EP0919768A1 - Brenner zum Betrieb eines Wärmeerzeugers - Google Patents

Brenner zum Betrieb eines Wärmeerzeugers Download PDF

Info

Publication number
EP0919768A1
EP0919768A1 EP97810907A EP97810907A EP0919768A1 EP 0919768 A1 EP0919768 A1 EP 0919768A1 EP 97810907 A EP97810907 A EP 97810907A EP 97810907 A EP97810907 A EP 97810907A EP 0919768 A1 EP0919768 A1 EP 0919768A1
Authority
EP
European Patent Office
Prior art keywords
flow
burner according
burner
mixing tube
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97810907A
Other languages
English (en)
French (fr)
Other versions
EP0919768B1 (de
Inventor
Hans Peter Knöpfel
Thomas Ruck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to AT97810907T priority Critical patent/ATE232282T1/de
Priority to EP97810907A priority patent/EP0919768B1/de
Priority to DE59709281T priority patent/DE59709281D1/de
Priority to US09/196,115 priority patent/US5954490A/en
Publication of EP0919768A1 publication Critical patent/EP0919768A1/de
Application granted granted Critical
Publication of EP0919768B1 publication Critical patent/EP0919768B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a burner for operating a heat generator according to the preamble of claim 1.
  • a further premix burner has become known, in which Measures are taken to move the backflow bubble further downstream, this to get a longer premixing and evaporation distance.
  • a swirl generator acting on the head side of the premix burner which is based on the premix burner according to EP-0 312 809 B1, a mixing tube downstream, a transition geometry between the swirl generator and the mixing tube which is switched from transition channels to non-detachable Transfer of the swirl flow from the swirl generator into the mixing tube.
  • transition channels are arranged sectorally according to the number the inflow channels acting in the swirl generator.
  • the design of the burner outlet at the end of the mixing tube with a tear-off edge has a significant improvement in terms of Strengthening flame stability, lower pollutant emissions, lower Pulsations, complete burnout, large operating range, good cross-ignition between the different burners, compact design, improved Mixture, etc., triggered.
  • further strengthening the flame stability and an improved adaptation of the flame to the specified one Combustion chamber geometry for smooth operation at the highest Level in premix combustion of the newer generation is necessary.
  • the invention seeks to remedy this.
  • the invention as set out in the claims is characterized, the task is based on a burner at the beginning to propose precautions which strengthen the flame stability and an adaptation of the flame to the given combustion chamber geometry effect without the other benefits of this burner in any way reduce.
  • a radius is attached to the end of the mixing tube
  • the size is chosen so that the flow contacts the wall of the mixing tube and so the swirl number increases. Opposite a flow without a radius Now the backflow zone increases enormously.
  • Fig. 1 shows the overall structure of a burner operated as a premix burner becomes.
  • a swirl generator 100 is effective, the design of which is shown in FIGS the following Fig. 3-6 is shown and described in more detail. It is about in this swirl generator 100 around a conical structure, the tangential multiple is acted upon by an inflowing combustion air flow 115.
  • the flow formed here is based on a downstream of the swirl generator 100 provided transition geometry seamlessly into a transition piece 200 transferred in such a way that no detachment areas can occur there.
  • the Configuration of this transition geometry is described in more detail in FIG. 6.
  • This transition piece 200 is on the outflow side of the transition geometry extended by a mixing tube 20, both parts of the actual mixing section Form 220.
  • the mixing section 220 can be made from a single one Consist of pieces, i.e. then that the transition piece 200 and the mixing tube 20 merge into a single coherent structure, but the Characteristics of each part are retained.
  • transition piece 200 and mixing tube 20 created from two parts these are through a sleeve ring 10 connected, the same socket ring 10 on the head side as an anchoring surface serves for the swirl generator 100.
  • Such a sleeve ring 10 also has the advantage that different mixing tubes can be used.
  • Outflow side of the mixing tube 20 there is the actual combustion chamber 30 Combustion chamber, which is only symbolized here by a flame tube.
  • the Mixing section 220 largely fulfills the task that is downstream of the swirl generator 100 a defined route is provided, in which a perfect premix of different types of fuel can be achieved.
  • This mixing section so primarily the mixing tube 20, also allows lossless Flow guidance, so that it is also in operative connection with the transition geometry initially cannot form a backflow zone or backflow bubble, with which over the length of the mixing section 220 to the mixing quality for all types of fuel Influence can be exercised.
  • this mixing section 220 still has one other property, which is that in it the axial velocity profile has a pronounced maximum on the axis, so that backfire the flame from the combustion chamber is not possible. However, it is correct that with such a configuration this axial velocity towards the wall falls off.
  • the mixing tube 20 in the flow and circumferential direction with a number of regular or irregular distributed holes 21 of various cross sections and directions through which an amount of air flows into the interior of the mixing tube 20, and along the wall in the sense of a filming an increase in the flow rate induce.
  • These holes 21 can also be designed that at least additionally on the inner wall of the mixing tube 20 stops effusion cooling.
  • these bores 21 are also possible. It is also possible for the mixing tube 20 to be intermittent to provide such holes, for example at the beginning and end of the same. These bores 21 are preferably distributed around the circumference of the mixing tube. Furthermore, the outlet of the transition channels 201 corresponds to the narrowest Flow cross-section of the mixing tube 20. The above-mentioned transition channels 201 thus bridge the respective cross-sectional difference without the to negatively influence formed flow. If the chosen precaution at the guidance of the pipe flow 40 along the mixing pipe 20 an intolerable If pressure loss triggers, this can be remedied by At the end of this mixing tube 20, a diffuser, not shown in the figure, is provided becomes.
  • a combustion chamber then closes at the end of the mixing tube 20 30 (combustion chamber), with a through between the two flow cross-sections there is a cross-sectional jump formed in the burner front. Only here does it form a central flame front with a backflow zone 50, which is opposite the Flame front has the properties of a disembodied flame holder. Forms there is a flow within this cross-sectional jump during operation Edge zone, in which by the prevailing negative pressure Vortex detachments occur, this leads to an increased ring stabilization of the Backflow zone 50. It should also be mentioned that the generation of a stable backflow zone 50 also a sufficiently high swirl number in one Tube required.
  • FIG. 2 shows a schematic view of the burner according to FIG. 1, in particular here on the washing around a centrally arranged fuel nozzle 103 and the effect of fuel injectors 170 is pointed out.
  • the mode of action the remaining main components of the burner, namely swirl generator 100 and Transition piece 200 are described in more detail in the following figures.
  • the fuel nozzle 103 is encased with a spaced ring 190, in which has a number of holes 161 arranged in the circumferential direction, through which an amount of air 160 flows into an annular chamber 180 and there rinsing the fuel nozzle 103. These holes 161 are slanted forward so that an adequate axial component arises on the burner axis 60.
  • additional fuel injectors 170 are provided, which have a specific one Amount of preferably a gaseous fuel in the respective amount of air Feed 160 such that there is a uniform fuel concentration in the mixing tube 20 150 sets over the flow cross section, as the illustration wants to symbolize in the figure.
  • Exactly this even fuel concentration 150, especially the strong concentration on the burner axis 60 provides that there is a stabilization of the flame front at the exit of the burner sets, thus avoiding occurring combustion chamber pulsations.
  • FIG. 4 is used at the same time as FIG. 3.
  • 3 is referred to the other figures as necessary in the description of FIG.
  • the first part of the burner according to FIG. 1 forms the swirl generator shown in FIG. 3 100.
  • This consists of two high conical partial bodies 101, 102, which are nested in a staggered manner.
  • the number of conical Partial body can of course be larger than two, like Figures 5 and 6 demonstrate; this depends on how they are explained in more detail below depends on the operating mode of the entire burner. It is with certain operating constellations not ruled out a single spiral Provide swirl generator.
  • the offset of the respective central axis or Longitudinal symmetry axes 101b, 102b (see FIG. 4) of the tapered partial bodies 101, 102 creates each other in the neighboring wall, in a mirror image arrangement, each have a tangential inflow channel, i.e.
  • the cone shape of the Part body 101, 102 shown in the flow direction has a certain fixed Angle on.
  • the partial bodies 101, 102 have an increasing or decreasing cone inclination in the direction of flow, similar to a trumpet or Tulip. The latter two forms are not included in the drawing, since they can be easily understood by a person skilled in the art are.
  • the two conical partial bodies 101, 102 each have a cylindrical one annular starting part 101a. In the area of this cylindrical initial part the fuel nozzle 103 already mentioned under FIG.
  • the injection 104 of this fuel 112 falls approximately with the narrowest cross section of the formed by the conical part body 101, 102 cone cavity 114 together.
  • the injection capacity and the type of this fuel nozzle 103 are determined according to the given parameters of the respective burner.
  • the tapered body 101, 102 also each have a fuel line 108, 109, which arranged along the tangential air inlet slots 119, 120 and with injection openings 117 are provided, through which preferably a gaseous Fuel 113 is injected into the combustion air 115 flowing through there, as the arrows 116 symbolize.
  • fuel lines 108, 109 are preferably at the latest at the end of the tangential inflow, before entering the cone cavity 114, arranged for an optimal air / fuel mixture to obtain.
  • fuel 112 is normally a liquid Fuel, forming a mixture with another medium, for example with a recirculated flue gas, is easily possible. That fuel 112 is into the cone cavity 114 at a preferably very acute angle injected. A conical fuel spray thus forms from the fuel nozzle 103 105, the rotating combustion air flowing in tangentially 115 enclosed and dismantled.
  • the concentration is then in the axial direction of the injected fuel 112 continuously through the inflowing combustion air 115 degraded to mix in the direction of evaporation.
  • a gaseous fuel 113 is introduced via the opening nozzles 117 the formation of the fuel / air mixture directly at the end of the air inlet slots 119, 120.
  • the combustion air 115 additionally preheated, or for example enriched with a recirculated flue gas or exhaust gas, so supported this sustained the vaporization of the liquid fuel 112 before this mixture flows into the downstream stage, here into the transition piece 200 (See Figures 1 and 7).
  • the same considerations also apply when talking about the Lines 108, 109 liquid fuels should be supplied.
  • the tangential air inlet slots 119, 120 are strictly limited, so that the desired flow field of the combustion air 115 at the exit of the swirl generator 100 can adjust.
  • one Reduction of the tangential air inlet slots 119, 120 the faster formation a backflow zone already favored in the area of the swirl generator.
  • the axial speed within the swirl generator 100 can be by a corresponding increase supply of air as described in Fig. 2 (Item 160) or stabilize.
  • a corresponding swirl generation in operative connection with the downstream transition piece 200 prevents formation of flow separation within the swirl generator 100 downstream Mixing tube.
  • the construction of the swirl generator 100 is suitable further excellent, the size of the tangential air inlet slots 119, 120 to change, with which without changing the overall length of the swirl generator 100 relatively large operational bandwidth can be captured.
  • the partial bodies 101, 102 can also be displaced relative to one another in another plane, as a result of which even an overlap of the same can be provided. It is the further possible, the partial body 101, 102 by a counter-rotating movement to nest in a spiral.
  • FIG. 4 shows, among other things, the geometric configuration of optional ones Baffles 121a, 121b. They have a flow initiation function these, according to their length, the respective end of the tapered partial body 101, 102 extend in the direction of flow towards the combustion air 115.
  • the channeling of the combustion air 115 into the cone cavity 114 can by opening or closing the guide plates 121a, 121b by one in the area the point of entry of this channel into the cone cavity 114 123 can be optimized, especially if the original Gap size of the tangential air inlet slots 119, 120 changed dynamically should be, for example, to change the speed of the combustion air 115 to achieve.
  • these can be dynamic arrangements can also be provided statically, by using required baffles form an integral part with the tapered partial bodies 101, 102.
  • the swirl generator 100 now consists of four partial bodies 130, 131, 132, 133 is constructed.
  • the associated longitudinal symmetry axes for each sub-body are marked with the letter a.
  • this configuration is to be said that they are due to the lower generated with it Twist strength and in cooperation with a correspondingly enlarged slot width best suited, the bursting of the vortex flow on the downstream side of the To prevent swirl generator in the mixing tube, with which the mixing tube the intended Role.
  • FIG. 6 differs from FIG. 5 in that the partial bodies 140 here 141, 142, 143 have a blade profile shape which is used to provide a certain Flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 in the combustion air flow 115 happens from inside the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the transition geometry is corresponding for a swirl generator 100 with four partial bodies 5 or 6, built. Accordingly, the transition geometry points as Natural extension of the upstream part of the four transition channels 201, whereby the conical quarter area of the partial bodies is extended, until it cuts the wall of the mixing tube.
  • the same considerations apply even if the swirl generator is based on a principle other than that described under FIG. 3, is constructed.
  • the downward flow area of the individual transition channels 201 has a spiral shape in the flow direction running shape, which describes a crescent shape, accordingly the fact that in the present case the flow cross-section of the transition piece 200 flared in the direction of flow.
  • the twist angle of the Transition channels 201 in the flow direction are selected so that the pipe flow then another one until the cross-sectional jump at the combustion chamber inlet enough distance remains to allow a perfect premix with the injected To accomplish fuel. It also increases by the above Measures include the axial speed on the mixing tube wall downstream of the swirl generator. The transition geometry and the measures in the area of the mixing tube cause a significant increase in the axial speed profile towards the center of the mixing tube, so there is a risk of early ignition is decisively counteracted.
  • FIG. 8 shows the geometric design of the burner outlet at the end of the mixing tube 20 already mentioned for spatial stabilization of the backflow zone.
  • the flow cross-section of the tube 20 receives in this area a first transition radius R 1 which is convex with respect to the burner axis 60, the size of which basically depends on the respective flow within the mixing tube 20.
  • the size of this radius R 1 is accordingly chosen so that the flow is applied to the wall and the swirl number can increase sharply.
  • the size of the radius R 1 can be quantitatively defined so that it is> 10% of the inner diameter d of the mixing tube 20. Compared to a flow without a radius, the backflow zone 50 now increases enormously.
  • This radius R 1 then merges into a second radius R 2 , which is concave with respect to the burner axis 60 up to the exit plane 70 of the mixing tube 20, the size of this radius R 2 being > 10% of the inside diameter d of the mixing tube 20.
  • This second radius R 2 ensures that the edge flow is aligned axially in such a way that the flame does not appear on the combustion chamber wall when the combustion chamber is of small radial dimension.
  • the sectoral angles ⁇ 1 and ⁇ 2 of the two radii R 1 , R 2 are complementary angles, the maximum sum of which is 90 °. Depending on the number of swirls and the axial orientation of the flow, the two angles mentioned are appropriately adapted, which is interdependent on the size of the two radii.
  • the exit plane 70 of the mixing tube 20 is further provided from the end edge of the second radius R 2 in the radial direction with a step S of> 3 mm depth, this step performing the function of a stall stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Bei einem Brenner zum Betrieb einer Brennkammer, der im wesentlichen aus einem Drallerzeuger (100), einem dem Drallerzeuger nachgeschalteten Uebergangsstück (200) und einem Mischrohr (20) besteht, wobei Uebergangsstück (200) und Mischrohr (20) die Mischstrecke des Brenners bilden und stromauf eines Brennraumes (30) angeordnet sind. Am Ende des Mischrohres (20) in seinem Auslaufbereich zu einem nachgeschalteten Brennraum (30) weist dieses einen ersten gegenüber der Brennerachse (60) konvex verlaufenden Radius (R1) auf. Dieser Radius (R1) geht in einen zweiten bis zur Austrittsebene (70) des Mischrohres (20) reichenden und zur Brennerachse (60) konkav verlaufenden Radius (R2) über, wobei der abgedeckte Sektor (β1 + β2) der beiden Radien (R1, R2) maximal 90° beträgt. Mit dieser Ausgestaltung wird eine Vergrösserung und Stabilisierung der Rückströmzone (50) sowie eine axiale Ausrichtung der Randströmung erreicht. <IMAGE> <IMAGE>

Description

Technisches Gebiet
Die vorliegende Erfindung betrifft einen Brenner zum Betrieb eines Wärmeerzeugers gemäss Oberbegriff des Anspruchs 1.
Stand der Technik
Aus dem Schriftum ist bekanntgeworden, dass bei einer perfekt vorgemischten Flamme die Grösse des Flammenstabilisationsgebietes, auch unter dem Begriff Rückströmzone bekannt, keinen Einfluss auf die NOx-Emissionen hat. Jedoch werden die CO- und UHC-Emissionen und ganz speziell die Löschgrenzen stark beeinflusst. Dies bedeutet, dass je grösser die Flammenstabilisationszone ist um so geringer die CO- und UHC-Emissionen und die Löschgrenze sind. Mit einer grösseren Stabilisationszone kann also ein grösserer Lastbereich des Brenners im Vormischbetrieb abgedeckt werden, ohne dass die Flamme löscht.
Aus EP-0 321 809 B1 ist ein Vormischbrenner bekanntgeworden,welcher auf der Erzeugung einer geschlossenen Drallströmung im Kegelkopf basiert, die aufgrund des zunehmenden Dralls entlang der Kegelspitze in eine annulare Drallströmung mit Rückströmung im Kern übergeht. Der Ort wo dieses Aufplatzen der Strömung geschieht, wird durch den Kegelwinkel und die Einströmungskanäle zur Einleitung eines Verbrennungsluftstromes in den Innenraum des Drallerzeugers bestimmt. Dadurch wird auch die Grösse und die allgemeine Konfiguration dieser Rückströmzone oder Rückströmblase (Vortex Breakdown) definiert.
Aus EP-0 780 629 A2 ist ein weiterer Vormischbrenner bekanntgeworden, bei welchem Massnahme ergriffen sind, um die Rückströmblase weiter stromab zu verschieben, dies um eine längere Vormisch- und Verdampfungsstrecke zu erhalten. Zu diesem Zweck einem kopfseitig des Vormischbrenners wirkenden Drallerzeuger, der hier auf dem Vormischbrenner gemäss EP-0 312 809 B1 aufbaut, ein Mischrohr nachgeschaltet, wobei intermediär zwischen Drallerzeuger und Mischrohr eine Uebergangsgeometrie geschaltet ist, welche aus Uebergangskanäle zur ablösungsfreie Ueberleitung der Drallströmung aus dem Drallerzeuger in das Mischrohr besteht. Diese Uebergangskanäle sind sektoriell disponiert, entsprechend der Zahl der im Drallerzeuger wirkenden Einströmungskanäle. Diese Konstellation verkleinert zwangsläufig die Grösse der Rückströmzone, da der Drall der Strömung so gewählt werden muss, dass diese nicht innerhalb des Mischrohres aufplatzt. Am Ende des Mischrohres ist also der Drall an sich gering, als dass eine grosse Rückströmzone entstehen kann. Versucht man diese Rückströmzone mit einem grösserem Diffusorwinkel des Mischrohres zu verstärken, so ergeben sich Probleme in den wandnahen Bereichen des Diffusors (Grenzschichten, Ablösungen) und die Flamme wandert dann leicht stromauf. Die Gestaltung des Brenneraustritts am Ende des Mischrohres mit einer Abrisskante hat eine signifikante Verbesserung hinsichtlich Stärkung der Flammenstabilität, tieferer Schadstoff-Emissionen, geringerer Pulsationen, vollständigen Ausbrandes, grossen Betriebsbereichs, guter Querzündung zwischen den verschiedenen Brennern, kompakter Bauweise, verbesserter Mischung, etc., ausgelöst. Es hat sich jedoch gezeigt, dass eine weitere Stärkung der Flammenstabilität sowie eine verbesserte Anpassung der Flamme an die vorgegebene Brennkammergeometrie für einen reibungslosen Betrieb auf höchster Ebene bei der Vormischverbrennung der neueren Generation vonnöten ist.
Darstellung der Erfindung
Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, welche eine Stärkung der Flammenstabilität und eine Anpassung der Flamme an die vorgegebene Brennkammergeometrie bewirken, ohne die übrigen Vorteile dieses Brenners in irgendeiner Weise zu mindern.
Erfindungsgemäss wird am Ende des Mischrohres ein Radius angebracht, dessen Grösse so gewählt wird, dass sich die Strömung an die Wand des Mischrohres anlegt und so die Drallzahl ansteigen lässt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmzone enorm.
Wird nun dieser Brenner in einer Brennkammer eingesetzt, welche kleine radiale Abmessungen aufweist, so besteht die Gefahr, dass die Flamme direkt auf die Brennkammerwand trifft, und so dort die Materialtemperatur unzulässig hohe Werte erreicht. Um dies zu verhindern, wird nun ein weiterer Radius eingeführt, welcher die Randströmung axial ausrichtet. Durch die Grösse des ersten und zweiten Radius und deren Winkel wird die gewünschte Grösse der Rückströmzone für die jeweils vorhandene Strömung innnerhalb des Mischrohres erzielt.
Damit ergeben sich folgende Vorteile:
  • Stabile Flammenpostion,
  • Tiefere Schadstoff-Emissionen,
  • Geringe Pulsationen,
  • Vollständiger Ausbrand,
  • Grosser Betriebsbereich,
  • Gute Querzündung zwischen verschiedener nebengeordneter Brenners, die eine Ringbrennkammer betreiben
  • Flamme kann der Brennkammergeometrie angepasst werden,
  • Kompakte Bauweise,
  • Verbesserte Mischung.
Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.
Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.
Kurze Bezeichnung der Zeichnungen
Es zeigt:
Fig. 1
einen als Vormischbrenner ausgelegten Brenner mit einer Mischstrecke stromab eines Drallerzeugers,
Fig. 2
eine schematische Darstellung des Brenners gemäss Fig. 1 mit Disposition der zusätzlichen Brennstoff-Injektoren,
Fig. 3
einen aus mehreren Schalen bestehenden Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
Fig. 4
einen Querschnitt durch einen zweischaligen Drallerzeuger,
Fig. 5
einen Querschnitt durch einen vierschaligen Drallerzeuger,
Fig. 6
eine Ansicht durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
Fig. 7
eine Ausgestaltung der Uebergangsgeometrie zwischen Drallerzeuger und Mischstrecke und
Fig. 8
eine Gestaltung des Brenneraustritts zum räumlichen Management der Rückströmzone.
Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit
Fig. 1 zeigt den Gesamtaufbau eines Brenners, der als Vormischbrenner betrieben wird. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 3-6 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Mischrohr 20 verlängert, wobei beide Teile die eigentliche Mischstrecke 220 bilden. Selbstverständlich kann die Mischstrecke 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und das Mischrohr 20 zu einem einzigen zusammenhängenden Gebilde verschmelzen, wobei aber die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Mischrohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Veranketungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Mischrohres 20 befindet sich der eigentliche Brennraum 30 einer Brennkammer, welche hier lediglich durch ein Flammrohr versinnbildlicht ist. Die Mischstrecke 220 erfüllt weitgehend die Aufgabe, dass stromab des Drallerzeugers 100 eine definierte Strecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt werden kann. Diese Mischstrecke, also vordergründig das Mischrohr 20, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone oder Rückströmblase bilden kann, womit über die Länge der Mischstrecke 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Diese Mischstrecke 220 hat aber noch eine andere Eigenschaff, welche darin besteht, dass in ihr selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 20 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilter Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 20 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Durchfluss-Geschwindigkeit induzieren. Diese Bohrungen 21 können auch so ausgelegt werden, dass sich an der Innenwand des Mischrohres 20 mindestens zusätzlich noch eine Effusionskühlung einstellt. Eine zusätzliche Möglichkeit eine Erhöhung der Geschwindigkeit des Gemisches innerhalb des Mischrohres 20 zu erzielen, besteht darin, dass dessen Durchflussquerschnitt abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 20 angehoben wird. In der Figur verlaufen die Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Andere Verläufe dieser Bohrungen 21 sind auch möglich. Möglich ist des weiteren, das Mischrohr 20 intermittierend mit solchen Bohrungen zu versehen, beispielsweise am Anfang und am Ende desselben. Vorzugsweise werden diese Bohrungen 21 am Umfang des Mischrohres verteilt. Des weiteren entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 20. Die genannten Uebergangskanäle 201 überbrücken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 20 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende dieses Mischrohres 20 ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 20 schliesst sich sodann eine Brennkammer 30 (Brennraum) an, wobei zwischen den beiden Durchflussquerschnitten ein durch eine Brennerfront gebildeter Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Flammenfront mit einer Rückströmzone 50, welche gegenüber der Flammenfront die Eigenschaften eines körperlosen Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt. Was die Gestaltung des Brenneraustritts am Ende des Mischrohres 20 zum räumlichen Stabilisierung und Management der Rückströmzone 50 betrifft, wird auf die Beschreibung unter Fig. 8 verwiesen.
Fig. 2 zeigt eine schematische Ansicht des Brenners gemäss Fig. 1, wobei hier insbesondere auf die Umspülung einer zentral angeordneten Brennstoffdüse 103 und auf die Wirkung von Brennstoff-Injektoren 170 hingewiesen wird. Die Wirkungsweise der restlichen Hauptbestandteile des Brenners, nämlich Drallerzeuger 100 und Uebergangsstück 200 werden unter den nachfolgenden Figuren näher beschrieben. Die Brennstoffdüse 103 wird mit einem beabstandeten Ring 190 ummantelt, in welchem eine Anzahl in Umfangsrichtung disponierter Bohrungen 161 gelegt sind, durch welche eine Luftmenge 160 in eine ringförmige Kammer 180 strömt und dort die Umspülung der Brennstoffdüse 103 vornimmt. Diese Bohrungen 161 sind schräg nach vorne angelegt, dergestalt, dass eine angemessene axiale Komponente auf der Brennerachse 60 entsteht. In Wirkverbindung mit diesen Bohrungen 161 sind zusätzliche Brennstoff-Injektoren 170 vorgesehen, welche eine bestimmte Menge vorzugsweise eines gasförmigen Brennstoffes in die jeweilige Luftmenge 160 einspeisen, dergestalt, dass sich im Mischrohr 20 eine gleichmässige Brennstoffkonzentration 150 über den Strömungsquerschnitt einstellt, wie die Darstellung in der Figur versinnbildlichen will. Genau diese gleichmässige Brennstoffkonzentration 150, insbesondere die starke Konzentration auf der Brennerachse 60 sorgt dafür, dass sich eine Stabilisierung der Flammenfront am Ausgangs des Brenners einstellt, womit aufkommende Brennkammerpulsationen vermieden werden.
Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 3 mindestens Fig. 4 herangezogen wird. Im folgenden wird bei der Beschreibung von Fig. 3 nach Bedarf auf die übrigen Figuren hingewiesen.
Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 3 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 5 und 6 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betriebsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 101b, 102b (Vgl. Fig. 4) der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Einströmungskanal, d.h. einen Lufteintrittsschlitz 119, 120 (Vgl. Fig. 4), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen ringförmigen Anfangsteil 101a auf. Im Bereich dieses zylindrischen Anfangsteils ist die bereits unter Fig. 2 erwähnte Brennstoffdüse 103 untergebracht, welche vorzugsweise mit einem flüssigen Brennstoff 112 betrieben wird. Die Eindüsung 104 dieses Brennstoffes 112 fällt in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammen. Die Eindüsungskapazität und die Art dieser Brennstoffdüse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, angeordnet, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Brennstoffdüse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium, beispielsweise mit einem rückgeführten Rauchgas, ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem vorzugsweise sehr spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Brennstoffdüse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen und abgebaut wird. In axialer Richtung wird sodann die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt, hier in das Uebergangsstück 200 (Vgl. Fig. 1 und 7). Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101,102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende unter Fig. 2 (Pos. 160) näher beschriebene Zuführung einer Luftmenge erhöhen bzw. stabilisieren. Eine entsprechende Drallerzeugung in Wirkverbindung mit dem nachgeschalteten Uebergangsstück 200 (Vgl. Fig. 1 und 7) verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.
Aus Fig. 4 geht unter anderen die geometrische Konfiguration von wahlweise vorzusehenden Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll, beispielsweise um eine Aenderung der geschwindigkeit der Verbrennungsluft 115 zu erreichen. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden.
Fig. 5 zeigt gegenüber Fig. 4, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.
Fig. 6 unterscheidet sich gegenüber Fig. 5 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.
Fig. 7 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 5 oder 6, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Mischrohres schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 3 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.
Fig. 8 zeigt die bereits angesprochene geometrische Gestaltung des Brenneraustritts am Ende des Mischrohres 20 zur räumlichen Stabilisierung der Rückströmzone. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen ersten gegenüber der Brennerachse 60 konvexen Uebergangsradius R1, dessen Grösse grundsätzlich von der jeweiligen Strömung innerhalb des Mischrohres 20 abhängt. Die Grösse dieses Radius R1 wird dementsprechend so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R1 so definieren, dass dieser > 10% des Innendurchmessers d des Mischrohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmzone 50 gewaltig. Dieser Radius R1 geht sodann in einen zweiten Radius R2 über, welcher gegenüber der Brennerachse 60 konkav bis zur Austrittsebene 70 des Mischrohres 20 verläuft, wobei die Grösse dieses Radius R2 > 10% des Innendurchmessers d des Mischrohres 20 beträgt. Dieser zweite Radius R2 sorgt dafür, dass die Randströmung axial ausgerichtet wird, dergestalt, dass die Flamme bei kleiner radialer Ausmessung der Brennkammer nicht auf die Brennkammerwand auftritt. Die sektoriellen Winkel β1 und β2 der beiden Radien R1, R2 sind komplementäre Winkel, deren maximale Summe 90° beträgt. Je nach Drallzahl und axialer Ausrichtung der Strömung erfahren die zwei genannten Winkel eine entsprechende Anpassung, welche interdependent zur Grösse der beiden Radien steht.
Die Austrittsebene 70 des Mischrohres 20 ist des weiteren ab Endkante des zweiten Radius R2 in radialer Richtung mit einem Absatz S von > 3 mm Tiefe versehen, wobei dieser Absatz die Funktion einer Strömungsabrissstufe ausübt.
Bezugszeichenliste
10
Buchsenring
20
Mischrohr, Teil der Mischstrecke 220
21
Bohrungen, Oeffnungen
30
Brennkammer, Brennraum
40
Strömung, Rohrströmung im Mischrohr, Hauptströmung
50
Rückströmzone, Rückströmblase
60
Brennerachse
70
Austrittsebene des Mischrohres
100
Drallerzeuger
101, 102
Kegelförmige Teilkörper
101a
Ringförmiger Anfangsteil
101b, 102b
Längssymmetrieachsen
103
Brennstoffdüse
104
Brennstoffeindüsung
105
Brennstoffspray (Brennstoffeindüsungsprofil)
108, 109
Brennstoffleitungen
112
Flüssiger Brennstoff
113
Gasförmiger Brennstoff
114
Kegelhohlraum
115
Verbrennungsluft (Verbrennungsluftstrom)
116
Brennstoff-Eindüsung aus den Leitungen 108, 109
117
Brennstoffdüsen
119, 120
Tangentiale Lufteintrittsschlitze
121a, 121b
Leitbleche
123
Drehpunkt der Leitbleche
130, 131, 132, 133
Teilkörper
131a, 131a, 132a, 133a
Längssymmetrieachsen
140, 141, 142, 143
Schaufelprofilförmige Teilkörper
140a, 141a, 142a, 143a
Längssymmetrieachsen
150
Brennstoffkonzentration
160
Luftmenge, Mischluft
161
Bohrungen, Oeffnungen
170
Brennstoff-Injektoren
180
Ringförmige Luftkammer
190
Ring
200
Uebergangsstück, Teil der Mischstrecke 220
201
Uebergangskanäle
220
Mischstrecke
d
Innendurchmesser des Mischrohres
R1
Erster Radius, konvex gegenüber der Brennerachse
R2
Zweiter Radius, konkav gegenüber der Brennerachse
β1
Erster Winkel, zu Radius R1 gehörend
β2
Zweiter Radius, zu Radius R2 gehörend

Claims (15)

  1. Brenner zum Betrieb eines Wärmeerzeugers, wobei der Brenner im wesentlichen aus einem Drallerzeuger für einen Verbrennungsluftstrom, aus Mitteln zur Eindüsung mindestens eines Brennstoffes in den Verbrennungsluftstrom besteht, wobei stromab des Drallerzeugers eine Mischstrecke angeordnet ist, welche innerhalb eines ersten Streckenteils in Strömungsrichtung eine Anzahl Uebergangskanäle zur Ueberführung einer im Drallerzeuger gebildeten Strömung in ein stromab dieser Uebergangskanäle nachgeschaltetes Mischrohr aufweist, dadurch gekennzeichnet, dass am Ende des Mischrohres (20) in seinem Auslaufbereich zu einem nachgeschalteten Brennraum (30) einen ersten gegenüber der Brennerachse (60) konvex verlaufenden Radius (R1) aufweist, dass dieser Radius (R1) in einen zweiten bis zur Austrittsebene (70) des Mischrohres (20) reichenden und zur Brennerachse (60) konkav verlaufenden Radius (R2) übergeht, und dass der abgedeckte Sektor (β1 + β2) der beiden Radien (R1, R2) ≤ 90° beträgt.
  2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Radien (R1, R2) jewels > 10% des Innendurchmessers (d) des Mischrohres (20) sind.
  3. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Austrittsebene (70) ab Endkante des zweiten Radius (R2) in radialer Richtung mit einem Absatz (S) vesehen ist.
  4. Brenner nach Anspruch 3, dadurch gekennzeichnet, dass der Absatz (S) eine Tiefe > 3 mm aufweist.
  5. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper zueinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Innenraum (114) mindestens eine Brennstoffdüse (103) vorhanden ist.
  6. Brenner nach Anspruch 5, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffdüsen (117) angeordnet sind.
  7. Brenner nach Anspruch 5, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.
  8. Brenner nach Anspruch 5, dadurch gekennzeichnet, dass die Teilkörper in Strömungsrichtung einen festen Kegelwinkel, oder eine zunehmende Kegelneigung, oder eine abnehmende Kegelneigung aufweisen.
  9. Brenner nach Anspruch 5, dadurch gekennzeichnet, dass die Teilkörper spiralförmig ineinandergeschachtelt sind.
  10. Brenner nach den Anspruchen 1 und 5, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der vom Drallerzeuger (100) gebildeten Teilströme entspricht.
  11. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass das Mischrohres (20) in Strömungs- und Umfangsrichtung mit Bohrungen (21) zur Eindüsung eines Luftstromes ins Innere versehen ist.
  12. Brenner nach Anspruch 11, dadurch gekennzeichnet, dass die Bohrungen (21) unter einem spitzen Winkel gegenüber der Achse des Mischrohres (20) verlaufen.
  13. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Durchflussquerschnitt des Mischrohres (20) stromab der Uebergangskanäle (201) kleiner, gleich gross oder grösser als der Querschnitt der im Drallerzeuger (100) gebildeten Strömung (40) ist.
  14. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass zwischen Mischstrecke (220) und Brennraum (30) ein Querschnittssprung vorhanden ist, der den anfänglichen Strömungsquerschnitt der Brennkammer induziert, und dass im Bereich dieses Querschnittssprunges eine Rückströmzone (50) wirkbar ist.
  15. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass stromauf der ersten Radius (R1) ein Diffusor und/oder eine Venturistrecke vorhanden ist.
EP97810907A 1997-11-25 1997-11-25 Brenner zum Betrieb eines Wärmeerzeugers Expired - Lifetime EP0919768B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT97810907T ATE232282T1 (de) 1997-11-25 1997-11-25 Brenner zum betrieb eines wärmeerzeugers
EP97810907A EP0919768B1 (de) 1997-11-25 1997-11-25 Brenner zum Betrieb eines Wärmeerzeugers
DE59709281T DE59709281D1 (de) 1997-11-25 1997-11-25 Brenner zum Betrieb eines Wärmeerzeugers
US09/196,115 US5954490A (en) 1997-11-25 1998-11-20 Burner for operating a heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810907A EP0919768B1 (de) 1997-11-25 1997-11-25 Brenner zum Betrieb eines Wärmeerzeugers

Publications (2)

Publication Number Publication Date
EP0919768A1 true EP0919768A1 (de) 1999-06-02
EP0919768B1 EP0919768B1 (de) 2003-02-05

Family

ID=8230493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810907A Expired - Lifetime EP0919768B1 (de) 1997-11-25 1997-11-25 Brenner zum Betrieb eines Wärmeerzeugers

Country Status (4)

Country Link
US (1) US5954490A (de)
EP (1) EP0919768B1 (de)
AT (1) ATE232282T1 (de)
DE (1) DE59709281D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026122A1 (de) * 2000-05-26 2001-11-29 Abb Alstom Power Nv Brenner für einen Wärmeerzeuger
DE10056243A1 (de) * 2000-11-14 2002-05-23 Alstom Switzerland Ltd Brennkammer und Verfahren zum Betrieb dieser Brennkammer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859829A1 (de) * 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Brenner zum Betrieb eines Wärmeerzeugers
EP1070914B1 (de) * 1999-07-22 2003-12-03 ALSTOM (Switzerland) Ltd Vormischbrenner
DE10064259B4 (de) * 2000-12-22 2012-02-02 Alstom Technology Ltd. Brenner mit hoher Flammenstabilität
EP1262714A1 (de) * 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Brenner mit Abgasrückführung
US6889523B2 (en) * 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
CN101069039B (zh) * 2004-11-30 2011-10-19 阿尔斯托姆科技有限公司 用于在预混合燃烧器中燃烧氢气的方法和设备
EP1843098A1 (de) * 2006-04-07 2007-10-10 Siemens Aktiengesellschaft Gasturbinenverbrennungskammer
CH701905A1 (de) * 2009-09-17 2011-03-31 Alstom Technology Ltd Verfahren zum Verbrennen wasserstoffreicher, gasförmiger Brennstoffe in einem Brenner sowie Brenner zur Durchführung des Verfahrens.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809B1 (de) 1987-12-21 1991-05-15 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
EP0430376A2 (de) * 1989-12-01 1991-06-05 International Flame Research Foundation Verbrennungsverfahren für Brennstoff mit gestufter Brennstoffzufuhr und Brenner dafür
EP0644374A2 (de) * 1993-09-15 1995-03-22 The Boc Group, Inc. Sauerstoff-Brennstoff Brennvorrichtung und Verfahren zu ihrer Verwendung
EP0780629A2 (de) 1995-12-21 1997-06-25 ABB Research Ltd. Brenner für einen Wärmeerzeuger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762428A (en) * 1953-02-05 1956-09-11 Selas Corp Of America Gas-fueled radiant burner
US3083759A (en) * 1957-08-13 1963-04-02 Selas Corp Of America Radiant cup gas burner
US4416620A (en) * 1981-06-08 1983-11-22 Selas Corporation Of America Larger capacity Vortex burner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809B1 (de) 1987-12-21 1991-05-15 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
EP0430376A2 (de) * 1989-12-01 1991-06-05 International Flame Research Foundation Verbrennungsverfahren für Brennstoff mit gestufter Brennstoffzufuhr und Brenner dafür
EP0644374A2 (de) * 1993-09-15 1995-03-22 The Boc Group, Inc. Sauerstoff-Brennstoff Brennvorrichtung und Verfahren zu ihrer Verwendung
EP0780629A2 (de) 1995-12-21 1997-06-25 ABB Research Ltd. Brenner für einen Wärmeerzeuger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026122A1 (de) * 2000-05-26 2001-11-29 Abb Alstom Power Nv Brenner für einen Wärmeerzeuger
DE10056243A1 (de) * 2000-11-14 2002-05-23 Alstom Switzerland Ltd Brennkammer und Verfahren zum Betrieb dieser Brennkammer
US6688111B2 (en) 2000-11-14 2004-02-10 Alstom Technology Ltd Method for operating a combustion chamber

Also Published As

Publication number Publication date
DE59709281D1 (de) 2003-03-13
ATE232282T1 (de) 2003-02-15
US5954490A (en) 1999-09-21
EP0919768B1 (de) 2003-02-05

Similar Documents

Publication Publication Date Title
EP0780629B1 (de) Brenner für einen Wärmeerzeuger
EP0704657B1 (de) Brenner
EP0918191B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0918190A1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0780630B1 (de) Brenner für einen Wärmeerzeuger
EP0899508B1 (de) Brenner für einen Wärmeerzeuger
EP0833105B1 (de) Vormischbrenner
DE19757189B4 (de) Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers
EP0797051B1 (de) Brenner für einen Wärmeerzeuger
EP0777081B1 (de) Vormischbrenner
EP0321809A1 (de) Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
EP0994300B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0775869B1 (de) Vormischbrenner
EP0931980B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0987493B1 (de) Brenner für einen Wärmeerzeuger
EP0909921B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0916894B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0919768B1 (de) Brenner zum Betrieb eines Wärmeerzeugers
EP0903540B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0913630B1 (de) Brenner für den Betrieb eines Wärmeerzeugers
EP0833104B1 (de) Brenner zum Betrieb einer Brennkammer
DE19537636B4 (de) Kraftwerksanlage
DE19914666B4 (de) Brenner für einen Wärmeerzeuger
EP0899506A2 (de) Brennervorrichtung
EP0780628B1 (de) Vormischbrenner für einen Wärmeerzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991104

AKX Designation fees paid

Free format text: AT CH DE FR GB LI SE

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020508

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59709281

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 59709281

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59709281

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R409

Ref document number: 59709281

Country of ref document: DE

Ref country code: DE

Ref legal event code: R074

Ref document number: 59709281

Country of ref document: DE

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: DE

Effective date: 20111109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161114

Year of fee payment: 20

Ref country code: FR

Payment date: 20161123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170120

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709281

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20171124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171124