salt oxidizing agent in the thermographic material.
  • Typical suitable activator-toning agents are described in Belgian Patent No. 766,590 issued June 15, 1971.
  • Typical activator-toning agents include, for example, phthalimide, N-hydroxyphthalimide, N-hydroxy-1,8-naphthalimide, N-potassium phthalimide, N-mercury phthalimide, succinimide and/or N-hydroxysuccinimide. Combinations of activator-toning agents can be employed if desired. Other activator-toning agents which can be employed include phthalazinone, or 2-acetyl-phthalazinone.
  • thermographic imaging composition of the invention can contain other addenda that aid in formation of a useful image.
  • thermographic composition of the invention can contain various other compounds alone or in combination as vehicles, or binding agents, which can be in various layers of the thermographic element of the invention.
  • Suitable materials can be hydrophobic or hydrophilic. They are transparent or translucent and include such synthetic polymeric substances as water soluble polyvinyl compounds like poly(vinyl pyrrolidone), or acrylamide polymers.
  • Other synthetic polymeric compounds which can be employed include dispersed vinyl compounds such as in latex form and particularly those which increase dimensional stability of photographic materials.
  • Effective polymers include water insoluble polymers of polyesters, polycarbonates, alkyl acrylates and methacrylates, acrylic acid, sulfoalkyl acrylates, methacrylates and those which have crosslinking sites which facilitate hardening or curing as well as those having recurring sulfobetaine units as described in Canadian Patent No. 774,054.
  • Especially useful high molecular weight materials and resins include poly(vinyl acetals), such as, poly(vinyl acetal) and poly(vinyl butyral), cellulose acetate butyrate, polymethyl methacrylate, poly(vinyl pyrrolidone), ethylcellulose, polystyrene, polyvinyl chloride, chlorinated rubber, polyisobutylene, butadiene-styrene copolymers, vinyl chloridevinyl acetate copolymers, copolymers, of vinyl acetate, vinyl chloride and maleic acid and polyvinyl alcohol.
  • poly(vinyl acetals) such as, poly(vinyl acetal) and poly(vinyl butyral), cellulose acetate butyrate, polymethyl methacrylate, poly(vinyl pyrrolidone), ethylcellulose, polystyrene, polyvinyl chloride, chlorinated rubber, polyisobutylene
  • thermographic element according to the invention comprises a thermal imaging composition, as described above, on a support.
  • supports can be used. Typical supports include cellulose nitrate film, cellulose ester film, poly(vinyl acetal) film, polystyrene film, poly(ethylene terephthalate) film, polycarbonate film and related films or resinous materials, as well as glass, paper, or metal supports which can withstand the processing temperatures employed according to the invention.
  • a flexible support is employed.
  • thermographic imaging elements of the invention can be prepared by coating the layers on a support by coating procedures known in the photographic art, including dip coating, air knife coating, curtain coating or extrusion coating using hoppers. If desired, two or more layers are coated simultaneously.
  • Thermographic imaging elements are described in general in, for example, U.S. Patents 3,457,075; 4,459,350; 4,264,725 and 4,741,992 and Research Disclosure , June 1978, Item No. 17029.
  • thermographic element can be in any location in the element that provides the desired image. If desired, one or more of the components can be in more than one layer of the element. For example, in some cases, it is desirable to include certain percentages of the reducing agent, toner, stabilizer and/or other addenda in an overcoat layer. This, in some cases, can reduce migration of certain addenda in the layers of the element.
  • the thermographic imaging element of the invention can contain a transparent, image insensitive protective layer.
  • the protective layer can be an overcoat layer, that is a layer that overlies the image sensitive layer(s), or a backing layer, that is a layer that is on the opposite side of the support from the image sensitive layer(s).
  • the imaging element can contain both a protective overcoat layer and a protective backing layer, if desired.
  • An adhesive interlayer can be imposed between the imaging layer and the protective layer and/or between the support and the backing layer.
  • the protective layer is not necessarily the outermost layer of the imaging element.
  • the protective overcoat layer preferably acts as a barrier layer that not only protects the imaging layer from physical damage, but also prevents loss of components from the imaging layer.
  • the overcoat layer preferably comprises a film forming binder, preferable a hydrophilic film forming binder.
  • binders include, for example, crosslinked polyvinyl alcohol, gelatin, or poly(silicic acid). Particularly preferred are binders comprising poly(silicic acid) alone or in combination with a water-soluble hydroxyl-containing monomer or polymer as described in the above-mentioned US Patent No. 4,828,971.
  • thermographic imaging element of this invention can include a backing layer.
  • the backing layer is an outermost layer located on the side of the support opposite to the imaging layer. It is typically comprised of a binder and a matting agent which is dispersed in the binder in an amount sufficient to provide the desired surface roughness and the desired antistatic properties.
  • the backing layer should not adversely affect sensitometric characteristics of the thermographic element such as minimum density, maximum density and photographic speed.
  • thermographic element of this invention preferably contains a slipping layer to prevent the imaging element from sticking as it passes under the thermal print head.
  • the slipping layer comprises a lubricant dispersed or dissolved in a polymeric binder.
  • Lubricants that can be used include, for example:
  • thermographic imaging elements of this invention can contain either organic or inorganic matting agents.
  • organic matting agents are particles, often in the form of beads, of polymers such as polymeric esters of acrylic and methacrylic acid, e.g., poly(methylmethacrylate), or styrene polymers and copolymers.
  • inorganic matting agents are particles of glass, silicon dioxide, titanium dioxide, magnesium oxide, aluminum oxide, barium sulfate, or calcium carbonate. Matting agents and the way they are used are further described in U.S. Patent Nos. 3,411,907 and 3,754,924.
  • the concentration of matting agent required to give the desired roughness depends on the mean diameter of the particles and the amount of binder.
  • Preferred particles are those with a mean diameter of from 1 to 15 micrometers, preferably from 2 to 8 micrometers.
  • the matte particles can be usefully employed at a concentration of 1 to 100 milligrams per square meter.
  • the imaging element can also contain an electroconductive layer which, in accordance with US 5,310,640, is an inner layer that can be located on either side of said support.
  • the electroconductive layer preferably has an internal resistivity of less than 5 x 10 11 ohms/square.
  • the protective overcoat layer and the slipping layer may either or both be electrically conductive having a surface resistivity of less than 5 x 10 11 ohms/square.
  • electrically conductive overcoat layers are described in US Patent No. 5,547,821.
  • electrically conductive overcoat layers comprise metal-containing particles dispersed in a polymeric binder in an amount sufficient to provide the desired surface resistivity. Examples of suitable electrically-conductive metal-containing particles for the purposes of this invention include:
  • Test formulation #1 is prepared, coated on a support and imaged using a thin film thermal head in contact with a combination of the imaging medium and a protective film of 6 micron polyester sheet. Contact of the head to the element is maintained by an applied pressure of 313g/cm heater line. The line write time is 15 milliseconds broken up into 255 increments corresponding to the pulse width. Energy per pulse is 0.0413 Joule per sq. cm.
  • Silicon Compounds as Reducing Agents ID Max Image Density E1 S1 0.379 5.40 S2 0.353 7.55 C1 0.030 C2 0.029
  • Test formulation #2 is coated on a support and imaged exactly as before for all combinations of silicon compound and developer.
  • Test - formulation #1 is prepared, coated and tested for each conventional developer.
  • the E1 values of the mixtures are then compared to the conventional developer by itself.
  • Silicon compounds useful in the invention show consistent behavior.
  • the silicon compound itself has some activity when tested as a developer.
  • a more conventional developer i.e., a first developer
  • the speed of the system is greater (lower energy to achieve onset of imaging) than either the developer or the silicon compound second developer by itself.
  • Silicon compounds which are not of the invention, C1 and C2 likewise show a consistent pattern of behavior. When tested as a developer there is no significant density generated and no E1 value can be assigned. When added to a conventional developer the change in speed is essentially zero.
  • Table 5 shows the E1 values obtained by various reducing agents, alone using formulation #1 and in combination with S1 using formulation #2. In every case the addition of S1 causes a speed gain i.e. a reduction in the energy required for the onset of imaging.
  • formulation #3 was prepared and coated and imaged exactly as the other materials.
  • FORMULATION #3 SILVER BEHENATE 9.5 millimole/m 2 POLY(VINYL BUYRAL) 4320 milligram/m 2 SUCCINIMIDE 8.6 millimoLe/m 2 TEST MATERIAL (S1) 1.08 millimole/m 2
  • Fig. 1 shows the sensitometric curves of materials containing:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
EP99200715A 1998-03-20 1999-03-10 Thermographisches Aufzeichnungsmaterial Expired - Lifetime EP0943957B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/045,406 US5922528A (en) 1998-03-20 1998-03-20 Thermographic imaging element
US45406 1998-03-20

Publications (2)

Publication Number Publication Date
EP0943957A1 true EP0943957A1 (de) 1999-09-22
EP0943957B1 EP0943957B1 (de) 2003-09-17

Family

ID=21937697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99200715A Expired - Lifetime EP0943957B1 (de) 1998-03-20 1999-03-10 Thermographisches Aufzeichnungsmaterial

Country Status (4)

Country Link
US (1) US5922528A (de)
EP (1) EP0943957B1 (de)
JP (1) JPH11314464A (de)
DE (1) DE69911283T2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277734A (ja) * 2000-03-29 2001-10-10 Minolta Co Ltd 熱可逆性記録媒体への記録方法及び記録装置
EP1270255A1 (de) * 2001-06-29 2003-01-02 Agfa-Gevaert Thermographisches Aufzeichnungsmaterial mit verbessertem Bildton
US7135432B2 (en) * 2004-12-15 2006-11-14 Eastman Kodak Company Direct thermographic materials with phenolic reducing agents

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767414A (en) * 1972-05-22 1973-10-23 Minnesota Mining & Mfg Thermosensitive copy sheets comprising heavy metal azolates and methods for their use
DE2558541A1 (de) * 1974-12-28 1976-07-08 Fuji Photo Film Co Ltd Thermisch entwickelbare, lichtempfindliche materialien
EP0582144A1 (de) * 1992-08-03 1994-02-09 Minnesota Mining And Manufacturing Company Laseradressierbares wärmeempfindliches Aufzeichnungsmaterial
EP0639791A2 (de) * 1993-08-20 1995-02-22 Minnesota Mining And Manufacturing Company Photothermographische Elemente, die photograpisch nützliche Verbindungen mit Silylschutzgruppen enthalten
EP0849625A1 (de) * 1996-12-19 1998-06-24 Eastman Kodak Company Zusammensetzung für die thermographische Bildaufzeichnung und diese enthaltendes Element

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2089285A5 (de) * 1970-04-09 1972-01-07 Agfa Gevaert Nv
US4082901A (en) * 1973-04-04 1978-04-04 Agfa-Gevaert N.V. Thermographic material
CA1020347A (en) * 1973-04-04 1977-11-08 Urbain L. Laridon Thermographic process and material
DE2321329A1 (de) * 1973-04-27 1974-11-14 Agfa Gevaert Ag Verbessertes bildempfangsmaterial
CA1043616A (en) * 1973-10-16 1978-12-05 Fuji Photo Film Co. Heat developable light-sensitive material
DE2440678C2 (de) * 1974-08-24 1983-10-20 Agfa-Gevaert Ag, 5090 Leverkusen Thermophotographisches Aufzeichnungsmmaterial
GB2083726A (en) * 1980-09-09 1982-03-24 Minnesota Mining & Mfg Preparation of multi-colour prints by laser irradiation and materials for use therein
JPH08504696A (ja) * 1992-12-18 1996-05-21 アグファーゲヴェルト ナームロゼ ベンノートチャップ 直接熱画像形成方法
EP0654355B1 (de) * 1993-11-22 1998-02-11 Agfa-Gevaert N.V. Verfahren zur Bilderzeugung durch direkte thermische Aufzeichnung
DE69427635T2 (de) * 1994-03-10 2002-05-08 Agfa-Gevaert N.V., Mortsel Thermotransferbilderzeugungsverfahren
EP0671284B1 (de) * 1994-03-10 2001-10-24 Agfa-Gevaert N.V. Thermisches Bilderzeugungsverfahren und dafür verwendbare Donor-Empfängerelement-Anordnung
DE69428778T2 (de) * 1994-03-25 2002-07-11 Agfa-Gevaert N.V., Mortsel Verfahren zur Herstellung eines Bildes nach dem Wärmeverfahren
EP0678775B1 (de) * 1994-03-25 2001-06-06 Agfa-Gevaert N.V. Thermotransferverfahren
EP0677776A1 (de) * 1994-03-25 1995-10-18 Agfa-Gevaert N.V. Thermotransferdruckverfahren, in dem ein Gemisch von Reduktionsmitteln zum bildmässigen Reduzieren eines Silbersalzes benutzt wird
EP0677775B1 (de) * 1994-03-25 2002-06-12 Agfa-Gevaert Thermotransferaufzeichnungsverfahren
US5575959A (en) * 1994-04-22 1996-11-19 Hughes Aircraft Company Process for making low cost infrared windows
EP0683428A1 (de) * 1994-05-17 1995-11-22 Agfa-Gevaert N.V. Auf dem Wärmetransfer eines Reduktionsmittels, das Silberverbindungen zu metallischem Silber reduziert, basierendes Thermotransferbilderzeugungssystem
EP0687572B1 (de) * 1994-06-15 1997-08-20 Agfa-Gevaert N.V. Wärmeempfindliches Aufzeichnungsverfahren
EP0713133B1 (de) * 1994-10-14 2001-05-16 Agfa-Gevaert N.V. Empfangselement für die thermische Farbstoffübertragung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767414A (en) * 1972-05-22 1973-10-23 Minnesota Mining & Mfg Thermosensitive copy sheets comprising heavy metal azolates and methods for their use
DE2558541A1 (de) * 1974-12-28 1976-07-08 Fuji Photo Film Co Ltd Thermisch entwickelbare, lichtempfindliche materialien
EP0582144A1 (de) * 1992-08-03 1994-02-09 Minnesota Mining And Manufacturing Company Laseradressierbares wärmeempfindliches Aufzeichnungsmaterial
EP0639791A2 (de) * 1993-08-20 1995-02-22 Minnesota Mining And Manufacturing Company Photothermographische Elemente, die photograpisch nützliche Verbindungen mit Silylschutzgruppen enthalten
EP0849625A1 (de) * 1996-12-19 1998-06-24 Eastman Kodak Company Zusammensetzung für die thermographische Bildaufzeichnung und diese enthaltendes Element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "PHOTOTHERMOGRAPHIC ELEMENT, COMPOSITION AND PROCESS", RESEARCH DISCLOSURE, vol. 105, no. 13, January 1973 (1973-01-01), pages 16 - 21, XP002057204 *

Also Published As

Publication number Publication date
US5922528A (en) 1999-07-13
EP0943957B1 (de) 2003-09-17
DE69911283T2 (de) 2004-07-15
JPH11314464A (ja) 1999-11-16
DE69911283D1 (de) 2003-10-23

Similar Documents

Publication Publication Date Title
US4828971A (en) Thermally processable element comprising a backing layer
JP3737818B2 (ja) 導電層及びバッキング層を含んでなる感熱処理性画像形成要素
US5422234A (en) Thermally processable imaging element including an adhesive interlayer comprising a polymer having epoxy functionality
EP0395164B1 (de) Thermisch verarbeitbares Abbildungselement mit einer Überzugsschicht
US5418120A (en) Thermally processable imaging element including an adhesive interlayer comprising a polyalkoxysilane
JPH06317872A (ja) 障壁層を含んで成る熱処理可能な画像生成要素
EP0943957B1 (de) Thermographisches Aufzeichnungsmaterial
EP0943958B1 (de) Thermographisches Bildaufzeichnungselement
EP0613045A1 (de) Verfahren zur Herstellung eines thermisch verarbeitbaren Bildaufzeichnungselements
US6066445A (en) Thermographic imaging composition and element comprising said composition
EP0943959B1 (de) Thermographisches Aufzeichnungsmaterial
EP0943960B1 (de) Thermographisches Aufzeichnungsmaterial
JP3746123B2 (ja) 改良されたスリツプ性能を有する熱による像形成方法
JP3902301B2 (ja) 熱処理性画像形成要素
JP2889173B2 (ja) 像安定化性質を有する感熱性記録材料
JP3902302B2 (ja) 熱処理性画像形成要素
JP2889198B2 (ja) 改良されたスリツプ性を有する感熱記録材料
EP0674216A1 (de) Thermotransferbildaufzeichnungsverfahren und Donorelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000223

AKX Designation fees paid

Free format text: DE FR GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69911283

Country of ref document: DE

Date of ref document: 20031023

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040205

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040302

Year of fee payment: 6

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050331

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20060221