EP0922755A1 - Process for making a liquid fabric softening composition - Google Patents

Process for making a liquid fabric softening composition Download PDF

Info

Publication number
EP0922755A1
EP0922755A1 EP97870199A EP97870199A EP0922755A1 EP 0922755 A1 EP0922755 A1 EP 0922755A1 EP 97870199 A EP97870199 A EP 97870199A EP 97870199 A EP97870199 A EP 97870199A EP 0922755 A1 EP0922755 A1 EP 0922755A1
Authority
EP
European Patent Office
Prior art keywords
nonionic
fabric softening
stabilising agent
softening composition
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97870199A
Other languages
German (de)
English (en)
French (fr)
Inventor
Hugo Jean Marie Demeyere
Johann De Poortere (NMN)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP97870199A priority Critical patent/EP0922755A1/en
Priority to CA002312065A priority patent/CA2312065A1/en
Priority to PCT/US1998/025668 priority patent/WO1999029823A1/en
Priority to BR9813440-0A priority patent/BR9813440A/pt
Priority to CN 98811994 priority patent/CN1281503A/zh
Priority to JP2000524399A priority patent/JP2001526304A/ja
Priority to US09/555,588 priority patent/US6218354B1/en
Priority to EP98960705A priority patent/EP1042445A1/en
Publication of EP0922755A1 publication Critical patent/EP0922755A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • C11D3/0015Softening compositions liquid
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/835Mixtures of non-ionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0094Process for making liquid detergent compositions, e.g. slurries, pastes or gels
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/526Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 are polyalkoxylated
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention relates to a process for preparing a dye containing softening composition having effective freeze-thaw recovery properties.
  • Fabric softening products are known in the art to provide effective softness to the treated fabrics.
  • a problem encountered upon storage at low temperature, i.e. at sub 0°C temperature is the freezing of the product which, when placed at higher temperatures results in a product which does not recover to a uniform dispersion with acceptable flow characteristics.
  • EP-A-0,507,478 provides the mixing and melting of the cationic fabric softener with a nonionic stabilising agent before dispersing it in water.
  • processing equipment such as high shear mixers are needed so that the resulting cost of the formulation is increased.
  • the formulator of a softening composition is faced with the dual challenge of formulating a softening composition which has good dye homogeneity, without the need for a high shear mixing equipment.
  • An advantage of the invention is that for resulting fabric softening products in diluted form made by the invention process, less mechanical shear is required compared to products made by mixing the fabric softener and nonionic before dispersion in water. Not to be bound by theory, it is believed that the nonionic surfactant micellizes the dye and subsequently forms mixed vesicles with the softener active. In this manner the dye is efficiently dispersed and the product acquires good freeze thaw recovery.
  • the present invention relates to a process for making a liquid fabric softening composition which comprises the steps of:
  • the present invention encompasses the use of a nonionic alkoxylated stabilising agent in liquid fabric softening compositions as a freeze-thaw recovery agent.
  • the present invention encompasses the use of a nonionic alkoxylated stabilising agent to homogenise the dye in liquid fabric softening compositions.
  • a nonionic alkoxylated stabilising surfactant is an essential component of the process invention.
  • Suitable nonionic surfactants for use herein include addition products of ethylene oxide with fatty alcohols, fatty acids, fatty amines, etc.
  • addition products of propylene oxide with fatty alcohols, fatty acids, fatty amines may be used.
  • Suitable compounds are surfactants of the general formula: R 2 -Y-(C 2 H 4 O) z -C 2 H 4 OH wherein R 2 is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups; and primary, secondary and branched chain alkyl- and alkenyl-substituted phenolic hydrocarbyl groups; said hydrocarbyl groups preferably having a hydrocarbyl chain length of from 8 to 20, preferably from 10 to 18 carbon atoms. More preferably the hydrocarbyl chain length is from 12 to 18 carbon atoms.
  • Y is -O-, -C(O)O-, -C(O)N(R)-, or -C(O)N(R)R-, in which R, when present, is R 2 or hydrogen, and z is at least 5, preferably at least 8.
  • the nonionic surfactants herein are characterised by an HLB (hydrophilic-lipophilic balance) of from 7 to 20, preferably from 8 to 15.
  • HLB hydrophilic-lipophilic balance
  • R 2 and the number of ethoxylate groups the HLB of the surfactant is, in general, determined.
  • the nonionic ethoxylated surfactants useful herein contain relatively long chain R 2 groups and are relatively highly ethoxylated. While shorter alkyl chain surfactants having short ethoxylated groups may possess the requisite HLB, they are not as effective herein.
  • nonionic surfactants follow.
  • the nonionic surfactants of this invention are not limited to these examples.
  • the integer defines the number of ethoxyl (EO) groups in the molecule.
  • the tri-, penta-, hepta-ethoxylates of dodecanol, and tetradecanol are useful surfactants in the context of this invention.
  • the ethoxylates of mixed natural or synthetic alcohols in the "coco" chain length range are also useful herein.
  • Commercially available straight-chain, primary alcohol alkoxylates for use herein are available under the tradename Marlipal® 24/70, Marlipal 24/100, Marlipal 24/150 from Huls, and Genapol® C-050 from Hoechst.
  • the tri-, penta-, hepta-ethoxylates of 3-hexadecanol, 2-octadecanol, 4-eicosanol, and 5-eicosanol are useful surfactants in the context of this invention.
  • a commercially available straight-chain secondary alcohol ethoxylate for use herein is the material marketed under the tradename Tergitol 15-S-7 from Union Carbide, which comprises a mixture of secondary alcohols having an average hydrocarbyl chain length of 11 to 15 carbon atoms condensed with an average 7 moles of ethylene oxide per mole equivalent of alcohol.
  • Suitable alkyl phenol alkoxylates are the polyethylene oxide condensates of alkyl phenols, e.g., the condensation products of alkyl phenols having an alkyl or alkenyl group containing from 6 to 20 carbon atoms in a primary, secondary or branched chain configuration, preferably from 8 to 12 carbon atoms, with ethylene oxide, the said ethylene oxide being preferably present in amounts equal to 3 to less than 9 moles of ethylene oxide per mole of alkyl phenol.
  • the alkyl substituent in such compounds may be derived from polymerized propylene, diisobutylene, octane, and nonane. Examples of this type of nonionic surfactants include Triton N-57® a nonyl phenol ethoxylate (5EO) from Rohm & Haas, Dowfax® 9N5 from Dow and Lutensol® AP6 from BASF.
  • alkenyl alcohols both primary and secondary, and alkenyl phenols corresponding to those disclosed immediately hereinabove can be ethoxylated and used as surfactants.
  • Commercially available olefinic alkoxylates for use herein are available under the tradename Genapol O-050 from Hoechst.
  • Branched chain primary and secondary alcohols which may be available from the well-known "OXO" process or modification thereof can be ethoxylated.
  • Particularly preferred among these ethoxylates of the primary OXO alcohols are the surfactants marketed under the name Lutensol by BASF or Dobanol by the Shell Chemicals, U.K., LTD.
  • the preferred Dobanols are primary alcohols with hydrocarbyl groups of 9 to 15 carbon atoms, with the majority having a hydrocarbyl group of 13 carbon atoms.
  • this type of material is an aliphatic alcohol ethylene oxide condensate having from 3 to less than 9 moles of ethylene oxide per mole of aliphatic alcohol, the aliphatic alcohol fraction having from 9 to 14 carbon atoms.
  • Other examples of this type of nonionic surfactants include certain of the commercially available Dobanol®, Neodol® marketed by Shell or Lutensol® from BASF. For example Dobanol® 23.5 (C12-C13 EO5), Dobanol® 91.5 (C9-C11 EO 5) and Neodol 45 E5.
  • alkyl amines alkoxylated with at least 5 alkoxy moieties.
  • Typical of this class of compounds are the surfactants derived from the condensation of ethylene oxide with an hydrophobic alkyl amine product.
  • the hydrophobic alkyl group has from 6 to 22 carbon atoms.
  • the alkyl amine is alkoxylated with 10 to 40, and more preferably 20 to 30 alkoxy moieties.
  • Example of this type of nonionic surfactants are the alkyl amine ethoxylate commercially available under the tradename Genamin from Hoechst. Suitable example for use herein are Genamin C-100, Genamin O-150, and Genamin S-200.
  • nonionic surfactant among this class are the N,N',N'-polyoxyethylene (12)-N-tallow 1,3 diaminopropane commercialised under the tradename Ethoduomeen T22 from Akzo, and Synprolam from ICI.
  • nonionic surfactant encompasses mixed nonionic surface active agents.
  • nonionic surfactants for use herein are the nonionic surfactants commercially available under the tradenames Marlipal 24/100, Marlipal 24/150, Genapol O-050, and Dobanol 91.5.
  • the nonionic surfactant will preferably be added in an amount of 0.05% to 5% by weight, preferably from 0.1% to 0.5% by weight of the finished fabric softening composition
  • the dye component is the dye component
  • the dye is an essential component of the invention. Hence, by mixed the dye together with the nonionic alkoxylated surfactants and subsequently incorporating it into the cold finished product, it has been observed that the formation of dyes speckles which occurs by incorporation of the dyes into the molten fabric softening product is suppressed and/or reduced by the process of the invention.
  • Preferred dye components are the water-soluble dye such as described in EP 754749.
  • the dye is a water soluble dye system characterised in that the dye system comprises a dye selected from the group consisting of:
  • the dye will preferably be added in an amount of 1 ppm to 200 ppm by weight, preferably from 5 ppm to 100 ppm by weight of the finished fabric softening composition.
  • the finished fabric softening composition conventionally comprises a cationic fabric softener and optional additives.
  • Typical levels of incorporation of the softening compound in the softening composition are of from 1% to 80% by weight, preferably from 5% to 75%, more preferably from 15% to 70%, and even more preferably from 19% to 65%, by weight of the composition.
  • the fabric softener compound is preferably selected from a cationic, nonionic, amphoteric or anionic fabric softening component.
  • Typical of the cationic softening components are the quaternary ammonium compounds or amine precursors thereof as defined hereinafter.
  • Preferred quaternary ammonium fabric softening active compound have the formula or the formula: wherein Q is a carbonyl unit having the formula: each R unit is independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 hydroxyalkyl, and mixtures thereof, preferably methyl or hydroxy alkyl; each R 1 unit is independently linear or branched C 11 -C 22 alkyl, linear or branched C 11 -C 22 alkenyl, and mixtures thereof, R 2 is hydrogen, C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, and mixtures thereof; X is an anion which is compatible with fabric softener actives and adjunct ingredients; the index m is from 1 to 4, preferably 1; the index n is from 1 to 4, preferably 2.
  • An example of a preferred fabric softener active is a mixture of quaternized amines having the formula: wherein R is preferably methyl; R 1 is a linear or branched alkyl or alkenyl chain comprising at least 11 atoms, preferably at least 15 atoms.
  • the unit -O 2 CR 1 represents a fatty acyl unit which is typically derived from a triglyceride source.
  • the triglyceride source is preferably derived from tallow, partially hydrogenated tallow, lard, partially hydrogenated lard, vegetable oils and/or partially hydrogenated vegetable oils, such as, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. and mixtures of these oils.
  • the preferred fabric softening actives of the present invention are the Diester and/or Diamide Quaternary Ammonium (DEQA) compounds, the diesters and diamides having the formula: wherein R, R 1 , X, and n are the same as defined herein above for formulas (1) and (2), and Q has the formula:
  • DEQA Diester and/or Diamide Quaternary Ammonium
  • These preferred fabric softening actives are formed from the reaction of an amine with a fatty acyl unit to form an amine intermediate having the formula: wherein R is preferably methyl, Q and R 1 are as defined herein before; followed by quaternization to the final softener active.
  • Non-limiting examples of preferred amines which are used to form the DEQA fabric softening actives according to the present invention include methyl bis(2-hydroxyethyl)amine having the formula: methyl bis(2-hydroxypropyl)amine having the formula: methyl (3-aminopropyl) (2-hydroxyethyl)amine having the formula: methyl bis(2-aminoethyl)amine having the formula: triethanol amine having the formula: di(2-aminoethyl) ethanolamine having the formula:
  • the counterion, X (-) above can be any softener-compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and the like, more preferably chloride or methyl sulfate.
  • the anion can also, but less preferably, carry a double charge in which case X (-) represents half a group.
  • Tallow and canola oil are convenient and inexpensive sources of fatty acyl units which are suitable for use in the present invention as R 1 units.
  • R 1 units The following are non-limiting examples of quaternary ammonium compounds suitable for use in the compositions of the present invention.
  • tallowyl indicates the R 1 unit is derived from a tallow triglyceride source and is a mixture of fatty acyl units.
  • canolyl refers to a mixture of fatty acyl units derived from canola oil.
  • Fabric Softener Actives N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride; N,N-di(canolyl-oxy-ethyl)-N,N-dimethyl ammonium chloride; N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium chloride; N,N-di(canolyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl) ammonium chloride; N,N-di(2-tallowyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride; N,N-di(2-canolyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride N,N-di(2-tallowyloxyethylcarbonyloxyethyl)-
  • quaternay ammoniun softening compounds are methylbis(tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate and methylbis(hydrogenated tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate; these materials are available from Witco Chemical Company under the trade names Vansoft® 222 and Varisoft® 110, respectively.
  • N,N-di(tallowoyl-oxy-ethyl)-N,N-dimethyl ammonium chloride where the tallow chains are at least partially unsaturated.
  • the level of unsaturation contained within the tallow, canola, or other fatty acyl unit chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
  • IV Iodine Value
  • fabric softener actives are derived from fatty acyl groups wherein the terms “tallowyl” and canolyl” in the above examples are replaced by the terms “cocoyl, palmyl, lauryl, oleyl, ricinoleyl, stearyl, palmityl,” which correspond to the triglyceride source from which the fatty acyl units are derived.
  • These alternative fatty acyl sources can comprise either fully saturated, or preferably at least partly unsaturated chains.
  • R units are preferably methyl, however, suitable fabric softener actives are described by replacing the term "methyl” in the above examples in Table II with the units "ethyl, ethoxy, propyl, propoxy, isopropyl, butyl, isobutyl and t-butyl.
  • the counter ion, X in the examples of Table II can be suitably replaced by bromide, methylsulfate, formate, sulfate, nitrate, and mixtures thereof.
  • the anion, X is merely present as a counterion of the positively charged quaternary ammonium compounds. The scope of this invention is not considered limited to any particular anion.
  • the pH of the compositions herein is an important parameter of the present invention. Indeed, it influences the stability of the quaternary ammonium or amine precursors compounds, especially in prolonged storage conditions.
  • the pH as defined in the present context, is measured in the neat compositions at 20 °C. While these compositions are operable at pH of less than about 6.0, for optimum hydrolytic stability of these compositions, the neat pH, measured in the above-mentioned conditions, must preferably be in the range of from about 2.0 to about 5, preferably in the range of 2.5 to 4.5, preferably about 2.5 to about 3.5.
  • the pH of these compositions herein can be regulated by the addition of a Bronsted acid.
  • Suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C 1 -C 5 ) carboxylic acids, and alkylsulfonic acids.
  • Suitable inorganic acids include HCl, H 2 SO 4 , HNO 3 and H 3 PO 4 .
  • Suitable organic acids include formic, acetic, citric, methylsulfonic and ethylsulfonic acid.
  • Preferred acids are citric, hydrochloric, phosphoric, formic, methylsulfonic acid, and benzoic acids.
  • the diester when specified, it will include the monoester that is normally present in manufacture. For softening, under no/low detergent carry-over laundry conditions the percentage of monoester should be as low as possible, preferably no more than about 2.5%. However, under high detergent carry-over conditions, some monoester is preferred.
  • the overall ratios of diester to monoester are from about 100:1 to about 2:1, preferably from about 50:1 to about 5:1, more preferably from about 13:1 to about 8:1. Under high detergent carry-over conditions, the di/monoester ratio is preferably about 11:1.
  • the level of monoester present can be controlled in the manufacturing of the softener compound.
  • Mixtures of actives of formula (1) and (2) may also be prepared.
  • quaternary ammonium fabric softening compounds for use herein are cationic nitrogenous salts having two or more long chain acyclic aliphatic C 8 -C 22 hydrocarbon groups or one said group and an arylalkyl group which can be used either alone or as part of a mixture are selected from the group consisting of:
  • Examples of the above class cationic nitrogenous salts are the well-known dialkyldi methylammonium salts such as ditallowdimethylammonium chloride, ditallowdimethylammonium methylsulfate, di(hydrogenatedtallow)dimethylammonium chloride, distearyldimethylammonium chloride, dibehenyldimethylammonium chloride. Di(hydrogenatedtallow)di methylammonium chloride and ditallowdimethylammonium chloride are preferred.
  • dialkyldimethyl ammonium salts examples include di(hydrogenatedtallow)dimethylammonium chloride (trade name Adogen® 442), ditallowdimethylammonium chloride (trade name Adogen® 470, Praepagen® 3445), distearyl dimethylammonium chloride (trade name Arosurf® TA-100), all available from Witco Chemical Company.
  • Dibehenyldimethylammonium chloride is sold under the trade name Kemamine Q-2802C by Humko Chemical Division of Witco Chemical Corporation.
  • Dimethylstearylbenzyl ammonium chloride is sold under the trade names Varisoft® SDC by Witco Chemical Company and Ammonyx® 490 by Onyx Chemical Company.
  • Suitable amine fabric softening compounds for use herein, which may be in amine form or cationic form are selected from:
  • the preferred Component (i) is a nitrogenous compound selected from the group consisting of the reaction product mixtures or some selected components of the mixtures.
  • One preferred component (i) is a compound selected from the group consisting of substituted imidazoline compounds having the formula: wherein R 7 is an acyclic aliphatic C 15 -C 21 hydrocarbon group and R 8 is a divalent C 1 -C 3 alkylene group.
  • Component (i) materials are commercially available as: Mazamide® 6, sold by Mazer Chemicals, or Ceranine® HC, sold by Sandoz Colors & Chemicals; stearic hydroxyethyl imidazoline sold under the trade names of Alkazine® ST by Alkaril Chemicals, Inc., or Schercozoline® S by Scher Chemicals, Inc.; N,N''-ditallowalkoyldiethylenetriamine; 1-tallowamidoethyl-2-tallowimidazoline (wherein in the preceding structure R 1 is an aliphatic C 15 -C 17 hydrocarbon group and R 8 is a divalent ethylene group).
  • compositions (i) can also be first dispersed in a Bronsted acid dispersing aid having a pKa value of not greater than about 4; provided that the pH of the final composition is not greater than about 6.
  • a Bronsted acid dispersing aid having a pKa value of not greater than about 4; provided that the pH of the final composition is not greater than about 6.
  • Some preferred dispersing aids are hydrochloric acid, phosphoric acid, or methylsulfonic acid.
  • N,N''-ditallowalkoyldiethylenetriamine and 1-tallow(amidoethyl)-2-tallowimidazoline are reaction products of tallow fatty acids and diethylenetriamine, and are precursors of the cationic fabric softening agent methyl-1-tallowamidoethyl-2-tallowimidazolinium methylsulfate (see "Cationic Surface Active Agents as Fabric Softeners," R. R. Egan, Journal of the American Oil Chemicals' Society, January 1978, pages 118-121).
  • N,N''-ditallow alkoyldiethylenetriamine and 1-tallowamidoethyl-2-tallowimidazoline can be obtained from Witco Chemical Company as experimental chemicals.
  • Methyl-1-tallowamidoethyl-2-tallowimidazolinium methylsulfate is sold by Witco Chemical Company under the tradename Varisoft® 475.
  • each R 2 is a C 1-6 alkylene group, preferably an ethylene group; and G is an oxygen atom or an -NR- group; and each R, R 1 , R 2 and R 5 have the definitions given above and A - has the definitions given above for X - .
  • Compound (ii) is 1-oleylamidoethyl-2-oleylimidazolinium chloride wherein R 1 is an acyclic aliphatic C 15 -C 17 hydrocarbon group, R 2 is an ethylene group, G is a NH group, R 5 is a methyl group and A - is a chloride anion.
  • Compound (iii) is the compound having the formula: wherein R 1 is derived from oleic acid.
  • softening active can also encompass mixed softening active agents.
  • DEQA diester or diamido quaternary ammonium fabric softening active compound
  • liquid carrier Another conventional optional ingredient of said liquid fabric softening compositions is a liquid carrier.
  • Suitable liquid carriers are selected from water, organic solvents and mixtures thereof.
  • the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost relative availability, safety, and environmental compatibility.
  • the level of water in the liquid carrier is preferably at least 50%, most preferably at least 60%, by weight of the carrier.
  • Mixtures of water and low molecular weight, e.g., ⁇ 200, organic solvent, e.g., lower alcohol such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
  • Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
  • composition may also optionally contain additional components such as pH modifiers, perfumes, chelating agents, cationic surfactant concentration aids, electrolyte concentration aids, thickeners, stabilisers, such as well known antioxidants and reductive agents, soil release polymers, emulsifiers, bacteriocides, colorants, preservatives, optical brighteners, anti ionisation agents, antifoam agents, enzymes, dye fixing agent such as polyquaternary ammonium compounds (e.g. Sandofix WE56 commercially available from Hoechst, or Rewin SFR commercially available from CHT R.
  • additional components such as pH modifiers, perfumes, chelating agents, cationic surfactant concentration aids, electrolyte concentration aids, thickeners, stabilisers, such as well known antioxidants and reductive agents, soil release polymers, emulsifiers, bacteriocides, colorants, preservatives, optical brighteners, anti ionisation agents, antifoam agents, enzymes
  • Beitlich polyamino functional polymer such as disclosed in co-pending application EP 97201488.0, dispersible polyolefin such as Velustrol® as disclosed in co-pending application PCT/US 97/01644, and the like.
  • a typical amount of such optional components will be from 0% to 15% by weight.
  • perfume encompasses individual perfume components and compositions of perfume components. Selection of any perfume is based solely on aesthetic considerations.
  • Perfume in the sense of perfume components or compositions of perfume components, can be any odoriferous materials or any materials which act as a malodour counteractent.
  • the perfume will most often be liquid at ambient temperatures, but also can be liquified solid such as the various camphoraceous perfumes known in the art.
  • the perfume can be relatively simple in composition or can comprise highly sophisticated, compact mixtures of natural or synthetic chemical components, all chosen to provide any desired odour.
  • perfumes are those odorous materials that deposit on fabrics during the laundry process and are detectable by people with normal olfactory sensity. Many of the perfume ingredients along with their odor corrector and their physical and chemical properties are given in "Perfume and Flavor chemicals (aroma chemicals)", Stephen Arctender, Vols. I and II, Aurthor, Montclair, H.J. and the Merck Index, 8th Edition, Merck & Co., Inc. Rahway, N.J. Perfume components and compositions can also be found in the art, e.g. US Patent Nos. 4,145,184, 4,152,272, 4,209,417 or 4,515,705.
  • perfume use includes materials such as aldehydes, ketones, esters and the like. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfume, and such materials can be used herein.
  • Typical perfumes can comprise e.g. woody/earthy bases containing exotic materials such as sandalwood oil, civet and patchouli oil.
  • the perfume also can be of a light floral fragrance e.g. rose or violet extract. Further the perfume can be formulated to provide desirable fruity odours e.g. lime, lemon or orange.
  • perfume components and compositions are anetole, benzaldehyde, benzyl acetate, benzyl alcohol, benzyl formate, isobornyl acetate, camphene, cis-citral (neral), citronellal, citronellol, citronellyl acetate, paracymene, decanal, dihydrolinalool, dihydromyrcenol, dimethyl phenyl carbinol, eucalyptol, geranial, geraniol, geranyl acetate, geranyl nitrile, cis-3-hexenyl acetate, hydroxycitronellal, d-limonene, linalool, linalool oxide, linalyl acetate, linalyl propionate, methyl antihranilate, alpha-methyl ionone, methyl nonyl acetaldehyde, methyl pheny
  • Perfume can be present at a level of from 0% to 10%, preferably from 0.1% to 5%, and more preferably from 0.2% to 3%, by weight of the finished composition.
  • Fabric softener compositions of the present invention provide improved fabric perfume deposition.
  • Concentrated compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients.
  • Surfactant concentration aids are typically selected from the group consisting of single long chain alkyl cationic surfactants; nonionic surfactants; amine oxides; fatty acids; or mixtures thereof, typically used at a level of from 0 to 15% of the composition.
  • Inorganic viscosity/dispersibility control agents which can also act like or augment the effect of the surfactant concentration aids, include water-soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention. A wide variety of ionizable salts can be used.
  • Suitable salts are the halides of the Group IA and IIA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride.
  • the ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity.
  • the amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from about 20 to about 20,000 parts per million (ppm), preferably from about 20 to about 11,000 ppm, by weight of the composition.
  • Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above.
  • these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance. These agents may stabilize the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes.
  • alkylene polyammonium salts include I-lysine monohydrochloride and 1,5-diammonium 2-methyl pentane dihydrochloride.
  • compositions herein can optionally employ one or more enzymes such as lipases, proteases, cellulase, amylases and peroxidases.
  • a preferred enzyme for use herein is a cellulase enzyme. Indeed, this type of enzyme will further provide a color care benefit to the treated fabric.
  • Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S.
  • 4,435,307 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromopas , and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander .
  • Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
  • CAREZYME® and CELLUZYME® (Novo) are especially useful.
  • compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
  • activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units).
  • compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from about 0.5 to 1000 CEVU/gram of composition.
  • Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1,000 and 10,000 CEVU/gram in liquid form, around 1,000 CEVU/gram in solid form.
  • an optional soil release agent can be added.
  • the addition of the soil release agent can occur in combination with the premix, in combination with the acid/water seat, before or after electrolyte addition, or after the final composition is made.
  • the softening composition prepared by the process of the present invention herein can contain from 0% to 10%, preferably from 0.2% to 5%, of a soil release agent.
  • a soil release agent is a polymer.
  • Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
  • soil release agents include the METOLOSE SM100, METOLOSE SM200 manufactured by Shin-etsu Kagaku Kogyo K.K., SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany), ZELCON 5126 (from Dupont) and MILEASE T (from ICI). These soil release agents can also act as scum dispersants.
  • Stabilizers can be present in the compositions of the present invention.
  • the term "stabilizer,” as used herein, includes antioxidants and reductive agents. These agents are present at a level of from 0% to about 2%, preferably from about 0.01% to about 0.2%, more preferably from about 0.035% to about 0.1% for antioxidants, and more preferably from about 0.01% to about 0.2% for reductive agents. These assure good odor stability under long term storage conditions for the compositions and compounds stored in molten form.
  • the use of antioxidants and reductive agent stabilizers is especially critical for low scent products (low perfume).
  • antioxidants examples include a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone, Eastman Chemical Products, Inc., as Tenox TBHQ; natural tocopherols, Eastman Chemical Products, Inc., as Tenox GT-1/GT-2; and butylated hydroxyanisole, Eastman Chemical Products, Inc., as BHA; long chain esters (C 8 -C 22 ) of gallic acid, e.g., dodecyl
  • reductive agents examples include sodium borohydride, hypophosphorous acid, Irgafos® 168, and mixtures thereof.
  • the process for making a liquid fabric softening composition according to the invention comprises the steps of:
  • Krafft temperature it is meant the temperature at which the solubility of the surfactant becomes equal to the critical micelle concentration (CMC), the CMC being defined in M.J ROSEN, Surfactants and interfacial phenomena, 1988, p.215.
  • CMC critical micelle concentration
  • the product is cooled to below 25°C.
  • Step a of the invention process is typically made with a marine type mixing impeller for 2 minutes.
  • the dispersion of step b of the process is conveniently made using a flat blade turbine impeller at 100 rpm for 10 minutes, the viscosity being measured using a Brookfield LVT viscositymeter.
  • the cooling step as defined under c) is conveniently made using a plate heat exchanger ( ⁇ level) at about 30 ton/hour using a positive displacement pump.
  • the dye and nonionic stabilising agent is mixed in the cooled product using a marine type mixing impeller.
  • nonionic ethoxylated stabilising agent in liquid fabric softening compositions as a freeze-thaw recovery agent.
  • freeze-thaw recovery agent it is meant that the resulting product still exhibits effective dispersibility property after prolonged exposure to freeze-thaw temperatures.
  • the present invention encompasses the use of a nonionic alkoxylated stabilising agent to homogenise the dye in liquid fabric softening compositions.
  • compositions were prepared in accordance with the process invention: Component A B C D E DTDMAC - - - - 4.5 DEQA (85% IPA) 2.6 5.1 6.35 4.12 - Fatty acid - - - 0.2 - Nonionic 0.1 0.25 0.3 0.35 0.25 Hydrochloride acid 0.02 0.02 0.02 0.02 0.02 Perfume 0.10 0.15 0.21 0.28 0.25 Silicone antifoam 0.005 0.005 0.005 0.01 Dye (ppm) 10 10 5 5 10 Water and minors to balance to 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Detergent Compositions (AREA)
EP97870199A 1997-12-10 1997-12-10 Process for making a liquid fabric softening composition Withdrawn EP0922755A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP97870199A EP0922755A1 (en) 1997-12-10 1997-12-10 Process for making a liquid fabric softening composition
CA002312065A CA2312065A1 (en) 1997-12-10 1998-12-03 Process for making a liquid fabric softening composition
PCT/US1998/025668 WO1999029823A1 (en) 1997-12-10 1998-12-03 Process for making a liquid fabric softening composition
BR9813440-0A BR9813440A (pt) 1997-12-10 1998-12-03 Processo para a preparação de uma composição amaciante de tecido lìquida
CN 98811994 CN1281503A (zh) 1997-12-10 1998-12-03 制备液体织物柔软组合物的方法
JP2000524399A JP2001526304A (ja) 1997-12-10 1998-12-03 液体布帛柔軟化組成物の製法
US09/555,588 US6218354B1 (en) 1997-12-10 1998-12-03 Process for making a liquid fabric softening composition
EP98960705A EP1042445A1 (en) 1997-12-10 1998-12-03 Process for making a liquid fabric softening composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97870199A EP0922755A1 (en) 1997-12-10 1997-12-10 Process for making a liquid fabric softening composition

Publications (1)

Publication Number Publication Date
EP0922755A1 true EP0922755A1 (en) 1999-06-16

Family

ID=8231074

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97870199A Withdrawn EP0922755A1 (en) 1997-12-10 1997-12-10 Process for making a liquid fabric softening composition
EP98960705A Withdrawn EP1042445A1 (en) 1997-12-10 1998-12-03 Process for making a liquid fabric softening composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP98960705A Withdrawn EP1042445A1 (en) 1997-12-10 1998-12-03 Process for making a liquid fabric softening composition

Country Status (6)

Country Link
EP (2) EP0922755A1 (ja)
JP (1) JP2001526304A (ja)
CN (1) CN1281503A (ja)
BR (1) BR9813440A (ja)
CA (1) CA2312065A1 (ja)
WO (1) WO1999029823A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087974A1 (en) * 2010-01-13 2011-07-21 The Procter & Gamble Company Method of producing a fabric softening composition
WO2011116037A1 (en) * 2010-03-18 2011-09-22 The Procter & Gamble Company Low energy methods of making pearlescent fabric softener compositions
WO2012052349A1 (en) 2010-10-22 2012-04-26 Unilever Plc Improvements relating to fabric conditioners
US9150822B2 (en) 2010-12-03 2015-10-06 Conopco, Inc. Fabric conditioners
WO2023006384A1 (en) * 2021-07-26 2023-02-02 Unilever Ip Holdings B.V. Method of producing a fabric conditioner

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2364065A (en) * 2000-06-28 2002-01-16 Procter & Gamble Fabric treatment composition
GB0021765D0 (en) 2000-09-05 2000-10-18 Unilever Plc A method of preparing fabric conditioning compositions
GB0021766D0 (en) 2000-09-05 2000-10-18 Unilever Plc Fabric conditioning compositions
EP1354872A1 (en) 2002-04-17 2003-10-22 Kao Corporation Sulfuric acid ester amine salts, sulfonic acid amine salts, production thereof and softener composition
KR20080007364A (ko) * 2005-05-12 2008-01-18 더 프록터 앤드 갬블 캄파니 냉동-해동 조건하에서 안정한 섬유 유연화 조성물
EP2196527A1 (en) 2008-12-10 2010-06-16 The Procter and Gamble Company Fabric softening compositions comprising silicone comprising compounds
MX2012000490A (es) 2009-07-10 2012-01-27 Procter & Gamble Composiciones que contienen particulas de suministro con agentes beneficiosos.
WO2016074118A1 (en) * 2014-11-10 2016-05-19 Givaudan Sa Improvements in or relating to organic compounds
CN106167983A (zh) * 2016-07-01 2016-11-30 潘明华 一种抗菌防静电衣物柔软剂及其制备方法
EP3339409B1 (en) 2016-12-22 2020-04-15 The Procter & Gamble Company Fabric softener composition having improved freeze thaw stability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2911198A1 (de) * 1979-03-22 1980-09-25 Dalli Werke Maeurer & Wirtz Konzentriertes waescheweichspuelmittel und verfahren zu dessen herstellung
JPS6369899A (ja) * 1986-09-12 1988-03-29 ライオン株式会社 柔軟剤組成物
US5089148A (en) * 1990-11-27 1992-02-18 Lever Brothers Company, Division Of Conopco, Inc. Liquid fabric conditioner containing fabric softener and peach colorant
WO1994010285A1 (en) * 1992-10-26 1994-05-11 The Procter & Gamble Company Fabric softeners containing dyes for reduced staining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2911198A1 (de) * 1979-03-22 1980-09-25 Dalli Werke Maeurer & Wirtz Konzentriertes waescheweichspuelmittel und verfahren zu dessen herstellung
JPS6369899A (ja) * 1986-09-12 1988-03-29 ライオン株式会社 柔軟剤組成物
US5089148A (en) * 1990-11-27 1992-02-18 Lever Brothers Company, Division Of Conopco, Inc. Liquid fabric conditioner containing fabric softener and peach colorant
WO1994010285A1 (en) * 1992-10-26 1994-05-11 The Procter & Gamble Company Fabric softeners containing dyes for reduced staining

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8818, Derwent World Patents Index; Class A25, AN 88-124393, XP002063532 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087974A1 (en) * 2010-01-13 2011-07-21 The Procter & Gamble Company Method of producing a fabric softening composition
US8759278B2 (en) 2010-01-13 2014-06-24 The Procter & Gamble Company Method of producing a fabric softening composition
WO2011116037A1 (en) * 2010-03-18 2011-09-22 The Procter & Gamble Company Low energy methods of making pearlescent fabric softener compositions
WO2012052349A1 (en) 2010-10-22 2012-04-26 Unilever Plc Improvements relating to fabric conditioners
US9150822B2 (en) 2010-12-03 2015-10-06 Conopco, Inc. Fabric conditioners
WO2023006384A1 (en) * 2021-07-26 2023-02-02 Unilever Ip Holdings B.V. Method of producing a fabric conditioner

Also Published As

Publication number Publication date
EP1042445A1 (en) 2000-10-11
BR9813440A (pt) 2000-10-10
CA2312065A1 (en) 1999-06-17
CN1281503A (zh) 2001-01-24
JP2001526304A (ja) 2001-12-18
WO1999029823A1 (en) 1999-06-17

Similar Documents

Publication Publication Date Title
US5445747A (en) Cellulase fabric-conditioning compositions
EP0787176B1 (en) Fabric softener compositions with reduced environmental impact
US5652206A (en) Fabric softener compositions with improved environmental impact
EP0757715B1 (en) Cellulase fabric-conditioning compositions
EP0792335B1 (en) Concentrated biodegradable quaternary ammonium fabric softener compositions containing intermediate iodine value fatty acid chains
EP0922755A1 (en) Process for making a liquid fabric softening composition
CA2280039C (en) Rinse added laundry additive compositions having color care agents
US6218354B1 (en) Process for making a liquid fabric softening composition
US20020035053A1 (en) Clear liquid fabric softening compositions
EP1009788B1 (en) Clear liquid fabric softening compositions
MXPA00003112A (es) Polimeros amino-funcionales etoxila
MXPA00005759A (en) Process for making a liquid fabric softening composition
EP0918086A1 (en) Fabric softening compositions
EP0856045B1 (en) Fabric softener compositions
CA2336398A1 (en) Fabric care compositions
EP0919608A1 (en) Use of a polyhydroxyfatty acid amide compound as a softening compound
MXPA00001703A (en) Clear liquid fabric softening compositions
MXPA00005061A (en) Stabilised fabric softening compositions
MXPA01001149A (en) Fabric care compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991210

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20030221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030904