EP0924308B1 - Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance - Google Patents
Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance Download PDFInfo
- Publication number
- EP0924308B1 EP0924308B1 EP98403187A EP98403187A EP0924308B1 EP 0924308 B1 EP0924308 B1 EP 0924308B1 EP 98403187 A EP98403187 A EP 98403187A EP 98403187 A EP98403187 A EP 98403187A EP 0924308 B1 EP0924308 B1 EP 0924308B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- hours
- minus
- heat treatment
- alloy according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
Definitions
- the present invention relates to a family of titanium-based intermetallic alloys which combine a set of specific mechanical properties including a high yield strength, high creep resistance and sufficient ductility at room temperature.
- Intermetallic alloys of the Ti 3 Al type have shown interesting specific mechanical characteristics. Ternary alloys with Nb additions have been tested in particular and their mechanical properties joined to a lower density than that of nickel-based alloys since between 4 and 5.5 depending on the Nb content, arouse great interest for aeronautical applications . These alloys also have a higher titanium fire resistance than the Ti-based alloys previously used in the construction of turbomachines.
- the targeted applications relate to massive structural parts such as casings, massive rotating parts such as centrifugal impellers or as a matrix of composite materials for one-piece bladed rings.
- the desired operating temperature ranges go up to 650 ° C or 700 ° C in the case of parts made of long fiber composite material.
- US 4,292,077 and US 4,716,020 describe the results obtained by titanium-based intermetallic alloys containing 24 to 27 Al and 11 to 16 Nb in percentages atomic.
- the present invention relates to a family of titanium-based intermetallic alloys avoiding disadvantages of the aforementioned known solutions which are characterized by a chemical composition, in percentages atomic, belonging to the following domain: A116-26; Num 18-28; Mo 0 to 2; If O to 0.8; Ta O at 2; Zr O at 2 and Ti complement at 100 with the condition Mo + Si + Zr + Ta> 0.4%.
- thermomechanical treatments and a method of are further defined for these alloys intermetallic according to the invention, allowing improve their mechanical properties, in particular increase ductility at room temperature and limit plastic deformation during primary creep.
- Tantalum is a ⁇ -gene element very similar to niobium to which it is often mixed in ores. In the titanium alloys it increases their mechanical strength and gives them better resistance to corrosion and oxidation.
- Zirconium is a neutral element and the methods of alloys and the origin of the elements brought, by recycling or not, can bring the presence of Zr, which may in some cases be desired.
- the atomic percentage used for the alloys of the invention for Zr, as for Ta, is is between 0 and 2%.
- a process for developing the material has also been developed. point in accordance with the invention and makes it possible to obtain the mechanical properties sought and previously described.
- the first step consists in homogenizing the composition of the material, using for example the VAR process (Vacuum Arc Remelting), this step is important because it determines the homogeneity of the material.
- the material is then deformed at high speed to reduce the grain size either by forging with a pestle in the ⁇ domain, or by high speed extrusion still in the ⁇ domain. These bars are then cut into pieces to undergo the last stage of the thermomechanical treatment: isothermal forging. This isothermal forging takes place in a temperature range from T ⁇ -125 ° C to T ⁇ -25 ° C and with deformation rates from 5.10 -4 s -1 to 5.10 -2 s. -1 .
- T ⁇ is the transition temperature between the high-temperature single-phase ⁇ domain and the two-phase domain ⁇ 2 + B 2
- ⁇ 2 is a phase of defined composition Ti3Al transforming into phase 0 below about 900 ° C.
- T ⁇ is around 1065 ° C for example, for a Ti 22 Al 25 Nb alloy.
- the bars obtained by forging or extrusion can, as a variant, be subjected to a rolling operation where the deformation rates are of the order of 10 ⁇ 1 s ⁇ 1 .
- the preparation of the material ends with a heat treatment which consists of three stages.
- the first step is a step of re-solution at a temperature between T ⁇ -35 ° C and T ⁇ + 15 ° C for less than 2 hours.
- the second stage allows the growth of the hardening phase O and this aging is carried out between 750 ° C and 950 ° C for at least 16 hours.
- the third treatment is carried out within a range of temperature of 100 ° C around the operating temperature of the material.
- the heat treatment in the vicinity of the temperature of the transition T ⁇ causes the recrystallization of the grains B2 and makes it possible to significantly increase the creep resistance at 650 ° C.
- this treatment reduces the elastic limit, but increases the ductility around 350 ° C.
- a heat treatment at a temperature further (-25 ° C) from that of the T ⁇ transition increases the elastic limit and increases the creep resistance at 550 ° C.
- this treatment achieves a ductility plateau around 10% from 200 ° C to 600 ° C.
- Intermetallic alloy samples including the composition belongs to the field of the invention have been tested and showed improvements in results compared to the prior known alloy of standard composition Ti 22Al 25Nb.
- thermomechanical treatment is characterized by low temperature forging T ⁇ -100 ° C and heat treatment at T ⁇ -25 ° C before a 24 hour plateau at 900 ° C and aging at 550 ° C for at least 2 days.
- the compression creep tests in these two examples also show the interest of the elements Ta and Zr for increase the creep resistance by decreasing the amplitude of the primary creep and reduction of the speed of secondary creep.
- the results are shown in the figure 10 for compression creep tests at 650 ° C under 310MPa, on curve 5 for the Ti-24 Al-20Nb alloy, on the curve 6 for the Ti-24Al-20Nb-1Ta alloy and curve 7 for Ti-24Al-20Nb-1Zr alloy.
- FIG. 4 shows a comparison of the specific mechanical properties in traction at room temperature of these alloys with those of alloys commonly used in aeronautics, of the type based on nickel or titanium or under development such as ⁇ Ti Al intermetallics and these results confirm the advantage of the alloys according to the invention.
- the compared results of creep resistance of known nickel-based alloys such as Inco 718 and a nickel-based superalloy A in accordance with EP-A-0 237 378, based on titanium, such as IMI 834 or intermetallic ⁇ Ti Al and an alloy according to the invention are reported in Figures 5 and 6 according to Larson-Miller diagrams.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
La présente invention concerne une famille d'alliages intermétalliques à base de titane qui combinent un ensemble de propriétés mécaniques spécifiques comprenant une haute limite d'élasticité, une résistance élevée au fluage et une ductilité suffisante à la température ambiante. Les alliages intermétalliques du type Ti3Al ont montré des caractéristiques mécaniques spécifiques intéressantes. Des alliages ternaires avec ajouts de Nb ont notamment été testés et leurs propriétés mécaniques jointes à une densité plus faible que celle des alliages à base de nickel puisque comprise entre 4 et 5,5 selon la teneur Nb, suscitent un grand intérêt pour des applications aéronautiques. Ces alliages ont en outre une résistance au feu titane plus importante que les alliages à base Ti précédemment utilisés dans la construction de turbomachines. Les applications visées concernent des pièces massives de structure comme les carters, des pièces tournantes massives comme des rouets centrifuges ou comme matrice de matériaux composites pour des anneaux aubagés monobloc. Les domaines de températures d'utilisation recherchées vont jusqu'à 650°C ou 700°C dans le cas de pièces en matériau composite à fibres longues.The present invention relates to a family of titanium-based intermetallic alloys which combine a set of specific mechanical properties including a high yield strength, high creep resistance and sufficient ductility at room temperature. Intermetallic alloys of the Ti 3 Al type have shown interesting specific mechanical characteristics. Ternary alloys with Nb additions have been tested in particular and their mechanical properties joined to a lower density than that of nickel-based alloys since between 4 and 5.5 depending on the Nb content, arouse great interest for aeronautical applications . These alloys also have a higher titanium fire resistance than the Ti-based alloys previously used in the construction of turbomachines. The targeted applications relate to massive structural parts such as casings, massive rotating parts such as centrifugal impellers or as a matrix of composite materials for one-piece bladed rings. The desired operating temperature ranges go up to 650 ° C or 700 ° C in the case of parts made of long fiber composite material.
Ainsi, US 4.292.077 et US 4.716.020 décrivent les résultats obtenus par des alliages intermétalliques à base de titane comportant 24 à 27 Al et 11 à 16 Nb en pourcentages atomiques.Thus, US 4,292,077 and US 4,716,020 describe the results obtained by titanium-based intermetallic alloys containing 24 to 27 Al and 11 to 16 Nb in percentages atomic.
US 5.032.357 a montré des résultats améliorés grâce à une augmentation de la teneur Nb. Les alliages intermétalliques obtenus présentent généralement dans ce cas une microstructure composée de deux phases :
- une phase B2 riche en niobium, constituant la matrice du matériau et qui assure une ductilité à la température ambiante,
- une phase dite O, de composition définie Ti2AlNb, orthorhombique et formant des lattes dans la matrice B2. La phase O est présente jusque vers 1000°C et confère au matériau ses propriétés de résistance à chaud en fluage et en traction.
- a phase B2 rich in niobium, constituting the matrix of the material and which ensures ductility at room temperature,
- a phase called O, of defined composition Ti 2 AlNb, orthorhombic and forming slats in the matrix B2. Phase O is present up to around 1000 ° C. and gives the material its properties of resistance to heat in creep and in traction.
Par suite, la présente invention se rapporte à une famille
d'alliages intermétalliques à base de titane évitant les
inconvénients des solutions connues précitées et qui sont
caractérisés par une composition chimique, en pourcentages
atomiques, appartenant au domaine suivant :
Al16 à 26 ; Nb 18 à 28 ; Mo 0 à 2 ; Si O à 0,8 ; Ta O à 2 ;
Zr O à 2 et Ti complément à 100 avec la condition Mo
+Si+Zr+Ta > 0,4 %.Consequently, the present invention relates to a family
of titanium-based intermetallic alloys avoiding
disadvantages of the aforementioned known solutions which are
characterized by a chemical composition, in percentages
atomic, belonging to the following domain:
A116-26; Num 18-28;
Des traitements thermomécaniques appropriés et un mode de mise en oeuvre sont en outre définis pour ces alliages intermétalliques conformes à l'invention, permettant d'améliorer leurs propriétés mécaniques, notamment d'accroítre la ductilité à température ambiante et de limiter la déformation plastique durant le fluage primaire.Appropriate thermomechanical treatments and a method of are further defined for these alloys intermetallic according to the invention, allowing improve their mechanical properties, in particular increase ductility at room temperature and limit plastic deformation during primary creep.
On donne ci-après la justification des choix des fourchettes de composition retenues ainsi que la description des essais effectués menant à la définition du mode d'élaboration et de mise en forme, en indiquant les résultats obtenus en mesures des propriétés mécaniques et comparés aux propriétés d'alliages connus antérieurs, en référence aux dessins annexés sur lesquels :
- la figure 1 représente les résultats d'essais de fluage à 550°C sous 500MPa en reportant en ordonnées le temps en heures à 1 % de déformation, suivant différentes compositions d'alliages ainsi que les résultats de traction en reportant en ordonnées la limite d'élasticité en MPa ;
- la figure 2 représente les résultats d'essais de fluage à 550°C sous 500MPa en reportant en ordonnées la limite d'élasticité en MPa et en abscisses le temps en heures à 0,5 % de déformation, suivant différentes compositions d'alliages ;
- la figure 3 montre un exemple de microstructure obtenue à l'issue d'une élaboration d'un alliage intermétallique conforme à l'invention ;
- la figure 4 représente schématiquement par zones les résultats d'essais mécaniques effectués sur quatre types différents d'alliages, en reportant en abscisses les allongements en pourcentages et en ordonnées la limite élastique spécifique, à température ambiante ;
- les figures 5 et 6 représentent en diagramme de Larson-Miller les résultats de tenue au fluage, respectivement à 1 % de déformation et à rupture, en reportant en abscisses le paramètre de Larson-Miller et en ordonnées la contrainte spécifique en MPa pour différents alliages ;
- les figures 7, 8 et 9 représentent les résultats d'essais mécaniques obtenus pour un alliage conforme à l'invention, respectivement les contraintes en MPa, à rupture et en limite d'élasticité, à 20°C et à 650°C puis la déformation homogène en pourcentages à 20°C et à 650°C et enfin le temps en heures à 1 % de déformation lors de la tenue au fluage à 550°C sous 500 MPa, suivant quatre gammes différentes de traitement thermique appliquées à l'alliage ;
- la figure 10 représente les résultats d'essais de fluage en compression pour un alliage antérieur connu et deux alliages conformes à l'invention.
- FIG. 1 represents the results of creep tests at 550 ° C. under 500 MPa by plotting the time in hours at 1% deformation, according to different alloy compositions as well as the traction results by plotting the limit d on the ordinate elasticity in MPa;
- FIG. 2 represents the results of creep tests at 550 ° C. under 500 MPa by plotting on the ordinates the elastic limit in MPa and on the abscissa the time in hours at 0.5% deformation, according to different alloy compositions;
- FIG. 3 shows an example of a microstructure obtained at the end of an elaboration of an intermetallic alloy according to the invention;
- FIG. 4 schematically represents by zones the results of mechanical tests carried out on four different types of alloys, by plotting the elongations in percentages and in ordinates the specific elastic limit, at room temperature;
- FIGS. 5 and 6 show in Larson-Miller diagram the results of creep resistance, respectively at 1% deformation and at break, by plotting the Larson-Miller parameter on the abscissa and the specific stress in MPa for different alloys ;
- FIGS. 7, 8 and 9 represent the results of mechanical tests obtained for an alloy in accordance with the invention, the stresses in MPa, at rupture and in yield strength, respectively, at 20 ° C. and at 650 ° C. then the homogeneous deformation in percentages at 20 ° C and 650 ° C and finally the time in hours at 1% deformation during creep resistance at 550 ° C under 500 MPa, according to four different ranges of heat treatment applied to the alloy ;
- FIG. 10 represents the results of compression creep tests for a known prior alloy and two alloys according to the invention.
Les résultats expérimentaux ont montré que les teneurs
retenues pour les trois éléments majeurs de la composition,
titane, aluminium et niobium sont les plus appropriées, à
savoir :
La variation des teneurs dans les limites indiquées permet un ajustement des propriétés suivant le type d'application recherchée et le domaine de température d'utilisation correspondant.The variation of the contents within the indicated limits allows a adjustment of properties according to the type of application temperature and range of use corresponding.
Ces deux éléments sont des éléments qui favorisent la phase O et donc ils augmentent la tenue à chaud des alliages. Cependant, ils ont tendance à diminuer la ductilité en particulier à la température ambiante. La déformation plastique pendant le fluage primaire diminue de 0,5 % à 0,25 % avec l'ajout de ces éléments (0,5 % de Si ou un passage de 22 % à 24 % d'Al). Par contre, la limite d'élasticité est fortement diminuée ainsi que la ductilité (de 1,5 % à 0,5 %). Ainsi, l'augmentation de la teneur en aluminium de 22% à 24%, pour le même traitement thermique, réduit fortement la limite d'élasticité qui chute de 600 MPa à 500 MPa à 650°C. L'influence bénéfique de l'ajout de 0,5 % Si sur la tenue au fluage est illustrée par la figure 2.These two elements are elements which favor phase O and therefore they increase the heat resistance of the alloys. However, they tend to decrease ductility in especially at room temperature. The deformation plastic during primary creep decreases from 0.5% to 0.25 % with the addition of these elements (0.5% of Si or a passage of 22% to 24% Al). On the other hand, the elastic limit is greatly reduced as well as the ductility (from 1.5% to 0.5%). Thus, increasing the aluminum content from 22% to 24%, for the same heat treatment, greatly reduces the limit elasticity which drops from 600 MPa to 500 MPa at 650 ° C. The beneficial influence of the addition of 0.5% Si on the resistance to creep is illustrated in Figure 2.
Ces éléments favorisent la phase B2 qui est ductile à la température ambiante, ils participent à la stabilité de la phase B2 aux températures d'utilisation. Une réduction de la teneur en niobium (de 25% à 20%) affecte principalement la tenue au fluage, les propriétés en traction étant peu modifiées, comme le montrent les résultats représentés sur la figure 1. On montrera que l'ajout de molybdène permet un accroissement important de la limite d'élasticité de 100 MPa à la température ambiante et de 200 MPa à 650°C et ceci sans réduction de ductilité à température ambiante. Le molybdène permet aussi une meilleure résistance au fluage, il réduit très nettement la déformation plastique pendant le fluage primaire (de 0,5 % à 0,25 %) et diminue la vitesse de déformation plastique pendant le stade secondaire. Ces gains sont accentués quand l'alliage contient préalablement du silicium. Ces résultats obtenus en fluage à 550°C sous 500 MPa sont illustrés à la figure 2 pour des alliages comportant des ajout de Mo, de Si ou des deux éléments.These elements favor the B2 phase which is ductile to the room temperature they participate in the stability of the phase B2 at operating temperatures. A reduction in niobium content (25% to 20%) mainly affects the creep resistance, the tensile properties being little modified, as shown by the results shown on the figure 1. We will show that the addition of molybdenum allows a significant increase in the yield strength of 100 MPa at room temperature and 200 MPa at 650 ° C and this without reduction of ductility at room temperature. Molybdenum also allows better resistance to creep, it reduces very clearly the plastic deformation during creep primary (from 0.5% to 0.25%) and decreases the speed of plastic deformation during the secondary stage. These gains are accentuated when the alloy previously contains silicon. These results obtained in creep at 550 ° C. under 500 MPa are illustrated in FIG. 2 for alloys comprising additions of MB, Si or both.
Le tantale est un élément β-gène très semblable au niobium auquel il est souvent mélangé dans les minerais. Dans les alliages de titane, il augmente leur résistance mécanique et leur confère une meilleure résistance à la corrosion et à l'oxydation.Tantalum is a β-gene element very similar to niobium to which it is often mixed in ores. In the titanium alloys it increases their mechanical strength and gives them better resistance to corrosion and oxidation.
Le zirconium est un élément neutre et les méthodes d'élaboration des alliages et l'origine des éléments apportés, par recyclage ou non, peuvent amener la présence de Zr, qui peut dans certains cas être souhaitée.Zirconium is a neutral element and the methods of alloys and the origin of the elements brought, by recycling or not, can bring the presence of Zr, which may in some cases be desired.
Le pourcentage atomique retenu pour les alliages intermétalliques de l'invention pour Zr, comme pour Ta, se situe entre 0 et 2 %.The atomic percentage used for the alloys of the invention for Zr, as for Ta, is is between 0 and 2%.
Ces spécifications et les essais expérimentaux effectués ont
conduit à retenir pour la composition des alliages
intermétalliques en plus des trois éléments majeurs notés ci-dessus
des éléments d'addition dans les pourcentages
atomiques suivants :
Un procédé d'élaboration du matériau a également été mis au point conformément à l'invention et permet d'obtenir les propriétés mécaniques recherchées et précédemment décrites.A process for developing the material has also been developed. point in accordance with the invention and makes it possible to obtain the mechanical properties sought and previously described.
Dans cette élaboration, la première étape consiste en une
homogénéisation de la composition du matériau, en utilisant
par exemple le procédé VAR (Vacuum Arc Remelting), cette
étape est importante car elle détermine l'homogénéité du
matériau. Le matériau est ensuite déformé à haute vitesse
pour réduire la taille de grain soit par un forgeage au pilon
dans le domaine β, soit par une extrusion à vitesse élevée
toujours dans le domaine β. Ces barres sont ensuite découpées
en lopins pour subir la dernière étape du traitement
thermomécanique : le forgeage isotherme. Ce forgeage
isotherme s'effectue dans un domaine de températures allant
de Tβ -125°C à Tβ -25°C et avec des vitesses de déformations
de 5.10-4 s-1 à 5.10-2 s.-1. Tβ est la température de transition
entre le domaine à haute température monophase β et le
domaine biphasé α2 + B2, α2 est une phase de composition
définie Ti3Al se transformant en phase 0 en dessous de 900°C
environ. Tβ se situe autour de 1065°C par exemple, pour un
alliage Ti 22 Al 25 Nb.
En fonction des applications particulières, les barres
obtenues par forgeage ou extrusion peuvent, en variante, être
soumises à une opération de laminage où les vitesses de
déformations sont de l'ordre de 10-1 s-1. On peut également
effectuer un forgeage de précision dans un domaine biphasé
α2 + B2 qui conduit à une structure de grains équiaxes avec
une forme globulaire de la phase α2/0. Dans ce cas, le
forgeage s'effectue dans un domaine de températures allant de
Tβ - 180°C à Tβ - 30°C.
L'élaboration du matériau s'achève par un traitement
thermique qui est constitué de trois étapes.In this development, the first step consists in homogenizing the composition of the material, using for example the VAR process (Vacuum Arc Remelting), this step is important because it determines the homogeneity of the material. The material is then deformed at high speed to reduce the grain size either by forging with a pestle in the β domain, or by high speed extrusion still in the β domain. These bars are then cut into pieces to undergo the last stage of the thermomechanical treatment: isothermal forging. This isothermal forging takes place in a temperature range from T β -125 ° C to T β -25 ° C and with deformation rates from 5.10 -4 s -1 to 5.10 -2 s. -1 . T β is the transition temperature between the high-temperature single-phase β domain and the two-phase domain α 2 + B 2 , α 2 is a phase of defined composition Ti3Al transforming into
Depending on the particular applications, the bars obtained by forging or extrusion can, as a variant, be subjected to a rolling operation where the deformation rates are of the order of 10 −1 s −1 . It is also possible to carry out precision forging in a two-phase domain α 2 + B 2 which leads to a structure of equiaxed grains with a globular shape of the phase α2 / 0. In this case, forging takes place in a temperature range from T β - 180 ° C to T β - 30 ° C.
The preparation of the material ends with a heat treatment which consists of three stages.
La première étape est une étape de remise en solution à une température comprise en Tβ -35°C et Tβ + 15°C pendant moins de 2 heures. The first step is a step of re-solution at a temperature between T β -35 ° C and Tβ + 15 ° C for less than 2 hours.
La seconde étape permet la croissance de la phase durcissante O et ce vieillissement est effectué entre 750°C et 950°C pendant au moins 16 heures.The second stage allows the growth of the hardening phase O and this aging is carried out between 750 ° C and 950 ° C for at least 16 hours.
Le troisième traitement est effectué dans une plage de température de 100°C autour de la température d'utilisation du matériau.The third treatment is carried out within a range of temperature of 100 ° C around the operating temperature of the material.
Le choix de la vitesse de refroidissement entre les
différents paliers est important car il détermine la taille
des lattes de la phase durcissante O. La détermination d'un
programme particulier se fait en fonction des
caractéristiques d'emploi que l'on recherche.
La figure 3 montre un exemple de microstructure obtenue à
l'issue de cette élaboration d'un alliage intermétallique
conforme à l'invention.
Dans le cas où une structure de grains équiaxes par forgeage
de précision dans le domaine α2 + B2 est recherchée, lors de
la première étape du traitement thermique, la température de
remise en solution est voisine de la température de forgeage.
Le choix de cette température est critique car il influe à la
fois sur la taille de grains équiaxes que l'on vise et sur la
proportion relative des populations de phase durcissante
primaire globularisée restante et de phase durcissante
secondaire aiguillée qui se formera aux étapes suivantes.
Dans les mises au point effectuées, on a montré que les
traitements thermomécaniques ont une grande influence sur les
propriétés mécaniques :
- effet de la température de forgeage : le forgeage à une
température élevée assure une meilleure résistance au fluage
à 550°C, le temps à rupture
est multiplié par 10 et la déformation à rupture 0,8 % à 1,3%, ceci avec une augmentation de 50°C de la température de forgeage ;passe de - effet de la vitesse de forgeage : Pour une vitesse 20 fois plus grande, on constate une réduction d'un facteur 10 du temps à rupture lors de fluage à 550°C sous 500MPa.
Figure 3 shows an example of microstructure obtained at the end of this development of an intermetallic alloy according to the invention.
In the case where a structure of grains equiaxed by precision forging in the domain α2 + B2 is sought, during the first stage of the heat treatment, the temperature of re-solution is close to the forging temperature. The choice of this temperature is critical because it influences both the size of the equiaxed grains that we are targeting and the relative proportion of the populations of remaining globularized primary hardening phase and of secondary needle hardening phase which will form in the following stages.
In the adjustments carried out, it has been shown that thermomechanical treatments have a great influence on the mechanical properties:
- effect of the forging temperature: forging at a high temperature ensures better creep resistance at 550 ° C, the breaking time is multiplied by 10 and the breaking strain changes from 0.8% to 1.3%, this with a 50 ° C increase in the forging temperature;
- effect of the forging speed: For a
speed 20 times greater, there is a reduction by a factor of 10 in the breaking time during creep at 550 ° C under 500MPa.
Le traitement thermique au voisinage de la température de la transition Tβ provoque la recristallisation des grains B2 et permet d'accroítre de façon importante la tenue au fluage à 650°C. Cependant ce traitement réduit la limite d'élasticité, mais augmente la ductilité autour de 350°C. Un traitement thermique à une température plus éloignée (-25°C) de celle de la transition Tβ augmente la limite d'élasticité et accroít la tenue au fluage à 550°C. De plus, ce traitement permet d'atteindre un plateau de ductilité autour de 10 % dès 200°C jusqu'à 600°C.The heat treatment in the vicinity of the temperature of the transition T β causes the recrystallization of the grains B2 and makes it possible to significantly increase the creep resistance at 650 ° C. However, this treatment reduces the elastic limit, but increases the ductility around 350 ° C. A heat treatment at a temperature further (-25 ° C) from that of the T β transition increases the elastic limit and increases the creep resistance at 550 ° C. In addition, this treatment achieves a ductility plateau around 10% from 200 ° C to 600 ° C.
Ces constatations résultent notamment des essais suivants :These findings result in particular from the following tests:
Nous avons regardé l'influence de deux températures de
forgeage sur la tenue au fluage. Le forgeage est suivi du
même traitement thermique à haute température. Nous montrons
donc ainsi que la température de forgeage est importante sur
la tenue au fluage car elle détermine la morphologie des
phases présentes dans le matériau, comme le montrent les
résultats ci-après de tenue au fluage d'un alliage Ti22Al
25Nb à 550°C sous 450 MPa :
Enfin la tenue au fluage de l'alliage Ti 22 Al 25 Nb à 650°C
sous 300MPa, en fonction de la température du forgeage
isotherme donne les résultats suivants :
Nous montrons ici l'influence de la température de remise en solution sur les propriétés mécaniques et la tenue au fluage, pour le galet forgé à haute température. Nous pouvons constater qu'une remise en solution à une température élevée conduit à une recristallisation et à une chute de propriétés en traction. Par contre, ces deux traitements permettent de choisir la température à laquelle le matériau est résistant en fluage, soit à 550°C, soit à 650°C. Une température de remise en solution basse permet une bonne tenue au fluage à 550°C, tandis qu'une température plus élevée permet une meilleure tenue à 650°C, ceci pour toutes les caractéristiques : temps à rupture, déformation plastique primaire, vitesse de déformation.Here we show the influence of the return temperature solution on mechanical properties and creep resistance, for the high temperature forged roller. We can find that a re-solution at a high temperature leads to recrystallization and a fall in properties in traction. However, these two treatments allow choose the temperature at which the material is resistant in creep, either at 550 ° C, or at 650 ° C. A temperature of low solution allows good creep resistance at 550 ° C, while a higher temperature allows better resistance at 650 ° C, this for all characteristics: breaking time, plastic deformation primary, strain rate.
Les résultats suivants ont été obtenus en limite d'élasticité
mesurée en MPa, en fonction de la température d'essai pour
deux températures de remise en solution :
De même, les résultats suivants ont été obtenus en tenue au
fluage à 550°C sous 500MPa, en fonction de la température du
traitement de mise en solution :
Nous allons présenter la ductilité obtenue à la température
ambiante suivant la température du dernier traitement
thermique, la durée de ce traitement est comprise entre 16 et
48 H. Nous pouvons constater que plus la température de
dernier traitement est élevée plus la ductilité augmente. Ces
résultats ont été obtenus sur un alliage quaternaire
contenant du molybdène. Il est donc possible avec un
traitement approprié d'obtenir une ductilité adaptée à une
utilisation particulière, comme indiqué ci-après :
Des échantillons d'alliage intermétallique dont la composition appartient au domaine de l'invention ont été testés et ont montré les améliorations des résultats obtenus par rapport à l'alliage connu antérieur de composition type Ti 22Al 25Nb.Intermetallic alloy samples including the composition belongs to the field of the invention have been tested and showed improvements in results compared to the prior known alloy of standard composition Ti 22Al 25Nb.
Le tableau ci-dessous présente la limite d'élasticité pour différentes températures et nous constatons clairement l'effet de l'ajout de 1 % de Mo sur la limite d'élasticité. Sur le second tableau, nous montrons l'avantage de la présence du molybdène sur la tenue au fluage. Les matériaux ont été traités suivant le même traitement thermomécanique. Ce traitement thermomécanique se caractérise par un forgeage à basse température Tβ -100°C et un traitement thermique à Tβ -25°C avant un palier de 24H à 900°C et un vieillissement à 550°C pendant au moins 2 jours. The table below shows the elastic limit for different temperatures and we clearly see the effect of adding 1% Mo on the elastic limit. In the second table, we show the advantage of the presence of molybdenum on creep resistance. The materials were treated according to the same thermomechanical treatment. This thermomechanical treatment is characterized by low temperature forging T β -100 ° C and heat treatment at T β -25 ° C before a 24 hour plateau at 900 ° C and aging at 550 ° C for at least 2 days.
Nous présentons l'apport du silicium sur la tenue au fluage toujours à partir de matériaux élaborés en appliquant le traitement thermomécanique décrit ci-dessus à l'exemple 4. Nous montrons ainsi la réduction de la déformation plastique du fluage primaire et la diminution importante de la vitesse de fluage secondaire. We present the contribution of silicon on the creep resistance always from materials developed by applying the thermomechanical treatment described above in Example 4. We thus show the reduction in the plastic deformation of the primary creep and the significant decrease in the secondary creep speed.
Des coulées d'un alliage de référence Ti-24 Al-20 Nb et d'un alliage modifié de composition Ti-24 Al-20 Nb-1 Ta, les valeurs étant données en pourcentages atomiques, ont été élaborés, puis des échantillons cylindriques ont été usinés et les traitements thermiques appliqués ont été : 1160°/30 minutes, refroidissement en four jusqu'à 750°C puis maintien 24 heures. Les essais mécaniques en compression réalisés ont donné les résultats suivants : Castings of a reference alloy Ti-24 Al-20 Nb and of a modified alloy of composition Ti-24 Al-20 Nb-1 Ta, the values being given in atomic percentages, were produced, then cylindrical samples have been machined and the heat treatments applied have been: 1160 ° / 30 minutes, cooling in an oven to 750 ° C. then holding for 24 hours. The mechanical compression tests carried out gave the following results:
Les mêmes opérations que dans l'exemple 6 pour un alliage Ti-24Al-20Nb-1Zr ont donné les résultats suivants : The same operations as in Example 6 for a Ti-24Al-20Nb-1Zr alloy gave the following results:
Les essais de fluage en compression dans ces deux exemples
montrent également l'intérêt des éléments Ta et Zr pour
augmenter la résistance au fluage par diminution de
l'amplitude du fluage primaire et réduction de la vitesse de
fluage secondaire. Les résultats sont reportés sur la figure
10 pour des essais de fluage en compression à 650°C sous
310MPa, sur la courbe 5 pourl'alliage Ti-24 Al-20Nb, sur la
courbe 6 pour l'alliage Ti-24Al-20Nb-1Ta et la courbe 7 pour
l'alliage Ti-24Al-20Nb-1Zr.The compression creep tests in these two examples
also show the interest of the elements Ta and Zr for
increase the creep resistance by decreasing
the amplitude of the primary creep and reduction of the speed of
secondary creep. The results are shown in the figure
10 for compression creep tests at 650 ° C under
310MPa, on
Les résultats expérimentaux obtenus montrent les avantages
précédemment notés des alliages conformes à l'invention.
En outre, la figure 4 montre une comparaison des propriétés
mécaniques spécifiques en traction à température ambiante de
ces alliages avec celles d'alliages couramment utilisés dans
l'aéronautique, du type à base de nickel ou de titane ou en
cours de développement tels que des intermétalliques γ Ti Al
et ces résultats confirment l'intérêt des alliages selon
l'invention. De même, les résultats comparés de tenue au
fluage d'alliages connus à base de nickel tels que Inco 718
et un superalliage A à base de nickel conforme à EP-A-0 237
378, à base de titane, tel que IMI 834 ou intermétallique γ
Ti Al et d'un alliage conforme à l'invention sont reportés
sur les figures 5 et 6 suivant des diagrammes de Larson-Miller.The experimental results obtained show the previously noted advantages of the alloys in accordance with the invention.
In addition, FIG. 4 shows a comparison of the specific mechanical properties in traction at room temperature of these alloys with those of alloys commonly used in aeronautics, of the type based on nickel or titanium or under development such as γ Ti Al intermetallics and these results confirm the advantage of the alloys according to the invention. Likewise, the compared results of creep resistance of known nickel-based alloys such as
Enfin les résultats obtenus en essais mécaniques sur un alliage conforme à l'invention de composition en pourcentages atomiques 22Al, 25Nb, 1Mo et Ti complément à 100 ont été reportés sur les diagrammes des figures 7, 8 et 9 où les niveaux la ....g correspondent à un traitement thermique comportant :
- mise en solution à 1030°C/ 1 heure
- vieillissement à 900°C/24 heures
- revenu à 550°C/48 heures ;
- mise en solution à 1030°C/1 heure
- vieillissement à 900°C/24 heures ;
- mise en solution à 1060°C/1 heure
- vieillissement à 900°C/24 heures
- revenu à 550°C/48 heures ;
- mise en solution à 1030°C/1 heure
- vieillissement à 800°C/24 heures
- revenu à 600°C/48 heures
- dissolved at 1030 ° C / 1 hour
- aging at 900 ° C / 24 hours
- returned to 550 ° C / 48 hours;
- dissolved at 1030 ° C / 1 hour
- aging at 900 ° C / 24 hours;
- dissolved at 1060 ° C / 1 hour
- aging at 900 ° C / 24 hours
- returned to 550 ° C / 48 hours;
- dissolved at 1030 ° C / 1 hour
- aging at 800 ° C / 24 hours
- returned to 600 ° C / 48 hours
Claims (10)
- A titanium based intermetallic alloy having a high elasticity limit, high creep resistance and sufficient ductility at ambient temperature, characterised in that its chemical composition in atomic percentages lies in the following range:Al 16 to 26; Nb 18 to 28; Mo 0 to 2; Si 0 to 0.8; Ta 0 to 2; Zr 0 to 2, and Ti as the balance, with the condition Mo + Si + Zr + Ta > 0.4%.
- An intermetallic alloy according to claim 1, characterised in that it is prepared by carrying out at least the following steps in the order indicated:a) fusion to obtain an ingot of homogeneous composition;b) high-speed deformation leading to a reduction of the grain size;c) isothermal forging at a temperature between the β transus temperature Tβ minus 125°C and the β transus temperature Tβ minus 25°C with rates of deformation between 5.10-4 s-1 and 5.10-2 s-1; andd) heat treatment comprising the following substeps:d1) solutioning at a temperature between the β transus temperature minus 35°C and the β transus temperature plus 15°C for less than two hours;d2) ageing at a temperature between 750°C and 950°C for more than 16 hours permittinq the growth of an orthorhombic hardening phase 0; andd3) treatment carried out in a temperature range of 100°C around the use temperature determined for the material,
- An intermetallic alloy according to claim 1, characterised in that it is prepared by carrying out at least the following steps in the order indicated:a) fusion to obtain an ingot of homogeneous composition;b) high speed deformation leading to a reduction of the grain size;c) rolling at a deformation speed of the order of 10-1 s-1; andd) heat treatment comprising the following substeps:d1) solutioning at a temperature between the β transus temperature minus 35°C and the β transus temperature plus 15°C for less than two hours;d2) ageing at a temperature between 750°C and 950°C for more than 16 hours permittinq the growth of an orthorhombic hardening phase 0; andd3) treatment carried out in a 100°C temperature range around the use temperature determined for the material;
- An intermetahic alloy according to claim 1, characterised in that it is prepared by carrying out at least the following steps in the order indicated:a) fusion to obtain an ingot of homogeneous composition;b) high speed deformation leading to a reduction of the grain size;c) precision forging at a temperature between the β transus temperature Tβ minus 180°C and the beta transus temperature Tβ minus 30°C, leading to a structure of equiaxed grains; andd) heat treatment comprising the following substeps:d1) solutioning at a temperature close to the forging temperature for less than 2 hors;d2) ageing at a temperature between 750°C and 950°C for more than 16 hours, permitting the growth of an orthorhombic hardening phase 0; andd3) treatment carried out in a 100°C temperature range around the use temperature determined for the material,
- An intermetallic alloy according to claim 2 or claim 3, characterised in that in step a) the fusion is carried out by double vacuum arc fusion.
- An intermetallic alloy according to any of claims 1 to 4, characterised in that a heat treatment giving it an optimised creep resistance is applied to the material, the heat treatment comprising the following steps:a) solutioning at a β transus temperature minus 25°C for 1 hour;b) ageing at a temperature between 875°C and 925°C for 24 hours followed by rapid cooling; andc) tempering at the use temperature determined for the material.
- An intermetallic alloy according to claim 6, characterised in that the tempering treatment is given at 550°C for 48 hours for a use temperature of 550°C.
- An intermetallic alloy according to claim 6, characterised in that the tempering treatment is given at 650°C for 24 hours for a use temperature of 650°C.
- An intermetalllic alloy according to claim 1, characterised in that a heat treatment giving it a deformability of at least 10% at ambient temperature is applied to it, the treatment comprising the following steps:a) solutioning at a temperature between the β transus temperature minus 35°C and the β transus temperature minus 15°C for at least two hours; andb) ageing at a temperature of 900°C plus or minus 50°C for more than 16 hours.
- An intermetallic alloy according to claim 8, characterised in that a tempering is given in a 100°C temperature range around the use temperature determined for the material and produces an additional hardening of the material.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9716057A FR2772790B1 (en) | 1997-12-18 | 1997-12-18 | TITANIUM-BASED INTERMETALLIC ALLOYS OF THE Ti2AlNb TYPE WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CREEP |
FR9716057 | 1997-12-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0924308A1 EP0924308A1 (en) | 1999-06-23 |
EP0924308B1 true EP0924308B1 (en) | 2002-05-02 |
Family
ID=9514764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98403187A Expired - Lifetime EP0924308B1 (en) | 1997-12-18 | 1998-12-17 | Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance |
Country Status (5)
Country | Link |
---|---|
US (1) | US6132526A (en) |
EP (1) | EP0924308B1 (en) |
JP (1) | JP4004163B2 (en) |
DE (1) | DE69805148T2 (en) |
FR (1) | FR2772790B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108465819A (en) * | 2018-03-14 | 2018-08-31 | 燕山大学 | The mechanical alloying preparation method of Ti-22Al-25Nb (at.%) solid solution |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3774758B2 (en) * | 2000-06-26 | 2006-05-17 | 独立行政法人物質・材料研究機構 | TiB particle reinforced Ti2AlNb intermetallic compound matrix composite and production method thereof |
US6436208B1 (en) | 2001-04-19 | 2002-08-20 | The United States Of America As Represented By The Secretary Of The Navy | Process for preparing aligned in-situ two phase single crystal composites of titanium-niobium alloys |
US20040221929A1 (en) | 2003-05-09 | 2004-11-11 | Hebda John J. | Processing of titanium-aluminum-vanadium alloys and products made thereby |
US7837812B2 (en) | 2004-05-21 | 2010-11-23 | Ati Properties, Inc. | Metastable beta-titanium alloys and methods of processing the same by direct aging |
US8337750B2 (en) * | 2005-09-13 | 2012-12-25 | Ati Properties, Inc. | Titanium alloys including increased oxygen content and exhibiting improved mechanical properties |
US7611592B2 (en) * | 2006-02-23 | 2009-11-03 | Ati Properties, Inc. | Methods of beta processing titanium alloys |
US10053758B2 (en) | 2010-01-22 | 2018-08-21 | Ati Properties Llc | Production of high strength titanium |
US9255316B2 (en) | 2010-07-19 | 2016-02-09 | Ati Properties, Inc. | Processing of α+β titanium alloys |
US8499605B2 (en) | 2010-07-28 | 2013-08-06 | Ati Properties, Inc. | Hot stretch straightening of high strength α/β processed titanium |
US9206497B2 (en) | 2010-09-15 | 2015-12-08 | Ati Properties, Inc. | Methods for processing titanium alloys |
US8613818B2 (en) | 2010-09-15 | 2013-12-24 | Ati Properties, Inc. | Processing routes for titanium and titanium alloys |
US10513755B2 (en) | 2010-09-23 | 2019-12-24 | Ati Properties Llc | High strength alpha/beta titanium alloy fasteners and fastener stock |
US8652400B2 (en) | 2011-06-01 | 2014-02-18 | Ati Properties, Inc. | Thermo-mechanical processing of nickel-base alloys |
FR2979702B1 (en) * | 2011-09-05 | 2013-09-20 | Snecma | PROCESS FOR THE PREPARATION OF TESTS WITH MECHANICAL CHARACTERIZATION OF A TITANIUM ALLOY |
US9050647B2 (en) | 2013-03-15 | 2015-06-09 | Ati Properties, Inc. | Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys |
CN104001845B (en) * | 2013-02-25 | 2017-04-12 | 钢铁研究总院 | Forging process method of Ti2AlNb alloy large-size disk parts |
US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
US9192981B2 (en) | 2013-03-11 | 2015-11-24 | Ati Properties, Inc. | Thermomechanical processing of high strength non-magnetic corrosion resistant material |
US9777361B2 (en) | 2013-03-15 | 2017-10-03 | Ati Properties Llc | Thermomechanical processing of alpha-beta titanium alloys |
CN104233141A (en) * | 2013-06-06 | 2014-12-24 | 中国科学院金属研究所 | Annealing heat treatment process for eliminating stress after electronic beam welding of Ti2AlNb-based alloy |
US11111552B2 (en) | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
CN103710554B (en) * | 2014-01-23 | 2015-10-28 | 哈尔滨工业大学 | A kind of vacuum pressure infiltration legal system of using is for Ti 2the method of AlNb alloy |
CN104148562B (en) * | 2014-06-30 | 2017-01-11 | 贵州安大航空锻造有限责任公司 | Cogging method for Ti2AlNb-based alloy ingot |
CN104372202A (en) * | 2014-11-25 | 2015-02-25 | 西北有色金属研究院 | Ti2AlNb alloy with low density and high plasticity |
FR3030577B1 (en) * | 2014-12-22 | 2019-08-23 | Safran Aircraft Engines | INTERMETALLIC ALLOY BASED ON TITANIUM |
US10094003B2 (en) | 2015-01-12 | 2018-10-09 | Ati Properties Llc | Titanium alloy |
RU2586947C1 (en) * | 2015-06-25 | 2016-06-10 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Titanium-based alloy and article made therefrom |
CN105331849B (en) * | 2015-10-10 | 2017-04-26 | 中国航空工业集团公司北京航空材料研究院 | Ti2AlNb base alloy |
US10502252B2 (en) | 2015-11-23 | 2019-12-10 | Ati Properties Llc | Processing of alpha-beta titanium alloys |
RU2644830C2 (en) * | 2015-12-17 | 2018-02-14 | Акционерное Общество "Чепецкий Механический Завод" (Ао Чмз) | Manufacturing method of bar stock from alloys based on titanium intermetallide with ortho-phase |
CN105695799B (en) * | 2016-04-06 | 2017-12-15 | 中国航空工业集团公司北京航空材料研究院 | A kind of Ti Al Nb series intermetallic compound high-temperature structural materials |
CN105665729A (en) * | 2016-04-11 | 2016-06-15 | 西安欧中材料科技有限公司 | High-density Ti2AlNb powder alloy near-net forming technology |
RU2709568C1 (en) * | 2016-04-22 | 2019-12-18 | Арконик Инк. | Improved finishing methods of extruded titanium articles |
CN106637013B (en) * | 2016-10-28 | 2018-06-08 | 北京机科国创轻量化科学研究院有限公司 | A kind of heat treatment method for improving Ti2AlNb based alloy high-temperature intensity |
RU2635204C1 (en) * | 2016-12-29 | 2017-11-09 | федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") | Method of producing intermetallide orthoalloy based on titanium |
CN106914508B (en) * | 2017-02-17 | 2018-05-29 | 中国航空工业集团公司北京航空材料研究院 | A kind of Ti2The preparation method of AlNb alloy wires |
RU2656626C1 (en) * | 2017-05-15 | 2018-06-06 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Method of obtaining wire from titan-niobium-tantal-zirconium alloys with the form memory effect |
RU2694099C1 (en) * | 2018-10-22 | 2019-07-09 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Method of producing fine wire from biocompatible tinbtazr alloy |
CN109332693A (en) * | 2018-11-08 | 2019-02-15 | 有研工程技术研究院有限公司 | A kind of three-phase Ti of laser gain material manufacture2The heat treatment process of AlNb based alloy |
CN111394637B (en) * | 2020-04-17 | 2021-06-01 | 中国航发北京航空材料研究院 | Ti2AlNb alloy and preparation method of bar thereof |
CN111647771B (en) * | 2020-04-17 | 2021-10-15 | 中国航发北京航空材料研究院 | Multi-element composite anti-oxidation Ti2AlNb alloy and preparation method thereof |
CN113684383B (en) * | 2020-05-19 | 2022-10-18 | 宝武特种冶金有限公司 | Preparation method of large-size high-Nb TiAl alloy ingot |
RU2751065C1 (en) * | 2020-08-06 | 2021-07-07 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | Method of producing wire from titanium-niobium-tantalum alloy for use in the production of spherical powder |
CN112247043B (en) * | 2020-08-28 | 2022-04-12 | 中国科学院金属研究所 | Ti2Preparation process of AlNb-based alloy forging |
CN112410698B (en) * | 2020-11-03 | 2021-11-02 | 中国航发北京航空材料研究院 | Three-phase Ti2AlNb alloy multilayer structure uniformity control method |
RU2759624C1 (en) * | 2020-12-25 | 2021-11-16 | Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) | METHOD FOR PRODUCING THIN WIRE FROM A TiNiTa ALLOY |
CN113462997B (en) * | 2021-06-30 | 2022-08-02 | 中国航发动力股份有限公司 | Heat treatment method for improving weld performance after electron beam welding |
CN113862515B (en) * | 2021-09-30 | 2022-04-19 | 中国航发北京航空材料研究院 | Composite alloyed Ti2Multiple strengthening heat treatment method for AlNb alloy |
CN115612879A (en) * | 2022-09-13 | 2023-01-17 | 南昌航空大学 | Ti containing Ta element 2 AlNb alloy and preparation method thereof |
CN116987991B (en) * | 2023-09-26 | 2024-01-23 | 成都先进金属材料产业技术研究院股份有限公司 | Regulating Ti 2 Method for preparing AlNb-based alloy with yield ratio |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417779A (en) * | 1988-09-01 | 1995-05-23 | United Technologies Corporation | High ductility processing for alpha-two titanium materials |
US5032357A (en) * | 1989-03-20 | 1991-07-16 | General Electric Company | Tri-titanium aluminide alloys containing at least eighteen atom percent niobium |
DE59103639D1 (en) * | 1990-07-04 | 1995-01-12 | Asea Brown Boveri | Process for producing a workpiece from a dopant-containing alloy based on titanium aluminide. |
FR2669644B1 (en) * | 1990-11-26 | 1993-10-22 | Onera | NIOBIUM OR TANTALUM ALLOY AND INTERMETAL COMPOUNDS WITH HIGH SPECIFIC RESISTANCE. |
FR2674257B1 (en) * | 1991-03-20 | 1993-05-28 | Armines | NIOBIUM AND TITANIUM ALLOYS RESISTANT TO OXIDATION AT HIGH TEMPERATURES. |
US5205984A (en) * | 1991-10-21 | 1993-04-27 | General Electric Company | Orthorhombic titanium niobium aluminide with vanadium |
US5447582A (en) * | 1993-12-23 | 1995-09-05 | The United States Of America As Represented By The Secretary Of The Air Force | Method to refine the microstructure of α-2 titanium aluminide-based cast and ingot metallurgy articles |
US5442847A (en) * | 1994-05-31 | 1995-08-22 | Rockwell International Corporation | Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties |
AU705336B2 (en) * | 1994-10-14 | 1999-05-20 | Osteonics Corp. | Low modulus, biocompatible titanium base alloys for medical devices |
JPH08283890A (en) * | 1995-04-13 | 1996-10-29 | Nippon Steel Corp | Tial-base intermetallic compound excellent in creep resistance and its production |
JPH0931558A (en) * | 1995-07-19 | 1997-02-04 | Daido Steel Co Ltd | Vacuum arc remelting method |
JP3303641B2 (en) * | 1995-12-15 | 2002-07-22 | 住友金属工業株式会社 | Heat resistant titanium alloy |
-
1997
- 1997-12-18 FR FR9716057A patent/FR2772790B1/en not_active Expired - Fee Related
-
1998
- 1998-12-17 EP EP98403187A patent/EP0924308B1/en not_active Expired - Lifetime
- 1998-12-17 US US09/213,247 patent/US6132526A/en not_active Expired - Lifetime
- 1998-12-17 JP JP35971598A patent/JP4004163B2/en not_active Expired - Lifetime
- 1998-12-17 DE DE69805148T patent/DE69805148T2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108465819A (en) * | 2018-03-14 | 2018-08-31 | 燕山大学 | The mechanical alloying preparation method of Ti-22Al-25Nb (at.%) solid solution |
CN108465819B (en) * | 2018-03-14 | 2020-04-03 | 燕山大学 | Mechanical alloying preparation method of Ti-22Al-25Nb (at.%) solid solution |
Also Published As
Publication number | Publication date |
---|---|
DE69805148T2 (en) | 2002-12-12 |
FR2772790A1 (en) | 1999-06-25 |
DE69805148D1 (en) | 2002-06-06 |
JP4004163B2 (en) | 2007-11-07 |
EP0924308A1 (en) | 1999-06-23 |
JPH11241131A (en) | 1999-09-07 |
US6132526A (en) | 2000-10-17 |
FR2772790B1 (en) | 2000-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0924308B1 (en) | Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance | |
CA2583140C (en) | Nickel-based alloy | |
EP0863219B1 (en) | Titanium aluminide usable at elevated temperatures | |
EP0421229A1 (en) | Creep, stress rupture and hold-time fatigue crack resistant alloys | |
CA1340873C (en) | Method for reducing the dispersion of tungsten-nickel-iron alloy mechanical characteristic values | |
JPH0136550B2 (en) | ||
US5472526A (en) | Method for heat treating Ti/Al-base alloys | |
WO2010089516A2 (en) | Method for producing a piece made from a superalloy based on nickel and corresponding piece | |
FR2650967A1 (en) | PROCESS FOR PRODUCING TEXTURE MARKING IN TITANIUM ALLOYS AND PARTS MADE THEREFROM | |
FR2949235A1 (en) | SUPERALLIAGE NICKEL BASE AND COMPONENTS PRODUCED IN THIS SUPERALLIAGE | |
JP6315319B2 (en) | Method for producing Fe-Ni base superalloy | |
EP0864664A1 (en) | Process for producing a superelastic article from an alloy of nickel and titanium | |
EP1544315B1 (en) | Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy | |
EP3117017B1 (en) | Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof | |
FR3030577B1 (en) | INTERMETALLIC ALLOY BASED ON TITANIUM | |
FR3036640A1 (en) | METHOD FOR MANUFACTURING A TURBOMACHINE TANK | |
WO2010086372A1 (en) | Titanium alloy, a method of producing the alloy and an article made of the alloy | |
EP0792945B1 (en) | Process for heat treatment of a nickel-base superalloy | |
US20220205075A1 (en) | METHOD OF MANUFACTURING TiAl ALLOY AND TiAl ALLOY | |
EP0194925B1 (en) | Single crystal alloy with a nickel base matrix | |
EP0758684A1 (en) | Nickel-based superalloys with good stability at high temperatures | |
JP2003147475A (en) | TiAl INTERMETALLIC ALLOY, AND METHOD FOR MANUFACTURING CAST PARTS | |
JP7188576B2 (en) | TiAl alloy material, manufacturing method thereof, and hot forging method for TiAl alloy material | |
EP1584697B1 (en) | Titanium-aluminium alloy having high-temperature ductility | |
JPH08225907A (en) | Production of titanium aluminum base alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990112 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010727 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT Owner name: ETAT INDIEN, CHEF CONTROLEUR DE RECHERCHE ET DEVE Owner name: SNECMA MOTEURS |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69805148 Country of ref document: DE Date of ref document: 20020606 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020720 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030204 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES Effective date: 20170717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171120 Year of fee payment: 20 Ref country code: FR Payment date: 20171121 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171121 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69805148 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20181216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20181216 |