EP0924102B1 - Flachdruckverfahren mittels einer Flachdruckplatte die mit einer rückstandsfreien wärmeempfindlichen ohne Materialabtrag arbeitenden Aufzeichnungsschicht beschichtet ist und Feuchtwasser mit einem Gehalt an wasserunlöslichen Komponenten - Google Patents
Flachdruckverfahren mittels einer Flachdruckplatte die mit einer rückstandsfreien wärmeempfindlichen ohne Materialabtrag arbeitenden Aufzeichnungsschicht beschichtet ist und Feuchtwasser mit einem Gehalt an wasserunlöslichen Komponenten Download PDFInfo
- Publication number
- EP0924102B1 EP0924102B1 EP19980204093 EP98204093A EP0924102B1 EP 0924102 B1 EP0924102 B1 EP 0924102B1 EP 19980204093 EP19980204093 EP 19980204093 EP 98204093 A EP98204093 A EP 98204093A EP 0924102 B1 EP0924102 B1 EP 0924102B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lithographic printing
- heat
- acid
- printing according
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1041—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by modification of the lithographic properties without removal or addition of material, e.g. by the mere generation of a lithographic pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N3/00—Preparing for use and conserving printing surfaces
- B41N3/08—Damping; Neutralising or similar differentiation treatments for lithographic printing formes; Gumming or finishing solutions, fountain solutions, correction or deletion fluids, or on-press development
Definitions
- the present invention relates to a method for lithographic printing by use of a lithographic printing plate provided by a heat sensitive non-ablatable wasteless imaging element and a fountain containing water-insoluble compounds.
- Lithography is the process of printing from specially prepared surfaces, some areas of which are capable of accepting lithographic ink, whereas other areas, when moistened with water, will not accept the ink.
- the areas which accept ink define the printing image areas and the ink-rejecting areas define the background areas.
- a photographic material is made imagewise receptive to oily or greasy inks in the photo-exposed (negative-working) or in the non-exposed areas (positive-working) on a hydrophilic background.
- lithographic printing plates also called surface litho plates or planographic printing plates
- a support that has affinity to water or obtains such affinity by chemical treatment is coated with a thin layer of a photosensitive composition.
- Coatings for that purpose include light-sensitive polymer layers containing diazo compounds, dichromate-sensitized hydrophilic colloids and a large variety of synthetic photopolymers. Particularly diazo-sensitized systems are widely used.
- the exposed image areas become insoluble and the unexposed areas remain soluble.
- the plate is then developed with a suitable liquid to remove the diazonium salt or diazo resin in the unexposed areas.
- printing plates are known that include a photosensitive coating that upon image-wise exposure is rendered soluble at the exposed areas. Subsequent development then removes the exposed areas.
- a typical example of such photosensitive coating is a quinone-diazide based coating.
- the above described photographic materials from which the printing plates are made are exposed in contact through a photographic film that contains the image that is to be reproduced in a lithographic printing process.
- Such method of working is cumbersome and labor intensive.
- the printing plates thus obtained are of superior lithographic quality.
- GB- 1 492 070 discloses a method wherein a metal layer or a layer containing carbon black is provided on a photosensitive coating. This metal layer is then ablated by means of a laser so that an image mask on the photosensitive layer is obtained. The photosensitive layer is then overall exposed by UV-light through the image mask. After removal of the image mask, the photosensitive layer is developed to obtain a printing plate.
- This method however still has the disadvantage that the image mask has to be removed prior to development of the photosensitive layer by a cumbersome processing.
- EP-A- 444 786, JP- 63-208036 ,and JP- 63-274592 disclose photopolymer resists that are sensitized to the near IR. So far, none has proved commercially viable and all require wet development to wash off the unexposed regions.
- EP-A- 514 145 describes a laser addressed plate in which heat generated by the laser exposure causes particles in the plate coating to melt and coalescence and hence change their solubility characteristics. Once again, wet development is required.
- WO- 92/09934 discloses imaging elements including coatings that become hydrophiliic as a result of irradiation
- WO- 92/02855 describes coatings that become tacky as a result of irradiation.
- the coatings comprise an acid-sensitive polymer and a photochemical source of strong acid
- the preferred acid-sensitive polymer is derived from a cyclic acetal ester of acrylic or methacrylic acid, such as tetrahydropyranyl (meth)acrylate.
- WO- 92/02855 discloses that the acid-sensitive polymer is blended with a low-Tg polymer to produce a coating that is initially non-tacky, but on irradiation undergoes phase separation as a result of chemical conversion of the acid-sensitive polymer, and becomes tacky.
- WO- 92/09934 discloses that an acid-sensitive polymer is optionally blended with one or more photoacid generators. Subsequent to imagewise exposure to UV/visible radiation, the exposed areas are preferentially wettable by water, and the coatings may function as lithographic printing plates requiring no wet processing. There is no disclosure of laser addresses.
- EP-A- 652 483 discloses a lithographic printing plate requiring no dissolution processing which comprises a substrate bearing a heat-sensitive coating, which coating becomes relatively more hydrophilic under the action of heat Said system yields a positive working printing plate. No specific fountain solution is mentioned. An analogous system, however yielding a negative working printing plate is disclosed on this same day by the same inventors.
- DE- 1 105 439 discloses a fountain solution for lithographic printing, characterized by an amount of very fine dispersed silicium dioxide or very fine dispersed mixed oxides of silicium dioxide and aluminiumoxide.
- GB-A- 2 008 495 discloses a treating liquid composition for treating the surface of lithographic printing plates which comprises (a) at least one phosphoric acid, (b) nitric acid and /or at least one salt thereof and (c) nitrous acid and/or at least one salt thereof.
- US-P- 4 081 572 discloses a method for preparing a printing master comprising (a) providing a self-supporting master substrate, (b) providing a specific hydrophilic polymer, (c) coating said substrate with said polymer , and (d) selectively thermally converting said polymer to a hydrophobic condition in image configuration.
- the number average size of the water insoluble compound ranges from 0.005 ⁇ m to 0.05 ⁇ m.
- a concentrated dampening solution comprises said water insoluble compound in an amount between 1 g and 30 g, more preferably between 2.5 g/l and 20 g/l.
- a preferred water insoluble compound is silica.
- Concentrated fountain or dampening solutions suitable for use in the present invention are aqueous solutions comprising water-soluble organic solvents.
- water-soluble organic solvents include alcohols, polyhydric alcohols, ethers, polyglycols and esters.
- Examples of the alcohols include n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, 2-methylpentanol-1, secondary hexyl alcohol, 2-ethylbutyl alcohol, secondary heptyl alcohol and heptanol-3,2-ethylhexyl alcohol.
- polyhydric alcohols examples include ethylene glycol, hexylene glycol, octylene glycol, diethylene glycol and glycerol.
- ethers include ethylene glycol monoethyl ether, ethylene glycol mono-n-hexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, diethylene glycol monoethyl ether and diethylene glycol mono-n-hexyl ether.
- esters examples include diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate.
- polyglycols examples include polyethyleneglycols having an average molecular weight of 400 to 2000, polypropylene glycols having an average molecular weight of 400 to 2000, and block copolymers of ethylene glycol and propylene glycol.
- a concentrated dampening solution according to the invention has preferably a dynamic surface tension range from 25 to 50 dyne/cm at 15 °C when measured at most 1*10-1 second after a surface of said solution is formed on the surface of a printing plate with the NOW-INSTANT WILHELMY DYNAMIC SURFACE TENSION ACCESSORY manufactured by Cahn Co, U.S.A..
- the concentrated dampening solutions used in the present invention may contain from about 0.05 to 30%, preferably from 0.1 to 25%, more preferably from 1 to 20% by weight of these water-soluble organic solvents.
- the concentrated dampening solutions have a pH comprised between 3 and 6, more preferably between 4 and 6. Therefore said concentrated dampening solution comprises a buffer salt, preferably a phosphate salt.
- the amount of the buffer salt lies preferably between 3 and 30 g/l, more preferably between 6 and 25g/l.
- the concentrated dampening solution preferably comprises also, in order to further improve its stability citrate ions in a total concentration between 0.5 mmole and 25 mmole, more preferably between 1 mmole and 20 mmole, most preferably between 1.5 mmole and 15 mmole.
- total concentration of citrate anions represents the sum of the concentrations of citric acid and its salts regardless of their ionic charge.
- the concentrated dampening solution preferably also contains one or more polymers selected from the group consisting of polymethacrylic acid or one of its salt, polyacrylic acid or one of its salt, polydextrane, polyvinylalcohol, polyvinylpyrrolidone, polyacrylamide, polyvinylsulphonic acid or one of its salts and gum arabic. Said polymers are used in an amount between 0.1.g/l and 5.0 g/l.
- Surfactants can be added to the concentrated dampening solution to increase the emulsification ratio in ink.
- the contents of these surfactants should not be higher than 1 % by weight, preferably 0.0001 to 0.3 % by weight when foaming is taken into consideration.
- the concentrated dampening solution used in the present invention may also comprise thickening agents.
- thickening agents which can be used in the present invention include water-soluble cellulose derivatives, alginate and derivatives, gum, water-soluble modifications of starch, and water-soluble high-molecular homopolymers and copolymers. These compounds may be used either alone or as a mixture of two or more of them.
- the concentration varies depending on the type of the thickening agents, but is preferably about 0.00005 to 1 % by weight based on the amount of the dampening solution composition.
- the concentrated dampening solution used in the present invention comprises a (combination of) preservative(s), so that the composition is effective for controlling various kinds of mold, bacteria and yeast.
- the concentrated dampening solution of the present invention may contain chelate compounds preferably in an amount of 0.00001 to 0.3 % by weight based on the amount of the dampening solution and corrosion inhibitors preferably in an amount of 0.000001 to 0.5 % by weight.
- the concentrated dampening solution as described above is diluted with sufficient tap water or well water prior to being applied on the plate.
- the concentrated dampening solution is used on the printing press in a 1:100 to 10:100 dilution, preferably in a 2:100 to 6:100 dilution.
- the dampening solution can be used alone or in combination with water-soluble organic solvents e.g. isopropanol or substitutes therefore.
- the image forming layer which becomes more hydrophobic or hydrophilic under the influence of IR-irradiation comprises a heat-switchable binder and optionally a compound capable of transfering light into heat.
- a heat-switchable binder is a polymer or copolymer which under the influence of heat undergoes a polarity transfer from hydrophilic to hydrophobic or vice versa.
- the heat-switchable binder undergoes a polarity transfer from hydrophobic to hydrophilic.
- Said polymer has preferably pendant hydrophobic groups which are converted under the action of heat to hydrophilic groups. More preferably said pendant groups are selected from the group comprising t-alkyl carboxylates, t-alkyl carbonates, benzylcarboxylates and alkoxyalkyl esters. More details are given in EP-A- 652 483 .
- the heat-switchable binder undergoes a polarity transfer from hydrophilic to hydrophobic.
- the image forming layer which becomes more hydrophobic under the influence of heat comprises a heat-switchable binder and optionally a compound capable of transferring light into heat.
- a switchable binder is used which is hydrophilic before heating and becomes hydrophobic by heating. This surface polarity difference is sufficient to prepare a classical offset printing plate.
- the switchable binders according to the preferred embodiment are polymers or copolymers which contain pendant polar functions. These polar functions may be carboxylic acids, sulphonic acids, phosphonic acids and phenols or their salts.
- counter ion can be used sodium, potassium, ammonium, or tetraalkylammonium ion.
- traces of alkali canbe used such as traces of triethylamine and pyridine.
- a more preferred switchable binder according to the preferred embodiment is a binder containing maleic acid, which binder is hydrophilic and which yields under the influence of heat a binder containing maleic anhydride which binder is hydrophobic.
- Also more preferred switchable binders according to the invention are binders containing fumaric acid, itaconic acid, 3-or 4-vinylphthalic acid, cis-1,2,3,6-tetrahydrophthalic acid or cis-5-norbene-endo-2,3-dicarboxylic acid. Said acids can be mixed in one copolymer. Not only the diacids but also the monoalkyl esters and their salts are more preferred.
- half-esters examples include monobutyl maleate copolymers, mono-isopropyl maleate copolymers, maleic acid 2-butoxy ethyl ester copolymer, maleic acid isobutylester copolymers and maleic acid isooctyl ester copolymers. These halfesters can also be used in combination with the corresponding dicarboxylic substance in one copolymer or they can be mixed with each other or with another dicarboxylic acid or salt into one copolymer.
- copolymers obtained by copolymerization of e.g. maleic acid but also polymers derivatives obtained by grafting e.g. maleic acid on unsaturated polyolefines are very suitable switchable polymers.
- a switchable binder is a copolymer preferably containing an acrylate, a methacrylate, a vinyl halide, a vinyl ester, a vinyl ether such as n-butyl-, isobutyl-, and 2-chloroethyl vinyl ether and olefines such as propylene, isobutylene and 1-octadecene. More preferably is a compound selected from the group consisting of methyl vinylether copolymer, ethene copolymer and styrene copolymer. Most preferably said binder is a copolymer containing maleic acid and vinyl methyl ether.
- the ratio of the dicarboxylic monomer to comonomer can be 100:0 to 20:80, or sufficient for its structure or state (i.e. anhydride or otherwise) to affect the overall solubility of the top layer. Typically the ratio is near 50:50 due to a tendency toward alternating copolymerization.
- the molecular weight is generally between 5,000 up to 70,000 weight average molecular weight, preferably between 10,000 and 40,000 g/mol.
- the image forming layer may comprise more than one switchable polymer although that is not preferred.
- the image forming layer may also comprise a further binder to enhance the hydrophilic or hydrophobic properties of said layer.
- hydrophilic binder there may be used hydrophilic (co)polymers such as for example, homopolymers and copolymers of acrylamide, methylol acrylamide, methylol methacrylamide, acrylic acid, methacrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate or maleic anhydride/vinylmethylether copolymers.
- the hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably the same as or higher than the hydrophilicity of polyvinyl acetate hydrolyzed to at least an extent of 60 percent by weight, preferably 80 percent by weight.
- a preferred hydrophilic binder is polyvinylalcohol.
- hydrophobic binder there may be used a water insoluble polymer such as a cellulose ester, a copolymer of vinylidene chloride and acrylonitrile, poly(meth)acrylates and polyvinylchloride.
- Preferred hydrophobic binders are hydrophobic binders as used in conventional positive or negative working PS-plates e.g. novolac, polyvinyl phenols, carboxy substituted polymers etc. Typical examples of these polymers are descibed in DE-A- 4 007 428, DE-A- 4 027 301 and DE-A- 4 445 820.
- the image forming layer or a layer just underlying said layer includes a compound capable of converting light into heat.
- Suitable compounds capable of converting light into heat are preferably infrared absorbing components although the wavelength of absorption is not of particular importance as long as the absorption of the compound used is in the wavelength range of the light source used for image-wise exposure.
- Particularly useful compounds are for example dyes and in particular infrared absorbing dyes and pigments and in particular infrared absorbing pigments. Examples of infrared absorbing dyes are disclosed in EP-A- 97 203 131.4 .
- infrared absorbing pigments are carbon black, metal carbides, borides, nitrides, carbonitrides, bronze-structured oxides and oxides structurally related to the bronze family but lacking the A component e.g. WO 2.9 . It is also possible to use conductive polymer dispersion such as polypyrrole or polyaniline-based conductive polymer dispersions. Said compound capable of converting light into heat is preferably present in the top layer but can also be included in an underlying layer.
- Said compound capable of converting light into heat is present in the imaging element preferably in an amount between 1 and 25 % by weight of the total weight of the image forming layer, more preferably in an amount between 2 and 20 % by weight of the total weight of the image forming layer.
- the compound capable of converting light into heat is most preferably present in the imaging element in an amount to provide an optical density at the wavelenght between 800nm and 1100 nm of at least 0.35.
- this image forming layer is preferably a visible light- and UV-light desensitised layer.
- This preferably visible light- or UV-light desensitised layer does not comprise photosensitive ingredients such as diazo compounds, photoacids, photoinitiators, quinone diazides, sensitisers etc. which absorb in the wavelength range of 250nm to 650nm. In this way a daylight stable printing plate can be obtained.
- the image forming layer is preferably applied in an amount between 0.1 and 10 g/m 2 , more preferably in an amount between 0.5 and 5 g/m 2 .
- the support may be as well a hydrophobic as a hydrophilic support and as well a rigid as a flexible support
- the support can be an anodised aluminum.
- a particularly preferred support is an electrochemically grained and anodised aluminum support
- the support is a flexible support, such as paper or plastic film.
- flexible support in connection with the present embodiment it is particularly preferred to use a plastic film e.g. substrated polyethylene terephthalate film, cellulose acetate film, polystyrene film, polycarbonate film etc...
- the plastic film support may be opaque or transparent.
- the amount of silica in the adhesion improving layer is between 200 mg per m 2 and 750 mg per m 2 .
- the ratio of silica to hydrophilic binder is preferably more than 1 and the surface area of the colloidal silica is preferably at least 300 m 2 per gram, more preferably at least 500 m 2 per gram.
- the imaging element can contain other layers such as subbing layers and antihalo layers.
- the imaging element optionally contains between the support and the top layer a reflective layer.
- Said reflective layer can be any layer which reflects the IR-irradiation but is preferably aluminum with a high visual density e.g. vacuum deposited aluminum
- the imaging element can be prepared by applying the different layers according to any known technique.
- said imaging element may be prepared on the press with the support already on the press by a coater or coaters placed in the immediate vicinity of the press.
- an image-wise scanning exposure is used involving the use of a laser that preferably operates in the infrared or near-infrared, i.e. wavelength range of 700-1500 nm.
- a laser that preferably operates in the infrared or near-infrared, i.e. wavelength range of 700-1500 nm.
- laser diodes emitting in the near-infrared.
- Exposure of the imaging element can be performed with lasers with a short as well as with lasers with a long pixel dwell time. Preferred are lasers with a pixel dwell time between 0.005 ⁇ s and 20 ⁇ s.
- the imaging element After the exposure the imaging element is ready to be used as a lithographic printing plate.
- the exposure of the imaging element can be carried out with the imaging element already on the press.
- a computer or other information source supplies graphics and textual information to the printhead or a laser via a lead.
- the printing plate of the present invention can also be used in the printing process as a seamless sleeve printing plate.
- This cylindrical printing plate which has as diameter the diameter of the print cylinder is slided on the print cylinder instead of applying in a classical way a classically formed printing plate. More details on sleeves are given in "Grafisch Nieuws" ed. Keesing, 15, 1995, page 4 to 6.
- the inking and the dampening of the plate can occur at the same moment or the inking of the plate can even precede the application of the fountain solution to the plate , it is preferred to apply the fountain solution prior to inking the plate.
- Examples 1 and 2 demonstrate the use of the claimed method for an imaging element whereof the imaging layer becomes more hydrophobic on exposure while examples 3 and 4 demonstrate the use of the claimed method for an imaging element whereof the imaging layer becomes more hydrophilic on exposure. All parts and percentages are by weight unless otherwise specified.
- GANTREZ AN 139 BF. (a copolymer of vinylmethylether,maleic acid and maleic acid anhydride, commercially available from GAF, USA) and 0.0365 g of IR-absorbing dye IR-1 are dissolved in 4.5 g of a solvent mixture consisting for 44% of THF, 34 % of methoxypropanol and 22 % of methyl ethyl ketone. Said solution was coated onto an aluminum substrate to a wet coating thickness of 16 ⁇ m resulting after drying in a dry layer with a thickness of 1.15 g/m 2 .
- This imaging element was exposed on a CREO 3244 Trendsetter (tradename of CREO, Canada) at 2400 dpi, operating at a drum speed of 40 rpm and a laser output of 12 watt. After exposing the imaging element a printing plate is obtained, which was used to print on a AB Dick 360 press (trade name of AB Dick, USA) using K + E 800 ink (trade name of Kast und Ehinger)and water with 5% TAME EC 7035 (fountain solution containing no water insoluble compounds, commercially available from ANCHOR, USA). Scumming was observed in the non exposed areas.
- a printing plate prepared and imaged as the printing plate from example 1 was used to print on a AB Dick 360 press (trade name of AB Dick, USA) using K + E 800 ink (trade name of Kast und Ehinger)and water with 5 % % 671c (silica containing fountain from Agfa-Gevaert, Belgium). Good prints were obtained, i.e. prints with good ink-uptake in the exposed areas and no scumming in the non-exposed areas.
- a copolymer of tetrahydropyranylmethacrylate/methacryloxypropyltrimethoxysilane in a monomer ratio of 90:10 by weight and 0.0365 g of IR-absorbing dye IR-1 are dissolved in 4.5 g of a solvent mixture consisting for 60% of THF and 40% of methoxypropanol. Said solution was coated onto an aluminum substrate to a wet coating thickness of 16 ⁇ m resulting after drying in a dry layer with a thickness of 1.15 g/m 2 .
- This imaging element was exposed on a CREO 3244 Trendsetter (tradename of CREO, Canada) at 2400 dpi, operating at a drum speed of 40 rpm and a laser output of 12 watt. After exposing the imaging element a printing plate is obtained, which was used to print on a AB Dick 360 press (trade name of AB Dick, USA) using K + E 800 ink (trade name of Kast und Ehinger)and water with 5% TAME EC 7035 (fountain solution containing no water insoluble compounds, commercially available from ANCHOR, USA). Scumming was observed in the exposed areas.
- a printing plate prepared and imaged as the printing plate from example 2 was used to print on a AB Dick 360 press (trade name of AB Dick, USA) using K + E 800 ink (trade name of Kast und Ehinger)and water with 5 % G 671c (silica containing fountain from Agfa-Gevaert, Belgium). Good prints were obtained, i.e. prints with good ink-uptake in the non-exposed areas and no scumming in the exposed areas.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Printing Plates And Materials Therefor (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Claims (9)
- Ein durch die nachstehenden Schritte gekennzeichnetes Flachdruckverfahren :Herstellung einer lithografischen Druckplatte durch bildmäßige Laserbelichtung eines rückstandsfreien, wärmeempfindlichen, nicht-ablatierbaren Bilderzeugungselements, das auf einem Träger als Deckschicht eine wärmeempfindliche, ein thermisch schaltbares Bindemittel enthaltende bilderzeugende Schicht enthält, die unter der Einwirkung einer bildmäßigen Laserbelichtung hydrophiler oder hydrophober wird,das vor oder nach der Belichtung vorgenommene Einspannen des Druckelements in die Druckpresse, undAuftrag von Feuchtwasser und Druckfarbe,
- Ein Flachdruckverfahren nach Anspruch 1, dadurch gekennzeichnet, daß die konzentrierte Feuchtwasserlösung ebenfalls zumindest ein Polymer aus der Gruppe bestehend aus Polymethacrylsäure oder einem der daraus gebildeten Salze, Polyacrylsäure oder einem der daraus gebildeten Salze, Polydextran, Polyvinylalkohol, Polyvinylpyrrolidon, Polyacrylamid, Polyvinylsulfonsäure oder einem der daraus gebildeten Salze und Gummiarabicum enthält.
- Ein Flachdruckverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Feuchtwasserlösung vor der Einfärbung der Druckplatte auf die Platte aufgebracht wird.
- Ein Flachdruckverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das thermisch schaltbare Bindemittel hydrophobe Seitengruppen enthält, die unter der Einwirkung von Wärme in hydrophile Gruppen umgewandelt werden.
- Ein Flachdruckverfahren nach Anspruch 4, dadurch gekennzeichnet, daß die hydrophoben Seitengruppen aus der Gruppe bestehend aus t-Alkylcarboxylaten, t-Alkylcarbonaten, Benzylcarboxylaten und Alkoxyalkylestern gewählt werden.
- Ein Flachdruckverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das thermisch schaltbare Bindemittel hydrophile Seitengruppen enthält, die unter der Einwirkung von Wärme in hydrophobe Gruppen umgewandelt werden.
- Ein Flachdruckverfahren nach Anspruch 6, dadurch gekennzeichnet, daß die hydrophilen Seitengruppen aus der Gruppe bestehend aus Carbonsäuren, Sulfonsäuren, Phosphonsäuren und Phenolen oder deren daraus gebildeten Salzen gewählt werden.
- Ein Flachdruckverfahren nach Anspruch 7, dadurch gekennzeichnet, daß das thermisch schaltbare Bindemittel mit hydrophilen Seitengruppen ein (Co)polymer mit Monomereinheiten aus der Gruppe bestehend aus Maleinsäure, Fumarsäure, Itakonsäure, 3- oder 4-Vinylphthalsäure, Cis-1,2,3,6-tetrahydrophthalsäure, Cis-5-norbenendo-2,3-dicarbonsäure und deren daraus gebildeten Halbestern ist.
- Ein Flachdruckverfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß das thermisch schaltbare Bindemittel mit hydrophilen Seitengruppen ein Copolymer ist, das weiterhin Monomereinheiten aus der Gruppe bestehend aus Vinylmethylether, Ethen und Styrol enthält.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19980204093 EP0924102B1 (de) | 1997-12-19 | 1998-12-04 | Flachdruckverfahren mittels einer Flachdruckplatte die mit einer rückstandsfreien wärmeempfindlichen ohne Materialabtrag arbeitenden Aufzeichnungsschicht beschichtet ist und Feuchtwasser mit einem Gehalt an wasserunlöslichen Komponenten |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97204044 | 1997-12-19 | ||
EP97204044 | 1997-12-19 | ||
EP19980204093 EP0924102B1 (de) | 1997-12-19 | 1998-12-04 | Flachdruckverfahren mittels einer Flachdruckplatte die mit einer rückstandsfreien wärmeempfindlichen ohne Materialabtrag arbeitenden Aufzeichnungsschicht beschichtet ist und Feuchtwasser mit einem Gehalt an wasserunlöslichen Komponenten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0924102A1 EP0924102A1 (de) | 1999-06-23 |
EP0924102B1 true EP0924102B1 (de) | 2003-07-02 |
Family
ID=26147184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19980204093 Expired - Lifetime EP0924102B1 (de) | 1997-12-19 | 1998-12-04 | Flachdruckverfahren mittels einer Flachdruckplatte die mit einer rückstandsfreien wärmeempfindlichen ohne Materialabtrag arbeitenden Aufzeichnungsschicht beschichtet ist und Feuchtwasser mit einem Gehalt an wasserunlöslichen Komponenten |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0924102B1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7380500B2 (en) | 2002-10-31 | 2008-06-03 | Agfa-Gevaert | Process for the offset printing of patterns via the fountain medium |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3877460B2 (ja) | 1999-03-02 | 2007-02-07 | 株式会社リコー | 画像記録体 |
JP2000309174A (ja) * | 1999-04-26 | 2000-11-07 | Fuji Photo Film Co Ltd | 平版印刷版用原版 |
US6447978B1 (en) | 1999-12-03 | 2002-09-10 | Kodak Polychrome Graphics Llc | Imaging member containing heat switchable polymer and method of use |
US6458507B1 (en) | 2000-03-20 | 2002-10-01 | Kodak Polychrome Graphics Llc | Planographic thermal imaging member and methods of use |
US6673519B2 (en) | 2000-09-14 | 2004-01-06 | Alcoa Inc. | Printing plate having printing layer with changeable affinity for printing fluid |
US6521391B1 (en) | 2000-09-14 | 2003-02-18 | Alcoa Inc. | Printing plate |
US6365705B1 (en) | 2000-10-30 | 2002-04-02 | Eastman Kodak Company | Spiro-ammonium ionomer carboxylates |
EP1243433B1 (de) | 2001-03-22 | 2004-05-26 | Agfa-Gevaert | Lithographisches Druckverfahren mit einer Einzelflüssigkeittinte |
US6596464B2 (en) * | 2001-03-22 | 2003-07-22 | Agfa-Gevaert | Lithographic printing method using single-fluid ink |
DE10227054B4 (de) * | 2002-06-17 | 2013-01-03 | Heidelberger Druckmaschinen Ag | Wiederverwendbare Druckform, Druckwerk und Druckmaschine damit sowie Verfahren zur Bebilderung der Druckform |
EP1415826B1 (de) | 2002-10-31 | 2008-10-01 | Agfa-Gevaert | Verfahren zum Bedrucken von Mustern mit Offsetdruck durch das Feuchtwasser |
US6844140B1 (en) * | 2003-12-29 | 2005-01-18 | Kodak Polychrome Graphics Llc | Method for reducing start up blinding in no-process lithographic printing plates |
US7247418B2 (en) | 2005-12-01 | 2007-07-24 | Eastman Kodak Company | Imageable members with improved chemical resistance |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL241477A (de) * | 1958-07-25 | |||
JPS5533993B2 (de) * | 1972-04-07 | 1980-09-04 | ||
US4081572A (en) * | 1977-02-16 | 1978-03-28 | Xerox Corporation | Preparation of hydrophilic lithographic printing masters |
JPS5470103A (en) * | 1977-11-16 | 1979-06-05 | Mitsubishi Paper Mills Ltd | Liquid substance for treating surface of flat printing plate |
GB9322705D0 (en) * | 1993-11-04 | 1993-12-22 | Minnesota Mining & Mfg | Lithographic printing plates |
JPH08310148A (ja) * | 1995-05-16 | 1996-11-26 | Nippon Paint Co Ltd | 液体現像処理工程が不要のレーザーダイレクト製版用平版刷版材およびそれを用いる印刷方法 |
DE69508387T2 (de) * | 1995-05-31 | 1999-10-07 | Agfa-Gevaert N.V., Mortsel | Feuchtwasserkonzentrat mit verbesserter Lagerfähigkeit für den Lithodruck mit nach dem Silberdiffusiontransferverfahren hergestellten Druckplatten |
-
1998
- 1998-12-04 EP EP19980204093 patent/EP0924102B1/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7380500B2 (en) | 2002-10-31 | 2008-06-03 | Agfa-Gevaert | Process for the offset printing of patterns via the fountain medium |
Also Published As
Publication number | Publication date |
---|---|
EP0924102A1 (de) | 1999-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0864420B2 (de) | Wärmempfindliches Aufzeichnungselement zur Herstellung von positiv arbeitenden Flachdruckformen | |
US6165691A (en) | Method for lithographic printing by use of a lithographic printing plate provided by a heat sensitive non-ablatable wasteless imaging element and a fountain containing water-insoluble compounds | |
EP0931647B1 (de) | Wärmeempfindliches Aufzeichnungselement und Verfahren um damit Flachdruckplatten herzustellen | |
US6083663A (en) | Method for making positive working printing plates from a heat mode sensitive image element | |
EP0908779B1 (de) | Verfahren zur Herstellung positiv arbeitender Druckplatten aus einem wärmeempfindlichen Bildaufzeichnungselement | |
EP0924102B1 (de) | Flachdruckverfahren mittels einer Flachdruckplatte die mit einer rückstandsfreien wärmeempfindlichen ohne Materialabtrag arbeitenden Aufzeichnungsschicht beschichtet ist und Feuchtwasser mit einem Gehalt an wasserunlöslichen Komponenten | |
JP2000221669A (ja) | ポジティブ作用性印刷版の作製法 | |
US6096471A (en) | Heat sensitive imaging element for providing a lithographic printing plate | |
US20030089259A1 (en) | Method for the preparation of a lithographic printing plate | |
US6165679A (en) | Heat-sensitive non-ablatable wasteless imaging element for providing a lithographic printing plate | |
EP0925916B1 (de) | Rückstandsfreies Aufzeichnungselement ohne Materialabtrag für die Herstellung von Flachdruckplatten mit unterschiedlicher Farbdichte zwischen Bild und Nicht-Bild | |
EP0960729B1 (de) | Wärmeempfindliches Aufzeichnungselement zur Herstellung lithographischer Druckplatten | |
ZA200304580B (en) | Thermally convertible lithographic printing precursor. | |
US6210857B1 (en) | Heat sensitive imaging element for providing a lithographic printing plate | |
US6214515B1 (en) | Heat sensitive imaging element for providing a lithographic printing plate | |
EP0960730B1 (de) | Wärmeempfindliches Aufzeichnungselement zur Herstellung lithographischer Druckplatten | |
US6455230B1 (en) | Method for preparing a lithographic printing plate by ablation of a heat sensitive ablatable imaging element | |
ZA200304581B (en) | Method for obtaining a lithographic printing surface. | |
EP0924065B1 (de) | Rückstandsfreies Aufzeichnungselement ohne Materialabtragung für die Herstellung von Flachdruckplatten | |
JP4257878B2 (ja) | 画像及び非画像領域の間の色素濃度における差を有する平版印刷版を与えるための感熱性非−融蝕性で廃棄物のない画像形成要素 | |
US6511782B1 (en) | Heat sensitive element and a method for producing lithographic plates therewith | |
JPH10329440A (ja) | 感熱性画像形成要素及びそれを用いて平版印刷版を作製するための方法 | |
JP2000221670A (ja) | ポジティブ作用性印刷版の作製法 | |
EP1057623B1 (de) | Verfahren zur Herstellung einer Flachdruckplatte durch Laserablation eines wärmempfindlichen Elements | |
EP0967077B1 (de) | Wärmeempfindliches Aufzeichnungselement und Verfahren zur Herstellung von Flachdruckformen damit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19991223 |
|
AKX | Designation fees paid |
Free format text: BE DE FR GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AGFA-GEVAERT |
|
17Q | First examination report despatched |
Effective date: 20020716 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030702 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69816012 Country of ref document: DE Date of ref document: 20030807 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040405 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20101012 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20101007 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20111021 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20121204 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69816012 Country of ref document: DE Effective date: 20130702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121204 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130102 |