EP0935821B1 - Guide d'ondes ameliore pour systeme de sonde de polarisation double - Google Patents

Guide d'ondes ameliore pour systeme de sonde de polarisation double Download PDF

Info

Publication number
EP0935821B1
EP0935821B1 EP97940233A EP97940233A EP0935821B1 EP 0935821 B1 EP0935821 B1 EP 0935821B1 EP 97940233 A EP97940233 A EP 97940233A EP 97940233 A EP97940233 A EP 97940233A EP 0935821 B1 EP0935821 B1 EP 0935821B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
polarity
reflecting
probe
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97940233A
Other languages
German (de)
English (en)
Other versions
EP0935821A1 (fr
Inventor
Andrew Patrick Baird
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Channel Master Ltd
Original Assignee
Channel Master Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Channel Master Ltd filed Critical Channel Master Ltd
Publication of EP0935821A1 publication Critical patent/EP0935821A1/fr
Application granted granted Critical
Publication of EP0935821B1 publication Critical patent/EP0935821B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the present invention relates to a waveguide for use in a dual polarisation waveguide probe system for use with a satellite dish receiving signals broadcast by a satellite which includes two signals orthogonally polarised in the same frequency band.
  • the invention relates to an improved waveguide for use with a low-noise block receiver into which two probes are disposed for coupling from the waveguide, desired broadcast signals to external circuitry.
  • a dual polarisation waveguide probe system in which a waveguide is incorporated into a low-noise block receiver in which two probes are located for receiving linearly polarised energy of both orthogonal senses.
  • the probes are located in the same longitudinal plane on opposite sides of a single cylindrical bar reflector which reflects one sense of polarisation and passes the orthogonal signal with minimal insertion loss and then reflects the rotated orthogonal signal.
  • the probes are spaced ⁇ /4 from the reflector.
  • a reflection rotator is also formed at one end of the waveguide using a thin plate which is oriented at 45° to the incident linear polarisation with a short circuit spaced approximately a quarter of a wavelength ( ⁇ /4) behind the leading edge of the plate.
  • This plate splits the incident energy into two equal components in orthogonal planes, one component being reflected by the leading edge and the other component being reflected by the waveguide short circuit.
  • the resultant 180° phase shift between the reflected components causes a 90° rotation in the plane of linear polarisation upon recombination so that the waveguide output signals are located in the same longitudinal plane.
  • an improved dual polarisation waveguide probe system was disclosed for use with a wider frequency range transmitted by new satellite systems.
  • a reflective twist plate was provided within the probe housing, the reflective twist plate having at least two signal reflecting edges so that at least two separate signal reflections are created. The multiple signal reflections enable the probe system to operate over a wider frequency range with minimal deterioration and signal output.
  • the improved version provides a better frequency response across the frequency range, it has been found that the losses level at the edges of the band still cause a significant performance degradation.
  • An object of the present invention is to provide an improved waveguide for use with a dual polarisation probe system which obviates or mitigates the aforementioned disadvantage.
  • a waveguide for use with a dual polarisation waveguide probe system which has a rotator which incorporates a reflecting plate in combination with a differential phase shift portion in the form of a waveguide of slightly asymmetrical cross section so that orthogonal signals which travel through this portion have a different cut-off wavelength.
  • the reflecting plate and the differential phase shift portion have inverse frequency characteristics so that the combined phase shift characteristic of the rotator has a flatter frequency characteristic across the desired frequency range.
  • the rotator consists of a single reflector plate with a single reflecting surface and the differential phase shift portion has two pairs of flats cast into the waveguide bore, a first pair of flats being machined in at a first distance from the reflector plate and a second pair machined nearer to the reflector plate at a second distance from the reflector plate, the second pair of flats being machined less into the wall than the first pair so that the flats of the second pair are nearer to the reflector bore or central axis.
  • rotator consists of a single reflector plate in an elliptical waveguide portion coupled to the cylindrical waveguide portion.
  • the different cross-sections of the ellipse provide two different cut-off wavelengths for the orthogonal signals.
  • the differential phase shift portion may be implemented by any other suitable structure which has a slight cross-sectional asymmetry to create wavelengths with different cut-offs.
  • a dual polarisation waveguide probe system for receiving at least two signals which are polarised in two respective orthogonal planes to provide two orthogonal polarities, said waveguide comprising a waveguide tube having a waveguide tube inlet into which said signals are received for transmission therealong in a direction away from the tube inlet, said direction being known as a downstream direction, said waveguide having:
  • a dual polarisation waveguide probe system according to the preamble of claim 1 is known from patent document WO-A1-92 22 938.
  • a low-noise block receiver generally indicated by reference numeral 10
  • the low-noise block receiver 10 is arranged to receive high frequency radiation signals from the satellite dish and to process these signals to provide an output which is fed to a cable 12 which is, in turn, connected to a satellite receiver decoder unit (not shown in the interests of clarity).
  • the block receiver 10 includes a waveguide 14 which is shown partly broken away in the interests of clarity to depict the interior components.
  • the waveguide is cylindrical and is metal.
  • the waveguide has front aperture 16 for facing a satellite dish for receiving electro-magnetic radiation from a feed horn 18, shown in broken outline, which is mounted on the front of the waveguide.
  • the waveguide and feed horn 18 are substantially the same as that disclosed in applicant's co-pending International Application PCT/GB95/00332 and WO 92/22938. Accordingly, disposed in the waveguide in the same longitudinal plane is a first probe 20, a reflective post 22 and a second probe 24. In this embodiment, the reflective post 22 extends across the entire diameter of the interior of the waveguide.
  • the outputs of the probes 20 and 24 pass through the waveguide wall 26 along the same longitudinal plane generally indicated by reference numeral 28.
  • the distance between the probe 20 and reflective post 22, and between probe 24 and reflective post 22 is nominally ⁇ /4 where ⁇ is the wavelength of the signals in the waveguide.
  • is the wavelength of the signals in the waveguide.
  • the reflecting plate 30 At the downstream end of the waveguide which is furthest from the front aperture, there is disposed within the waveguide the reflecting plate 30. As best seen in Fig. 2, the reflecting plate is oriented at an angle of 45° to the probes 20,24 and reflecting post 22. The furthest end of the plate terminates in a wall 32 which acts as a short circuit and which will be later described in detail.
  • the reflecting plate is thin and has a single leading edge 34 which is orthogonal to the waveguide axis. Edge 34 is a fixed distance from the short circuit 32. With this arrangement, it will be appreciated that there is a single reflecting edge at the leading end of the reflecting plate 30 spaced by a predetermined distance from wall 32.
  • two sets of flats, 36,38 are cast in the side of the waveguide.
  • the two sets of flats 36,38 which are disposed parallel to the reflecting plate 30 as best seen in Fig. 2.
  • Flats 36 are cast further into the waveguide wall than flats 38 so that the waveguide has a profile as best shown in Fig. 4 where the waveguide appears to converge towards the base of the reflecting plate 30.
  • the flats create a waveguide of slightly asymmetrical cross-section providing the differential phase shift portion.
  • the dimensions of flats (in millimetres) in relation to the size of the reflecting plate are shown in Fig. 3.
  • signals from a satellite dish enter the waveguide 14 via the horn 18 and aperture 16 and, in accordance with known principles, are transmitted along the waveguide 14.
  • the signals which are broadcast by the satellite include two sets of signals which are orthogonally polarised in the same frequency band and these are represented by vectors V1 and V2 (Fig. 1) which are signals polarised in the vertical and horizontal planes respectively.
  • the flats in the waveguide have the effect of modifying the cut-off wavelength of the waveguide for both orthogonal V 2O and V 2P components as indicated below.
  • V 2P and V 2O have different guide wavelengths, there will be a resultant phase shift between them per unit length of waveguide.
  • This phase shift is a function of frequency, more phase shift being obtained at lower frequency. This can be seen by the graph shown in Fig. 5.
  • the difference in wavelength is greater at lower frequencies since ⁇ g tend to infinity as cut-off is approached and tends to ⁇ o at higher frequencies.
  • This variation of phase shift with frequency is opposite to the variation from the reflecting plate.
  • the vertically polarised signal V1 is received by the first probe 20 which, as it is spaced by ⁇ /4 from the reflecting post 22, ensures the maximum field at the probe and hence optimum coupling to the probe.
  • the probe 20 has no effect on the horizontally polarised signal V2 which continues to pass along the waveguide.
  • the signal V2 is not reflected by the post and continues to pass along the waveguide and also passes the second probe 24 for the same reason.
  • the horizontally polarised signal V2 hits the front edge of the reflecting and rotating means (the start of the flats)
  • the signal is split into V 2P and V 2O .
  • the influence of the flats phase shifts V 2P with respect to V 2O , when the signal encounter the plate, V 2P is reflected by edge 34.
  • the combination of the phase shift introduced by the flats and the plate gives 180° signal shift between the reflected signals V 2OR and V 2PR at the start of the flats, which on recombination provides an output signal V 2R .
  • Figs. 6a, b, c and d of the drawings Referring first to Fig. 6a, it will be seen that this is a graph of phase shift deviation from 180° from the rotator shown in Figs. 1 to 4 with frequency over the Astra satellite range 10.7 - 12.75 GHz. It will be seen that the phase shift is substantially 180° across the entire frequency range for a reflected signal in orientation V 2PR with respect to signal V 2OR . This offers substantial improvement over the arrangement provided by the prior art twist plate arrangement as disclosed in applicant's co-pending Application No. PCT/GB96/00332. The prior art responses are shown in broken outline in Figs. 6a,b,c and d. This effectively means that the recombination of the signal is much better and in the plane of the second probe providing a better frequency response and insertion loss.
  • Fig. 6b of the drawing shows the insertion loss with the rotator of the embodiments shown in Figs. 1 to 4 compared with the insertion loss of the stepped twist plate arrangement as disclosed in the aforementioned application. It will be seen that the insertion loss or transmission loss in decibels is much less than the prior art arrangement, especially at the upper and lower frequency limits of the band. This means that there is a much better frequency response and signal response in these frequency regions.
  • Fig. 6c is a graph of signal return loss (dB. v. frequency) which shows that there is less signal loss across the entire frequency range compared to the existing stepped twist plate and that there is a broader band of frequency for minimal return loss which shows a general improvement across the frequency band.
  • Fig. 6d shows an enlarged view of Fig. 5a where it will be seen that the phase shift characteristic is substantially flat around 180° and it will be seen that this offers a significant improvement over the prior art arrangement which is shown in broken outline.
  • an insertion loss may occur over a relatively narrow bandwidth of a few MHz. This is believed to be due to manufacturing tolerances which result in a slight asymmetry of the twist plate/reflecting plate.
  • One solution to this problem has been to place small semi-cylindrical protuberances 40,42 on the twist plate 30 as shown in Fig. 9 which results in suppression of the insertion loss to an acceptable level. These protuberances 40,42 are cast with the reflecting plate 30.
  • Figs. 10a,10b and 11 and 12 of the drawings which shows a waveguide which does not have a twist or reflecting plate.
  • the waveguide has flats 46 only. Otherwise, it is the same as the waveguide shown in Fig. 1.
  • Fig. 11 shows the phase shift over the frequency range of interest (10.7 to 12.75 GHz.)
  • Fig. 12 shows a graph of insertion loss and return loss against frequency. From Figs. 11 and 12 it will be seen that this waveguide performs quite well over the band of interest and as well as the stepped twist plate disclosed in applicant's co-pending Application PCT/GB96/00332.
  • Figs. 14, 15 and 16 show graphs comparing the preference of the same diameter waveguide (17.5mm) with different lengths of reflecting plate (5mm and 3mm respectively) and different lengths of flats as shown in Figs. 13a,13b.
  • the 5mm version moves any small insertion loss 'glitches' outside the top of the frequency band with a small performance penalty.
  • a single parallel flat may also be used or two or more pairs of flats may be machined into the side of the waveguide as shown in Fig. 7a.
  • flats need not be stepped but may be provided by a smooth transition curve as shown in Fig. 7b of the drawings.
  • the asymmetry of the waveguide cross-section can be provided by a number of different shapes, for example elliptical, as shown in Fig. 8a or with a wider cross-section as shown in Fig. 8b.
  • the exact dimensions of the flats, or transition curve and cross-sections, and the size of the reflecting plate may be varied in accordance with specific signal and frequency range requirements.
  • the protuberances may be of any suitable shape and can be single or double. They may be installed onto the reflecting plate after casting.
  • a 'suitable shape' is one which results in suppression of any insertion loss over the narrow bandwidth due to plate asymmetry.
  • the basic invention is a combination of reflecting plate and the differential phase shift section in the sides of the waveguide, in which a differential phase shift portion is provided by a cross-section of slight asymmetry so that reflected orthogonal components of the second orthogonally polarised signals have different wavelength cut-offs which when recombined create a recombined reflected signal which has a substantially 180° phase shift across the desired frequency range.
  • the principal advantage of the present invention is that the reflecting and rotating arrangement allows the LNB to be used across the existing satellite bandwidth but which provides a much better frequency characteristic at the upper and lower frequency limits. This allows an increased number of channels to be used across the entire frequency band with substantially the same performance, that is providing minimal degradation at the edges of the frequency band.
  • a further advantage of this arrangement is that it can be used with existing manufacturing techniques and does not require any special fabrication. It will also be understood that this particular apparatus and methodology may be applied to providing bandwidth improvements at frequency ranges outside the aforementioned Astra frequency range.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Claims (13)

  1. Système de sonde de guide d'ondes à deux polarisations pour recevoir au moins deux signaux qui sont polarisés dans deux plans orthogonaux respectifs pour fournir deux polarités orthogonales (V1, V2), ledit guide d'ondes comprenant un tube guide d'ondes (14) ayant une entrée de tube guide d'ondes (16) dans laquelle lesdits signaux sont reçus pour la transmission le long de celui-ci dans une direction s'éloignant de l'entrée du tube (16), ladite direction étant connue comme une direction en aval, ledit guide d'ondes comprenant :
    une première sonde (20) s'étendant à partir d'une paroi du guide d'ondes (14) à l'intérieur du guide d'ondes pour recevoir un signal d'une polarité (V1) se propageant dans un premier plan longitudinal de celui-ci ;
    des moyens réflecteurs (22) s'étendant à partir d'une paroi du guide d'ondes (14) à l'intérieur du guide d'ondes, les moyens réflecteurs (22) situés en aval de la première sonde (20) se trouvant dans ledit premier plan longitudinal pour réfléchir des signaux (V1R) dans ledit premier plan longitudinal en retour vers ladite première sonde (20) et permettant à un signal (V2) de l'autre polarité, polarisé dans le deuxième plan longitudinal orthogonal audit premier plan, de circuler le long du guide d'ondes (14) ;
    une deuxième sonde (24) située en aval desdits moyens réflecteurs (22) et s'étendant à partir d'une paroi dudit guide d'ondes à l'intérieur du guide d'ondes et se trouvant dans ledit premier plan longitudinal ;
    des moyens de réflexion et de rotation (30), comprenant un court-circuit (32) à l'extrémité du guide d'ondes, situé en aval de ladite deuxième sonde (24) pour recevoir, tourner et réfléchir l'autre polarité (V2) en retour le long dudit guide d'ondes dans le premier plan longitudinal de manière que l'autre polarité tournée et réfléchie soit reçue par ladite deuxième sonde (24), lesdits moyens de réflexion et de rotation comprenant une plaque avec un bord d'attaque (34) sur celle-ci pour fournir au moins une portion de bord de réflexion pour réfléchir une première composante (V2P) de ladite autre polarité et permettant à une deuxième composante (V2O) de l'autre signal de polarité orthogonale à la première composante de se propager le long du guide d'ondes (14) au-delà de la portion de bord de réflexion (34), la portion de bord de réflexion étant espacée à une distance désirée du court-circuit (32) à l'extrémité du guide d'ondes, caractérisé par
    une portion de déphasage différentiel (36, 38) disposée à proximité de la plaque (34), ladite portion de déphasage différentiel (36, 38) ayant une section transversale asymétrique par rapport à l'axe longitudinal, ladite portion de guide d'ondes différentiel formant une section de guide d'ondes avec une longueur d'onde de coupure différente vue par lesdites première composante réfléchie (V2PR) et deuxième composante réfléchie (V2OR) de ladite autre polarité (V2), de sorte que lesdites première et deuxième composantes (V2P, V2O) premièrement, et ladite autre polarité, sont déphasées les unes par rapport à l'autre dans la portion de déphasage différentiel (36, 38), puis réfléchies respectivement à partir de ladite portion de bord de réflexion et à partir dudit court-circuit pour former des première et deuxième composantes réfléchies (V2PR, V2OR) quand elles sont recombinées en fournissant un signal polarisé dans le premier plan longitudinal (V2r) pour la détection par ladite deuxième sonde (24).
  2. Système de guide d'ondes selon la revendication 1, dans lequel lesdits moyens de réflexion et de rotation (30) présentent une unique portion de bord de réflexion (34) suivant la largeur du guide d'ondes.
  3. Système de guide d'ondes selon la revendication 1, dans lequel la portion de déphasage différentiel (36, 38) ayant une section transversale asymétrique est pourvue d'une structure asymétrique sous la forme d'au moins deux zones plates (36, 38) moulées à l'intérieur de la structure du guide d'ondes (14).
  4. Système de guide d'ondes selon la revendication 3, dans lequel chacune desdites zones plates comprend deux plats (36, 38) prévus à des positions opposées sur la surface interne du guide d'ondes (14), un plat étant un plat d'amont (36) plus proche de l'entrée du tube de guide d'ondes et l'autre plat étant un plat d'aval (38) plus loin de l'entrée du tube, les deux plats étant parallèles l'un par rapport à l'autre et s'étendant le long du guide d'ondes sur chaque côté de la plaque du réflecteur.
  5. Système de guide d'ondes selon la revendication 1, dans lequel la section transversale asymétrique est fournie par un guide d'ondes elliptique (26).
  6. Système de guide d'ondes selon la revendication 4, dans lequel les plats d'amont (36) sont usinés ou moulés de manière plus espacés que les plats d'aval (38) en créant ainsi une structure d'adaptation d'impédance, ladite section de déphasage différentiel formant une section de guide d'ondes avec une longueur d'onde de coupure différente vue par ladite première composante (V2P) et ladite deuxième composante (V2O) de ladite autre polarité V2.
  7. Système de guide d'ondes selon la revendication 1, dans lequel la portion de déphasage différentiel de guide d'ondes est définie par au moins deux paires de plats à gradins.
  8. Système de guide d'ondes selon la revendication 1, dans lequel la section transversale asymétrique est définie par une transition lisse le long du guide d'ondes.
  9. Système de guide d'ondes selon la revendication 8, dans lequel la transition lisse est moulée dans le côté du guide d'ondes parallèlement à la portion de bord de réflexion.
  10. Système de guide d'ondes selon la revendication 1, dans lequel au moins une protubérance (40, 42) est prévue sur la plaque de réflexion (30) pour supprimer toutes les augmentations brusques de la perte d'insertion qui se produisent dans la bande de fréquence désirée.
  11. Procédé de réception d'au moins deux signaux polarisés dans des plans orthogonaux sous la forme d'une polarité et d'une polarité orthogonale, lesdits signaux étant dans une plage de fréquences dans un unique guide d'ondes qui fournit au moins deux sorties dans un premier plan longitudinal pour fournir une réponse de perte d'insertion plus plate sur la plage de fréquence, ledit procédé comprenant les étapes consistant à :
    prévoir une première sonde dans ledit guide d'ondes pour recevoir ladite première polarité provenant d'une entrée du guide d'ondes ;
    prévoir des moyens réflecteurs dans ledit guide d'ondes, parallèles mais espacés de ladite sonde selon une direction encore plus en aval de ladite première sonde, pour réfléchir ladite une polarité et pour permettre le passage de ladite autre polarité ;
    prévoir une deuxième sonde dans ledit guide d'ondes, parallèle et en aval desdits moyens de réflexion, ladite deuxième sonde étant sensiblement orthogonale à ladite autre polarité qui traverse la deuxième sonde sans être reçue par la deuxième sonde ;
    prévoir des moyens de réflexion et de rotation à l'extrémité du guide d'ondes pour réfléchir une première composante de ladite autre polarité en retour vers ladite deuxième sonde, lesdits moyens de réflexion et de rotation étant formés en combinant une portion de déphasage différentiel et une plaque de réflexion, ladite première composante de ladite autre polarité étant réfléchie par la plaque de réflexion pour former une première composante réfléchie
    permettre à une deuxième composante de ladite deuxième polarité de se propager vers un court-circuit de guide d'ondes à travers la portion de déphasage différentiel ;
    réfléchir ladite deuxième composante à partir dudit court-circuit de guide d'ondes pour former une deuxième composante réfléchie, ladite portion de guide d'ondes différentiel ayant une section transversale asymétrique par rapport à l'axe longitudinal, ladite portion de guide d'ondes différentiel formant une section de guide d'ondes avec une longueur d'onde de coupure différente vue par ladite première composante réfléchie et par ladite deuxième composante réfléchie de ladite autre polarité ;
    déphaser les première et deuxième composantes l'une par rapport l'autre dans la portion de déphasage différentiel dans une direction vers le court-circuit et déphaser les premières et deuxième composante réfléchies dans la section de déphasage différentiel ;
    recombiner lesdites première et deuxième composantes réfléchies de ladite deuxième polarité pour créer une polarité réfléchie recombinée, ladite polarité réfléchie recombinée étant dans le premier plan longitudinal, lesdites première et deuxième composantes réfléchies de la polarité ayant un changement de phase inverse avec des caractéristiques de fréquence qui se combinent pour créer ladite réponse de perte d'insertion plus plate sur ladite plage de fréquence.
  12. Procédé selon la revendication 11, dans lequel un déphasage entre les première et deuxième composantes du signal orthogonal est introduite en orientant la section de déphasage différentiel à 45° par rapport au signal incident.
  13. Procédé selon la revendication 11, comprenant l'étape consistant à prévoir des protubérances sur la plaque de réflexion pour minimiser des augmentations brusques de la perte d'insertion dans la bande de fréquences concernée.
EP97940233A 1996-09-09 1997-09-09 Guide d'ondes ameliore pour systeme de sonde de polarisation double Expired - Lifetime EP0935821B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9618744.8A GB9618744D0 (en) 1996-09-09 1996-09-09 Improved waveguide for use in dual polarisation probe system
GB9618744 1996-09-09
PCT/GB1997/002428 WO1998010479A1 (fr) 1996-09-09 1997-09-09 Guide d'ondes ameliore pour systeme de sonde de polarisation double

Publications (2)

Publication Number Publication Date
EP0935821A1 EP0935821A1 (fr) 1999-08-18
EP0935821B1 true EP0935821B1 (fr) 2003-06-18

Family

ID=10799613

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97940233A Expired - Lifetime EP0935821B1 (fr) 1996-09-09 1997-09-09 Guide d'ondes ameliore pour systeme de sonde de polarisation double

Country Status (6)

Country Link
EP (1) EP0935821B1 (fr)
CN (1) CN1232577A (fr)
AU (1) AU4214097A (fr)
DE (1) DE69722950T8 (fr)
GB (1) GB9618744D0 (fr)
WO (1) WO1998010479A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9900411D0 (en) 1999-01-08 1999-02-24 Cambridge Ind Ltd Multi-frequency antenna feed
EP3561946B1 (fr) * 2018-04-27 2021-09-01 Nokia Shanghai Bell Co., Ltd. Polarisateur double bande

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3020514A1 (de) * 1980-05-30 1981-12-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Antennenspeisesystem fuer eine nachfuehrbare antenne
GB9113090D0 (en) * 1991-06-18 1991-08-07 Cambridge Computer Dual polarisation waveguide probe system
JPH07321502A (ja) * 1994-05-20 1995-12-08 Fujitsu General Ltd 直線偏波用一次放射器
JP2636750B2 (ja) * 1994-09-12 1997-07-30 日本電気株式会社 直交偏分波器
JPH08125403A (ja) * 1994-10-20 1996-05-17 Fujitsu General Ltd 一次放射器

Also Published As

Publication number Publication date
GB9618744D0 (en) 1996-10-23
EP0935821A1 (fr) 1999-08-18
DE69722950T8 (de) 2004-09-16
DE69722950T2 (de) 2004-05-13
DE69722950D1 (de) 2003-07-24
AU4214097A (en) 1998-03-26
CN1232577A (zh) 1999-10-20
WO1998010479A1 (fr) 1998-03-12

Similar Documents

Publication Publication Date Title
US6720932B1 (en) Multi-frequency antenna feed
US4527165A (en) Miniature horn antenna array for circular polarization
CA2678530C (fr) Ensemble d'excitation compact pour la generation d'une polarisation circulaire dans une antenne et procede d'elaboration d'un tel ensemble d'excitation compact
US5619173A (en) Dual polarization waveguide including means for reflecting and rotating dual polarized signals
FR2623020A1 (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
CA2696279C (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
EP0627128A1 (fr) Structures de source primaire double mode/double bande
FR2763749A1 (fr) Source d'antenne pour l'emission et la reception d'ondes hyperfrequences polarisees
RU93058597A (ru) Устройство и способ приема по меньшей мере двух поляризованных в ортогональной плоскости сигналов, блок-приемник, содержащий волновод, волновод и способ его изготовления
US5212461A (en) Orthomode transducer between a circular waveguide and a coaxial cable
US4622524A (en) Dual band polarization filter comprising orthogonally oriented fin-type conductors
EP0815611A1 (fr) Systeme de sonde a guide d'ondes a double polarisation ameliore
EP0935821B1 (fr) Guide d'ondes ameliore pour systeme de sonde de polarisation double
EP0467818B1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
US7304552B2 (en) Waveguide for use in dual polarisation probe system having a signal reflector and rotator provide differential phase shift
US7215222B2 (en) Dual polarization waveguide probe system with wedge shape polarization rotator
FR2463520A1 (fr) Reseau quadriporte pour la separation de deux signaux constitues par des bandes de frequences a double polarisation
FR2742262A1 (fr) Filtre pseudo-elliptique dans le domaine millimetrique realise en technologie guide d'ondes
EP0757403A1 (fr) Dispositif de couplage magnétique entre un conducteur principal d'une ligne TEM et un guide d'ondes formant résonateur en gamma g/2
WO2000070704A1 (fr) Rotateur a polarisation de guide d'ondes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAIRD, ANDREW, PATRICK

17Q First examination report despatched

Effective date: 19991109

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CHANNEL MASTER LIMITED

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030618

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030618

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69722950

Country of ref document: DE

Date of ref document: 20030724

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031223

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040319

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070906

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070905

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080909