EP0930406A2 - Unterboden - Google Patents
Unterboden Download PDFInfo
- Publication number
- EP0930406A2 EP0930406A2 EP99100663A EP99100663A EP0930406A2 EP 0930406 A2 EP0930406 A2 EP 0930406A2 EP 99100663 A EP99100663 A EP 99100663A EP 99100663 A EP99100663 A EP 99100663A EP 0930406 A2 EP0930406 A2 EP 0930406A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- screed
- layer
- fleece
- separating layer
- underbody according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009413 insulation Methods 0.000 claims abstract description 81
- 239000000463 material Substances 0.000 claims abstract description 23
- 239000004744 fabric Substances 0.000 claims abstract description 14
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 8
- 239000004567 concrete Substances 0.000 claims abstract description 5
- 230000007704 transition Effects 0.000 claims abstract description 5
- 239000000835 fiber Substances 0.000 claims abstract description 4
- 239000011490 mineral wool Substances 0.000 claims abstract description 3
- 239000002984 plastic foam Substances 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 25
- 230000002787 reinforcement Effects 0.000 claims description 18
- 239000004568 cement Substances 0.000 claims description 15
- 229910052602 gypsum Inorganic materials 0.000 claims description 10
- 239000010440 gypsum Substances 0.000 claims description 10
- 238000009423 ventilation Methods 0.000 claims description 9
- 239000004033 plastic Substances 0.000 claims description 7
- 238000004873 anchoring Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 52
- 230000015572 biosynthetic process Effects 0.000 description 21
- 230000008901 benefit Effects 0.000 description 19
- 230000006378 damage Effects 0.000 description 17
- 238000005452 bending Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000009434 installation Methods 0.000 description 13
- 239000004746 geotextile Substances 0.000 description 11
- 238000010276 construction Methods 0.000 description 10
- 238000007667 floating Methods 0.000 description 9
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 239000011707 mineral Substances 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 239000003570 air Substances 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 238000004026 adhesive bonding Methods 0.000 description 4
- 229910052925 anhydrite Inorganic materials 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000009408 flooring Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/12—Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
Definitions
- the invention relates to an underbody as described in the preamble of claim 1.
- This type of screed application is on the one hand necessary to apply the screed as a floating screed without the Thermal insulation is penetrated or partially penetrated with screed material.
- This absolutely necessary sealing trough for liquid screed is a processing aid an advantage when applying the screed, but subsequently this tub, which is waterproof and almost steamproof, is a great difficulty
- the screeds can only be upwards and not to the side or dry out downwards.
- Coverings on the screed come through this sealing pan with suitable Temperatures for the formation of vapor pressure and subsequently for the formation of bubbles under the vapor-tight floor coverings, or for decomposition and softening of used fillers and adhesives.
- any residual moisture in the screed was present when laying, can only condense under the flooring, if it is vapor-retardant or vapor-tight. It comes through with wooden coverings Moisture penetration from the screed to expand and thus lift off of these wooden floors. On the one hand, measuring the residual moisture is not without destruction of the screed and on the other hand this measurement is so complicated it namely must be carried out precisely to the moisture from the bottom of the screed, so that mistakes are made here and again and again the damage is actually preprogrammed. Due to ever shorter construction times the frequency of damage. The damage is particularly noticeable in screeds, the surface of which is not waterproof, e.g. Plaster or anhydrite screed.
- these gypsum anhydrite screeds have great advantages because they do not shrink like cement screeds, but remain stable, rather stretch on the other hand, it is precisely the fact that the surface is not water-resistant is a preprogrammed one with the current method of laying the sealing tray system System damage. With cement screeds, however, the shrinkage leads to setting again and again for crack formation. These cracks separate the screed slab from each other and now lead to a height shift when walking or using the screed. It will therefore in the following the flooring system used by the one below Tear a tear that is mobile, too.
- a repair is then only very complex, by removing the floor covering, resinifying the cracks using epoxy resin and inserting metal bars, which then move after hardening of the resin prevent the plates, possible. Then on the repaired surface must again a new floor covering will be applied.
- the surface damage caused by condensation are minimal for cement screeds because the surface of the screed is water-resistant is. If the filler and adhesive system used is now suitable, it comes Even with relatively large amounts of residual moisture, no damage from condensation. Only the steam pressure created by the sealing trough also leads here with cement screeds to damage the floor coverings.
- the current screed laying systems therefore have serious shortcomings due to the formation of vapor pressure. The drying out can only be done on one side, namely upwards.
- the plate parts move differently, causing damage in the flooring and thus a different height, i.e. a step arises.
- the Residual moisture or reaching the leveling moisture of the screed can only can be measured by destroying the screed for sampling.
- An embarrassment before reaching the equilibrium moisture is due to the risk of vapor pressure not possible. Due to the fact that the drying out of cement screeds only from above the screed gets dry earlier and starts to shrink, while he is below, but especially in the area of meeting with the sealing pan, is still wet, i.e. the screed contracts at the top, it has at the bottom due to moisture a longer length and the screed breaks open.
- the underfloor heating can only be attached so that the sealing trough is pierced in order to fasten the pipes down with fastening elements.
- a floating of the heating pipes, whose weight difference is more than 1 kg per liter to the screed cannot be prevented with certainty.
- Another The shortcoming is that with the punctured sealing trough also screed in the thermal insulation can penetrate and their thermal insulation and sound properties is lowered or canceled.
- edge insulation strip seals between The screed and wall are vapor-tight, especially if they are sound-absorbing Ethylene foams or other plastic foams, and in particular for screeds that stretch, such as gypsum anhydrite screeds.
- the edge insulation strip can also be used only partially used and considered as sound insulation. In the further consequence, if he is squeezed more and more, he loses his soundproofing property. In any case, it always closes to the side in a vapor-tight manner down and no moisture from the area under the screed (fill, Thermal insulation).
- Edge insulation strips Since the edge insulation strips always between Screed and wall remain, are as cheap as possible and therefore inferior in quality Edge insulation strips used. They represent a big factor in the calculation because they always remain in the floor system. Because of the lower quality there is a wavy laying of the edge insulation strip, rounded parts and door frames and thus for poorer sound and heat insulation.
- the object of the invention is now to create a sub-floor for buildings, etc. which takes into account the ever shorter construction times and without a later one Damage caused by insufficient drying and impairment of the Sound and thermal insulation effect a short-term completion of the structures, e.g. the application of floor coverings, etc. enables. This is an increase in quality and cost savings in buildings.
- the surprising advantage lies in an undisturbed Rapid removal of moisture, which is approximately the entire thickness of the screed is done evenly so that the dehumidification is faster and thus formation of cracks, breakdown etc. is avoided. It is also advantageous that through the use of the liquid and vapor permeable reinforcement layer the capillaries in the screed are also ventilated from the underside of the screed stay and so that the water can migrate in the capillaries and as a result of Capillary action, according to the physical law of the same density, can do that in water collected in the capillaries migrate towards the two surfaces and be released into the ambient air.
- training according to claim 2 is also advantageous because it penetrates of the relatively liquid screed applied in deeper layers, in particular in the thermal insulation layer, is effectively prevented.
- an underbody 1 according to the invention is shown.
- a base course 2 e.g. made of concrete, fill material, etc.
- an insulation layer 3 for Heat and / or sound insulation arranged on a base course 2, e.g. made of concrete, fill material, etc.
- thermal insulation can only be good vapor-permeable thermal insulation materials are used.
- a separating layer 4 is laid on this breathable Thermal insulation, e.g. bound polystyrene beds, bound pearlite beds, bound heat-empties, rock wool insulation boards or others vapor-permeable thermal insulation.
- the separation layer 4 consists of a liquid and vapor permeable material, e.g. a knitted fabric from fibers and threads, in particular a fleece 5 or also liquid and vapor permeable, water-resistant scrim, fabric or paper.
- the separating layer 4 can also be introduced immediately placed on the bed or after the introduction of bound beds, e.g. a cement-bound fill, to be placed on this.
- bound beds e.g. a cement-bound fill
- a dehydration can be done through the fleece 5.
- this fleece 5 protects the introduced Thermal insulation against damage by walking.
- the laid fleece 5 can either be sufficiently overlapped, or thermally or mechanically connected become.
- a continuous non-woven carpet lies over the bound bed. This can be damaged shortly after insertion, at least before drying out be committed.
- a screed 6 is placed on the separating layer 4 to form the subfloor 1 as a flowing screed to achieve a flat surface 7 according to known methods upset.
- a special edge training 8 is in the connection area of the Screed 6 is provided on a wall part 9 running perpendicular to the base layer 2.
- This edge formation 8 includes a running along the wall part 9
- Edge insulation strip 10, which in the exemplary embodiment shown as a ventilation element 11 is formed. This is formed from a hollow chamber profile 12, which two parallel and interconnected at a distance 13 and via webs 14, strip-shaped, in the direction of the longitudinal extent of the wall part 9 extending belt bars 15 has.
- the liquid and vapor permeable material e.g. the fleece 5
- FIG. 3 it forms on the insulation layer 3 arranged separating layer 4, e.g. the fleece 5, a 6 when applying the screed Transition layer 21, in which the screed 6 penetrates into the separating layer 4 in some areas and binds together during hardening, so that we speak of a bond can and the separating layer 4 is a reinforcing layer 22 through which the Strength of the screed 6, especially for absorbing tensile loads - according to a double arrow 23 - on a lower surface 24, which is caused by pressure loads - according to an arrow 25 - occur on the surface 7, is increased.
- the separating layer 4 is a reinforcing layer 22 through which the Strength of the screed 6, especially for absorbing tensile loads - according to a double arrow 23 - on a lower surface 24, which is caused by pressure loads - according to an arrow 25 - occur on the surface 7, is increased.
- a separating layer 4 for forming the reinforcement layer 22 has been a nonwoven used in civil engineering under the name Geo-Vlies, preferably with a thickness between 0.1 mm and 7.0 mm and a basis weight between 10 g / m 2 and 2000 g / m 2 .
- Fig. 3 it is further shown that the moisture transport from the screed 6th evenly over a thickness 26 in addition to the removal of moisture in the Surface of the separating layer 4 and via the ventilation elements 11 by capillary action, of the capillaries 27 that form in the screed 6. Pull these capillaries 27 through the screed 6 in its thickness 26. Because on the lower surface 24 of the screed 6 the liquid and vapor permeable fleece 5 air access to the capillaries 27 enables, as a result of the capillary action, the one present in the capillaries 27 increases Moisture in the direction of the two surfaces 7, 24 and evaporates into the ambient air. This creates the even and quick drying effect through which the formation of cracks, bowls etc. is effectively avoided.
- the edge insulation strips used 10 are compressible.
- edge insulation strips 10 stand by themselves, are straight and you have beautiful corner designs, can produce both inside and outside corners. Compressible are the multi-wall sheets so that they are pulled out again after laying the screed 6 can be.
- a geotextile strip now the screed pan is formed towards the edge insulation strip 10. This happens through Overlap of the geo-fleece, which is laid flat, with this strip an overlap width of at least 15 cm and pulling up this edge insulation strip 10. This creates a continuous trough made of geo-fleece.
- vapor-permeable materials such as fabrics, fleeces, scrims, Tissue,. but also suitable papers can be used.
- the enormous advantage in the use of geosheets is that when the screed 6 cracks, the cracks due to the geotextile there is no vertical offset between the plate parts. That with Screed material penetrated geovlies prevents this height shift.
- joints 28 of the cuts and separations are extremely important.
- the screed 6 can be separated for sound-related reasons, to a height offset it doesn’t happen anyway.
- Screeds are only ever subjected to bending tension, you step onto the screed, which means this bends. This creates a train in the screed material. Support on the lower surface, namely on the surface on which the screed most stretching is a huge advantage.
- the values of resilience of the geofleece can be determined by tests and thus specified and guaranteed become.
- the screed will now act as a load distribution plate and can Load on train can be absorbed and fulfilled by this geotextile. Especially This is the case for screeds that are poorly compacted and moist enormous advantage and offers unsurpassed security.
- the insulation layer 3 is applied to the base layer 2.
- the separating layer 4, consisting of the fleece 5, is arranged on this.
- underfloor heating pipes 30 are laid.
- the underfloor heating pipes 30 are fastened to the fleece 5 with a fastening means 31, for example made of wires, curved hooks 32 or fleece strips.
- the fleece strips can be thermally connected to the fleece 5.
- the hooks 32 and non-woven strips can be designed so that with the introduction of the screed 6, floating up to a height 33 predetermined by the length of the hooks 32 over the lower surface 24 is possible, the height 33 being predeterminable in accordance with the thickness 26 is.
- a fastening is also possible in which the underfloor heating pipes 30 rest directly on the fleece 5, wherein a thermal connection or gluing of the underfloor heating pipes 30 on the fleece 5 is also possible for the fastening.
- the floating is also prevented in that the mesh size of the fleece 5 is smaller than the grains of sand and thus the total weight of the screed 6 at 5 cm is about 100 kg / m 2 , the fleece presses down and the mechanically or thermally on the fleece 5 attached floor heating pipe 30 can no longer rise due to its weight difference. The exact positioning in height can therefore be guaranteed.
- the underfloor heating pipes 30 can either be fastened in such a way that the underfloor heating pipe 30 comes to rest directly on the geofleece, that is to say on the lower surface 24 of the screed 6, or the fastening can be chosen so that the pipe floats a few mm or cm can and then comes to rest at the intended height 33 horizontally flat in the screed 6.
- liquid screeds made from a mixture of sulfatic-hydraulic binders, i.e. gypsum and cement.
- sulfatic-hydraulic binders i.e. gypsum and cement.
- Etringit is formed immediately after the mixing process, i.e. shortly after leaving the mixing plant and the delivery hoses.
- Etringite crystals the number of which can be determined by the C3A and sulfate present in the screed, now prevent the liquid screed from running through this water- and vapor-permeable geotextile.
- the self-leveling screed envelops this geo-fleece, but does not penetrate into the subsurface. This is prevented with absolute certainty by the formation of the etringite.
- the suitable sieve line of the sands also prevents this geo-fleece layer from flowing through.
- the edge insulation strips multi-wall sheet strips
- the screed 6 can now release water both upwards and downwards. A quicker drying out and, above all, drying out immediately on the lower surface 24 of the self-leveling screed, but also laterally towards the edge insulation strips, can take place. A reduction in the drying time (construction costs) is guaranteed. The moisture can escape through the thermal insulation and additionally through the gap when the edge insulation strips are removed.
- the formation of vapor pressure when laying vapor-tight or vapor-resistant floor coverings is excluded. If screeds 6 with a water-resistant surface have now been introduced or used, the laying of vapor-tight coverings can be started long before the equilibrium moisture level is reached with a suitable coat on the screed surface.
- the paint on the surface 7 of the screed 6 must have such a high diffusion resistance factor that the screed 6 dries out downwards and sideways.
- the use of thicker nonwovens in starches leads to a significant improvement not only in the flexural tensile strength of the screed 6 and thus the load-bearing capacity, but also in a substantial improvement in the sound insulation.
- the fleece 5 used can be used to achieve the required sound insulation and bending tensile strength by suitable selection.
- a further enormous advantage of the geofleece is that the geofleece protects the thermal insulation, which is supposed to be sound and heat insulating and is therefore very soft, from damage caused by foot traffic.
- the geo-fleece and the use of a suitable screed 6 can cover the bed with a screed thickness of 2 cm, so that on the one hand this 2 cm mineral-bound mass can be used the F90 resistance, ie the fire safety of the system, is achieved; on the other hand, the use of geosoft and the formation of etringite means that the screed 6 has higher bending tensile and compressive strength, making these low installation heights possible, and yet the screed 6 can be walked on.
- conventional gypsum screeds, gypsum anhydrite screeds can also be laid with this laying system.
- the appropriate dixotropy can be achieved not only by the formation of etringite, but also by suitable thickeners.
- the system is characterized by the fact that the sand size of the coarse parts of the screed 6 is larger than the spaces between the fleece 5 or the fabric or scrim. This also results in the sealing of the fleece 5 downwards without the vapor permeability of the fleece 5 being restricted or hindered in any way.
- the mineral binder penetrates the fleece 5, the filler sand lies directly on the fleece 5, the diffusion downwards and sideways can take place unhindered.
- the principle of the tightness of the vapor permeable geo-fleece is based on the fact that the fleece 5 has a large surface that is dry, the liquid screed is poured in liquid and must immediately wet the surface when penetrating the fleece 5. As a result, so much water is released during the penetration that, in conjunction with the formation of etringite crystals or the thickeners, the flowability of the liquid screed is reduced so much that it becomes stable like a mortar.
- the self-leveling screed penetrates the geotextile and thus envelops it, but becomes stable in this geotextile by removing water.
- a screed 6 is always only subjected to tension. The greatest tensile load is always on the lower side, i.e.
- the opposite side of the load It is precisely on this opposite side, i.e. on the lower side of the liquid screed, that the geotextile reinforces the surface. Due to the previously described possibility that the self-leveling screed penetrates the entire geo-fleece, but then reaches its stability and can no longer flow, the entire fleece 5 is enveloped by the self-leveling screed, that is, integrated. The fleece 5 is therefore fully integrated into the screed as reinforcement, and that at the point most subjected to tension. The complete encapsulation by penetration of the self-leveling screed into the geofleece allows the total tensile strength of the fleece 5 to be additionally used as a reinforcing force.
- the geofleece is therefore an additional security as a bending tensile reinforcement and reinforcement to the liquid screed.
- This fleece reinforcement built up by the geofleece is an additional advantage, especially for floor heating screeds, because the guidance of the heating pipes reduces the bending tensile strength of the screed to zero in the area of the entire heating pipes. For this reason and also because the position of the pipes can never be determined exactly, a higher coverage of the underfloor heating pipes 30 is prescribed.
- This laying system with geovlies also offers the possibility of introducing thermal insulation in the form of leveling fillings under heavily used surfaces such as roadways, production halls, garages and the like, and despite this now soft, light and heat-insulating underlay, highly stressable floor structures that meet the requirements or to build and manufacture hall covering structures in a load-bearing, low-noise and functional manner.
- Another advantage of the Geovlies installation system is that there is no wrinkling, as in film installation. It is precisely these folds that cut the screed 6 in its strength and produce predetermined breaking points at which cracks must inevitably result either from drying out and thus shrinkage of the screed 6 or under load.
- the joints 28, whatever the width, can be cut easily and dust-free with little energy and tool wear and both expansion joints and construction joints can be produced without the resulting Panels can move differently from one another, ie they do not have any height offset due to the continuous geo-fleece.
- One way to increase the friction energy of the fleece 5 to the base, bed or thermal insulation is given if the fleece 5 is glued to the bed or thermal insulation.
- a very pressure-resistant, good heat-insulating but not sound-insulating layer can be applied to a very good sound-insulating but poorly heat-insulating coating in suitable thicknesses, this bonded geo-fleece or the integrated fabric can be applied. Now the floor structure is ready, the floor covering can already be applied. In this case there is no need to apply a screed 6. Due to the possibility of different layer thicknesses, it is possible to meet all the requirements for sound and thermal insulation by means of two separate fillings and, at the same time, by applying the harder and therefore heat-insulating but poorly sound-insulating layer to the top, using geosoft or reinforce the fabric and immediately start laying the floor. Each one for sound insulation,
- Thermal insulation, fill as well as reinforcement used product is regarding design of their materials for the particular respective requirements. Any of these Products must meet the special requirements placed on them. Through the Combination of these properties given by each material can then through a hard bed or thermal insulation on top of the insertion a screed 6 can be dispensed with.
- the height gained in the construction can be improved Sound or thermal insulation, or better compressive strength can be used, or it is possible to dispense with this height in the building and there is one Construction cost and space saving.
- the elimination of the film is the guarantee for one unimpeded vapor diffusion and the elimination of the vapor pressure formation leading to damage in the screed 6.
- FIG. 6 A further embodiment of the underbody 1 according to the invention is shown in FIG. 6.
- This separating layer 4 consists e.g. from the fleece 5 or a woven fabric, knitted fabric, etc.
- Anchoring elements 34 e.g. Bracket 35 made of wire, etc., with U-shaped angled legs 36 and molded in the end regions therefrom Hook 37 hooked.
- buoyancy bodies 39 on the bracket 35 provided that e.g. consist of plastic balls, etc., which have a smaller density have as the screed 6.
- a reinforcing mesh and / or fabric 40 may be inserted.
- this reinforcing mesh and / or mesh 40 also - as already described - Buoyancy body 39 and is optionally spacer after floating when installing the screed 6 at a predetermined distance from Fleece 5 distanced.
- FIGS. 1, 2, 3; 4; 5; 6 versions shown form the subject of independent solutions according to the invention.
- the related, Tasks and solutions according to the invention are the detailed descriptions can be seen from these figures.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
- Floor Finish (AREA)
Abstract
Description
- Fig. 1
- einen erfindungsgemäßen Unterboden in Ansicht, geschnitten gemäß den Linien I-I in Fig. 2;
- Fig. 2
- den erfindungsgemäßen Unterboden, geschnitten gemäß den Linien II-II in Fig. 1;
- Fig. 3
- einen Teilbereich des erfindungsgemäßen Unterbodens in Ansicht geschnitten;
- Fig. 4
- den erfindungsgemäßen Unterboden im Bereich einer Trennfuge in Ansicht geschnitten;
- Fig. 5
- den erfindungsgemäßen Unterboden mit in diesem eingebauten Heizungsrohren;
- Fig. 6
- eine weitere Ausbildung des erfindungsgemäßen Unterbodens mit Verankerungselementen zur Erhöhung der Tragfähigkeit, in Ansicht geschnitten.
- 1
- Unterboden
- 2
- Tragschichte
- 3
- Dämmschichte
- 4
- Trennlage
- 5
- Vlies
- 6
- Estrich
- 7
- Oberfläche
- 8
- Randausbildung
- 9
- Wandteil
- 10
- Randdämmstreifen
- 11
- Ventilationselement
- 12
- Hohlkammerprofil
- 13
- Abstand
- 14
- Steg
- 15
- Gurtstab
- 16
- Luftführungskanal
- 17
- Stirnfläche
- 18
- Trennlage
- 19
- Basisschenkel
- 20
- Schenkel
- 21
- Übergangsschichte
- 22
- Armierungsschichte
- 23
- Doppelpfeil
- 24
- Oberfläche
- 25
- Pfeil
- 26
- Dicke
- 27
- Kapillare
- 28
- Fuge
- 29
- Streifen
- 30
- Fußbodenheizungsrohr
- 31
- Befestigungsmittel
- 32
- Haken
- 33
- Höhe
- 34
- Verankerungselement
- 35
- Bügel
- 36
- Schenkel
- 37
- Haken
- 38
- Mittelbereich
- 39
- Auftriebskörper
- 40
- Armierungsgitter und/oder -gewebe
Claims (19)
- Unterboden mit einer auf einer Tragschichte, z.B. aus Beton, Beschüttungsmaterial, etc., angeordneten Dämmschichte, z.B. aus Kunststoffschaumplatten, Steinwollplatten, etc. und mit einem auf einer auf der Dämmschichte aufgelegten Trennlage angeordneten Estrich aus aushärtbarem Material, z.B. Beton, insbesondere Fließestrich und mit einer längs einer einem Wandteil zugewandten Stirnfläche angeordneten Dämmlage, dadurch gekennzeichnet, daß die Trennlage (4) aus einer aus flüssigkeits- und dampfdurchlässigen Materialien gebildeten Armierungsschichte (22), z.B. Gewirke aus Fasern und Fäden, wie Vlies (5), Gelege, Gewebe, Papier, besteht und die Trennlage (4) und der Estrich (6) in einer Übergangsschichte (21) haftend miteinander verbunden sind.
- Unterboden nach Anspruch 1, dadurch gekennzeichnet, daß eine Porengröße bzw. Maschenweite der Fasern und Fäden der Trennlage (4) kleiner ist als eine Mittelkorngröße des aushärtbaren Materials.
- Unterboden nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zwischen dem Wandteil (9) und einer diesem zugewandten Stirnfläche (17) des Estrichs (6) bzw. der Stirnfläche (17) und einer längs des Wandteils (9) verlaufenden Dämmlage eine streifenförmige, weitere Trennlage (4) aus dem flüssigkeits- und dampfdurchlässigen Material angeordnet ist.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die längs des Wandteils (9) bzw. der Dämmlage verlaufende, streifenförmige Trennlage (4) aus einem am Wandteil (9) bzw. der Dämmlage hochgezogenen Schenkel (20) aus dem luftdurchlässigen Material gebildet ist, der mit einem dazu rechtwinkelig verlaufenden Basisschenkel (19) die zwischen Estrich (6) und Dämmschichte (3) angeordnete Trennlage (4) überlappt.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Höhe des längs des Wandteils (9) verlaufenden Schenkels (20) der Trennlage (4) größer oder gleich einer Dicke (26) des Estrichs (6) ist.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Überdeckungsbereich des Basisschenkels (19) mit der Trennlage (4) eine Breite von in etwa 5 cm bis 40 cm, bevorzugt 15 cm bis 20 cm, beträgt.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die längs des Wandteils (9) verlaufende Dämmlage als Ventilationselement (11) ausgebildet ist und in zur Dämmschichte (3) senkrechter Richtung Luftführungskanäle (16) aufweist.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ventilationselement (11) aus einem in Richtung der Dicke (26) des Estrichs (6) verlaufenden Profil, insbesondere einem extrudierten Kunststoffprofil, gebildet ist.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Ventilationselement (11) zwei parallel zueinander verlaufende Gurtstäbe (15) aufweist, welche über rechtwinkelig dazu verlaufende Stege (14) zueinander beabstandet angeordnet sind.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Höhe des Ventilationselementes (11) größer oder gleich der Dicke (26) des Estrichs (6) ist.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das aushärtbare Material des Estrichs (6) aus einer Mischung aus sulfatischem und hydraulischem Material, z.B. Gips und Zement, besteht, bevorzugt mit einem Gipsanteil größer als der Zementanteil, insbesondere doppelt so hoch.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Flächengewicht der Trennlage (4) zwischen 10 g/m2 und 2000 g/m2 beträgt.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Dicke der Trennlage (4) zwischen 0,1 mm und 7,0 mm, insbesondere 3,0 mm beträgt.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trennlage (4) auf einer von einer Oberfläche (7) des Estrichs (6) abgewandten unteren Oberfläche (24) eine Armierungsschichte (22) zur Aufnahme von an der unteren Oberfläche (24) durch Druckbelastungen auf der Oberfläche (7) auftretenden Zugbelastungen ausbildet.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Dicke (26) des Estrichs (6) zwischen 2 cm und 10 cm, bevorzugt 5 cm beträgt.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trennlage (4) eine Verankerungsschichte für im Estrich (6) angeordnete Rohre, Schläuche, etc., z.B. Fußbodenheizungsrohre (30), ausbildet.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Ausbildung der Armierungsschichte (22) die Trennlage (4) mit Verankerungselementen (34), z.B. im Vlies (5) einhängbaren Bügeln (35), versehen ist, die in dem aushärtbaren Material, z.B. Estrich (6), bewegungsfest verankert sind.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bügel (35) im wesentlichen U-förmig ausgebildet sind und mit in Endbereichen von Schenkeln (36) angeordneten Haken (37) im Vlies (5) befestigt sind.
- Unterboden nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in einem Mittelbereich (38) des U-förmigen Bügels (35) ein Auftriebskörper (39) angeordnet ist.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT5198 | 1998-01-16 | ||
| AT5198 | 1998-01-16 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0930406A2 true EP0930406A2 (de) | 1999-07-21 |
| EP0930406A3 EP0930406A3 (de) | 2000-02-23 |
Family
ID=3480238
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP99100663A Withdrawn EP0930406A3 (de) | 1998-01-16 | 1999-01-15 | Unterboden |
Country Status (1)
| Country | Link |
|---|---|
| EP (1) | EP0930406A3 (de) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2374768A3 (de) * | 2010-04-08 | 2013-01-16 | Uzin Utz AG | Fußbodenuntergrund |
| EP2940230A1 (de) * | 2014-04-30 | 2015-11-04 | Sika Technology AG | 3D-Gewebe für schwimmende Fussbodenkonstruktionen |
| DE102017201841A1 (de) | 2017-02-06 | 2018-08-09 | Ralf Gebauer | Bodenplattenaufbau oder Geschossdeckenaufbau und Verfahren zur Herstellung oder Trocknung |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2370145A1 (fr) * | 1976-11-05 | 1978-06-02 | Asphaltes Cie Metropolitaine | Procede pour assurer l'etancheite des toitures-terrasses destinees a supporter le stationnement et la circulation des vehicules automobiles |
| EP0005774B1 (de) * | 1978-05-26 | 1981-01-28 | Emil Dier | Plattenförmige Heiz- und/oder Kühleinheit |
| US4503107A (en) * | 1982-07-28 | 1985-03-05 | W. R. Grace & Co. | Construction barrier board |
| EP0786570A4 (de) * | 1994-10-11 | 1999-05-06 | Yuki Japan Co Ltd | Verfahren zum installieren einer fussbodenheizung |
-
1999
- 1999-01-15 EP EP99100663A patent/EP0930406A3/de not_active Withdrawn
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2374768A3 (de) * | 2010-04-08 | 2013-01-16 | Uzin Utz AG | Fußbodenuntergrund |
| EP2940230A1 (de) * | 2014-04-30 | 2015-11-04 | Sika Technology AG | 3D-Gewebe für schwimmende Fussbodenkonstruktionen |
| WO2015166002A1 (de) * | 2014-04-30 | 2015-11-05 | Sika Technology Ag | 3d-gewebe für schwimmende fussbodenkonstruktionen |
| AU2015254624B2 (en) * | 2014-04-30 | 2019-08-08 | Sika Technology Ag | 3D fabric for floating floor constructions |
| US10753087B2 (en) | 2014-04-30 | 2020-08-25 | Sika Technology Ag | 3D fabric for floating floor constructions |
| DE102017201841A1 (de) | 2017-02-06 | 2018-08-09 | Ralf Gebauer | Bodenplattenaufbau oder Geschossdeckenaufbau und Verfahren zur Herstellung oder Trocknung |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0930406A3 (de) | 2000-02-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE10159338B4 (de) | Bodenkonstruktion, die Verwendung einer derartigen Bodenkonstruktion sowie ein Verfahren zur Herstellung einer derartigen Bodenkonstruktion | |
| EP3128103B1 (de) | Entkopplungsmatte | |
| DE29622129U1 (de) | Neue Estrichunterlage | |
| EP1375780A1 (de) | Bahn- oder Plattenmaterial aus Kunststoff als Träger für Platten- oder Fliesenbeläge | |
| DE19913496C5 (de) | Bodendämmelement | |
| EP0930406A2 (de) | Unterboden | |
| EP1529141B1 (de) | Verfahren zur Sanierung von Gebäude-Aussenflächen sowie Bahn- oder Plattenmaterial zur Durchführung des Verfahrens | |
| DE20017574U1 (de) | Gebäudewandungsteile, insbesondere Wände, Böden, Decken o.dgl. sowie Elemente davon mit Dickstofffüllung | |
| EP1905920B1 (de) | Fußboden mit Fußbodenheizung | |
| EP2837752B1 (de) | Bodensystem und Herstellungsverfahren dafür | |
| DE102018115228A1 (de) | Diffusionsoffener Unterbau für Fußbodenheizungen aus Schaumglasschotter, insbesondere für hochwassergefährdete Gebiete | |
| DE19734698C2 (de) | Dielungsloser Fußboden für Holzbalkendecken und Verfahren zu seiner Herstellung | |
| DE20020316U1 (de) | Schalldämmende Trägerbahn für Bodenbeläge, insbesondere Plattenbeläge | |
| DE29921970U1 (de) | Plattenelement | |
| DE29613228U1 (de) | Estrichelement, insbesondere für den Hochbau | |
| EP1596028A2 (de) | Trockenestrichfussboden sowie bausatz für seine erstellung | |
| WO2013135682A1 (de) | Baubereichsbahn | |
| DE19754179C1 (de) | Schiene zum Anschließen einer Platte an eine mit einem Putz zu versehende und zur Platte senkrecht stehende Wand sowie Wandverkleidung für einen Raum mit derartiger Schiene | |
| CH683625A5 (de) | Einlage für Unterlagsböden, Putze oder Bauelemente. | |
| EP2210866B1 (de) | Dünnschichtige Heizestrichkonstruktion auf Trenn- und Dämmschicht | |
| EP0816566A2 (de) | Fussbodenkonstruktion | |
| DE1907009A1 (de) | Aus Einzelelementen zusammengesetzte Betondecke | |
| DE20321017U1 (de) | Wärmegedämmte Aufbauten auf Bauwerksflächen | |
| DE20202948U1 (de) | Bodenaufbau, insbesondere für Flachdächer, Balkone, Terrassen o.dgl. | |
| DE20321459U1 (de) | Wärmegedämmte Aufbauten auf Bauwerksflächen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE FR IT LI SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
| AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
| RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7E 04F 15/12 A, 7E 04B 1/70 B, 7F 24D 3/14 B |
|
| 17P | Request for examination filed |
Effective date: 20000822 |
|
| AKX | Designation fees paid |
Free format text: AT CH DE FR IT LI SE |
|
| AXX | Extension fees paid |
Free format text: RO PAYMENT 20000822;SI PAYMENT 20000822 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20010801 |