EP0924308B1 - Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance - Google Patents

Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance Download PDF

Info

Publication number
EP0924308B1
EP0924308B1 EP98403187A EP98403187A EP0924308B1 EP 0924308 B1 EP0924308 B1 EP 0924308B1 EP 98403187 A EP98403187 A EP 98403187A EP 98403187 A EP98403187 A EP 98403187A EP 0924308 B1 EP0924308 B1 EP 0924308B1
Authority
EP
European Patent Office
Prior art keywords
temperature
hours
minus
heat treatment
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98403187A
Other languages
German (de)
French (fr)
Other versions
EP0924308A1 (en
Inventor
Thierry Eric Carisey
Ashok Kumar Gogia
Jean-Loup Strudel
Dipankar Banerjee
Alain Lasalmonie
Jean-Michel Franchet
Tapash Kumar Nandy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Etat Indien Chef Controleur De Recherche Et Deve
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Safran Aircraft Engines SAS
Original Assignee
Association pour la Recherche et le Developpement des Methodes et Processus Industriels
SNECMA Moteurs SA
ETAT INDIEN
Etat Indien Chef Controleur De Recherche Et Developpement Drdo-Dmrl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Association pour la Recherche et le Developpement des Methodes et Processus Industriels, SNECMA Moteurs SA, ETAT INDIEN, Etat Indien Chef Controleur De Recherche Et Developpement Drdo-Dmrl filed Critical Association pour la Recherche et le Developpement des Methodes et Processus Industriels
Publication of EP0924308A1 publication Critical patent/EP0924308A1/en
Application granted granted Critical
Publication of EP0924308B1 publication Critical patent/EP0924308B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum

Definitions

  • the present invention relates to a family of titanium-based intermetallic alloys which combine a set of specific mechanical properties including a high yield strength, high creep resistance and sufficient ductility at room temperature.
  • Intermetallic alloys of the Ti 3 Al type have shown interesting specific mechanical characteristics. Ternary alloys with Nb additions have been tested in particular and their mechanical properties joined to a lower density than that of nickel-based alloys since between 4 and 5.5 depending on the Nb content, arouse great interest for aeronautical applications . These alloys also have a higher titanium fire resistance than the Ti-based alloys previously used in the construction of turbomachines.
  • the targeted applications relate to massive structural parts such as casings, massive rotating parts such as centrifugal impellers or as a matrix of composite materials for one-piece bladed rings.
  • the desired operating temperature ranges go up to 650 ° C or 700 ° C in the case of parts made of long fiber composite material.
  • US 4,292,077 and US 4,716,020 describe the results obtained by titanium-based intermetallic alloys containing 24 to 27 Al and 11 to 16 Nb in percentages atomic.
  • the present invention relates to a family of titanium-based intermetallic alloys avoiding disadvantages of the aforementioned known solutions which are characterized by a chemical composition, in percentages atomic, belonging to the following domain: A116-26; Num 18-28; Mo 0 to 2; If O to 0.8; Ta O at 2; Zr O at 2 and Ti complement at 100 with the condition Mo + Si + Zr + Ta> 0.4%.
  • thermomechanical treatments and a method of are further defined for these alloys intermetallic according to the invention, allowing improve their mechanical properties, in particular increase ductility at room temperature and limit plastic deformation during primary creep.
  • Tantalum is a ⁇ -gene element very similar to niobium to which it is often mixed in ores. In the titanium alloys it increases their mechanical strength and gives them better resistance to corrosion and oxidation.
  • Zirconium is a neutral element and the methods of alloys and the origin of the elements brought, by recycling or not, can bring the presence of Zr, which may in some cases be desired.
  • the atomic percentage used for the alloys of the invention for Zr, as for Ta, is is between 0 and 2%.
  • a process for developing the material has also been developed. point in accordance with the invention and makes it possible to obtain the mechanical properties sought and previously described.
  • the first step consists in homogenizing the composition of the material, using for example the VAR process (Vacuum Arc Remelting), this step is important because it determines the homogeneity of the material.
  • the material is then deformed at high speed to reduce the grain size either by forging with a pestle in the ⁇ domain, or by high speed extrusion still in the ⁇ domain. These bars are then cut into pieces to undergo the last stage of the thermomechanical treatment: isothermal forging. This isothermal forging takes place in a temperature range from T ⁇ -125 ° C to T ⁇ -25 ° C and with deformation rates from 5.10 -4 s -1 to 5.10 -2 s. -1 .
  • T ⁇ is the transition temperature between the high-temperature single-phase ⁇ domain and the two-phase domain ⁇ 2 + B 2
  • ⁇ 2 is a phase of defined composition Ti3Al transforming into phase 0 below about 900 ° C.
  • T ⁇ is around 1065 ° C for example, for a Ti 22 Al 25 Nb alloy.
  • the bars obtained by forging or extrusion can, as a variant, be subjected to a rolling operation where the deformation rates are of the order of 10 ⁇ 1 s ⁇ 1 .
  • the preparation of the material ends with a heat treatment which consists of three stages.
  • the first step is a step of re-solution at a temperature between T ⁇ -35 ° C and T ⁇ + 15 ° C for less than 2 hours.
  • the second stage allows the growth of the hardening phase O and this aging is carried out between 750 ° C and 950 ° C for at least 16 hours.
  • the third treatment is carried out within a range of temperature of 100 ° C around the operating temperature of the material.
  • the heat treatment in the vicinity of the temperature of the transition T ⁇ causes the recrystallization of the grains B2 and makes it possible to significantly increase the creep resistance at 650 ° C.
  • this treatment reduces the elastic limit, but increases the ductility around 350 ° C.
  • a heat treatment at a temperature further (-25 ° C) from that of the T ⁇ transition increases the elastic limit and increases the creep resistance at 550 ° C.
  • this treatment achieves a ductility plateau around 10% from 200 ° C to 600 ° C.
  • Intermetallic alloy samples including the composition belongs to the field of the invention have been tested and showed improvements in results compared to the prior known alloy of standard composition Ti 22Al 25Nb.
  • thermomechanical treatment is characterized by low temperature forging T ⁇ -100 ° C and heat treatment at T ⁇ -25 ° C before a 24 hour plateau at 900 ° C and aging at 550 ° C for at least 2 days.
  • the compression creep tests in these two examples also show the interest of the elements Ta and Zr for increase the creep resistance by decreasing the amplitude of the primary creep and reduction of the speed of secondary creep.
  • the results are shown in the figure 10 for compression creep tests at 650 ° C under 310MPa, on curve 5 for the Ti-24 Al-20Nb alloy, on the curve 6 for the Ti-24Al-20Nb-1Ta alloy and curve 7 for Ti-24Al-20Nb-1Zr alloy.
  • FIG. 4 shows a comparison of the specific mechanical properties in traction at room temperature of these alloys with those of alloys commonly used in aeronautics, of the type based on nickel or titanium or under development such as ⁇ Ti Al intermetallics and these results confirm the advantage of the alloys according to the invention.
  • the compared results of creep resistance of known nickel-based alloys such as Inco 718 and a nickel-based superalloy A in accordance with EP-A-0 237 378, based on titanium, such as IMI 834 or intermetallic ⁇ Ti Al and an alloy according to the invention are reported in Figures 5 and 6 according to Larson-Miller diagrams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

La présente invention concerne une famille d'alliages intermétalliques à base de titane qui combinent un ensemble de propriétés mécaniques spécifiques comprenant une haute limite d'élasticité, une résistance élevée au fluage et une ductilité suffisante à la température ambiante. Les alliages intermétalliques du type Ti3Al ont montré des caractéristiques mécaniques spécifiques intéressantes. Des alliages ternaires avec ajouts de Nb ont notamment été testés et leurs propriétés mécaniques jointes à une densité plus faible que celle des alliages à base de nickel puisque comprise entre 4 et 5,5 selon la teneur Nb, suscitent un grand intérêt pour des applications aéronautiques. Ces alliages ont en outre une résistance au feu titane plus importante que les alliages à base Ti précédemment utilisés dans la construction de turbomachines. Les applications visées concernent des pièces massives de structure comme les carters, des pièces tournantes massives comme des rouets centrifuges ou comme matrice de matériaux composites pour des anneaux aubagés monobloc. Les domaines de températures d'utilisation recherchées vont jusqu'à 650°C ou 700°C dans le cas de pièces en matériau composite à fibres longues.The present invention relates to a family of titanium-based intermetallic alloys which combine a set of specific mechanical properties including a high yield strength, high creep resistance and sufficient ductility at room temperature. Intermetallic alloys of the Ti 3 Al type have shown interesting specific mechanical characteristics. Ternary alloys with Nb additions have been tested in particular and their mechanical properties joined to a lower density than that of nickel-based alloys since between 4 and 5.5 depending on the Nb content, arouse great interest for aeronautical applications . These alloys also have a higher titanium fire resistance than the Ti-based alloys previously used in the construction of turbomachines. The targeted applications relate to massive structural parts such as casings, massive rotating parts such as centrifugal impellers or as a matrix of composite materials for one-piece bladed rings. The desired operating temperature ranges go up to 650 ° C or 700 ° C in the case of parts made of long fiber composite material.

Ainsi, US 4.292.077 et US 4.716.020 décrivent les résultats obtenus par des alliages intermétalliques à base de titane comportant 24 à 27 Al et 11 à 16 Nb en pourcentages atomiques.Thus, US 4,292,077 and US 4,716,020 describe the results obtained by titanium-based intermetallic alloys containing 24 to 27 Al and 11 to 16 Nb in percentages atomic.

US 5.032.357 a montré des résultats améliorés grâce à une augmentation de la teneur Nb. Les alliages intermétalliques obtenus présentent généralement dans ce cas une microstructure composée de deux phases :

  • une phase B2 riche en niobium, constituant la matrice du matériau et qui assure une ductilité à la température ambiante,
  • une phase dite O, de composition définie Ti2AlNb, orthorhombique et formant des lattes dans la matrice B2. La phase O est présente jusque vers 1000°C et confère au matériau ses propriétés de résistance à chaud en fluage et en traction.
Ces alliages antérieurs connus présentent cependant certains inconvénients, notamment une ductilité insuffisante à température ambiante et une déformation plastique importante durant le fluage primaire qui limitent actuellement leur utilisation.US 5,032,357 has shown improved results thanks to an increase in the Nb content. The intermetallic alloys obtained generally have in this case a microstructure composed of two phases:
  • a phase B2 rich in niobium, constituting the matrix of the material and which ensures ductility at room temperature,
  • a phase called O, of defined composition Ti 2 AlNb, orthorhombic and forming slats in the matrix B2. Phase O is present up to around 1000 ° C. and gives the material its properties of resistance to heat in creep and in traction.
These known prior alloys, however, have certain drawbacks, including insufficient ductility at room temperature and significant plastic deformation during primary creep which currently limit their use.

Par suite, la présente invention se rapporte à une famille d'alliages intermétalliques à base de titane évitant les inconvénients des solutions connues précitées et qui sont caractérisés par une composition chimique, en pourcentages atomiques, appartenant au domaine suivant : Al16 à 26 ; Nb 18 à 28 ; Mo 0 à 2 ; Si O à 0,8 ; Ta O à 2 ; Zr O à 2 et Ti complément à 100 avec la condition Mo +Si+Zr+Ta > 0,4 %.Consequently, the present invention relates to a family of titanium-based intermetallic alloys avoiding disadvantages of the aforementioned known solutions which are characterized by a chemical composition, in percentages atomic, belonging to the following domain: A116-26; Num 18-28; Mo 0 to 2; If O to 0.8; Ta O at 2; Zr O at 2 and Ti complement at 100 with the condition Mo + Si + Zr + Ta> 0.4%.

Des traitements thermomécaniques appropriés et un mode de mise en oeuvre sont en outre définis pour ces alliages intermétalliques conformes à l'invention, permettant d'améliorer leurs propriétés mécaniques, notamment d'accroítre la ductilité à température ambiante et de limiter la déformation plastique durant le fluage primaire.Appropriate thermomechanical treatments and a method of are further defined for these alloys intermetallic according to the invention, allowing improve their mechanical properties, in particular increase ductility at room temperature and limit plastic deformation during primary creep.

On donne ci-après la justification des choix des fourchettes de composition retenues ainsi que la description des essais effectués menant à la définition du mode d'élaboration et de mise en forme, en indiquant les résultats obtenus en mesures des propriétés mécaniques et comparés aux propriétés d'alliages connus antérieurs, en référence aux dessins annexés sur lesquels :

  • la figure 1 représente les résultats d'essais de fluage à 550°C sous 500MPa en reportant en ordonnées le temps en heures à 1 % de déformation, suivant différentes compositions d'alliages ainsi que les résultats de traction en reportant en ordonnées la limite d'élasticité en MPa ;
  • la figure 2 représente les résultats d'essais de fluage à 550°C sous 500MPa en reportant en ordonnées la limite d'élasticité en MPa et en abscisses le temps en heures à 0,5 % de déformation, suivant différentes compositions d'alliages ;
  • la figure 3 montre un exemple de microstructure obtenue à l'issue d'une élaboration d'un alliage intermétallique conforme à l'invention ;
  • la figure 4 représente schématiquement par zones les résultats d'essais mécaniques effectués sur quatre types différents d'alliages, en reportant en abscisses les allongements en pourcentages et en ordonnées la limite élastique spécifique, à température ambiante ;
  • les figures 5 et 6 représentent en diagramme de Larson-Miller les résultats de tenue au fluage, respectivement à 1 % de déformation et à rupture, en reportant en abscisses le paramètre de Larson-Miller et en ordonnées la contrainte spécifique en MPa pour différents alliages ;
  • les figures 7, 8 et 9 représentent les résultats d'essais mécaniques obtenus pour un alliage conforme à l'invention, respectivement les contraintes en MPa, à rupture et en limite d'élasticité, à 20°C et à 650°C puis la déformation homogène en pourcentages à 20°C et à 650°C et enfin le temps en heures à 1 % de déformation lors de la tenue au fluage à 550°C sous 500 MPa, suivant quatre gammes différentes de traitement thermique appliquées à l'alliage ;
  • la figure 10 représente les résultats d'essais de fluage en compression pour un alliage antérieur connu et deux alliages conformes à l'invention.
We give below the justification of the choice of the ranges of composition retained as well as the description of the tests carried out leading to the definition of the method of preparation and shaping, indicating the results obtained in measurements of mechanical properties and compared with the properties. of prior known alloys, with reference to the appended drawings in which:
  • FIG. 1 represents the results of creep tests at 550 ° C. under 500 MPa by plotting the time in hours at 1% deformation, according to different alloy compositions as well as the traction results by plotting the limit d on the ordinate elasticity in MPa;
  • FIG. 2 represents the results of creep tests at 550 ° C. under 500 MPa by plotting on the ordinates the elastic limit in MPa and on the abscissa the time in hours at 0.5% deformation, according to different alloy compositions;
  • FIG. 3 shows an example of a microstructure obtained at the end of an elaboration of an intermetallic alloy according to the invention;
  • FIG. 4 schematically represents by zones the results of mechanical tests carried out on four different types of alloys, by plotting the elongations in percentages and in ordinates the specific elastic limit, at room temperature;
  • FIGS. 5 and 6 show in Larson-Miller diagram the results of creep resistance, respectively at 1% deformation and at break, by plotting the Larson-Miller parameter on the abscissa and the specific stress in MPa for different alloys ;
  • FIGS. 7, 8 and 9 represent the results of mechanical tests obtained for an alloy in accordance with the invention, the stresses in MPa, at rupture and in yield strength, respectively, at 20 ° C. and at 650 ° C. then the homogeneous deformation in percentages at 20 ° C and 650 ° C and finally the time in hours at 1% deformation during creep resistance at 550 ° C under 500 MPa, according to four different ranges of heat treatment applied to the alloy ;
  • FIG. 10 represents the results of compression creep tests for a known prior alloy and two alloys according to the invention.

Les résultats expérimentaux ont montré que les teneurs retenues pour les trois éléments majeurs de la composition, titane, aluminium et niobium sont les plus appropriées, à savoir :

  • Al 16 à 26 ; Nb 18 à 28 et Ti élément de base.
  • The experimental results have shown that the contents selected for the three major elements of the composition, titanium, aluminum and niobium are the most appropriate, namely:
  • Al 16-26; Nb 18 to 28 and Ti basic element.
  • La variation des teneurs dans les limites indiquées permet un ajustement des propriétés suivant le type d'application recherchée et le domaine de température d'utilisation correspondant.The variation of the contents within the indicated limits allows a adjustment of properties according to the type of application temperature and range of use corresponding.

    Spécifications en Al, Si : éléments α-gènes.Specifications in Al, Si: α-gene elements.

    Ces deux éléments sont des éléments qui favorisent la phase O et donc ils augmentent la tenue à chaud des alliages. Cependant, ils ont tendance à diminuer la ductilité en particulier à la température ambiante. La déformation plastique pendant le fluage primaire diminue de 0,5 % à 0,25 % avec l'ajout de ces éléments (0,5 % de Si ou un passage de 22 % à 24 % d'Al). Par contre, la limite d'élasticité est fortement diminuée ainsi que la ductilité (de 1,5 % à 0,5 %). Ainsi, l'augmentation de la teneur en aluminium de 22% à 24%, pour le même traitement thermique, réduit fortement la limite d'élasticité qui chute de 600 MPa à 500 MPa à 650°C. L'influence bénéfique de l'ajout de 0,5 % Si sur la tenue au fluage est illustrée par la figure 2.These two elements are elements which favor phase O and therefore they increase the heat resistance of the alloys. However, they tend to decrease ductility in especially at room temperature. The deformation plastic during primary creep decreases from 0.5% to 0.25 % with the addition of these elements (0.5% of Si or a passage of 22% to 24% Al). On the other hand, the elastic limit is greatly reduced as well as the ductility (from 1.5% to 0.5%). Thus, increasing the aluminum content from 22% to 24%, for the same heat treatment, greatly reduces the limit elasticity which drops from 600 MPa to 500 MPa at 650 ° C. The beneficial influence of the addition of 0.5% Si on the resistance to creep is illustrated in Figure 2.

    Spécifications en Nb, Mo, Ta : éléments β-gènesSpecifications in Nb, Mo, Ta: β-gene elements

    Ces éléments favorisent la phase B2 qui est ductile à la température ambiante, ils participent à la stabilité de la phase B2 aux températures d'utilisation. Une réduction de la teneur en niobium (de 25% à 20%) affecte principalement la tenue au fluage, les propriétés en traction étant peu modifiées, comme le montrent les résultats représentés sur la figure 1. On montrera que l'ajout de molybdène permet un accroissement important de la limite d'élasticité de 100 MPa à la température ambiante et de 200 MPa à 650°C et ceci sans réduction de ductilité à température ambiante. Le molybdène permet aussi une meilleure résistance au fluage, il réduit très nettement la déformation plastique pendant le fluage primaire (de 0,5 % à 0,25 %) et diminue la vitesse de déformation plastique pendant le stade secondaire. Ces gains sont accentués quand l'alliage contient préalablement du silicium. Ces résultats obtenus en fluage à 550°C sous 500 MPa sont illustrés à la figure 2 pour des alliages comportant des ajout de Mo, de Si ou des deux éléments.These elements favor the B2 phase which is ductile to the room temperature they participate in the stability of the phase B2 at operating temperatures. A reduction in niobium content (25% to 20%) mainly affects the creep resistance, the tensile properties being little modified, as shown by the results shown on the figure 1. We will show that the addition of molybdenum allows a significant increase in the yield strength of 100 MPa at room temperature and 200 MPa at 650 ° C and this without reduction of ductility at room temperature. Molybdenum also allows better resistance to creep, it reduces very clearly the plastic deformation during creep primary (from 0.5% to 0.25%) and decreases the speed of plastic deformation during the secondary stage. These gains are accentuated when the alloy previously contains silicon. These results obtained in creep at 550 ° C. under 500 MPa are illustrated in FIG. 2 for alloys comprising additions of MB, Si or both.

    Le tantale est un élément β-gène très semblable au niobium auquel il est souvent mélangé dans les minerais. Dans les alliages de titane, il augmente leur résistance mécanique et leur confère une meilleure résistance à la corrosion et à l'oxydation.Tantalum is a β-gene element very similar to niobium to which it is often mixed in ores. In the titanium alloys it increases their mechanical strength and gives them better resistance to corrosion and oxidation.

    Spécifications en Zr : élément β-neutreZr specifications: β-neutral element

    Le zirconium est un élément neutre et les méthodes d'élaboration des alliages et l'origine des éléments apportés, par recyclage ou non, peuvent amener la présence de Zr, qui peut dans certains cas être souhaitée.Zirconium is a neutral element and the methods of alloys and the origin of the elements brought, by recycling or not, can bring the presence of Zr, which may in some cases be desired.

    Le pourcentage atomique retenu pour les alliages intermétalliques de l'invention pour Zr, comme pour Ta, se situe entre 0 et 2 %.The atomic percentage used for the alloys of the invention for Zr, as for Ta, is is between 0 and 2%.

    Ces spécifications et les essais expérimentaux effectués ont conduit à retenir pour la composition des alliages intermétalliques en plus des trois éléments majeurs notés ci-dessus des éléments d'addition dans les pourcentages atomiques suivants :

  • Mo 0 à 2 ; Si 0 à 0,8 ; Ta 0 à 2 et Zr 0 à 2
  • avec la condition supplémentaire de présence d'au moins un des éléments d'addition : Mo + Si + Zr + Ta > 0,4 %.These specifications and the experimental tests carried out have led to the addition, for the composition of intermetallic alloys in addition to the three major elements noted above, of elements in the following atomic percentages:
  • Mo 0 to 2; If 0 to 0.8; Ta 0 to 2 and Zr 0 to 2
  • with the additional condition of the presence of at least one of the addition elements: Mo + Si + Zr + Ta> 0.4%.

    Procédés d'élaboration et de mise en formeElaboration and shaping processes

    Un procédé d'élaboration du matériau a également été mis au point conformément à l'invention et permet d'obtenir les propriétés mécaniques recherchées et précédemment décrites.A process for developing the material has also been developed. point in accordance with the invention and makes it possible to obtain the mechanical properties sought and previously described.

    Dans cette élaboration, la première étape consiste en une homogénéisation de la composition du matériau, en utilisant par exemple le procédé VAR (Vacuum Arc Remelting), cette étape est importante car elle détermine l'homogénéité du matériau. Le matériau est ensuite déformé à haute vitesse pour réduire la taille de grain soit par un forgeage au pilon dans le domaine β, soit par une extrusion à vitesse élevée toujours dans le domaine β. Ces barres sont ensuite découpées en lopins pour subir la dernière étape du traitement thermomécanique : le forgeage isotherme. Ce forgeage isotherme s'effectue dans un domaine de températures allant de Tβ -125°C à Tβ -25°C et avec des vitesses de déformations de 5.10-4 s-1 à 5.10-2 s.-1. Tβ est la température de transition entre le domaine à haute température monophase β et le domaine biphasé α2 + B2, α2 est une phase de composition définie Ti3Al se transformant en phase 0 en dessous de 900°C environ. Tβ se situe autour de 1065°C par exemple, pour un alliage Ti 22 Al 25 Nb.
    En fonction des applications particulières, les barres obtenues par forgeage ou extrusion peuvent, en variante, être soumises à une opération de laminage où les vitesses de déformations sont de l'ordre de 10-1 s-1. On peut également effectuer un forgeage de précision dans un domaine biphasé α2 + B2 qui conduit à une structure de grains équiaxes avec une forme globulaire de la phase α2/0. Dans ce cas, le forgeage s'effectue dans un domaine de températures allant de Tβ - 180°C à Tβ - 30°C.
    L'élaboration du matériau s'achève par un traitement thermique qui est constitué de trois étapes.
    In this development, the first step consists in homogenizing the composition of the material, using for example the VAR process (Vacuum Arc Remelting), this step is important because it determines the homogeneity of the material. The material is then deformed at high speed to reduce the grain size either by forging with a pestle in the β domain, or by high speed extrusion still in the β domain. These bars are then cut into pieces to undergo the last stage of the thermomechanical treatment: isothermal forging. This isothermal forging takes place in a temperature range from T β -125 ° C to T β -25 ° C and with deformation rates from 5.10 -4 s -1 to 5.10 -2 s. -1 . T β is the transition temperature between the high-temperature single-phase β domain and the two-phase domain α 2 + B 2 , α 2 is a phase of defined composition Ti3Al transforming into phase 0 below about 900 ° C. T β is around 1065 ° C for example, for a Ti 22 Al 25 Nb alloy.
    Depending on the particular applications, the bars obtained by forging or extrusion can, as a variant, be subjected to a rolling operation where the deformation rates are of the order of 10 −1 s −1 . It is also possible to carry out precision forging in a two-phase domain α 2 + B 2 which leads to a structure of equiaxed grains with a globular shape of the phase α2 / 0. In this case, forging takes place in a temperature range from T β - 180 ° C to T β - 30 ° C.
    The preparation of the material ends with a heat treatment which consists of three stages.

    La première étape est une étape de remise en solution à une température comprise en Tβ -35°C et Tβ + 15°C pendant moins de 2 heures. The first step is a step of re-solution at a temperature between T β -35 ° C and Tβ + 15 ° C for less than 2 hours.

    La seconde étape permet la croissance de la phase durcissante O et ce vieillissement est effectué entre 750°C et 950°C pendant au moins 16 heures.The second stage allows the growth of the hardening phase O and this aging is carried out between 750 ° C and 950 ° C for at least 16 hours.

    Le troisième traitement est effectué dans une plage de température de 100°C autour de la température d'utilisation du matériau.The third treatment is carried out within a range of temperature of 100 ° C around the operating temperature of the material.

    Le choix de la vitesse de refroidissement entre les différents paliers est important car il détermine la taille des lattes de la phase durcissante O. La détermination d'un programme particulier se fait en fonction des caractéristiques d'emploi que l'on recherche.
    La figure 3 montre un exemple de microstructure obtenue à l'issue de cette élaboration d'un alliage intermétallique conforme à l'invention.
    Dans le cas où une structure de grains équiaxes par forgeage de précision dans le domaine α2 + B2 est recherchée, lors de la première étape du traitement thermique, la température de remise en solution est voisine de la température de forgeage. Le choix de cette température est critique car il influe à la fois sur la taille de grains équiaxes que l'on vise et sur la proportion relative des populations de phase durcissante primaire globularisée restante et de phase durcissante secondaire aiguillée qui se formera aux étapes suivantes.
    Dans les mises au point effectuées, on a montré que les traitements thermomécaniques ont une grande influence sur les propriétés mécaniques :

    • effet de la température de forgeage : le forgeage à une température élevée assure une meilleure résistance au fluage à 550°C, le temps à rupture est multiplié par 10 et la déformation à rupture passe de 0,8 % à 1,3%, ceci avec une augmentation de 50°C de la température de forgeage ;
    • effet de la vitesse de forgeage : Pour une vitesse 20 fois plus grande, on constate une réduction d'un facteur 10 du temps à rupture lors de fluage à 550°C sous 500MPa.
    The choice of the cooling rate between the different stages is important because it determines the size of the slats of the hardening phase O. The determination of a particular program is done according to the characteristics of use that are sought.
    Figure 3 shows an example of microstructure obtained at the end of this development of an intermetallic alloy according to the invention.
    In the case where a structure of grains equiaxed by precision forging in the domain α2 + B2 is sought, during the first stage of the heat treatment, the temperature of re-solution is close to the forging temperature. The choice of this temperature is critical because it influences both the size of the equiaxed grains that we are targeting and the relative proportion of the populations of remaining globularized primary hardening phase and of secondary needle hardening phase which will form in the following stages.
    In the adjustments carried out, it has been shown that thermomechanical treatments have a great influence on the mechanical properties:
    • effect of the forging temperature: forging at a high temperature ensures better creep resistance at 550 ° C, the breaking time is multiplied by 10 and the breaking strain changes from 0.8% to 1.3%, this with a 50 ° C increase in the forging temperature;
    • effect of the forging speed: For a speed 20 times greater, there is a reduction by a factor of 10 in the breaking time during creep at 550 ° C under 500MPa.

    Le traitement thermique au voisinage de la température de la transition Tβ provoque la recristallisation des grains B2 et permet d'accroítre de façon importante la tenue au fluage à 650°C. Cependant ce traitement réduit la limite d'élasticité, mais augmente la ductilité autour de 350°C. Un traitement thermique à une température plus éloignée (-25°C) de celle de la transition Tβ augmente la limite d'élasticité et accroít la tenue au fluage à 550°C. De plus, ce traitement permet d'atteindre un plateau de ductilité autour de 10 % dès 200°C jusqu'à 600°C.The heat treatment in the vicinity of the temperature of the transition T β causes the recrystallization of the grains B2 and makes it possible to significantly increase the creep resistance at 650 ° C. However, this treatment reduces the elastic limit, but increases the ductility around 350 ° C. A heat treatment at a temperature further (-25 ° C) from that of the T β transition increases the elastic limit and increases the creep resistance at 550 ° C. In addition, this treatment achieves a ductility plateau around 10% from 200 ° C to 600 ° C.

    Ces constatations résultent notamment des essais suivants :These findings result in particular from the following tests:

    EXEMPLE 1 - Rôle de la température de forgeage;EXAMPLE 1 - Role of the forging temperature;

    Nous avons regardé l'influence de deux températures de forgeage sur la tenue au fluage. Le forgeage est suivi du même traitement thermique à haute température. Nous montrons donc ainsi que la température de forgeage est importante sur la tenue au fluage car elle détermine la morphologie des phases présentes dans le matériau, comme le montrent les résultats ci-après de tenue au fluage d'un alliage Ti22Al 25Nb à 550°C sous 450 MPa : TEMPERATURE DE FORGEAGE TEMPS A 0,5 % (%) TEMPS A RUPTURE (H) DEFORMATION PRIMAIRE (%) VITESSE DE DEFORMATION Tβ -100°C 30,3 H 168 H 0,44 % 5 10-9 S.-1 Tβ -50°C 123,3 H 1037,5 H 0,35 % 2.10-9 S.-1 We looked at the influence of two forging temperatures on creep resistance. Forging is followed by the same heat treatment at high temperature. We therefore show that the forging temperature is important on creep resistance because it determines the morphology of the phases present in the material, as shown below the creep resistance results of a Ti22Al 25Nb alloy at 550 ° C under 450 MPa: FORGING TEMPERATURE TIME AT 0.5% (%) BREAKING TIME (H) PRIMARY DEFORMATION (%) DEFORMATION SPEED T β -100 ° C 30.3 H 168 H 0.44% 5 10 -9 S. -1 T β -50 ° C 123.3 H 1037.5 H 0.35% 2.10 -9 S. -1

    Enfin la tenue au fluage de l'alliage Ti 22 Al 25 Nb à 650°C sous 300MPa, en fonction de la température du forgeage isotherme donne les résultats suivants : TEMPERATURE DE FORGEAGE TEMPS A 0,5 % (%) TEMPS A RUPTURE (H) DEFORMATION PRIMAIRE (%) VITESSE DE DEFORMATION SECONDAIRE Tβ -100°C 7 H 980 H 1 % 1.10-8 S.-1 Tβ -50°C 12,7H 1526 H 0,8 % 6,9.10-9 S.-1 Finally, the creep resistance of the Ti 22 Al 25 Nb alloy at 650 ° C. under 300 MPa, as a function of the temperature of isothermal forging gives the following results: FORGING TEMPERATURE TIME AT 0.5% (%) BREAKING TIME (H) PRIMARY DEFORMATION (%) SECONDARY DEFORMATION SPEED T β -100 ° C 7 a.m. 980 H 1% 1.10 -8 S. -1 T β -50 ° C 12,7H 1526 H 0.8% 6.9.10 -9 S. -1

    Exemple 2 - Effet du traitement thermique;Example 2 - Effect of heat treatment;

    Nous montrons ici l'influence de la température de remise en solution sur les propriétés mécaniques et la tenue au fluage, pour le galet forgé à haute température. Nous pouvons constater qu'une remise en solution à une température élevée conduit à une recristallisation et à une chute de propriétés en traction. Par contre, ces deux traitements permettent de choisir la température à laquelle le matériau est résistant en fluage, soit à 550°C, soit à 650°C. Une température de remise en solution basse permet une bonne tenue au fluage à 550°C, tandis qu'une température plus élevée permet une meilleure tenue à 650°C, ceci pour toutes les caractéristiques : temps à rupture, déformation plastique primaire, vitesse de déformation.Here we show the influence of the return temperature solution on mechanical properties and creep resistance, for the high temperature forged roller. We can find that a re-solution at a high temperature leads to recrystallization and a fall in properties in traction. However, these two treatments allow choose the temperature at which the material is resistant in creep, either at 550 ° C, or at 650 ° C. A temperature of low solution allows good creep resistance at 550 ° C, while a higher temperature allows better resistance at 650 ° C, this for all characteristics: breaking time, plastic deformation primary, strain rate.

    Les résultats suivants ont été obtenus en limite d'élasticité mesurée en MPa, en fonction de la température d'essai pour deux températures de remise en solution : TEMPERATURE DE TRAITEMENT 20°C 350°C 450°C 550°C 650°C Tβ -5°C (MPa) 792,4 637,6 659 668 505 Tβ -25°C (MPa) 846,7 711,01 734,3 695 645,4 The following results were obtained in yield strength measured in MPa, as a function of the test temperature for two re-solution temperatures: PROCESSING TEMPERATURE 20 ° C 350 ° C 450 ° C 550 ° C 650 ° C T β -5 ° C (MPa) 792.4 637.6 659 668 505 T β -25 ° C (MPa) 846.7 711.01 734.3 695 645.4

    De même, les résultats suivants ont été obtenus en tenue au fluage à 550°C sous 500MPa, en fonction de la température du traitement de mise en solution : TEMPERATURE DE TRAITEMENT TEMPS A 0,5 % (%) TEMPS A RUPTURE (H) DEFORMATION PRIMAIRE (%) VITESSE DE DEFORMATION Tβ -5°c 123 H >1000 H 0,37 % 2 10-9 S.-1 Tβ -25°C 211 H 1220 H 0,47 % 1,3.10-9 S.-1 Likewise, the following results were obtained in creep resistance at 550 ° C. under 500 MPa, as a function of the temperature of the solution treatment: PROCESSING TEMPERATURE TIME AT 0.5% (%) BREAKING TIME (H) PRIMARY DEFORMATION (%) DEFORMATION SPEED T β -5 ° c 123 H > 1000 H 0.37% 2 10 -9 S. -1 T β -25 ° C 211 H 1220 H 0.47% 1.3.10 -9 S. -1

    Exemple 3 - Ajustement de ductilité à la température ambiante ;Example 3 - Ductility adjustment at temperature ambient;

    Nous allons présenter la ductilité obtenue à la température ambiante suivant la température du dernier traitement thermique, la durée de ce traitement est comprise entre 16 et 48 H. Nous pouvons constater que plus la température de dernier traitement est élevée plus la ductilité augmente. Ces résultats ont été obtenus sur un alliage quaternaire contenant du molybdène. Il est donc possible avec un traitement approprié d'obtenir une ductilité adaptée à une utilisation particulière, comme indiqué ci-après : T° dernier traitement 900°C 750°C 600°C 550°C Ductilité 10 % 6,4 % 2,5 % 1,25 % We will present the ductility obtained at room temperature according to the temperature of the last heat treatment, the duration of this treatment is between 16 and 48 H. We can see that the higher the temperature of the last treatment, the more the ductility increases. These results were obtained on a quaternary alloy containing molybdenum. It is therefore possible with an appropriate treatment to obtain a ductility adapted to a particular use, as indicated below: Last treatment temperature 900 ° C 750 ° C 600 ° C 550 ° C Ductility 10% 6.4% 2.5% 1.25%

    Des échantillons d'alliage intermétallique dont la composition appartient au domaine de l'invention ont été testés et ont montré les améliorations des résultats obtenus par rapport à l'alliage connu antérieur de composition type Ti 22Al 25Nb.Intermetallic alloy samples including the composition belongs to the field of the invention have been tested and showed improvements in results compared to the prior known alloy of standard composition Ti 22Al 25Nb.

    EXEMPLE 4 - effet du molybdène ;EXAMPLE 4 - effect of molybdenum;

    Le tableau ci-dessous présente la limite d'élasticité pour différentes températures et nous constatons clairement l'effet de l'ajout de 1 % de Mo sur la limite d'élasticité. Sur le second tableau, nous montrons l'avantage de la présence du molybdène sur la tenue au fluage. Les matériaux ont été traités suivant le même traitement thermomécanique. Ce traitement thermomécanique se caractérise par un forgeage à basse température Tβ -100°C et un traitement thermique à Tβ -25°C avant un palier de 24H à 900°C et un vieillissement à 550°C pendant au moins 2 jours.

    Figure 00100001
    Figure 00110001
    The table below shows the elastic limit for different temperatures and we clearly see the effect of adding 1% Mo on the elastic limit. In the second table, we show the advantage of the presence of molybdenum on creep resistance. The materials were treated according to the same thermomechanical treatment. This thermomechanical treatment is characterized by low temperature forging T β -100 ° C and heat treatment at T β -25 ° C before a 24 hour plateau at 900 ° C and aging at 550 ° C for at least 2 days.
    Figure 00100001
    Figure 00110001

    Exemple 5 - Effet du silicium ;Example 5 - Effect of silicon;

    Nous présentons l'apport du silicium sur la tenue au fluage toujours à partir de matériaux élaborés en appliquant le traitement thermomécanique décrit ci-dessus à l'exemple 4. Nous montrons ainsi la réduction de la déformation plastique du fluage primaire et la diminution importante de la vitesse de fluage secondaire.

    Figure 00110002
    We present the contribution of silicon on the creep resistance always from materials developed by applying the thermomechanical treatment described above in Example 4. We thus show the reduction in the plastic deformation of the primary creep and the significant decrease in the secondary creep speed.
    Figure 00110002

    Exemple 6 - Effet du tantaleExample 6 Effect of Tantalum

    Des coulées d'un alliage de référence Ti-24 Al-20 Nb et d'un alliage modifié de composition Ti-24 Al-20 Nb-1 Ta, les valeurs étant données en pourcentages atomiques, ont été élaborés, puis des échantillons cylindriques ont été usinés et les traitements thermiques appliqués ont été : 1160°/30 minutes, refroidissement en four jusqu'à 750°C puis maintien 24 heures. Les essais mécaniques en compression réalisés ont donné les résultats suivants :

    Figure 00120001
    Castings of a reference alloy Ti-24 Al-20 Nb and of a modified alloy of composition Ti-24 Al-20 Nb-1 Ta, the values being given in atomic percentages, were produced, then cylindrical samples have been machined and the heat treatments applied have been: 1160 ° / 30 minutes, cooling in an oven to 750 ° C. then holding for 24 hours. The mechanical compression tests carried out gave the following results:
    Figure 00120001

    Exemple 7 - Effet du zirconiumExample 7 Effect of Zirconium

    Les mêmes opérations que dans l'exemple 6 pour un alliage Ti-24Al-20Nb-1Zr ont donné les résultats suivants :

    Figure 00120002
    The same operations as in Example 6 for a Ti-24Al-20Nb-1Zr alloy gave the following results:
    Figure 00120002

    Les essais de fluage en compression dans ces deux exemples montrent également l'intérêt des éléments Ta et Zr pour augmenter la résistance au fluage par diminution de l'amplitude du fluage primaire et réduction de la vitesse de fluage secondaire. Les résultats sont reportés sur la figure 10 pour des essais de fluage en compression à 650°C sous 310MPa, sur la courbe 5 pourl'alliage Ti-24 Al-20Nb, sur la courbe 6 pour l'alliage Ti-24Al-20Nb-1Ta et la courbe 7 pour l'alliage Ti-24Al-20Nb-1Zr.The compression creep tests in these two examples also show the interest of the elements Ta and Zr for increase the creep resistance by decreasing the amplitude of the primary creep and reduction of the speed of secondary creep. The results are shown in the figure 10 for compression creep tests at 650 ° C under 310MPa, on curve 5 for the Ti-24 Al-20Nb alloy, on the curve 6 for the Ti-24Al-20Nb-1Ta alloy and curve 7 for Ti-24Al-20Nb-1Zr alloy.

    Les résultats expérimentaux obtenus montrent les avantages précédemment notés des alliages conformes à l'invention.
    En outre, la figure 4 montre une comparaison des propriétés mécaniques spécifiques en traction à température ambiante de ces alliages avec celles d'alliages couramment utilisés dans l'aéronautique, du type à base de nickel ou de titane ou en cours de développement tels que des intermétalliques γ Ti Al et ces résultats confirment l'intérêt des alliages selon l'invention. De même, les résultats comparés de tenue au fluage d'alliages connus à base de nickel tels que Inco 718 et un superalliage A à base de nickel conforme à EP-A-0 237 378, à base de titane, tel que IMI 834 ou intermétallique γ Ti Al et d'un alliage conforme à l'invention sont reportés sur les figures 5 et 6 suivant des diagrammes de Larson-Miller.
    The experimental results obtained show the previously noted advantages of the alloys in accordance with the invention.
    In addition, FIG. 4 shows a comparison of the specific mechanical properties in traction at room temperature of these alloys with those of alloys commonly used in aeronautics, of the type based on nickel or titanium or under development such as γ Ti Al intermetallics and these results confirm the advantage of the alloys according to the invention. Likewise, the compared results of creep resistance of known nickel-based alloys such as Inco 718 and a nickel-based superalloy A in accordance with EP-A-0 237 378, based on titanium, such as IMI 834 or intermetallic γ Ti Al and an alloy according to the invention are reported in Figures 5 and 6 according to Larson-Miller diagrams.

    Enfin les résultats obtenus en essais mécaniques sur un alliage conforme à l'invention de composition en pourcentages atomiques 22Al, 25Nb, 1Mo et Ti complément à 100 ont été reportés sur les diagrammes des figures 7, 8 et 9 où les niveaux la ....g correspondent à un traitement thermique comportant :

    • mise en solution à 1030°C/ 1 heure
    • vieillissement à 900°C/24 heures
    • revenu à 550°C/48 heures ;
    les niveaux 2a....g correspondent au traitement thermique :
    • mise en solution à 1030°C/1 heure
    • vieillissement à 900°C/24 heures ;
    les niveaux 3a....g correspondent au traitement thermique :
    • mise en solution à 1060°C/1 heure
    • vieillissement à 900°C/24 heures
    • revenu à 550°C/48 heures ;
    et les niveaux 4a....g, au traitement thermique :
    • mise en solution à 1030°C/1 heure
    • vieillissement à 800°C/24 heures
    • revenu à 600°C/48 heures
    Finally the results obtained in mechanical tests on an alloy in accordance with the invention of composition in atomic percentages 22Al, 25Nb, 1Mo and Ti complement to 100 were reported on the diagrams of Figures 7, 8 and 9 where the levels la ... .g correspond to a heat treatment comprising:
    • dissolved at 1030 ° C / 1 hour
    • aging at 900 ° C / 24 hours
    • returned to 550 ° C / 48 hours;
    levels 2a .... g correspond to the heat treatment:
    • dissolved at 1030 ° C / 1 hour
    • aging at 900 ° C / 24 hours;
    levels 3a .... g correspond to the heat treatment:
    • dissolved at 1060 ° C / 1 hour
    • aging at 900 ° C / 24 hours
    • returned to 550 ° C / 48 hours;
    and levels 4a .... g, heat treatment:
    • dissolved at 1030 ° C / 1 hour
    • aging at 800 ° C / 24 hours
    • returned to 600 ° C / 48 hours

    Claims (10)

    1. A titanium based intermetallic alloy having a high elasticity limit, high creep resistance and sufficient ductility at ambient temperature, characterised in that its chemical composition in atomic percentages lies in the following range:
      Al 16 to 26; Nb 18 to 28; Mo 0 to 2; Si 0 to 0.8; Ta 0 to 2; Zr 0 to 2, and Ti as the balance, with the condition Mo + Si + Zr + Ta > 0.4%.
    2. An intermetallic alloy according to claim 1, characterised in that it is prepared by carrying out at least the following steps in the order indicated:
      a) fusion to obtain an ingot of homogeneous composition;
      b) high-speed deformation leading to a reduction of the grain size;
      c) isothermal forging at a temperature between the β transus temperature Tβ minus 125°C and the β transus temperature Tβ minus 25°C with rates of deformation between 5.10-4 s-1 and 5.10-2 s-1; and
      d) heat treatment comprising the following substeps:
      d1) solutioning at a temperature between the β transus temperature minus 35°C and the β transus temperature plus 15°C for less than two hours;
      d2) ageing at a temperature between 750°C and 950°C for more than 16 hours permittinq the growth of an orthorhombic hardening phase 0; and
      d3) treatment carried out in a temperature range of 100°C around the use temperature determined for the material,
      the cooling rates between the heat treatment levels being determined in dependence upon the use characteristics required for the material in the light of their influence on the size of the lattices of the orthorhombic hardening phase 0.
    3. An intermetallic alloy according to claim 1, characterised in that it is prepared by carrying out at least the following steps in the order indicated:
      a) fusion to obtain an ingot of homogeneous composition;
      b) high speed deformation leading to a reduction of the grain size;
      c) rolling at a deformation speed of the order of 10-1 s-1; and
      d) heat treatment comprising the following substeps:
      d1) solutioning at a temperature between the β transus temperature minus 35°C and the β transus temperature plus 15°C for less than two hours;
      d2) ageing at a temperature between 750°C and 950°C for more than 16 hours permittinq the growth of an orthorhombic hardening phase 0; and
      d3) treatment carried out in a 100°C temperature range around the use temperature determined for the material;
      the cooling rates between the heat treatment levels being determined in dependence upon the use characteristics determined for the material in the light of their influence on the size of the lattices of the orthorhombic hardening phase 0.
    4. An intermetahic alloy according to claim 1, characterised in that it is prepared by carrying out at least the following steps in the order indicated:
      a) fusion to obtain an ingot of homogeneous composition;
      b) high speed deformation leading to a reduction of the grain size;
      c) precision forging at a temperature between the β transus temperature Tβ minus 180°C and the beta transus temperature Tβ minus 30°C, leading to a structure of equiaxed grains; and
      d) heat treatment comprising the following substeps:
      d1) solutioning at a temperature close to the forging temperature for less than 2 hors;
      d2) ageing at a temperature between 750°C and 950°C for more than 16 hours, permitting the growth of an orthorhombic hardening phase 0; and
      d3) treatment carried out in a 100°C temperature range around the use temperature determined for the material,
      the cooling rates between the heat treatment levels being determined in dependence upon the use characteristics required for the material in the light of their influence on the size of the lattices of the orthorhombic hardening phase 0.
    5. An intermetallic alloy according to claim 2 or claim 3, characterised in that in step a) the fusion is carried out by double vacuum arc fusion.
    6. An intermetallic alloy according to any of claims 1 to 4, characterised in that a heat treatment giving it an optimised creep resistance is applied to the material, the heat treatment comprising the following steps:
      a) solutioning at a β transus temperature minus 25°C for 1 hour;
      b) ageing at a temperature between 875°C and 925°C for 24 hours followed by rapid cooling; and
      c) tempering at the use temperature determined for the material.
    7. An intermetallic alloy according to claim 6, characterised in that the tempering treatment is given at 550°C for 48 hours for a use temperature of 550°C.
    8. An intermetallic alloy according to claim 6, characterised in that the tempering treatment is given at 650°C for 24 hours for a use temperature of 650°C.
    9. An intermetalllic alloy according to claim 1, characterised in that a heat treatment giving it a deformability of at least 10% at ambient temperature is applied to it, the treatment comprising the following steps:
      a) solutioning at a temperature between the β transus temperature minus 35°C and the β transus temperature minus 15°C for at least two hours; and
      b) ageing at a temperature of 900°C plus or minus 50°C for more than 16 hours.
    10. An intermetallic alloy according to claim 8, characterised in that a tempering is given in a 100°C temperature range around the use temperature determined for the material and produces an additional hardening of the material.
    EP98403187A 1997-12-18 1998-12-17 Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance Expired - Lifetime EP0924308B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9716057A FR2772790B1 (en) 1997-12-18 1997-12-18 TITANIUM-BASED INTERMETALLIC ALLOYS OF THE Ti2AlNb TYPE WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CREEP
    FR9716057 1997-12-18

    Publications (2)

    Publication Number Publication Date
    EP0924308A1 EP0924308A1 (en) 1999-06-23
    EP0924308B1 true EP0924308B1 (en) 2002-05-02

    Family

    ID=9514764

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98403187A Expired - Lifetime EP0924308B1 (en) 1997-12-18 1998-12-17 Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance

    Country Status (5)

    Country Link
    US (1) US6132526A (en)
    EP (1) EP0924308B1 (en)
    JP (1) JP4004163B2 (en)
    DE (1) DE69805148T2 (en)
    FR (1) FR2772790B1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN108465819A (en) * 2018-03-14 2018-08-31 燕山大学 The mechanical alloying preparation method of Ti-22Al-25Nb (at.%) solid solution

    Families Citing this family (50)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP3774758B2 (en) * 2000-06-26 2006-05-17 独立行政法人物質・材料研究機構 TiB particle reinforced Ti2AlNb intermetallic compound matrix composite and production method thereof
    US6436208B1 (en) 2001-04-19 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Process for preparing aligned in-situ two phase single crystal composites of titanium-niobium alloys
    US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
    US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
    US8337750B2 (en) * 2005-09-13 2012-12-25 Ati Properties, Inc. Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
    US7611592B2 (en) * 2006-02-23 2009-11-03 Ati Properties, Inc. Methods of beta processing titanium alloys
    US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
    US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
    US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
    US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
    US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
    US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
    US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
    FR2979702B1 (en) * 2011-09-05 2013-09-20 Snecma PROCESS FOR THE PREPARATION OF TESTS WITH MECHANICAL CHARACTERIZATION OF A TITANIUM ALLOY
    US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
    CN104001845B (en) * 2013-02-25 2017-04-12 钢铁研究总院 Forging process method of Ti2AlNb alloy large-size disk parts
    US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
    US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
    US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
    CN104233141A (en) * 2013-06-06 2014-12-24 中国科学院金属研究所 Annealing heat treatment process for eliminating stress after electronic beam welding of Ti2AlNb-based alloy
    US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
    CN103710554B (en) * 2014-01-23 2015-10-28 哈尔滨工业大学 A kind of vacuum pressure infiltration legal system of using is for Ti 2the method of AlNb alloy
    CN104148562B (en) * 2014-06-30 2017-01-11 贵州安大航空锻造有限责任公司 Cogging method for Ti2AlNb-based alloy ingot
    CN104372202A (en) * 2014-11-25 2015-02-25 西北有色金属研究院 Ti2AlNb alloy with low density and high plasticity
    FR3030577B1 (en) * 2014-12-22 2019-08-23 Safran Aircraft Engines INTERMETALLIC ALLOY BASED ON TITANIUM
    US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
    RU2586947C1 (en) * 2015-06-25 2016-06-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Titanium-based alloy and article made therefrom
    CN105331849B (en) * 2015-10-10 2017-04-26 中国航空工业集团公司北京航空材料研究院 Ti2AlNb base alloy
    US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
    RU2644830C2 (en) * 2015-12-17 2018-02-14 Акционерное Общество "Чепецкий Механический Завод" (Ао Чмз) Manufacturing method of bar stock from alloys based on titanium intermetallide with ortho-phase
    CN105695799B (en) * 2016-04-06 2017-12-15 中国航空工业集团公司北京航空材料研究院 A kind of Ti Al Nb series intermetallic compound high-temperature structural materials
    CN105665729A (en) * 2016-04-11 2016-06-15 西安欧中材料科技有限公司 High-density Ti2AlNb powder alloy near-net forming technology
    RU2709568C1 (en) * 2016-04-22 2019-12-18 Арконик Инк. Improved finishing methods of extruded titanium articles
    CN106637013B (en) * 2016-10-28 2018-06-08 北京机科国创轻量化科学研究院有限公司 A kind of heat treatment method for improving Ti2AlNb based alloy high-temperature intensity
    RU2635204C1 (en) * 2016-12-29 2017-11-09 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Method of producing intermetallide orthoalloy based on titanium
    CN106914508B (en) * 2017-02-17 2018-05-29 中国航空工业集团公司北京航空材料研究院 A kind of Ti2The preparation method of AlNb alloy wires
    RU2656626C1 (en) * 2017-05-15 2018-06-06 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Method of obtaining wire from titan-niobium-tantal-zirconium alloys with the form memory effect
    RU2694099C1 (en) * 2018-10-22 2019-07-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Method of producing fine wire from biocompatible tinbtazr alloy
    CN109332693A (en) * 2018-11-08 2019-02-15 有研工程技术研究院有限公司 A kind of three-phase Ti of laser gain material manufacture2The heat treatment process of AlNb based alloy
    CN111394637B (en) * 2020-04-17 2021-06-01 中国航发北京航空材料研究院 Ti2AlNb alloy and preparation method of bar thereof
    CN111647771B (en) * 2020-04-17 2021-10-15 中国航发北京航空材料研究院 Multi-element composite anti-oxidation Ti2AlNb alloy and preparation method thereof
    CN113684383B (en) * 2020-05-19 2022-10-18 宝武特种冶金有限公司 Preparation method of large-size high-Nb TiAl alloy ingot
    RU2751065C1 (en) * 2020-08-06 2021-07-07 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Method of producing wire from titanium-niobium-tantalum alloy for use in the production of spherical powder
    CN112247043B (en) * 2020-08-28 2022-04-12 中国科学院金属研究所 Ti2Preparation process of AlNb-based alloy forging
    CN112410698B (en) * 2020-11-03 2021-11-02 中国航发北京航空材料研究院 Three-phase Ti2AlNb alloy multilayer structure uniformity control method
    RU2759624C1 (en) * 2020-12-25 2021-11-16 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) METHOD FOR PRODUCING THIN WIRE FROM A TiNiTa ALLOY
    CN113462997B (en) * 2021-06-30 2022-08-02 中国航发动力股份有限公司 Heat treatment method for improving weld performance after electron beam welding
    CN113862515B (en) * 2021-09-30 2022-04-19 中国航发北京航空材料研究院 Composite alloyed Ti2Multiple strengthening heat treatment method for AlNb alloy
    CN115612879A (en) * 2022-09-13 2023-01-17 南昌航空大学 Ti containing Ta element 2 AlNb alloy and preparation method thereof
    CN116987991B (en) * 2023-09-26 2024-01-23 成都先进金属材料产业技术研究院股份有限公司 Regulating Ti 2 Method for preparing AlNb-based alloy with yield ratio

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5417779A (en) * 1988-09-01 1995-05-23 United Technologies Corporation High ductility processing for alpha-two titanium materials
    US5032357A (en) * 1989-03-20 1991-07-16 General Electric Company Tri-titanium aluminide alloys containing at least eighteen atom percent niobium
    DE59103639D1 (en) * 1990-07-04 1995-01-12 Asea Brown Boveri Process for producing a workpiece from a dopant-containing alloy based on titanium aluminide.
    FR2669644B1 (en) * 1990-11-26 1993-10-22 Onera NIOBIUM OR TANTALUM ALLOY AND INTERMETAL COMPOUNDS WITH HIGH SPECIFIC RESISTANCE.
    FR2674257B1 (en) * 1991-03-20 1993-05-28 Armines NIOBIUM AND TITANIUM ALLOYS RESISTANT TO OXIDATION AT HIGH TEMPERATURES.
    US5205984A (en) * 1991-10-21 1993-04-27 General Electric Company Orthorhombic titanium niobium aluminide with vanadium
    US5447582A (en) * 1993-12-23 1995-09-05 The United States Of America As Represented By The Secretary Of The Air Force Method to refine the microstructure of α-2 titanium aluminide-based cast and ingot metallurgy articles
    US5442847A (en) * 1994-05-31 1995-08-22 Rockwell International Corporation Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties
    AU705336B2 (en) * 1994-10-14 1999-05-20 Osteonics Corp. Low modulus, biocompatible titanium base alloys for medical devices
    JPH08283890A (en) * 1995-04-13 1996-10-29 Nippon Steel Corp Tial-base intermetallic compound excellent in creep resistance and its production
    JPH0931558A (en) * 1995-07-19 1997-02-04 Daido Steel Co Ltd Vacuum arc remelting method
    JP3303641B2 (en) * 1995-12-15 2002-07-22 住友金属工業株式会社 Heat resistant titanium alloy

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN108465819A (en) * 2018-03-14 2018-08-31 燕山大学 The mechanical alloying preparation method of Ti-22Al-25Nb (at.%) solid solution
    CN108465819B (en) * 2018-03-14 2020-04-03 燕山大学 Mechanical alloying preparation method of Ti-22Al-25Nb (at.%) solid solution

    Also Published As

    Publication number Publication date
    DE69805148T2 (en) 2002-12-12
    FR2772790A1 (en) 1999-06-25
    DE69805148D1 (en) 2002-06-06
    JP4004163B2 (en) 2007-11-07
    EP0924308A1 (en) 1999-06-23
    JPH11241131A (en) 1999-09-07
    US6132526A (en) 2000-10-17
    FR2772790B1 (en) 2000-02-04

    Similar Documents

    Publication Publication Date Title
    EP0924308B1 (en) Titanium-based intermetallic alloys of the Ti2AlNb type with high yield strength and good creep resistance
    CA2583140C (en) Nickel-based alloy
    EP0863219B1 (en) Titanium aluminide usable at elevated temperatures
    EP0421229A1 (en) Creep, stress rupture and hold-time fatigue crack resistant alloys
    CA1340873C (en) Method for reducing the dispersion of tungsten-nickel-iron alloy mechanical characteristic values
    JPH0136550B2 (en)
    US5472526A (en) Method for heat treating Ti/Al-base alloys
    WO2010089516A2 (en) Method for producing a piece made from a superalloy based on nickel and corresponding piece
    FR2650967A1 (en) PROCESS FOR PRODUCING TEXTURE MARKING IN TITANIUM ALLOYS AND PARTS MADE THEREFROM
    FR2949235A1 (en) SUPERALLIAGE NICKEL BASE AND COMPONENTS PRODUCED IN THIS SUPERALLIAGE
    JP6315319B2 (en) Method for producing Fe-Ni base superalloy
    EP0864664A1 (en) Process for producing a superelastic article from an alloy of nickel and titanium
    EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
    EP3117017B1 (en) Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof
    FR3030577B1 (en) INTERMETALLIC ALLOY BASED ON TITANIUM
    FR3036640A1 (en) METHOD FOR MANUFACTURING A TURBOMACHINE TANK
    WO2010086372A1 (en) Titanium alloy, a method of producing the alloy and an article made of the alloy
    EP0792945B1 (en) Process for heat treatment of a nickel-base superalloy
    US20220205075A1 (en) METHOD OF MANUFACTURING TiAl ALLOY AND TiAl ALLOY
    EP0194925B1 (en) Single crystal alloy with a nickel base matrix
    EP0758684A1 (en) Nickel-based superalloys with good stability at high temperatures
    JP2003147475A (en) TiAl INTERMETALLIC ALLOY, AND METHOD FOR MANUFACTURING CAST PARTS
    JP7188576B2 (en) TiAl alloy material, manufacturing method thereof, and hot forging method for TiAl alloy material
    EP1584697B1 (en) Titanium-aluminium alloy having high-temperature ductility
    JPH08225907A (en) Production of titanium aluminum base alloy

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990112

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: DE FR GB

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010727

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT

    Owner name: ETAT INDIEN, CHEF CONTROLEUR DE RECHERCHE ET DEVE

    Owner name: SNECMA MOTEURS

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69805148

    Country of ref document: DE

    Date of ref document: 20020606

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020720

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030204

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: SAFRAN AIRCRAFT ENGINES

    Effective date: 20170717

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20171120

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20171121

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20171121

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69805148

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20181216

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20181216