EP0929424A1 - Procede et dispositif de reacceleration d'un vehicule equipe de compresseurs d'air a haute pression - Google Patents

Procede et dispositif de reacceleration d'un vehicule equipe de compresseurs d'air a haute pression

Info

Publication number
EP0929424A1
EP0929424A1 EP97943945A EP97943945A EP0929424A1 EP 0929424 A1 EP0929424 A1 EP 0929424A1 EP 97943945 A EP97943945 A EP 97943945A EP 97943945 A EP97943945 A EP 97943945A EP 0929424 A1 EP0929424 A1 EP 0929424A1
Authority
EP
European Patent Office
Prior art keywords
tank
acceleration
compressed air
air
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97943945A
Other languages
German (de)
English (en)
Inventor
Guy Negre
Cyril Negre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MDI Motor Development International SA
Original Assignee
MDI Motor Development International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9496400&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0929424(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MDI Motor Development International SA filed Critical MDI Motor Development International SA
Publication of EP0929424A1 publication Critical patent/EP0929424A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • F01B17/025Engines using liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/10Engines with means for rendering exhaust gases innocuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to land vehicles and more particularly those equipped with depolluted or deplolling engines with independent combustion chamber.
  • the fuel injector is no longer controlled; in this case, a small amount of additional compressed air is introduced into the combustion chamber, substantially after the admission into the latter of the compressed air - without fuel - coming from the suction and compression chamber. coming from an external tank where the air is stored under high pressure, for example 200 bars, and at room temperature.
  • This small quantity of compressed air at room temperature will heat up in contact with the mass of high temperature air contained in the combustion or expansion chamber, will expand and increase the pressure prevailing in the chamber to allow deliver when the engine is triggered.
  • This type of dual-mode or dual-energy engine can also be modified for preferential use in the city, for example on all vehicles and more particularly on city buses or other service vehicles ( dumpster taxis, etc.), in single-air-compressed air mode, by eliminating all the engine operating elements with traditional fuel.
  • the engine only works in single mode with the injection of additional compressed air into the combustion chamber which thus becomes an expansion chamber.
  • the air drawn in by the engine can be filtered and purified through one or more carbon filters or other mechanical, chemical, molecular sieve, or other filters in order to produce a depolluting engine.
  • air in this text means "any non-polluting gas”.
  • the method according to the invention proposes another solution which makes it possible, moreover, to be able to have available during acceleration, a torque and an additional power reserve. It is characterized by the means used and more particularly by the fact that, during decelerations and braking, the high pressure compressor, which is actuated by a clutch or any other coupler, then serves as a retarder, or even a brake. by producing compressed air at high pressure, for example 200 bar and at high temperature. This compressed air is derived and stored in a heat-insulating tank or not, called a re-acceleration tank, where the compressed air is kept at high temperature and high pressure, to be used as soon as the vehicle is put back into action by injecting it into the chamber. engine combustion or expansion.
  • This compressed air having thus kept a maximum of its temperature and of its pressure due to the short duration of stay in the re-acceleration tank, is reinjected hot in the combustion chamber of the engine and provides considerably greater energy during delivery. in action or to resume the vehicle.
  • the capacity of the heat-insulating re-acceleration tank is produced as required, as well as the pressure of the air contained therein, and when the re-acceleration tank is full, the air is again diverted to the main tank
  • the re-acceleration reserve is carried out in a variable volume system in order to maintain, from the start of its filling, the compressed air which is stored there, at a pressure and at an almost constant temperature. , by a device assisted by mechanical, pneumatic, or hydraulic systems such as springs or others and more particularly by a device using compressed air under pressure in the main tank after having expanded it to a determined pressure.
  • This insulated, variable volume re-acceleration capacity thus prevents pressure and temperature drops from the compressed air as it is filled, and makes it possible to have at any time a quantity of air at the desired high pressure and at high temperature to allow the vehicle to be put back into action, without waiting for the re-acceleration capacity to be fully filled to reach the desired operating pressure (eg 100 bar).
  • the desired operating pressure eg 100 bar.
  • FIG. 1 shows a block diagram of an installation comprising a re-acceleration reserve according to the invention.
  • FIG. 2 shows a longitudinal section view, a similar installation with a re-acceleration capacity with variable volume and constant pressure and its pressure and temperature maintenance system.
  • FIG. 1 represents, schematically, a block diagram of the installation of a depolluting engine comprising a suction and compression chamber 1, a combustion or expansion chamber 2 at constant volume in which is installed an additional air injector 22 supplied with compressed air stored in a very high pressure tank 23 and an expansion and exhaust chamber 4.
  • the suction and compression chamber 1 is connected to the expansion or expansion chamber 2 by a conduit 5 of which opening and closing are controlled by a sealed flap 6.
  • the combustion or expansion chamber 2 is connected to the expansion and exhaust chamber 4 by a duct or transfer 7, the opening and closing of which are controlled by a sealed flap 8.
  • the suction and compression chamber 1 is supplied with air by an intake duct 13 whose opening is controlled by a valve 14 and, upstream of which is installed a carbon filter depolluting 24.
  • the suction and compression chamber 1 functions as a piston compressor assembly where a piston 9 sliding in a cylinder 10 is controlled by a connecting rod 11 and a crankshaft 12.
  • the expansion and exhaust chamber 4 controls a conventional assembly piston engine with a piston 15 sliding in a cylinder 16, which drives through a connecting rod 17 the rotation of a crankshaft 18.
  • the exhaust of the relaxed air being effected through a duct exhaust 19, the opening of which is controlled by a valve 20.
  • the rotation of the crankshaft 12 of the suction and compression chamber 1 is controlled through a mechanical connection 21 by the engine crankshaft 18 of the expansion and exhaust chamber 4.
  • the on-board compressor 25 has its air intake 26 in bypass on the engine intake duct 13 between the filter system 24 of the engine and the engine itself. During its rotation it will fill with compressed air through its exhaust duct 27, the high pressure compressed air reserves 23 installed on the vehicle.
  • the compressor 25 is driven by an electric motor 28 through a clutch 29 which is actuated for filling the reserves.
  • the compressor 25 is also connected to the transmission of the vehicle 30, also through a clutch 31 which will be actuated (engaged) during decelerations and braking, and will serve as engine brake allowing the vehicle to slow down and fill with high pressure compressed air. and high temperature, a re-acceleration tank 32, advantageously surrounded by a heat-insulating envelope 32A through a branch conduit 27A.
  • a valve 33 disposed on the exhaust duct of the compressor 27, diverts the flow of compressed air to this re-acceleration reserve through a branch duct 27A by closing the duct 27 and allows, when the re-acceleration tank is completely full, if necessary, the operation of the on-board compressor under braking and / or deceleration, through the conduit 27, by closing the derivative conduit 27A and, directing the flow towards the main reservoir 23.
  • the valve 33 also closes the conduit 27 A during the re-acceleration to channel towards the re-acceleration injector 22A, the flow of pressurized compressed air contained in the re-acceleration tank 35 while the on-board compressor 25 is disengaged, avoiding pressure losses towards the on-board compressor 25 and / or the main external tank 23.
  • an air injector 22A is actuated to allow injection into the combustion or expansion chamber, high pressure and high temperature compressed air. This air will mix with the compressed air in the compression chamber 1 and is transferred to the combustion or expansion chamber of the engine and considerably increase the pressure in order to have great power for the re-activation of the vehicle.
  • FIG. 2 shows a block diagram of an installation with a variable volume re-acceleration tank device according to a variant of the invention, with a pressure regulation system managed by the compressed air pressure prevailing in the main tank 23.
  • the re-acceleration tank 35 advantageously surrounded by its thermal insulation 35A, consists of a hollow cylinder of small diameter opening concentrically into a hollow cylinder of larger diameter 37 in which a two-stage piston 38 slides in leaktight fashion.
  • small diameter is the re-acceleration tank 35, connected to the inlet duct 27A of high pressure compressed air from the on-board compressor 25 which is actuated during deceleration and / or braking and to the duct 39 for the start of compressed air towards the re-acceleration injector 22A.
  • the large diameter cylinder 37 includes a medium pressure compressed air inlet 40 coming from the very high pressure main tank 23 and expanded in a buffer capacity 41 at medium necessary and sufficient pressure for the additional air supply to the injector 22 during normal engine operation.
  • the ratio of the diameters of the cylinders is calculated so that the pressure relaxed in the cylinder of larger diameter 37 makes it possible to maintain in the small cylinder the pressure chosen to supply the additional re-acceleration air injector 22A.
  • a large cylinder with a diameter of 100 mm receiving a relaxed pressure of 40 bars makes it possible to maintain a pressure of approximately 110 bars in a small cylinder with a diameter of 60 mm which constitutes the re-acceleration tank.
  • the buffer capacity 41 will be chosen with a relatively large volume.
  • the engine is supplied with additional air at 40 bars (for example) and at room temperature, by the additional air injector 22.
  • the clutch 31 is activated and the on-board air compressor 25 is put into action and ensures slowing or braking.
  • the bypass valve 33 is positioned to divert the compressed air at high pressure and high temperature (for example 150 bar) by the compressor 25 to the re-acceleration tank 35.
  • the double-stage piston 38 moves and, due to the force applied to its large diameter face by the pressure prevailing in the large cylinder 37 maintains in the re-acceleration tank 35 an almost constant pressure (for example 100 bar).
  • valve 33 When the piston 38 has reached the end of its stroke, the valve 33 is again actuated to direct the compressed air towards the main reservoir 23. It is thus possible to slow down and / or brake by operating the on-board compressor 25 by directing the compressed air flow towards the main external tank 23. As soon as the driver wants to re-accelerate, the re-acceleration injector 22A is actuated to supply the combustion chamber 2 with hot, high-pressure compressed air, thereby obtaining in said chamber a very high pressure a significant re-acceleration torque.
  • valve 33 is positioned so that it closes the bypass duct 27A to allow the flow of compressed air under pressure contained in the re-acceleration tank 35 to be channeled towards the re-acceleration injector 22A while the on-board compressor 25 is disengaged, avoiding pressure losses in the direction of the on-board compressor 25 and / or the main external tank 23. It is within the normal competence of those skilled in the art to integrate the actuation commands valves and injection depending on the braking and acceleration phases described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Procédé et dispositifs de réaccélération pour véhicule équipé de compresseur d'alimentation en air comprimé haute pression pour moteur dépollué ou dépolluant, dans lequel, lors des décélérations et/ou des freinages, le compresseur embarqué (25) étant mis en action, le flux d'air comprimé haute pression est dérivé et stocké dans un réservoir de réaccélération (35), isolé thermiquement et maintenu à très haute pression et très haute température, pour être utilisé dès la remise en action du véhicule en l'injectant à haute température et haute pression dans la chambre de combustion ou d'expansion du moteur (2).

Description

PROCEDE ET DISPOSITIF DE REACCELERAΗON D'UN VEHICULE EQUIPE DE COMPRESSEURS D'AIR A HAUTE PRESSION
L'invention concerne les véhicules terrestres et plus particulièrement ceux équipés avec des moteurs dépollués ou déplollants à chambre de combustion indépendante.
L'auteur a décrit dans sa demande de brevet publié WO 96/27737 un procédé de dépollution de moteur à chambre de combustion externe indépendante, fonctionnant suivant un principe bi-mode à deux types d'énergie, utilisant soit un carburant conventionnel de type essence ou gasoil sur route (fonctionnement mono-mode à air-carburant), soit, à basse vitesse, notamment en zone urbaine et suburbaine, une addition d'air comprimé (ou tout autre gaz non polluant) à l'exclusion de tout autre carburant, (fonctionnement mono-mode à air, c'est à dire avec addition d'air comprimé). Dans sa demande de brevet 9607714, l'auteur a décrit l'installation de ce type de moteur en fonctionnement mono-mode, avec addition d'air comprimé, sur les véhicules de service, par exemple des autobus urbains.
Dans ce type de moteur, en mode air-carburant, le mélange air carburant est aspiré et comprimé dans une chambre d'aspiration et de compression indépendante. Puis ce mélange est transféré, toujours en pression dans une chambre de combustion indépendante et à volume constant pour y être enflammé afin d'augmenter la température et la pression dudit mélange. Après l'ouverture d'un transfert reliant ladite chambre de combustion ou d'expansion à une chambre de détente et d'échappement, ce mélange sera détendu dans cette dernière pour y produire un travail. Les gaz détendus sont ensuite évacués à l'atmosphère à travers un conduit d'échappement.
En fonctionnement à air, à faible puissance, l'injecteur de carburant n'est plus commandé ; dans ce cas, l'on introduit dans la chambre de combustion, sensiblement après l'admission dans cette dernière de l'air comprimé -sans carburant- provenant de la chambre d'aspiration et de compression, une petite quantité d'air comprimé additionnel provenant d'un réservoir externe où l'air est stocké sous haute pression, par exemple 200 bars, et à la température ambiante. Cette petite quantité d'air comprimé à température ambiante va s'échauffer au contact de la masse d'air à haute température contenue dans la chambre de combustion ou d'expansion, va se dilater et augmenter la pression régnant dans la chambre pour permettre de délivrer lors de la détente un travail moteur.
Ce type de moteur bi-modes ou bi-énergies (air et essence ou air et air comprimé additionnel) peut également être modifié pour une utilisation préférentielle en ville par exemple sur tous véhicules et plus particulièrement sur des autobus urbains ou autres véhicules de service (taxis bennes à ordures etc.), en mono-mode air-air comprimé, par suppression de tous les éléments de fonctionnement du moteur avec le carburant traditionnel.
Le moteur fonctionne seulement en mono-mode avec l'injection d'air comprimé additionnel dans la chambre de combustion qui devient ainsi une chambre d'expansion. En outre, l'air aspiré par le moteur peut être filtré et purifié à travers un ou plusieurs filtres à charbon ou autre procédé mécanique, chimique, tamis moléculaire, ou autres filtres afin de réaliser une moteur dépolluant. L'emploi du terme « air » dans le présent texte s'entend « tout gaz non polluant ».
Dans sa demande de brevet français 9611632, l'auteur a également décrit l'installation de compresseurs haute pression embarqués pour recharger en air comprimé le réservoir du véhicule équipé de moteurs tels que décrits ci-dessus, le compresseur est entraîné par un moteur autonome avec une source d'énergie autonome, et embrayé sur la transmission pour fonctionner et remplir les réserves d'air comprimé du véhicule lors des ralentissements et des freinages permettant ainsi de récupérer l'énergie considérable qui est dissipée durant ces opérations Toutefois, dans ce type d'installation, l'air comprimé sous haute pression et haute température vient remplir le réservoir principal qui est sensiblement à température ambiante et se refroidit. Cette solution entraine la perte d' une grande partie de son énergie, notamment lorsque le réservoir commence à se vider, ce qui induit une perte de sa pression, du fait de la détente.
Le procédé suivant l'invention, propose une autre solution qui permet, de plus, de pouvoir disposer lors des accélérations, d'un couple et d'une réserve de puissance supplémentaire. Il est caractérisé par les moyens mis en oeuvre et plus particulièrement par le fait que, lors des décélérations et des freinages, le compresseur haute pression, qui est mis en action par un embrayage ou tout autre coupleur, sert alors de ralentisseur, voire de frein en produisant de l'air comprimé à haute pression par exemple 200 bar et à température élevé. Cet air comprimé est dérivé et stocké dans un réservoir calorifuge ou non, dit réservoir de réaccélération, où l'air comprimé est maintenu à haute température et haute pression, pour être utilisé dés la remise en action du véhicule en l'injectant dans la chambre de combustion ou d'expansion du moteur. Cet air comprimé ayant ainsi gardé un maximum de sa température et de sa pression du fait de la courte durée de séjour dans le réservoir de réaccélération, est réinjecté chaud dans la chambre de combustion du moteur et apporte une énergie considérablement plus importante lors de la remise en action ou de la reprise du véhicule. La capacité du réservoir de réaccélération calorifuge est réalisée en fonction des besoins, de même que la pression de l'air y contenu et, lorsque le réservoir de réaccélération est plein, l'air est à nouveau dérivé vers le réservoir principal
L'homme de l'art peut calculer volume et pression du réservoir de réaccélération en fonction de la fréquence et de l'intensité moyenne des freinages et des accélérations suivant l'utilisation visée.
Selon une caractéristique préférentielle de l'invention, la réserve de réaccélération est réalisée dans un système à volume variable afin de maintenir, dès le début de son remplissage, l'air comprimé qui y est stocké, à une pression et à une température quasi constante, par un dispositif assisté par des systèmes mécaniques, pneumatiques, ou hydrauliques tels que ressorts ou autres et plus particulièrement par un dispositif utilisant l'air comprimé en pression dans le réservoir principal après l'avoir détendu à une pression déterminée. Cette capacité de réaccélération calorifugée, à volume variable évite ainsi les chutes de pression et de température de l'air comprimé au fur et à mesure de son remplissage, et permet de disposer à tout moment d'une quantité d'air à la pression élevée souhaitée et à haute température pour permettre la remise en action du véhicule, sans attendre que la capacité de réaccélération ne soit intégralement remplie pour atteindre la pression de service souhaitée (par exemple 100 bar). Ainsi, peu après un ralentissement ou un freinage, lorsque le conducteur du véhicule veut réaccélérer, on injecte dans la chambre de combustion ou d'expansion, une quantité d'air comprimé à haute pression et haute température prélevée dans la capacité de réaccélération permettant d'obtenir des pressions très élevées, dans ladite chambre, gages de couple et de puissance. De nombreux moyens de maintient de la température dans le réservoir de réaccélération peuvent être utilisés, il est possible de citer pour exemple : l'utilisation de céramique, de procédé de calorifuge tels que laine de verre ou autre, de même qu'il est envisageable de réaliser des systèmes de chauffage non polluants, thermiques ou chimiques, sans pour autant sortir du procédé selon l'invention. D'autre buts, avantages et caractéristiques de l'invention apparaîtrons à la lecture de la description à titre non limitatif d'un mode de réalisation faite en regard des dessins annexés où :
- La figure 1 représente un synoptique d'installation comportant une réserve de réaccélération suivant l'invention.
- La figure 2 représente vue en coupe longitudinale,une installation semblable avec une capacité de réaccélération à volume variable et pression constante et son système de maintient de pression et de température.
La figure 1 représente, schématiquement, un synoptique d'installation d'un moteur dépolluant comportant une chambre d'aspiration et de compression 1, une chambre de combustion ou d'expansion 2 à volume constant dans laquelle est implanté un injecteur d'air additionnel 22 alimenté en air comprimé stocké dans un réservoir très haute pression 23 et une chambre de détente et d'échappement 4. La chambre d'aspiration et de compression 1 est reliée à la chambre de détente ou d'expansion 2 par un conduit 5 dont l'ouverture et la fermeture sont commandées par un volet étanche 6. La chambre de combustion ou d'expansion 2 est reliée à la chambre de détente et d'échappement 4 par un conduit ou transfert 7 dont l'ouverture et la fermeture sont commandées par un volet étanche 8. La chambre d'aspiration et de compression 1 est alimentée en air par un conduit d'admission 13 dont l'ouverture est commandée par une soupape 14 et, en amont duquel est implanté un filtre à charbon dépolluant 24.
La chambre d'aspiration et de compression 1 fonctionne comme un ensemble de compresseur à piston où un piston 9 coulissant dans un cylindre 10 est commandé par une bielle 11 et un vilebrequin 12. La chambre de détente et d'échappement 4 commande un ensemble classique de moteur à piston avec un piston 15 coulissant dans un cylindre 16, qui entraîne par l'intermédiaire d'une bielle 17 la rotation d'un vilebrequin 18. L'échappement de l'air détendu s'effectuant à travers un conduit d'échappement 19 dont l'ouverture est commandée par une soupape 20. La rotation du vilebrequin 12 de la chambre d'aspiration et de compression 1 est commandée à travers une liaison mécanique 21 par le vilebrequin moteur 18 de la chambre de détente et d'échappement 4. Le compresseur embarqué 25 a son admission d'air 26 en dérivation sur le conduit d'admission du moteur 13 entre le système de filtrage 24 du moteur et le moteur lui-même. Lors de sa rotation il va remplir en air comprimé à travers son conduit d'échappement 27, les réserves d'air comprimé haute pression 23 installées sur le véhicule. Le compresseur 25 est entraîné par un moteur électrique 28 à travers un embrayage 29 qui est actionné pour le remplissage des réserves.
Le compresseur 25 est également relié à la transmission du véhicule 30, également à travers un embrayage 31 qui sera actionné (embrayé) lors des décélérations et des freinages, et servira de frein moteur permettant de ralentir le véhicule et de remplir en air comprimé haute pression et haute température, un réservoir de réaccélération 32, avantageusement entouré d'une enveloppe calorifuge 32A à travers un conduit dérivé 27A. Une vanne 33, disposée sur le conduit d'échappement du compresseur 27 dérive le flux d'air comprimé vers cette réserve de réaccélération à travers un conduit dérivé 27A en obturant le conduit 27 et permet, lorsque le réservoir de réaccélération est entièrement plein, si nécessaire, le fonctionnement du compresseur embarqué au freinage et/ou décélération, à travers le conduit 27, en obturant le conduit dérivé 27A et, en dirigeant le flux vers le réservoir principal 23. La vanne 33 obture également le conduit 27 A lors de la réaccélération pour canaliser vers l'injecteur de réaccélération 22A, le flux de l'air comprimé sous pression contenu dans le réservoir de réaccélération 35 alors que le compresseur embarqué 25 est débrayé, en évitant les pertes de pression en direction du compresseur embarqué 25 et/ou du réservoir externe principal 23.
Après la décélération, le freinage et/ou l'arrêt du véhicule, lors de l'accélération pour remettre en action ledit véhicule, on actionne un injecteur d'air 22A pour permettre d'injecter dans la chambre de combustion ou d'expansion, de l'air comprimé haute pression et haute température. Cet air va se mélanger à l'air comprimé dans la chambre de compression 1 et est transféré dans la chambre de combustion ou d'expansion, du moteur et augmenter considérablement la pression afin de disposer d'une grande puissance pour la remise en action du véhicule.
La figure 2 représente, un synoptique d'installation avec un dispositif de réservoir de réaccélération à volume variable selon une variante de l'invention, avec un système de régulation de pression géré par la pression d'air comprimé régnant dans le réservoir principal 23. Le réservoir de réaccélération 35, avantageusement entouré de son isolation thermique 35A, est constitué par un cylindre creux de petit diamètre débouchant concentriquement dans un cylindre creux de plus grand diamètre 37 dans lesquels coulisse de manière étanche un piston à deux étages 38. Le cylindre de petit diamètre est le réservoir de réaccélération 35, relié au conduit d'arrivé 27A d'air comprimé haute pression provenant du compresseur embarqué 25 qui est actionné lors des décélération et/ou des freinages et au conduit 39 de départ d'air comprimé vers l'injecteur de réaccélération 22A. Le cylindre de gros diamètre 37 comprend une arrivée d'air comprimé moyenne pression 40 provenant du réservoir principal très haute pression 23 et détendu dans une capacité tampon 41 à moyenne pression nécessaire et suffisante pour l'alimentation en air additionnel de l'injecteur 22 lors du fonctionnement normal du moteur.
Le rapport des diamètres des cylindres est calculé de telle sorte que la pression détendue dans le cylindre de plus grand diamètre 37 permette de maintenir dans le petit cylindre la pression choisie pour alimenter l'injecteur d'air additionnel de réacélération 22A. Par exemple un grand cylindre de diamètre 100 mm recevant une pression détendue de 40 bars permet de maintenir une pression d'environ 110 bars dans un petit cylindre de 60 mm de diamètre qui constitue le réservoir de réaccélération. De manière à éviter de grande différence de pression lors du déplacement du piston 38 la capacité tampon 41 sera choisie avec un volume relativement important.
Lors du fonctionnement en mode air comprimé, le moteur est alimenté en air additionnel sous 40 bars (par exemple) et à température ambiante, par l'injecteur d'air additionnel 22.
Lors d'une décélération c'est-à-dire dés que le conducteur relâche sa pression sur l'accélérateur ou lors d'un freinage , l'embrayage 31 est activé et le compresseur d'air embarqué 25 est mis en action et assure le ralentissement ou le freinage. La vanne de dérivation 33 se positionne pour dériver l'air comprimé à haute pression et haute température (par exemple 150 bars) par le compresseur 25 vers le réservoir de réaccélération 35. Sous l'effet de l'arrivée de l'air comprimé par le conduit 27A, le piston à double étage 38 se déplace et, en raison de l'effort appliqué sur sa face de grand diamètre par la pression régnant dans le grand cylindre 37 maintient dans le réservoir de réaccélération 35 une pression quasi constante (par exemple 100 bar). Lorsque le piston 38 est arrivé en fin de sa course la vanne 33 est à nouveau actionnée pour diriger l'air comprimé vers le réservoir principal 23. Il est ainsi possible de ralentir et/ou freiner en faisant fonctionner le compresseur embarqué 25 en dirigeant le flux d'air comprimé en direction du réservoir externe principal 23. Dès que le conducteur veut réaccélérer, l'injecteur de réaccélération 22A est actionné pour alimenter la chambre de combustion 2 en air comprimé chaud et à haute pression permettant ainsi d'obtenir dans ladite chambre une pression très élevée un couple de réaccélération important. Dans cette phase de fonctionnement, la vanne 33 est positionnée de telle sorte qu'elle obure le conduit dérivé 27A pour permettre de canaliser vers l'injecteur de réaccélération 22A, le flux de l'air comprimé sous pression contenu dans le réservoir de réaccélération 35 alors que le compresseur embarqué 25 est débrayé, en évitant les pertes de pression en direction du compresseur embarqué 25 et/ou du réservoir externe principal 23. Il entre dans les compétences normales de l'homme du métier d'intégrer les commandes d'actionnement des vannes et d'injection en fonction des phases de freinages et d'accélération décrites.
Le type de compresseur embarqué haute pression, le type d'embrayage de commande, le type de calorifugation de la capacité de réaccélération, le type de vanne de dérivation 33, le mode de maintient de pression etc, les différentes dispositions des éléments dans le véhicule, peuvent varier sans pour autant sortir du cadre de la présente invention.

Claims

REVENDICATIONS
1.- Procédé de réaccélération pour véhicule équipé de moteur dépollué ou dépolluant, comportant une chambre de combustion indépendante (2) dans laquelle l'on indroduit, en fonctionnement à air, sensiblement après l'admission dans cette dernière, de l'air comprimé -sans carburant - provenant d'une chambre d'aspiration et de compression (1), une quantité de gaz non polluant comprimé additionnel provenant d'un réservoir externe principal (23) dans lequel ce gaz comprimé est stocké sous haute pression et sensiblement à la température ambiante, ce véhicule étant également équipé d'un compresseur embarqué haute pression (25) mis en action lors des décélérations et des freinages, pour remplir le réservoir externe principal (23), caractérisé en ce que l'air comprimé à haute pression par le compresseur (25) est dérivé et stocké pour être maintenu à haute température et haute pression, et, en ce que cet air est utilisé dès la remise en action, ou reprise, du véhicule en l'injectant dans la chambre de combustion ou d'expansion du moteur (2).
2. -Procédé suivant la revendication 1, caractérisé en ce que le stockage de l'air comprimé est réalisé à volume fixe.
3. -Procédé suivant la revendication 1, caractérisé en ce que le stockage de l'air est réalisé à volume variable afin d'obtenir et de conserver, dès le début du remplissage, une pression et une température de l'air quasi constante, sensiblement proche de celles fournies par le compresseur embarqué
4.- Procédé suivant la revendication 3 caractérisé en ce que le contrôle de l'augmentation et de la variation du volume d'air stocké utilise l'air comprimé du réservoir externe principal (23).
5.- Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que le réservoir de réaccélération est isolé thermiquement ou réalisé en matériaux isolants pour conserver une température et une pression élevées.
6. -Dispositif pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le stockage de l'air comprimé provenant du compresseur embarqué (25) est réalisé dans un réservoir de réaccélération (32, 35), disposé en dérivation sur le conduit d'échappement (27) du compresseur embarqué (25), entre ledit conduit et un injecteur (22A) positionné dans la chambre de combustion ou d'expansion (2).
7.-Dispositif selon la revendication 6, caractérisé en ce que le réservoir de réaccélération est un réservoir à volume fixe (32).
8- Dispostif selon la revendication 6, caractérisé en ce que le réservoir de réaccélération est à volume variable (35).
9.- Dispositif selon la revendication 8, caractérisé en ce que, le réservoir de réaccélération est constitué -par un cylindre creux de petit diamètre (35), débouchant concentriquement dans un c^îrrflîrercreαx de plus grand diamètre (37), dans lesquels coulisse un piston à deux étages (38), alors" quête cylindre de petit diamètre (35) est relié, d'une part au conduit d'arrivé d'air comprimé (27) du compresseur embarqué haute pression (25) par un conduit dérivé (27A) et, d'autre part à un injecteur de reaccelération (22A), et en ce que le cylindre de plus grand diamètre (37) comprend une arrivée (40) d'air comprimé moyenne pression, provenant du réservoir principal très haute pression (23), et détendu dans une capacité tampon (41), alors que le rapport des diamètres des cylindres est calculé de telle sorte que la moyenne pression régnant dans le cylindre de grand diamètre (37) permette de maintenir dans le petit cylindre (35) qui est le réservoir de réaccélération, la haute pression choisie pour alimenter l'injecteur d'air additionnel de réaccélération (22A).
10.- Dispositif selon l'une quelconque des revendications 6 à 9, caractérisé en ce que le conduit d'échappement du compresseur embarqué (27) et le conduit dérivé (27A) vers le réservoir de réaccélération sont équipés d'une vanne (33) qui permet, d'une part, de dériver le flux d'air provenant du compresseur embarqué (25), lors des décélérations et/ou des freinages, en ouvrant le conduit dérivé (27A) et en obturant le conduit d'échappement (27) du compresseur embarqué (25) en direction du réservoir externe principal (23) et, d'autre part, de permettre d'obturer le conduit dérivé (27A) soit pour permettre le libre passage du flux d'air comprimé en direction du réservoir externe principal (23) soit, lorsque le réservoir de réaccélération (35) est plein, de permettre l'utilisation du compresseur embarqué (25) pour ralentir et freiner, soit, lors des réaccélérations, de canaliser vers l'injecteur de réaccélération (22A), le flux de l'air comprimé sous pression contenu dans le réservoir de reaccelération (35) alors que le compresseur embarqué (25) est débrayé, en évitant les pertes de pression en direction du compresseur embarqué (25) et ou du réservoir externe principal (23).
EP97943945A 1996-10-07 1997-10-06 Procede et dispositif de reacceleration d'un vehicule equipe de compresseurs d'air a haute pression Withdrawn EP0929424A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9612168 1996-10-07
FR9612168A FR2754309B1 (fr) 1996-10-07 1996-10-07 Procede et dispositif de reacceleration pour vehicule equipe de compresseurs d'alimentation en air comprime haute pression pour moteur depollue ou depolluant
PCT/FR1997/001766 WO1998015440A1 (fr) 1996-10-07 1997-10-06 Procede et dispositif de reacceleration d'un vehicule equipe de compresseurs d'air a haute pression

Publications (1)

Publication Number Publication Date
EP0929424A1 true EP0929424A1 (fr) 1999-07-21

Family

ID=9496400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97943945A Withdrawn EP0929424A1 (fr) 1996-10-07 1997-10-06 Procede et dispositif de reacceleration d'un vehicule equipe de compresseurs d'air a haute pression

Country Status (16)

Country Link
US (1) US6363723B1 (fr)
EP (1) EP0929424A1 (fr)
JP (1) JP2001501707A (fr)
KR (1) KR20000048932A (fr)
CN (1) CN1088434C (fr)
AP (1) AP1050A (fr)
AU (1) AU738146B2 (fr)
BR (1) BR9712495A (fr)
CA (1) CA2267259A1 (fr)
CZ (1) CZ115099A3 (fr)
EA (1) EA000834B1 (fr)
FR (1) FR2754309B1 (fr)
HU (1) HU220649B1 (fr)
OA (1) OA11110A (fr)
PL (1) PL333099A1 (fr)
WO (1) WO1998015440A1 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797474B1 (fr) 1999-08-12 2002-02-01 Guy Negre Station de rechargement en air comprime comportant une turbine entrainee par le debit d'un cours d'eau
FR2797429B1 (fr) 1999-08-12 2001-11-02 Guy Negre Reseau de transport comportant une flotte de vehicules, bateau et station de rechargement en air comprime pour un tel reseau
AU4424801A (en) 2000-03-15 2001-09-24 Guy Negre Compressed air recharging station comprising a turbine driven by the flow of a water course
IT1317778B1 (it) * 2000-06-07 2003-07-15 Amos Bonazzoli Propulsore a pistoni ad elevato rendimento
FR2831598A1 (fr) 2001-10-25 2003-05-02 Mdi Motor Dev Internat Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies
FR2837530B1 (fr) 2002-03-21 2004-07-16 Mdi Motor Dev Internat Groupe de cogeneration individuel et reseau de proximite
FR2838769B1 (fr) 2002-04-22 2005-04-22 Mdi Motor Dev Internat Detendeur a debit variable et distribution par soupape a commande progressive pour moteur a injection d'air comprime fonctionnant en mono et pluri energie et autres moteurs ou compresseurs
FR2843577B1 (fr) 2002-08-13 2004-11-05 Mdi Motor Dev Internat Vehicule de transport urbain et suburbain propre et modulaire
US6810678B1 (en) 2003-06-30 2004-11-02 Chi Lam Luk Internal combustion engine
FR2862349B1 (fr) * 2003-11-17 2006-02-17 Mdi Motor Dev Internat Sa Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
DE102004008093B4 (de) * 2004-02-19 2006-01-26 Andreas Hentschel Verfahren zum Betreiben eines Druckgasmotors
FR2887591B1 (fr) * 2005-06-24 2007-09-21 Mdi Motor Dev Internat Sa Groupe moto-compresseur basses temperatures a combustion "froide" continue a pression constante et a chambre active
US20070258834A1 (en) * 2006-05-04 2007-11-08 Walt Froloff Compressed gas management system
FR2904054B1 (fr) 2006-07-21 2013-04-19 Guy Joseph Jules Negre Moteur cryogenique a energie thermique ambiante et pression constante et ses cycles thermodynamiques
FR2905404B1 (fr) 2006-09-05 2012-11-23 Mdi Motor Dev Internat Sa Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle.
FR2907091A1 (fr) 2006-10-16 2008-04-18 Mdi Motor Dev Internat Sa Procede de fabrication d'une coque structurelle d'une voiture economique
GB0800720D0 (en) * 2008-01-16 2008-02-20 Ma Thomas T H Air hybrid vehicle
US8225900B2 (en) * 2008-04-26 2012-07-24 Domes Timothy J Pneumatic mechanical power source
US8561747B2 (en) * 2008-04-26 2013-10-22 Timothy Domes Pneumatic mechanical power source
USRE47647E1 (en) 2008-04-26 2019-10-15 Timothy Domes Pneumatic mechanical power source
US7789181B1 (en) 2008-08-04 2010-09-07 Michael Moses Schechter Operating a plug-in air-hybrid vehicle
GB2476953A (en) * 2010-01-14 2011-07-20 George Nicholson Cowan Air hybrid vehicle
DE102010033539A1 (de) * 2010-05-15 2011-11-17 Wabco Gmbh Drucksteuereinrichtung für ein Fahrzeug sowie Verfahren zur Drucksteuerung
CN102261279B (zh) * 2010-05-25 2013-09-18 上海汽车集团股份有限公司 混合动力系统
US8850807B2 (en) * 2010-06-16 2014-10-07 Hb Spider Llc Compressed air engine
GB201012743D0 (en) * 2010-07-29 2010-09-15 Isentropic Ltd Valves
US8613269B2 (en) 2010-09-11 2013-12-24 Pavel Shehter Internal combustion engine with direct air injection
DE102011013440A1 (de) * 2011-03-09 2012-09-13 Wabco Gmbh Verfahren zur Drucksteuerung in einem Fahrzeug sowie Drucksteuereinrichtung
FR2980523B1 (fr) * 2011-09-27 2018-03-16 Psa Automobiles Sa. Procede et dispositif d'alimentation en air d'un moteur hybride pneumatique-thermique
CN103061818B (zh) * 2011-10-18 2014-09-03 周登荣 具有补充压缩空气回路的压缩空气发动机总成
ES2425470A1 (es) * 2012-02-29 2013-10-15 Javier Ortiz De Urbina Angoso Conjunto neumatico recuperador de energia cinetica
FR2987581B1 (fr) * 2012-03-02 2015-03-13 Peugeot Citroen Automobiles Sa Systeme hybride comprenant un systeme de stockage d'energie pneumatique et equipant un vehicule automobile
FR2995027B1 (fr) * 2012-09-06 2017-09-08 Jean Jacques Crouzier Moteur a combustion interne ameliore
DE102012219432A1 (de) * 2012-10-24 2014-04-24 Bayerische Motoren Werke Aktiengesellschaft - BMW AG Kraftfahrzeug mit einer Brennkraftmaschine mit einem Druckgastank
US20150285135A1 (en) * 2014-04-04 2015-10-08 Nexovation, Inc. Combustion engine including an air injector, and power generating system including the combustion engine
CN104153818A (zh) * 2014-07-28 2014-11-19 严基铭 空气能活塞发动机
US20160280062A1 (en) * 2014-11-18 2016-09-29 Beverly Custis Diggs Edwards, JR. Wind powered vehicle system
GB2545203A (en) * 2015-12-08 2017-06-14 Gm Global Tech Operations Llc A method of operating an automotive system for powering a vehicle
CN106121857A (zh) * 2016-08-10 2016-11-16 李洪刚 一种燃气室外置的气缸驱动发动机
WO2018080534A1 (fr) * 2016-10-31 2018-05-03 Cummins Inc. Injection d'air dans un cylindre par l'intermédiaire d'un double injecteur de combustible
CN108730023B (zh) * 2018-04-19 2023-02-21 上海尤顺汽车技术有限公司 一种控制发动机排气气流的方法和装置
CN114856836B (zh) * 2021-02-03 2023-05-12 北京汽车动力总成有限公司 一种排气背压调节系统及汽车

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH505717A (de) * 1971-02-15 1971-04-15 Maurer Hans Verfahren zur Wiedergewinnung der Bremsenergie von Fahrzeugen
IT1023497B (it) * 1973-12-05 1978-05-10 Holleyman J E Impianti di propulsione per veicoli di terra mare e aria
US3925984A (en) * 1973-12-05 1975-12-16 John E Holleyman Compressed air power plant
US3913699A (en) * 1974-11-18 1975-10-21 Glenn L Dyer Automotive power system
US4361204A (en) * 1980-02-11 1982-11-30 Earle John L Hot gas vehicular power system with regeneration
US4433549A (en) * 1980-05-19 1984-02-28 Zappia Anthony T Air fuel engine
US4798053A (en) * 1986-12-10 1989-01-17 Chang Jimmy C K Kinetic energy reclaiming system for vehicle
US5638681A (en) * 1992-07-17 1997-06-17 Rapp; Manfred Max Piston internal-combustion engine
FR2731472B1 (fr) * 1995-03-06 1997-08-14 Guy Negre Procede et dispositifs de depollution de moteur a combustion interne cyclique a chambre de combustion independante

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9815440A1 *

Also Published As

Publication number Publication date
OA11110A (fr) 2003-04-04
BR9712495A (pt) 1999-10-19
JP2001501707A (ja) 2001-02-06
HUP9904635A3 (en) 2000-12-28
EA000834B1 (ru) 2000-04-24
HUP9904635A2 (hu) 2000-05-28
US6363723B1 (en) 2002-04-02
FR2754309B1 (fr) 1998-11-20
CZ115099A3 (cs) 1999-08-11
AU738146B2 (en) 2001-09-13
AP9901501A0 (en) 1999-06-30
PL333099A1 (en) 1999-11-08
FR2754309A1 (fr) 1998-04-10
AU4560497A (en) 1998-05-05
CA2267259A1 (fr) 1998-04-16
HU220649B1 (hu) 2002-03-28
KR20000048932A (ko) 2000-07-25
EA199900347A1 (ru) 1999-12-29
CN1235579A (zh) 1999-11-17
CN1088434C (zh) 2002-07-31
AP1050A (en) 2002-03-18
WO1998015440A1 (fr) 1998-04-16

Similar Documents

Publication Publication Date Title
WO1998015440A1 (fr) Procede et dispositif de reacceleration d'un vehicule equipe de compresseurs d'air a haute pression
EP0815356B1 (fr) Procede et dispositifs de depollution de moteurs a combustion interne cyclique a chambre de combustion independante
EP1049855B1 (fr) Procede et dispositif de rechauffage thermique additionnel pour vehicule equipe de moteur depollue a injection d'air comprime additionnel
EP0954691B1 (fr) Procede et dispositif de recuperation de l'energie thermique ambiante pour vehicule equipe de moteur depollue a injection d'air comprime additionnel
WO1999063206A1 (fr) Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnat en mono-energie, ou en bi-energie bi ou tri modes d'alimentation
JP2010059975A (ja) エンジンの弁機構
EP1899578A2 (fr) Groupe moto-compresseur basses temperatures à combustion « froide » continue a pression constante et a chambre active
EP2625400A1 (fr) Moteur à air comprimé à chambre active incluse et autodétendeur
EP2315926A1 (fr) Procede de reduction des emissions polluantes d'un moteur a combustion interne et dispositif correspondant
EP2519728B1 (fr) Machine thermique à source chaude externe, groupe de production d'énergie et véhicule associés.
FR2922162A1 (fr) Systeme de motorisation hybride pneumatique-thermique de vehicule routier
FR2978799A1 (fr) Moteur hybride pneumatique-thermique
FR2647505A1 (fr) Turbine a explosion, a piston a effet sans fin
WO2020043375A1 (fr) Dispositif et systeme de controle d'un moteur a combustion interne avec double admission et balayage
FR2980239A1 (fr) Moteur thermique a preinjection et a vaporisation pour tous combustibles, a cylindree operationnelle variable, a recuperation d'energie cinetique, a stockage et a reutilisation pneumatique et electrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: RO PAYMENT 19990409;SI PAYMENT 19990409

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE MDI MOTOR DEVELOPMENT INTERNATIONAL S.A.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NEGRE, CYRIL

Inventor name: NEGRE, GUY

17Q First examination report despatched

Effective date: 20020718

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030503