EP0919704B1 - Method for manufacturing an air gap insulated exhaust pipe junction - Google Patents

Method for manufacturing an air gap insulated exhaust pipe junction Download PDF

Info

Publication number
EP0919704B1
EP0919704B1 EP98120557A EP98120557A EP0919704B1 EP 0919704 B1 EP0919704 B1 EP 0919704B1 EP 98120557 A EP98120557 A EP 98120557A EP 98120557 A EP98120557 A EP 98120557A EP 0919704 B1 EP0919704 B1 EP 0919704B1
Authority
EP
European Patent Office
Prior art keywords
pipe
double
branch
high pressure
branch connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98120557A
Other languages
German (de)
French (fr)
Other versions
EP0919704A1 (en
Inventor
Pierre Bonny
Thomas Hülsberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0919704A1 publication Critical patent/EP0919704A1/en
Application granted granted Critical
Publication of EP0919704B1 publication Critical patent/EP0919704B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1872Construction facilitating manufacture, assembly, or disassembly the assembly using stamp-formed parts or otherwise deformed sheet-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/035Deforming tubular bodies including an additional treatment performed by fluid pressure, e.g. perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/037Forming branched tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/045Closing or sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/051Deforming double-walled bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1883Construction facilitating manufacture, assembly, or disassembly manufactured by hydroforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49398Muffler, manifold or exhaust pipe making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/4994Radially expanding internal tube

Definitions

  • the invention relates to a method for producing a an air gap insulated exhaust pipe provided with a branch pipe according to the preamble of claim 1.
  • a generic method is known from DE 195 11 514 C1. This includes the manufacture of an air-gap insulated exhaust pipe with a branch pipe in connection with a Assembly of several exhaust pipes to form an exhaust manifold, the one consisting of two interconnected half shells existing outer jacket of the branched exhaust pipe common Part of all exhaust pipes of the exhaust manifold is. So the inner pipes of the exhaust pipes are first fitted with a sliding seat put on top of each other and in a complex way with special Spacer rings, which later in the operation after assembly evaporate from the exhaust system. The plug-in will then placed in a lower shell of the outer casing and in more elaborate Positioned way.
  • the transposition the complex positioning of the inner tubes in the lower shell of the outer jacket by means of the spacer rings and the manufacturing-related tolerances in the inner tube formation as well as the associated from assembly to assembly different relative positions of the inner ear in each and outside of the outer shell to the outer shell can be without further on a single branched inner tube with one out Execute two outer shells.
  • the inner tube with the branch pipe is within the stated manufacturing tolerances practically never with the desired defined revolving Air gap inside the outer jacket.
  • the outer jacket is just because of the branched exhaust pipe spatially very expansive, which in the manufacture the half-shells did not branch out by deep drawing can be and thus for a contoured training of a Outer jacket with regard to the design of the inner tube is not is suitable. However, this requires considerable space and increases the weight of the branched exhaust pipe. In addition, this is the formation of a defined uniformly uniform Air gap cannot be reached in the branched exhaust pipe.
  • WO 95/31635 A1 describes the production of an exhaust manifold known, which is bent from a tube end, the curved ends serve as inlets that are at the outlets of the Cylinder head are attached.
  • the straight pipe blank becomes by means of fluidic internal high pressure in a corresponding Tool formed a branch that the outlet of the exhaust manifold represents and is connected to the further exhaust line.
  • tube material ends up in the forming area of the branch additionally pushed axially.
  • US 5,363,544 shows the production of a curved one Exhaust pipe from a double pipe, being in a two-stage Process by means of internal high pressure the outer pipe of the double pipe is expanded to form an air gap.
  • the invention has for its object a generic To further develop methods in a simple manner an air gap-insulated exhaust pipe with a branch connector exactly can be produced reproducibly, which is easy to install is without affecting the dimensional accuracy with regard to Air gap width and the relative position of the inner tube to the outer jacket.
  • the invention is a simple manufacture of the branched Exhaust pipe made of two nested welded or drawn and, if necessary, pre-bent double tubes cut to length from the rod possible.
  • a complex deep drawing of half-shells, that form the outer jacket, as well as the very complicated welding of the two half shells, especially in the transition of the Flare seam to the circular seam in the area of the branch connector, in which Transition occurs due to edge radii a gusset to ensure the durability of the weld can only be welded with filler material.
  • the branched according to the invention is also Exhaust pipe more durable than the conventional solutions because the exhaust pipe only at the connection points to others Components of the exhaust system during the welding process receives which in a simple manner in the form of revolving mechanically highly resilient fillet welds can be formed. The failure-prone flared seams in the well-known exhaust pipe omitted.
  • Fig. 1 are two straight tubes of equal length shown with an approximately circular cross-section, the one tube, the inner tube 1, in the other tube, the outer tube 2, with complete coverage of the inner tube 1 with little Game in the direction of the arrow.
  • the inner tube 1 has at both ends 3.4 over the circumference evenly each distributes a ring of holes 5 with through holes 6.
  • the two tubes 1 and 2 can also be bent and one of the Circular cross-section have a different cross-section, however they must be pluggable.
  • the sealing head protrudes 13 with a conically tapering in the direction of insertion Section 14 so far into the double tube that the Perforated ring 5 of the inner tube 1 is covered.
  • the conical section 14 of the sealing head 13 carries on branch facing Side of the rim 5 a radially expandable sealing element 15, for example an elastic O-ring used for sealing with high force fluid high pressure sealing on the inside 16 of the inner tube 1 is pressed.
  • a radially expandable sealing element 15 for example an elastic O-ring used for sealing with high force fluid high pressure sealing on the inside 16 of the inner tube 1 is pressed.
  • On branch facing away Side of the rim 5 is the circumference of the conical section 14 dimensioned larger than the inner circumference of the inner tube 1, so that the double pipe there when inserting the sealing head 13 to form a radially acting metallic seal is squeezed radially for the double tube.
  • the first hydroforming tool 8 After closing the first hydroforming tool 8 is a pressure fluid over one in the axial punch and the associated Sealing head 13 extending pressure fluid channel 19 in the Interior 20 of the inner tube 1 initiated and under high pressure set.
  • the double tube expands, which double-walled tube material in the pocket 12 of the counter stamp 10 is pushed into it.
  • the first counter-punch 10 by means of a controllable hydraulic cylinder checked out in branch 9, whereby by means of the internal high pressure from the double pipe a double wall Branch connector 21 is blown out, which end is supported by the counter-punch 10 and laterally on the Wall of the branch 9 hugs the shape.
  • the process reliability during the first forming process becomes significant promoted by sufficient supply of pipe material.
  • By Introduction of an axial force on the pipe ends of the double pipe by means of the axial ram over the on the front side 18 of the Double pipe ring collar 17 of the sealing heads 13 can Pipe material of the double pipe to branch 9, i.e. the location of the greatest degree of deformation are pushed.
  • the amount of pushing force to be set can be adjusted as required the blow-out length changes reliably within certain limits be, whereby a high adaptability of the exhaust pipe to the each different available space conditions achieved can be. It is done safely by pushing no noticeable thinning of the wall thickness, which makes good Installation conditions when connecting to another component is guaranteed.
  • the pressure fluid is released and out led out of the branched double pipe, after which the first forming tool 8 is opened and the branched double tube is removed becomes.
  • the engraving 24 is such trained that the double tube at its end portions of the Engraving 24 held in a game fit and between the two Ends all around and consistently of one cylindrical expansion coaxial to the double tube 26 surrounded is.
  • the branch connector 21 is located in a branch 27 of the engraving 24, which corresponds to the expansion space 26 by approximately the same Dimension surrounds the branch connector 21.
  • Branch 27 is a second counter-stamp 28 arranged, in its end face 29 corresponding to the counter punch 10 of the first forming tool 8 trained pocket 34 the bottle neck-like Bulge 31 of the branch connector 21 added with little play is.
  • the now following second forming process according to FIG. 4 is the forming tool 25 closed and the double pipe on again both ends through sealing heads 30 of axial punches forming a metallic seal and crushing the Sealed pipe ends, but in such a way that the ring of holes 5 one Internal high pressure remains freely accessible.
  • Pressurized fluid channels 32 are now in the interior 20 of the inner tube 1 a pressure fluid is introduced and placed under high pressure.
  • the outer tube 2 Due to the free perforated ring 5, the outer tube 2 is direct pressurized, causing it to expand into the expansion space 26 is expanded into and engages in the engraving 24 of the forming tool 25 and the wall of the branch 27 in line with the contour invests.
  • the counter-punch 28 is relentlessly supported on the outside and thus remains unchanged during the expansion its support position without evading radially outwards, whereby the not bulged area of the end face 22 of the branch connector 21 on the facing end face 29 of the counter-stamp 28 creates.
  • the second deformation of the exhaust pipe results in the lifting the outer tube 2 from the inner tube 1 this one evenly between the pinched ends all around surrounding gap, the So-called air insulation gap 33, which is in its Width is dimensioned completely constant, being in its course the contour of the inner tube 1 follows exactly.
  • the inner tube 1 remains between its interior due to the pressure equalization 20 and the gap 33 undeformed during the second forming.
  • the pressure fluid is released from the almost finished air gap insulated exhaust pipe led out, after which the second forming tool 25 is opened and the exhaust pipe is removed.
  • the cap region 23 of the branch connector 21 to form a through opening 35, the interior 20 of the inner tube 1 with the external environment of the air-gap insulated exhaust pipe connects, for example cut off by sawing or laser cutting.
  • the bottle neck-like design of the end face 22 then remains a short cylindrical portion 36 in which a clamping of the tube walls is still present, so that too after trimming, no change in the relative position of the inner tube 1 to the outer tube 2 can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Exhaust Silencers (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines mit einem Abzweigstutzen versehenen luftspaltisolierten Abgasrohres gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method for producing a an air gap insulated exhaust pipe provided with a branch pipe according to the preamble of claim 1.

Ein gattungsgemäßes Verfahren ist aus der DE 195 11 514 C1 bekannt. Darin ist die Herstellung eines luftspaltisolierten Abgasrohres mit einem Abzweigstutzen im Zusammenhang mit einem Zusammenbau von mehreren Abgasrohren zu einem Abgaskrümmer beschrieben, wobei der aus zwei miteinander verbundenen Halbschalen bestehende Außenmantel des verzweigten Abgasrohres gemeinsamer Bestandteil aller Abgasrohre des Abgaskrümmers ist. So werden die Innenrohre der Abgasrohre zuerst mit Schiebesitz aufeinandergesteckt und in aufwendiger Weise mit speziellen Distanzringen versehen, die später nach dem Zusammenbau im Betrieb der Abgasanlage verdampfen. Der Steckverbund wird danach in eine Unterschale des Außenmantels eingelegt und in aufwendiger Weise positioniert. Da einerseits die mit Fertigungstoleranzen behafteten Einzelrohre gegeneinander verschieblich sind und aufgrund der Montagearbeit von Steckverbund zu Steckverbund unterschiedliche Stecklängen aufweisen und andererseits die Distanzringe zum einen selbst Fertigungstoleranzen unterworfen sind und zum anderen aufgrund ihrer Gestaltung relativ zur Ausbildung der Unterschale selten umlaufend an dieser anliegen, ist die Fertigung des gesamten Abgaskrümmers allein schon unter diesen Aspekten Toleranzen unterworfen. Eine exakte Reproduzierbarkeit gibt es dabei nicht. Hierbei ist beim Zusammenbau darauf zu achten, daß eine bestimmte minimale Stecklänge eingehalten wird, damit die Einzelinnenrohre nicht auseinanderrutschen. Diese Einhaltung erfordert Augenmaß und damit erheblichen Aufwand. Bei dem Teiletransfer zur Schweißstation können ebenfalls Erschütterungen und zentrifugale Kräfte auftreten, die zu einer nochmaligen Verschiebung der Einzelinnenrohre zueinander und zur Unterschale des Außenmantels, wobei dies gar zur Auflösung des Steckverbundes führen kann. Die Transponierung der aufwendigen Positionierung der Innenrohre in der Unterschale des Außenmantels mittels der Distanzringe und die fertigungstechnisch bedingten Toleranzen in der Innenrohrausbildung sowie die damit verbundene von Zusammenbau zu Zusammenbau jeweils unterschiedliche relative Lage des Innerohres im und außerhalb des Außenmantels zum Außenmantel läßt sich ohne weiteres auf ein einzelnes verzweigtes Innenrohr mit einem aus zwei Halbschalen bestehenden Außenmantel ausführen. Das Innenrohr mit dem Abzweigstutzen liegt bei den genannten Fertigungstoleranzen praktisch nie mit dem gewünschten definierten umlaufenden Luftspalt innerhalb des Außenmantels. Aufgrund des Rückspringverzuges der beiden Blechhalbschalen nach dem Tiefziehen liegen die beiden Halbschalen von alleine nicht durchgehend satt und damit spaltfrei aneinander an. In der Schweißstation wird daher die Oberschale des Außenmantels auf die Unterschale gesetzt und an dieser angepreßt. Auch hierbei kommt es zu Erschütterungen des Steckverbundes bzw. der Verschiebung der Relativlage des verzeigten Innenrohres im Außenmantel. Schließlich werden die Schalen des Außenmantels miteinander laserverschweißt. Nach Aufhebung der Anpressung wirken dann aufgrund der Nichtgleichförmigkeit der Anlageflächen der Halbschalen auf die Schweißnaht erhebliche Zugkräfte, was die Dauerbelastbarkeit des Zusammenbaus, insbesondere des Außenmantels herabsetzt und im Betrieb des Abgasstranges gar zu einem Versagen des Bauteils führen kann. Auch ist die Verschweißung der Halbschalen unter Bildung einer Bördelnaht relativ aufwendig, insbesondere, da beim Übergang zum Ausschnitt des Außenmantels für den Abzweigstutzen des Innenrohres aufgrund von Kantenradien ein Dreieckszwickel entsteht, der zur Prozeßsicherheit zugeschweißt werden muß, was in der Praxis in sinnvoller Weise nur unter Zuhilfenahme eines Zusatzwerkstoffes geht. Auch ist die Bördelnaht zudem durch ihre Gestaltung begrenzt mechanisch belastbar. Für die Festlegung des Innenrohres am Außenmantel ist zusätzlich eine Verschweißung unter Bildung einer Rundnaht, d.h. einer umlaufenden Kehlnaht im Endbereich des Abzweigstutzens erforderlich, wobei das Ende des Innenrohres des Stutzens gegenüber der Öffnung des Außenmantels etwas zurückversetzt liegt. Der Außenmantel ist im übrigen gerade wegen des verzweigten Abgasrohres räumlich sehr ausladend ausgebildet, die bei der Herstellung der Halbschalen durch Tiefziehen keine Verzweigung erzielt werden kann und somit für eine konturtreue Ausbildung eines Außenmantels bezüglich der Gestaltung des Innenrohres nicht tauglich ist. Dies erfordert jedoch erheblichen Bauraum und erhöht das Gewicht des verzweigten Abgasrohres. Zudem ist dadurch die Ausbildung eines definierten einheitlich gleichförmigen Luftspaltes beim verzweigten Abgasrohr nicht erreichbar.A generic method is known from DE 195 11 514 C1. This includes the manufacture of an air-gap insulated exhaust pipe with a branch pipe in connection with a Assembly of several exhaust pipes to form an exhaust manifold, the one consisting of two interconnected half shells existing outer jacket of the branched exhaust pipe common Part of all exhaust pipes of the exhaust manifold is. So the inner pipes of the exhaust pipes are first fitted with a sliding seat put on top of each other and in a complex way with special Spacer rings, which later in the operation after assembly evaporate from the exhaust system. The plug-in will then placed in a lower shell of the outer casing and in more elaborate Positioned way. Because, on the one hand, those with manufacturing tolerances afflicted individual tubes are displaceable against each other and due to the assembly work from connector to connector have different insertion lengths and on the other hand the Spacers, on the one hand, are subject to manufacturing tolerances and because of their design, they are relative to training the lower shell rarely fits all around it, the production of the entire exhaust manifold is already under subject to tolerances. Exact reproducibility there is no such thing. This is during assembly to ensure that a certain minimum insertion length is observed so that the individual inner tubes do not slide apart. This compliance requires a sense of proportion and therefore considerable Expenditure. When transferring parts to the welding station vibrations and centrifugal forces also occur, the one to another shift of the individual inner tubes to each other and to the lower shell of the outer jacket, this even can lead to the disassembly of the connector. The transposition the complex positioning of the inner tubes in the lower shell of the outer jacket by means of the spacer rings and the manufacturing-related tolerances in the inner tube formation as well as the associated from assembly to assembly different relative positions of the inner ear in each and outside of the outer shell to the outer shell can be without further on a single branched inner tube with one out Execute two outer shells. The inner tube with the branch pipe is within the stated manufacturing tolerances practically never with the desired defined revolving Air gap inside the outer jacket. Because of the springback delay of the two sheet metal half-shells after deep drawing the two half-shells are not continuous on their own full and therefore gap-free. In the welding station is therefore the upper shell of the outer shell on the lower shell set and pressed against this. This also causes vibrations the plug connection or the displacement of the relative position of the shown inner tube in the outer jacket. Finally the shells of the outer jacket are laser welded together. After releasing the contact then act the non-uniformity of the contact surfaces of the half-shells the weld seam has considerable tensile forces, which makes it durable assembly, especially the outer jacket and even failure of the component during operation of the exhaust line can lead. Also the welding of the half shells to form a flared seam relatively expensive, in particular, because at the transition to the cutout of the outer jacket for the branch connector of the inner tube due to edge radii Triangular gusset is created, which is welded closed for process reliability must be what in practice only makes sense with the help of a filler material. The flared seam is also also limited mechanical strength due to their design. For the fixing of the inner tube on the outer jacket is additional a weld to form a circular seam, i.e. one all-round fillet weld required in the end area of the branch connector, the end of the inner tube of the nozzle opposite the opening of the outer casing is set back somewhat. The outer jacket is just because of the branched exhaust pipe spatially very expansive, which in the manufacture the half-shells did not branch out by deep drawing can be and thus for a contoured training of a Outer jacket with regard to the design of the inner tube is not is suitable. However, this requires considerable space and increases the weight of the branched exhaust pipe. In addition, this is the formation of a defined uniformly uniform Air gap cannot be reached in the branched exhaust pipe.

Aus der WO 95/31635 A1 ist die Herstellung eines Abgaskrümmers bekannt, der aus einem Rohr endseitig gebogen ist, wobei die gebogenen Enden als Einlässe dienen, die an den Auslässen des Zylinderkopfes befestigt sind. Aus dem geraden Rohrrohling wird mittels fluidischem Innenhochdruck in einem entsprechenden Werkzeug ein Abzweig ausgeformt, der den Auslaß des Abgaskrümmers darstellt und mit dem weiteren Abgasstrang verbunden ist. Bei der Ausformung wird an den Enden Rohrmaterial in den Umformbereich des Abzweiges zusätzlich axial nachgeschoben.WO 95/31635 A1 describes the production of an exhaust manifold known, which is bent from a tube end, the curved ends serve as inlets that are at the outlets of the Cylinder head are attached. The straight pipe blank becomes by means of fluidic internal high pressure in a corresponding Tool formed a branch that the outlet of the exhaust manifold represents and is connected to the further exhaust line. During the molding process, tube material ends up in the forming area of the branch additionally pushed axially.

Schließlich zeigt die US 5,363,544 die Herstellung eines gebogenen Abgasrohres aus einem Doppelrohr, wobei in einem zweistufigen Verfahren mittels Innenhochdruck das Außenrohr des Doppelrohres unter Ausbildung eines Luftspaltes aufgeweitet wird.Finally, US 5,363,544 shows the production of a curved one Exhaust pipe from a double pipe, being in a two-stage Process by means of internal high pressure the outer pipe of the double pipe is expanded to form an air gap.

Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Verfahren dahingehend weiterzubilden, daß in einfacher Weise ein luftspaltisoliertes Abgasrohr mit einem Abzweigstutzen exakt reproduzierbar hergestellt werden kann, das leicht verbaubar ist ohne Beeinträchtigung der Maßhaltigkeit hinsichtlich Luftspaltbreite und der Relativlage des Innenrohres zum Außenmantel.The invention has for its object a generic To further develop methods in a simple manner an air gap-insulated exhaust pipe with a branch connector exactly can be produced reproducibly, which is easy to install is without affecting the dimensional accuracy with regard to Air gap width and the relative position of the inner tube to the outer jacket.

Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst.The task is according to the invention by the features of the claim 1 solved.

Dank der Erfindung ist eine einfache Herstellung des verzweigten Abgasrohres aus zwei ineinandergesteckten geschweißten oder gezogenen und von der Stange abgelängten ggf. vorgebogenen Doppelrohren möglich. Ein aufwendiges Tiefziehen von Halbschalen, die den Außenmantel bilden, sowie das sehr komplizierte Verschweißen der beiden Halbschalen, insbesondere im Übergang der Bördelnaht zur Rundnaht im Bereich des Abzweigstutzens, in welchem Übergang aufgrund von Kantenradien ein Zwickel entsteht, der zur Gewährleistung einer Dauerbelastbarkeit der Schweißnaht nur mit Zusatzwerkstoff zugeschweißt werden kann, entfällt. Des weiteren ist kein montageaufwendiger fehler- und toleranzbehafteter Zusammenbau des Abgasrohres notwendig, vielmehr ist die Relativlage der beiden ineinandergesteckten Rohre zueinander schon nach der ersten Umformung aufgrund der endseitigen Klemmung der Rohre aneinander festgelegt. Auf Distanzringe kann verzichtet werden, da der Luftisolierspalt sich nicht aufgrund einer geeigneten Montage des Innenrohres im Außenmantel ergibt, sondern aufgrund der zweiten Umformung des Doppelrohres von selbst zustandekommt. Infolge der festgelegten nicht-verschieblichen Relativlage der beiden Rohre nach der ersten Umformung zueinander und der Abhängigkeiten der Luftisolierspaltbreite lediglich von der Gravurgestaltung und von der Vollständigkeit der Umformung, die beide ohne weiteres beherrschbar sind, ist eine konstante Spaltbreite in einfacher Weise gewährleistet. Aufgrund dessen, daß der Abzweigstutzen aus einem doppelwandigen aus Innenrohr und Außenrohr - dem späteren Außenmantel - bestehenden Rohr während des ersten Innenhochdruckumformprozesses ausgeformt wird, stellt sich das Außenrohr verfahrensbedingt konturgerecht auf das Innenrohr ein. Dadurch wird beim verzweigten Abgasrohr und somit beim gesamten Abgasstrang gegenüber von tiefgezogenen Halbschalen Bauraum, Material und Gewicht eingespart. Aufgrund der Konturentsprechung des Außenrohres kann die Länge des Abzweigstutzens relativ kurz bemessen werden, so daß beim Anschluß des verzweigten Abgasrohres an weitere Abgasstrangbauteile im Bereich des Abzweigstutzens eine Kompaktierung, also eine Bauraumgewinnung dieses Zusammenbaus erreicht werden kann. Auch ist das erfindungsgemäße verzweigte Abgasrohr dauerbelastbarer als die konventionellen Lösungen, da das Abgasrohr lediglich an den Verbindungsstellen zu anderen Bauteilen des Abgasstranges beim Verbindungsvorgang Schweißnähte erhält, welche in einfacher Weise in Form von umlaufenden mechanisch hoch belastbaren Kehlnähten ausgebildet werden können. Die versagensanfälligen Bördelnähte beim bekannten Abgasrohr entfallen. Schließlich wird aufgrund der mit dem Verfahren der Innenhochdruckumformung verbundenen Toleranzfreiheit eine exakte Reproduzierbarkeit des verzweigten Abgasrohres ermöglicht und damit eine Automatisierung der Abgasrohrherstellung ohne ausbessernde Nacharbeiten erleichtert. Aufgrund der Klemmung der Einzelrohrwandungen an beiden Abgasrohrenden kann das Abgasrohr dort leicht an andere Bauteile angekoppelt werden, ohne daß die Relativlage des Innenrohres zum Außenrohr und die Spaltbreite sich ändert. Am Ende des Abzweigstutzens kann das Innenrohr - falls gewünscht - in einfacher Weise auf ein anderes Innenrohr eines weiteren luftspaltisolierten Abgasrohres gesteckt werden und dort im Schiebesitz angeordnet bleiben, während die Außenrohre der beiden Abgasrohre unter Bildung einfacher umlaufender Kehlnähte miteinander verschweißt werden. Das erfindungsgemäße Abgasrohr ist somit aufgrund seiner Bauraumvorteile und seiner problemlosen und sicheren bzw. schnell zu ermöglichenden Anbindung an weitere Bauteile des Abgasstranges leicht verbaubar. Thanks to the invention is a simple manufacture of the branched Exhaust pipe made of two nested welded or drawn and, if necessary, pre-bent double tubes cut to length from the rod possible. A complex deep drawing of half-shells, that form the outer jacket, as well as the very complicated welding of the two half shells, especially in the transition of the Flare seam to the circular seam in the area of the branch connector, in which Transition occurs due to edge radii a gusset to ensure the durability of the weld can only be welded with filler material. Of there is also no faulty and tolerance-prone assembly Assembly of the exhaust pipe necessary, rather that Relative position of the two nested pipes to each other after the first deformation due to the clamping at the end of the pipes fixed to each other. Can on spacer rings to be dispensed with, since the air insulation gap does not a suitable installation of the inner tube in the outer jacket, but due to the second forming of the double tube from comes about itself. As a result of the fixed non-movable Relative position of the two tubes after the first forming to each other and the dependencies of the air insulation gap width only from the engraving design and completeness the forming, both of which are easily controllable ensures a constant gap width in a simple manner. Because of the fact that the branch pipe from a double-walled from inner tube and outer tube - the later outer jacket - existing pipe during the first hydroforming process is formed, the outer tube arises due to the process conform to the inner tube. As a result, the branched exhaust pipe and thus across the entire exhaust line of deep-drawn half-shells construction space, material and weight saved. Due to the contour of the outer tube can measure the length of the branch connector relatively short be so that when connecting the branched exhaust pipe further exhaust line components in the area of the branch connector one Compacting, i.e. gaining space for this assembly can be achieved. The branched according to the invention is also Exhaust pipe more durable than the conventional solutions because the exhaust pipe only at the connection points to others Components of the exhaust system during the welding process receives which in a simple manner in the form of revolving mechanically highly resilient fillet welds can be formed. The failure-prone flared seams in the well-known exhaust pipe omitted. Finally, due to the process the freedom from tolerance associated with hydroforming enables exact reproducibility of the branched exhaust pipe and thus automation of exhaust pipe production relieved without touching up. Because of the clamp the single pipe walls on both exhaust pipe ends can do that Exhaust pipe can be easily coupled to other components there, without the relative position of the inner tube to the outer tube and the The gap width changes. At the end of the branch connector, this can be done Inner tube - if desired - in a simple way to another Inner pipe of another air-gap insulated exhaust pipe be plugged in and remain there in the sliding seat, while the outer pipes of the two exhaust pipes are easier to form circumferential fillet welds are welded together. The exhaust pipe according to the invention is therefore due to its space advantages and its hassle-free and safe or fast to enable connection to other components of the exhaust system easy to install.

Zweckmäßige Ausgestaltungen der Erfindung können den Unteransprüchen entnommen werden; im übrigen ist die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles nachfolgend näher erläutert; dabei zeigt:

  • Fig. 1 in einer seitlichen Ansicht einen ersten Schritt des erfindungsgemäßen Verfahrens beim Ineinanderstecken zweier Rohre, wobei das innere Rohr gelocht ist,
  • Fig. 2 in einem seitlichen Längsschnitt den Steckverbund aus Fig .1 in einem ersten Innenhochdruck-Umformwerkzeug eingelegt, wobei das Doppelrohr und die Lochung des Innenrohres abgedichtet ist, vor der Umformung im entspannten Druckzustand des in das Innenrohr eingeleiteten Druckfluides,
  • Fig. 3 in einem seitlichen Längsschnitt das Doppelrohr im Umformwerkzeug aus Fig. 2, an dem unter Innenhochdruck ein Abzweigstutzen mit flaschenhalsförmigem Ende ausgeformt ist,
  • Fig. 4 in einem seitlichen Längsschnitt das umgeformte Doppelrohr aus Fig. 3 in einem zweiten Innenhochdruck-Umformwerkzeug nach einer zweiten Umformung unter Innenhochdruck, wobei die Lochung des Innenrohres unabgedichtet bleibt und zwischen dem Innen- und Außenrohr des Doppelrohres ein Luftspalt ausgebildet ist, der sich bis zum Flaschenhals des Abzweigstutzens erstreckt,
  • Fig. 5 in einer perspektivischen Ansicht einen Endabschnitt des Doppelrohres aus Fig. 4 mit Beschnittstreifen des Außenrohres nach Durchtrennung des Innenrohres,
  • Fig. 6 in einem seitlichen Längsschnitt das gemäß den Verfahrensschritten aus den Fig. 1-5 fertighergestellte luftspaltisolierte Abgasrohr mit Abzweigstutzen nach einem Kappenbeschnitt des Abzweigstutzens.
  • Expedient embodiments of the invention can be found in the subclaims; otherwise the invention is explained in more detail below with reference to an embodiment shown in the drawings; shows:
  • 1 is a side view of a first step of the method according to the invention when two tubes are inserted into one another, the inner tube being perforated,
  • 2 in a lateral longitudinal section, the plug-in assembly from FIG. 1 is inserted in a first internal high-pressure forming tool, the double tube and the perforation of the inner tube being sealed, before the deformation in the relaxed pressure state of the pressure fluid introduced into the inner tube,
  • 3 in a lateral longitudinal section the double tube in the forming tool from FIG. 2, on which a branch connector with a bottle neck-shaped end is formed under high internal pressure,
  • Fig. 4 in a lateral longitudinal section, the formed double tube from Fig. 3 in a second hydroforming tool after a second forming under internal high pressure, the perforation of the inner tube remains unsealed and an air gap is formed between the inner and outer tube of the double tube extends to the bottle neck of the branch connector,
  • 5 shows a perspective view of an end section of the double tube from FIG. 4 with trimming strips of the outer tube after severing the inner tube,
  • Fig. 6 in a lateral longitudinal section, the air gap-insulated exhaust pipe with the branch connector, which is produced according to the method steps from Figs. 1-5, after a cap trimming of the branch connector.
  • In Fig. 1 sind zwei geradlinig verlaufende gleichlange Rohre mit annähernd kreisrundem Querschnitt dargestellt, wobei das eine Rohr, das Innenrohr 1, in das andere Rohr, das Außenrohr 2, unter völliger Abdeckung des Innenrohres 1 mit geringem Spiel in Pfeilrichtung hineingesteckt wird. Das Innenrohr 1 weist an seinen beiden Enden 3,4 über den Umfang gleichmäßig verteilt jeweils einen Lochkranz 5 mit Durchgangslöchern 6 auf. Die beiden Rohre 1 und 2 können auch gebogen sein und einen vom Kreisquerschnitt abweichenden Querschnitt aufweisen, jedoch müssen sie ineinandersteckbar sein.In Fig. 1 are two straight tubes of equal length shown with an approximately circular cross-section, the one tube, the inner tube 1, in the other tube, the outer tube 2, with complete coverage of the inner tube 1 with little Game in the direction of the arrow. The inner tube 1 has at both ends 3.4 over the circumference evenly each distributes a ring of holes 5 with through holes 6. The two tubes 1 and 2 can also be bent and one of the Circular cross-section have a different cross-section, however they must be pluggable.

    Nach der Ausbildung eines Steckverbundes der beiden Rohre 1 und 2 werden diese als Doppelrohr in die Gravur 7 eines ersten Innenhochdruck-Umformwerkzeuges 8 gemäß Fig. 2 eingelegt. Dieses weist einen radialen Abzweig 9 von der Gravur 7 auf, in dem ein Gegenstempel 10 geführt ist. Die Stirnseite 11 des Gegenstempels 10, die mittig eine Tasche 12 aufweist, liegt bündig zur Gravur 7 und vor der ersten Umformung des Doppelrohres an diesem konturtreu an. Zur Umformung wird das Doppelrohr beiderends mittels zweier Dichtungsköpfe 13, die in die Enden des Doppelrohres hineingeschoben werden und jeweils mit einem Axialstempel starr verbunden sind, abgedichtet. Dabei ragt der Dichtungskopf 13 mit einem in Einführrichtung konisch sich verjüngenden Abschnitt 14 soweit in das Doppelrohr hinein, daß der Lochkranz 5 des Innenrohres 1 überdeckt wird. Der konische Abschnitt 14 des Dichtungskopfes 13 trägt auf abzweigzugewandter Seite des Lochkranzes 5 ein radial aufspreizbares Dichtungselement 15, beispielsweise einen elastischen O-Ring, das zur Abdichtung mit hoher Kraft fluidhochdruckdichtend an die Innenseite 16 des Innenrohres 1 gepreßt wird. Auf abzweigabgewandter Seite des Lochkranzes 5 ist der Umfang des konischen Abschnittes 14 größer als der Innenumfang des Innenrohres 1 bemessen, so daß das Doppelrohr dort beim Einschieben des Dichtungskopfes 13 unter Bildung einer radial wirkenden metallischen Dichtung für das Doppelrohr radial gequetscht wird. Gleichzeitig wird dadurch das Innenrohr 1 mit dem Außenrohr 2 ihre Relativlage zueinander festlegend verklemmt, bzw. verpreßt. Der Dichtungskopf 13 weist am abzweigabgewandten Ende des konischen Abschnittes 14 einen Ringbund 17 auf, der in Gebrauchsstellung des Dichtungskopfes 13 an der Stirnseite 18 des Doppelrohres anliegt, wodurch eine axiale Dichtung für das Doppelrohr geschaffen wird.After the formation of a plug-in connection of the two pipes 1 and 2, they become a double tube in the engraving 7 of a first internal high-pressure forming tool 8 inserted according to FIG. 2. This has a radial branch 9 from the engraving 7, in which a Counterstamp 10 is performed. The face 11 of the counter-stamp 10, which has a pocket 12 in the middle, lies flush with Engraving 7 and before the first forming of the double pipe on this true to the contour. The double tube is used for forming at both ends by means of two sealing heads 13 which are in the ends of the double pipe be pushed in and each with an axial punch are rigidly connected, sealed. The sealing head protrudes 13 with a conically tapering in the direction of insertion Section 14 so far into the double tube that the Perforated ring 5 of the inner tube 1 is covered. The conical section 14 of the sealing head 13 carries on branch facing Side of the rim 5 a radially expandable sealing element 15, for example an elastic O-ring used for sealing with high force fluid high pressure sealing on the inside 16 of the inner tube 1 is pressed. On branch facing away Side of the rim 5 is the circumference of the conical section 14 dimensioned larger than the inner circumference of the inner tube 1, so that the double pipe there when inserting the sealing head 13 to form a radially acting metallic seal is squeezed radially for the double tube. At the same time thereby the inner tube 1 with the outer tube 2 their relative position clamped to each other or pressed together. The sealing head 13 points at the end of the conical section facing away from the branch 14 an annular collar 17, in the use position of the sealing head 13 on the end face 18 of the double pipe abuts, creating an axial seal for the double tube becomes.

    Nach dem Schließen des ersten Innenhochdruck-Umformwerkzeuges 8 wird ein Druckfluid über einen im Axialstempel und dem zugehörigen Dichtungskopf 13 verlaufenden Druckfluidkanal 19 in den Innenraum 20 des Innenrohres 1 eingeleitet und unter Hochdruck gesetzt. Gemäß Fig. 3 weitet sich das Doppelrohr auf, wobei das doppelwandige Rohrmaterial in die Tasche 12 des Gegenstempels 10 hineinverdrängt wird. Gleichzeitig oder anschließend weicht der erste Gegenstempel 10 mittels eines steuerbaren Hydraulikzylinders kontrolliert nach außen im Abzweig 9 aus, wobei mittels des Innenhochdruckes aus dem Doppelrohr ein doppelwandiger Abzweigstutzen 21 ausgeblasen wird, welcher stirnseitig vom Gegenstempel 10 abgestützt wird und sich seitlich an die Wandung des Abzweiges 9 formgerecht anschmiegt. Durch den Gegenstempel 10 wird eine prozeßsichere Ausblasung des Abzweigstutzens 21 gewährleistet, wobei zudem aufgrund der dem Innenhochdruck entgegenwirkenden aufstauenden Kraft des Gegenstempels 10 das Rohrmaterial des Doppelrohres an die Abzweigwandung gepreßt wird, was zu einer entsprechend der ersten Gravur 7 formgetreuen Ausformung des Abzweigstutzens 21 mit hoher Außenkonturqualität führt. Dadurch ergibt sich ein definierter reproduzierbarer Anschluß an weitere Bauteile des Abgasstranges.After closing the first hydroforming tool 8 is a pressure fluid over one in the axial punch and the associated Sealing head 13 extending pressure fluid channel 19 in the Interior 20 of the inner tube 1 initiated and under high pressure set. According to Fig. 3, the double tube expands, which double-walled tube material in the pocket 12 of the counter stamp 10 is pushed into it. Simultaneously or subsequently gives way the first counter-punch 10 by means of a controllable hydraulic cylinder checked out in branch 9, whereby by means of the internal high pressure from the double pipe a double wall Branch connector 21 is blown out, which end is supported by the counter-punch 10 and laterally on the Wall of the branch 9 hugs the shape. Through the counter stamp 10 is a reliable blowout of the branch connector 21 guaranteed, due to the high pressure counteracting pent-up force of the counter stamp 10 the pipe material of the double pipe to the branch wall is pressed, resulting in a corresponding to the first engraving 7 true-to-shape shaping of the branch connector 21 with high outer contour quality leads. This results in a defined reproducibility Connection to other components of the exhaust system.

    Aufgrund der im Gegenstempel 10 ausgebildeten mittigen Tasche 12 wird die Stirnseite 22 des doppelwandigen Abzweigstutzens 21 flaschenhalsartig durch den Innenhochdruck ausgebeult. Infolge dieser Ausbeulung 31 der Stirnseite 22 wird eine radiale Klemmung der Wandungen von Innenrohr 1 und Außenrohr 2 auch dort, nämlich am Ende des Abzweigstutzens 21 erreicht, wonach trotz späteren Beschnittes des Kappenbereiches 23 der Stirnseite 22 des Abzweigstutzens 21 durch die Klemmung die Positionierung des Innenrohres 1 zum Außenrohr 2 festgelegt ist, auch wenn die Enden des Doppelrohres schon beschnitten sind. Damit wird die Gleichmäßigkeit der Spaltbreite des später erzeugten Luftisolierspaltes gesichert. Falls eine feste Verbindung des Abzweigstutzens 21 mit einem weiteren Bauteil des Abgasstranges erreicht werden soll, begünstigt die Ausbildung der Stirnseite 22 nach Beschnitt eine einfache Montage des luftspaltisolierten Abgasrohres durch die Bündigkeit der aneinanderliegenden Rohrwandungen.Because of the central pocket formed in the counter stamp 10 12 becomes the end face 22 of the double-walled branch connector 21 bulging like a bottle neck due to the internal high pressure. As a result this bulge 31 of the end face 22 is a radial clamping the walls of inner tube 1 and outer tube 2 also there, namely reached at the end of branch connector 21, after which despite later trimming of the cap area 23 of the end face 22 of the branch connector 21 by the clamping the positioning of the inner tube 1 to the outer tube 2 is fixed, even if the Ends of the double tube are already trimmed. With that the Uniformity of the gap width of the air insulation gap created later secured. If there is a fixed connection of the branch connector 21 reached with another component of the exhaust system should favor the formation of the end face 22nd After trimming, a simple assembly of the air gap insulated Exhaust pipe through the flushness of the adjacent pipe walls.

    Die Prozeßsicherheit beim ersten Umformvorgang wird erheblich gefördert durch ausreichendes Angebot an Rohrmaterial. Durch Einleitung einer axialen Kraft auf die Rohrenden des Doppelrohres mittels der Axialstempel über den an der Stirnseite 18 des Doppelrohres anliegenden Ringbund 17 der Dichtungsköpfe 13 kann Rohrmaterial des Doppelrohres zum Abzweig 9, also dem Ort des größten Umformgrades hin nachgeschoben werden. Mit dem variabel einzustellenden Maß der Nachschiebekraft kann je nach Bedarf die Ausblaslänge prozeßsicher in gewissen Grenzen verändert werden, wodurch eine hohe Anpaßbarkeit des Abgasrohres an die jeweils vorliegenden unterschiedlichen Bauraumverhältnisse erreicht werden kann. Es erfolgt durch das Nachschieben mit Sicherheit keine spürbare Ausdünnung der Wandstärke, wodurch gute Montagebedingungen bei der Verbindung mit einem weiterem Bauteil gewährleistet ist. Wird das Rohrmaterial nicht nachgeschoben, so ist es auf jeden Fall im Interesse der Prozeßsicherheit, insbesondere der Dichtigkeit der Umformvorrichtung unumgänglich, daß die Axialstempel mit den Dichtungsköpfen gemäß der durch die Ausformung des Abzweigstutzens 21 erfolgen Verkürzung des Doppelrohres nachgeführt werden müssen.The process reliability during the first forming process becomes significant promoted by sufficient supply of pipe material. By Introduction of an axial force on the pipe ends of the double pipe by means of the axial ram over the on the front side 18 of the Double pipe ring collar 17 of the sealing heads 13 can Pipe material of the double pipe to branch 9, i.e. the location of the greatest degree of deformation are pushed. With the variable The amount of pushing force to be set can be adjusted as required the blow-out length changes reliably within certain limits be, whereby a high adaptability of the exhaust pipe to the each different available space conditions achieved can be. It is done safely by pushing no noticeable thinning of the wall thickness, which makes good Installation conditions when connecting to another component is guaranteed. If the pipe material is not added, so it is definitely in the interest of process security, in particular the tightness of the forming device is essential, that the axial punch with the sealing heads according the shortening resulting from the shaping of the branch connector 21 of the double pipe must be tracked.

    Nach der Ausformung des doppelwandigen Abzweigstutzens 21 aus dem ursprünglich unverzweigten Doppelrohr durch den ersten Innenhochdruckumformvorgang wird das Druckfluid entspannt und aus dem verzweigten Doppelrohr herausgeleitet, wonach das erste Umformwerkzeug 8 geöffnet wird und das verzweigte Doppelrohr entnommen wird.After the double-walled branch connector 21 has been formed the originally unbranched double pipe through the first hydroforming process the pressure fluid is released and out led out of the branched double pipe, after which the first forming tool 8 is opened and the branched double tube is removed becomes.

    Danach wird dieses in die Gravur 24 eines zweiten Innenhochdruck-Umformwerkzeuges 25 eingelegt. Die Gravur 24 ist derart ausgebildet, daß das Doppelrohr an seinen Endbereichen von der Gravur 24 in einer Spielpassung gehalten und zwischen den beiden Enden umlaufend und durchgängig von einem im wesentlichen zylindrischen zum Doppelrohr koaxialen Aufweitraum 26 umgeben ist. Der Abzweigstutzens 21 liegt in einem Abzweig 27 der Gravur 24, der entsprechend des Aufweitraumes 26 um etwa das gleiche Maß den Abzweigstutzen 21 umgibt. Im Abzweig 27 ist ein zweiter Gegenstempel 28 angeordnet, in dessen in seiner Stirnseite 29 entsprechend dem Gegenstempel 10 des ersten Umformwerkzeuges 8 ausgebildeten Tasche 34 die flaschenhalsartige Ausbeulung 31 des Abzweigstutzens 21 mit geringem Spiel aufgenommen ist.Then it is engraved 24 of a second hydroforming tool 25 inserted. The engraving 24 is such trained that the double tube at its end portions of the Engraving 24 held in a game fit and between the two Ends all around and consistently of one cylindrical expansion coaxial to the double tube 26 surrounded is. The branch connector 21 is located in a branch 27 of the engraving 24, which corresponds to the expansion space 26 by approximately the same Dimension surrounds the branch connector 21. Branch 27 is a second counter-stamp 28 arranged, in its end face 29 corresponding to the counter punch 10 of the first forming tool 8 trained pocket 34 the bottle neck-like Bulge 31 of the branch connector 21 added with little play is.

    Zum nun folgenden zweiten Umformvorgang gemäß der Fig. 4 wird das Umformwerkzeug 25 geschlossen und das Doppelrohr wieder an seinen beiden Enden durch Dichtungsköpfe 30 von Axialstempeln unter Bildung einer metallischen Dichtung und Quetschung der Rohrenden abgedichtet, jedoch derart, daß der Lochkranz 5 einer Innenhochdruckbeaufschlagung frei zugänglich bleibt. Über Druckfluidkanäle 32 wird nun in den Innenraum 20 des Innenrohres 1 ein Druckfluid eingeleitet und unter Hochdruck gesetzt. The now following second forming process according to FIG. 4 is the forming tool 25 closed and the double pipe on again both ends through sealing heads 30 of axial punches forming a metallic seal and crushing the Sealed pipe ends, but in such a way that the ring of holes 5 one Internal high pressure remains freely accessible. about Pressurized fluid channels 32 are now in the interior 20 of the inner tube 1 a pressure fluid is introduced and placed under high pressure.

    Aufgrund des freien Lochkranzes 5 wird das Außenrohr 2 direkt mit Hochdruck beaufschlagt, wodurch es in den Aufweitraum 26 hinein aufgeweitet wird und sich an die Gravur 24 des Umformwerkzeuges 25 und die Wandung des Abzweiges 27 konturgerecht anlegt. Der Gegenstempel 28 wird nach außen unnachgiebig abgestützt und bleibt somit während der Aufweitung unverändert in seiner Abstützposition ohne radial nach außen auszuweichen, wobei sich der nichtausgebeulte Bereich der Stirnseite 22 des Abzweigstutzens 21 an der zugewandten Stirnseite 29 des Gegenstempels 28 anlegt.Due to the free perforated ring 5, the outer tube 2 is direct pressurized, causing it to expand into the expansion space 26 is expanded into and engages in the engraving 24 of the forming tool 25 and the wall of the branch 27 in line with the contour invests. The counter-punch 28 is relentlessly supported on the outside and thus remains unchanged during the expansion its support position without evading radially outwards, whereby the not bulged area of the end face 22 of the branch connector 21 on the facing end face 29 of the counter-stamp 28 creates.

    Durch die zweite Umformung des Abgasrohres wird infolge der Abhebung des Außenrohres 2 vom Innenrohr 1 ein dieses gleichmäßig zwischen den eingeklemmten Enden rundum umgebender Spalt, der sogenannte Luftisolierspalt 33, geschaffen, welcher in seiner Breite völlig konstant bemessen ist, wobei er in seinem Verlauf der Kontur des Innenrohres 1 exakt folgt. Das Innenrohr 1 bleibt aufgrund des Druckausgleiches zwischen seinem Innenraum 20 und dem Spalt 33 während der zweiten Umformung unverformt.The second deformation of the exhaust pipe results in the lifting the outer tube 2 from the inner tube 1 this one evenly between the pinched ends all around surrounding gap, the So-called air insulation gap 33, which is in its Width is dimensioned completely constant, being in its course the contour of the inner tube 1 follows exactly. The inner tube 1 remains between its interior due to the pressure equalization 20 and the gap 33 undeformed during the second forming.

    Denkbar ist auch, das Innenrohr 1 ohne Lochkranz 5 auszubilden und das Druckfluid in die Trennfuge zwischen Innenrohr 1 und Außenrohr 2 über den Spielspalt oder besonders dafür am Innenrohr 1 ausgebildete in die Trennfuge führende Spalten einzubringen. Hierzu ist jedoch ein vorgeschalteter Druckraum notwendig, was Bauraum und eine kompliziertere Abdichtung des Doppelrohres erfordert. Durch den Lochkranz 5 jedoch wird in höchst vorteilhafter Weise eine einfach herzustellende und sofortige relativ großflächige Beaufschlagung des Außenrohres 2 durch den Innenhochdruck erreicht. Weiterhin erfahren die Endbereiche des Doppelrohres keine Verformung bei einer etwaigen Einleitung des Druckfluides in die Trennfuge der beiden Rohre 1 und 2 von außen, so daß die Maßhaltigkeit des Doppelrohres an beiden Enden erhalten bleibt, was sich besonders günstig für eine Verbindung mit weiteren Bauteilen auswirkt. Schließlich wird der Druckausgleich für das Innenrohr 1 durch eine einfache in der Ausbildung des Lochkranzes 5 begründete Fluidführung erreicht.It is also conceivable to design the inner tube 1 without a rim 5 and the pressure fluid in the joint between inner tube 1 and Outer tube 2 over the play gap or especially for this on the inner tube 1 trained columns in the parting line. However, an upstream pressure chamber is necessary for this, what space and a more complicated sealing of the double pipe requires. Through the rim 5, however, in most advantageously an easy to manufacture and immediate relatively large-area exposure to the outer tube 2 achieved by high pressure. Furthermore, the end areas experience of the double pipe no deformation in the event of any Introducing the pressure fluid into the joint of the two pipes 1 and 2 from the outside, so that the dimensional accuracy of the double pipe both ends is preserved, which is particularly beneficial for a connection with other components affects. Finally is the pressure compensation for the inner tube 1 by a simple achieved in the formation of the rim 5 fluid guidance.

    Nach der zweiten Umformung wird das Druckfluid entspannt, aus dem nahezu fertig ausgebildeten luftspaltisolierten Abgasrohr herausgeleitet, wonach das zweite Umformwerkzeug 25 geöffnet und das Abgasrohr entnommen wird. Danach wird in einer Werkzeugeinspannung des umgeformten Abgasrohres der Kappenbereich 23 des Abzweigstutzens 21 unter Bildung einer Durchgangsöffnung 35, die den Innenraum 20 des Innenrohres 1 mit der äußeren Umgebung des luftspaltisolierten Abgasrohres verbindet, beispielsweise durch Sägen oder Laserschneiden abgeschnitten. Aufgrund der flaschenhalsartigen Ausbildung der Stirnseite 22 bleibt danach ein kurzer zylindrischer Abschnitt 36, bei dem eine Klemmung der Rohrwandungen noch vorhanden ist, so daß auch nach dem Beschnitt keine Veränderung der Relativlage des Innenrohres 1 zum Außenrohr 2 erfolgen kann.After the second forming, the pressure fluid is released from the almost finished air gap insulated exhaust pipe led out, after which the second forming tool 25 is opened and the exhaust pipe is removed. After that, in a tool clamping of the deformed exhaust pipe, the cap region 23 of the branch connector 21 to form a through opening 35, the interior 20 of the inner tube 1 with the external environment of the air-gap insulated exhaust pipe connects, for example cut off by sawing or laser cutting. by virtue of the bottle neck-like design of the end face 22 then remains a short cylindrical portion 36 in which a clamping of the tube walls is still present, so that too after trimming, no change in the relative position of the inner tube 1 to the outer tube 2 can be done.

    Schließlich werden optional die Enden des Doppelrohres in der Einspannung abgetrennt. Dies erfolgt dann, wenn eine Minimierung von Wärmebrücken im Verbindungsbereich mit anderen Abgasrohren erwünscht ist und dieser bezüglich des Außenrohres 2 mit einer einfachen umlaufenden Kehlnaht und bezüglich des Innenrohres 1 mittels Schiebesitz zur Kompensation axialer Wärmedehnungen und Vibrationen im Betrieb der Abgasanlage ausgebildet werden soll. Diese Verbindung kann in höchst vorteilhafter Weise zum Zusammenbau einer luftspaltisolierten Abgasanlage mit anderen luftspaltisolierten Abgasrohren durch einfaches Ineinanderstecken der endseitig aufeinander im Durchmesser abgestimmten Rohre ausgenutzt werden. Insbesondere ermöglicht die Ausbildung des erfindungsgemäß hergestellten verzweigten Abgasrohres mit seinem jeweils endseitigen Beschnitt (Fig. 6) erstmals eine Modulbauweise bei luftspaltisolierten Abgaskrümmern, wobei das verzweigte Rohr einen Teil des Abgaskrümmers bildet. Die übrig gebliebene Klemmung des zylindrischen Abschnittes 36 der Stirnseite 22 hält die Rohre 1 und 2 zueinander in der bisherigen voneinander beabstandeten Position, wodurch bei der Montage auftretende Lagetoleranzen und Spaltuneinheitlichkeiten vermieden werden. Dies kann auch erreicht werden, wenn die Stirnseite 22 keine Ausbeulung 31, d.h. nach Beschnitt keinen zylindrischen Abschnitt 36 und somit keine Klemmung der Wandungen der Rohre 1 und 2 aufweist. Hierbei muß jedoch nach Beschnitt des Kappenbereiches 23 der Abzweigstutzen 21 hinsichtlich Innenrohr 1 und Außenrohr 2 durch eine Verbindung des Abgasrohres am Ende des Abzweigstutzens 21 mit einem weiteren Bauteil des Abgasstranges beispielsweise durch Verschweißung des Außenrohres 2 mit dem Außenrohr des Verbindungsbauteils und Schiebesitzbildung des Innenrohres 1 mit dem dessen Innenrohr radial festgelegt werden, wonach die freiliegenden Endbereiche des Abgasrohres mit den dort klemmend aneinandergepreßten Wandungen des Innenrohres 1 und des Außenrohres 2 abgeschnitten werden.Finally, the ends of the double pipe are optionally in the Clamping separated. This happens when there is a minimization of thermal bridges in the connection area with other exhaust pipes is desired and this with respect to the outer tube 2 a simple all-round fillet weld and with respect to the inner tube 1 by means of a sliding seat to compensate for axial thermal expansion and vibrations in the operation of the exhaust system shall be. This connection can be done in a most advantageous manner to assemble an air-gap-insulated exhaust system with other air-gap insulated exhaust pipes by simply plugging them together the diameter of which is matched to one another at the end Pipes are used. In particular, the Formation of the branched exhaust pipe produced according to the invention with its end trim (Fig. 6) for the first time a modular design for air-gap-insulated exhaust manifolds, wherein the branched tube forms part of the exhaust manifold. The remaining clamp of the cylindrical portion 36 the end face 22 holds the tubes 1 and 2 to each other in the previous spaced apart position, whereby at the Mounting tolerances and gap non-uniformities be avoided. This can also be achieved if the End face 22 no bulge 31, i.e. after trimming none cylindrical section 36 and thus no clamping of the walls of tubes 1 and 2. However, this must be done after trimming the cap area 23 of the branch connector 21 with respect Inner tube 1 and outer tube 2 by connecting the exhaust pipe at the end of branch 21 with another Component of the exhaust system, for example by welding of the outer tube 2 with the outer tube of the connecting component and Sliding seat formation of the inner tube 1 with its inner tube be set radially, after which the exposed end areas of the exhaust pipe with the walls clamped together there the inner tube 1 and the outer tube 2 cut off become.

    Zum Abschneiden der Rohrenden werden diese am Außenrohr 2 auf abzweigzugewandter Seite des Lochkranzes 5 mittels eines Strahlschneidverfahrens, vorzugsweise durch einen Schneidlaser beaufschlagt. Der Schneidlaser schneidet das Außenrohr unter Bildung eines Schlitzes axial an zwei umfänglich diametral gegenüberliegenden Stellen ein. Anschließend wird das Außenrohr 2 mittels der Einstrahlung des Schneidlasers zwei zueinander beabstandete Umfangsschnitte ausgeführt, die jeweils durch einen der Endpunkte der axialen Schlitze hindurchgehen. Die dadurch einstehenden halbkreisförmigen Blechstreifen 37 des Außenrohres 2 werden abgelöst, wodurch das Innenrohr 1 frei zugriffsfähig wird. Das Innenrohr 1 kann nun - ggf. bündig mit der Schneidkante 38 des Außenrohres 2 - durch Sägen oder ebenfalls durch ein Strahlschneidverfahren beispielsweise Laser oder Elektronenstrahl durchgetrennt werden (Fig. 5). Das Strahlschneiden des Außenrohres 2 erbringt in vorteilhafter Weise eine insgesamt formtreue Abtrennung der Enden des Doppelrohres.To cut the pipe ends, these are on the outer pipe 2 branch-facing side of the rim 5 by means of a Beam cutting process, preferably by a cutting laser applied. The cutting laser cuts the outer tube Formation of a slot axially on two circumferentially diametrically opposed Hire. Then the outer tube 2 by means of the irradiation of the cutting laser two spaced apart Performed circumferential cuts, each by a of the end points of the axial slots. The result protruding semicircular metal strips 37 of the outer tube 2 are detached, making the inner tube 1 freely accessible becomes. The inner tube 1 can now - if necessary flush with the cutting edge 38 of the outer tube 2 - by sawing or also by a beam cutting process, for example laser or electron beam are severed (Fig. 5). Beam cutting of the outer tube 2 advantageously provides a total true-to-shape separation of the ends of the double pipe.

    Natürlich ist es denkbar, daß nach dem Kappenbeschnitt des Abzweigstutzens 21 Außenrohr 2 und Innenrohr 1 offen sind, wobei die Enden des Doppelrohres miteinander verklemmt bleiben, so daß durch die dortige Klemmung die Zentrierung des Innenrohres 1 im Außenrohr 2 gewährleistet ist. Eine weitere Verbindung mit Abgasrohren an den Enden erfolgt durch Verschweißen mit der Doppelwand des verzweigten Rohres.Of course, it is conceivable that after the cap trim of the branch connector 21 outer tube 2 and inner tube 1 are open, wherein the ends of the double tube remain jammed together, so that the centering of the inner tube by the clamping there 1 in the outer tube 2 is guaranteed. Another connection with Exhaust pipes at the ends are made by welding to the Double wall of the branched pipe.

    Claims (6)

    1. Method of manufacturing an air gap insulated exhaust pipe provided with a branch connection in the exhaust train of a motor vehicle wherein an exhaust gas guiding inner pipe formed with a branch is surrounded at a distance around it with an outer shell with the formation of an air insulation column which together with the outer shell forms the exhaust pipe including branch conenctor
      characterised in that
      for the purpose of forming the exhaust pipe two pipes ( 1, 2) having the same shape are placed inside each other with little clearance with the formation of a double pipe, that the thus formed double pipe is brought into a first inner high pressure shaping tool 8), is at both ends fluid high pressure sealed and after closure of the first shaping tool (8) and introduction of a pressure fluid into the inner area (20) of the inner pipe (1) of the double pipe is impacted with inner high pressure via the introduced pressure fluid in such a way that the double pipe widens corresponding to the contour of the engraving (7) of the first shaping tool (8) wherein due to a branch (9) of the engraving (7) by means of the inner high pressure from the double pipe a double walled branch connection (21) is blown out and wherein due to a concentric pocket (12) formed in the counterpunch (10) the front side (22) of the double walled branch connection (21) is bulged like the neck of a bottle through the inner high pressure, that after the production of the branch connection (21) the pressure fluid relaxes and is fed out of the inner area (20 of the inner pipe (1) and thereafter the first shaping tool (8) is opened and the shaped double pipe is removed and brought into a second inner high pressure shaping tool (25) wherein the double pipe at the end areas of the engraving (24) of the second shaping tool (25) is held in a clearance fit and running between the two ends including the branch connection (21) and through corresponding formation of the engraving (24) is surround by a widening area (26), that after the closure of the shaping tool (25) and sealing of the double pipe formed with a branch connection under high pressure a pressure fluid is passed on the one hand between the two pipes (1, 2) forming the double pipe and is on the other hand simultaneously fed into the inner area (20) of the inner pipe (1) wherein the outer pipe (2) is widened in an inner high pressure impacted way until contour positioned against the engraving (24) of the second shaping tool (25) into the widening area, that upon widening the front side of the branch connection (21) guiding from the double pipe by means of a second counterpunch (28) arranged in the branch (27) of the engraving (24) is outwardly supported in an unyielding way, and that after the widening of the double pipe, relaxing and removal of the pressure fluid out of the double pipe which due to the two reshapings is provided with a branch connection (21) and an air column isolation, as well as opening of the second shaping tool (25) and removal of the finished shaped double pipe wherein the outer shell is formed by the outer pipe (2) which the cap area (23) of the branch connection (21) containing the front side (22) ... with the formation of a through passage (35) between the inner area (20) of the inner pipe (1) and the outer surroundings of the air column isolating exhaust gas pipe.
    2. Method according to claim 1
      characterised in that
      after a radial fixing of inner pipe (1) and outer pipe (2) based upon the connection of the exhaust pipe at the end of the branch connection (21) with a further component of the exhaust train the free-lying end areas of the exhaust gas pipes are cut off with the walls of the inner pipe (1) and the outer pipe (2) pressing against each other in a pressed way.
    3. Method according to claim 2
      characterised in that for the purpose of cutting off the end areas of the exhaust pipe on the outer pipe (2) around the entire perimeter perimeter strips (37) are cut out by means of beam cutting and that afterwards the inner pipe (1) is separated in the area made free after removal of the strips (37) through sawing or beam cutting.
    4. Method according to claim 1
      characterised in that for the purpose of forming the air isolating column (33) the pressure fluid is guided from the inner area (20) of the inner pipe (1) through at least one passage hole (6) formed in the wall of the inner pipe (1) between the pipes (1, 2) forming the double pipe wherein the respective hole (6) in the widening of the double piepe is sealed in the first inner high pressure shaping tool (8).
    5. Method according to claim 1
      characterised in that during the first shaping process the double walled branch connection (21) is supported on the front side by means of a first counterpunch (10) giving way outwards and guided in a displaceable way in the branch (9) of the engraving (7) of the first inner high pressure shaping tool (8).
    6. Method according to claim 1
      characterised in that during the first shaping process for blowing out the branch connection (21) pipe material is pushed by means of at least one axial punch impacting one end of the double pipe to the formation point of the branch connection (21).
    EP98120557A 1997-11-28 1998-10-30 Method for manufacturing an air gap insulated exhaust pipe junction Expired - Lifetime EP0919704B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19752772 1997-11-28
    DE19752772A DE19752772C2 (en) 1997-11-28 1997-11-28 Process for producing an air-gap-insulated exhaust pipe provided with a branch connection

    Publications (2)

    Publication Number Publication Date
    EP0919704A1 EP0919704A1 (en) 1999-06-02
    EP0919704B1 true EP0919704B1 (en) 2002-04-03

    Family

    ID=7850095

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98120557A Expired - Lifetime EP0919704B1 (en) 1997-11-28 1998-10-30 Method for manufacturing an air gap insulated exhaust pipe junction

    Country Status (3)

    Country Link
    US (3) US6349468B1 (en)
    EP (1) EP0919704B1 (en)
    DE (2) DE19752772C2 (en)

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19752772C2 (en) * 1997-11-28 1999-09-02 Daimler Chrysler Ag Process for producing an air-gap-insulated exhaust pipe provided with a branch connection
    DE10013428C1 (en) 2000-03-17 2001-01-18 Daimler Chrysler Ag Double-walled hollow profile manufacturing method e.g. for i.c. engine exhaust gas line, has intermediate layer providing gap between inner and outer hollow profiles removed via opening in profle wall
    DE10121787C1 (en) * 2001-05-04 2002-07-11 Daimler Chrysler Ag Method, for shaping additional element at a closed hollow profile, uses high inner fluid pressure within it to force the mantle into a shaped branch cavity while supported externally by an elastic membrane under pressure
    US7323145B2 (en) * 2002-03-26 2008-01-29 Evolution Industries, Inc. Automotive exhaust component and method of manufacture
    US7169365B2 (en) 2002-03-26 2007-01-30 Evolution Industries, Inc. Automotive exhaust component and method of manufacture
    US6696666B2 (en) * 2002-07-03 2004-02-24 Scimed Life Systems, Inc. Tubular cutting process and system
    US7685714B2 (en) 2003-03-18 2010-03-30 Tursky John M Automotive exhaust component and process of manufacture
    DE10347923B4 (en) * 2003-10-15 2005-07-28 Daimlerchrysler Ag Device for forming a circumferentially closed hollow profile by means of fluidic internal high pressure
    DE10356535B3 (en) 2003-12-04 2004-08-26 Daimlerchrysler Ag Hollow strip production device for T-shaped or branched product has tool in form of cutting device with separating slide adjustable transversely to axis of branch
    DE102005024831A1 (en) * 2005-05-27 2006-11-30 J. Eberspächer GmbH & Co. KG Silencer for an exhaust system and manufacturing process
    US7305763B2 (en) * 2005-07-26 2007-12-11 Board Of Trustees Of Michigan State University Hydroformed port liner
    DE102006021674B4 (en) * 2006-05-10 2014-05-15 Tenneco Gmbh Method for producing exhaust manifolds
    DE102007062659A1 (en) * 2007-12-24 2009-06-25 J. Eberspächer GmbH & Co. KG Exhaust manifold and related manufacturing process
    US7827838B2 (en) * 2008-05-05 2010-11-09 Ford Global Technologies, Llc Pulsed electro-hydraulic calibration of stamped panels
    JP2011052605A (en) * 2009-09-02 2011-03-17 Yamaha Motor Co Ltd Exhaust system, saddle type vehicle having the same, and method of manufacturing and mounting exhaust pipe
    USD665320S1 (en) * 2011-03-14 2012-08-14 Donna Medved Tail pipe tip extenders
    US20160101490A1 (en) * 2014-10-08 2016-04-14 Mersen Canada Toronto Inc. Methods of manufacturing a complex heat pipe and a heat transfer plate including an opening therefor
    CN105537364A (en) * 2016-01-21 2016-05-04 连云港珍珠河石化管件有限公司 Preparation method for bi-metal composite t-branch pipe
    CN110976547B (en) * 2019-11-11 2021-02-19 潍坊倍力汽车零部件有限公司 Hollow layer forming method and multi-hollow layer thermal barrier pipe
    CN113084463B (en) * 2021-04-20 2022-09-16 中国直升机设计研究所 Method for machining outer sleeve of infrared stealth device of helicopter

    Family Cites Families (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4840053A (en) * 1987-07-29 1989-06-20 Mitsui & Co., Ltd. Method for manufacturing a pipe with projections
    US4928509A (en) 1987-07-29 1990-05-29 Mitsui & Co., Ltd. Method for manufacturing a pipe with projections
    DE4019899C1 (en) * 1990-06-22 1991-12-19 Benteler Ag, 4790 Paderborn, De
    US5170557A (en) * 1991-05-01 1992-12-15 Benteler Industries, Inc. Method of forming a double wall, air gap exhaust duct component
    DE4125383A1 (en) * 1991-07-31 1993-02-04 Schlafhorst & Co W CAN TROLLEY FOR AUTOMATIC CAN CHANGING
    DE4226715A1 (en) 1992-08-12 1994-02-17 Eberspaecher J Exhaust manifold
    US5390494A (en) * 1993-04-27 1995-02-21 Ap Parts Manufacturing Company Pipe assembly for efficient light-off of catalytic converter
    DE59400065D1 (en) * 1993-05-03 1996-02-01 Volkswagen Ag Pipe elbow
    US5363544A (en) 1993-05-20 1994-11-15 Benteler Industries, Inc. Multi-stage dual wall hydroforming
    US5582052A (en) 1993-05-20 1996-12-10 Benteler Industries, Inc. Controlled time-overlapped hydroforming
    DE4339290C2 (en) 1993-11-18 1995-11-02 Daimler Benz Ag Process for the production of pipe T-pieces from an unbranched continuous pipe section by internal high pressure forming and device for carrying out the process
    EP0662564B2 (en) * 1994-01-07 2001-09-26 J. Eberspächer GmbH & Co. Air gap insulation exhaust pipe and method of construction
    US5988225A (en) * 1994-04-15 1999-11-23 The Boeing Company Superplastic tubular part
    DE9407812U1 (en) * 1994-05-11 1994-07-21 Zeuna-Stärker GmbH & Co KG, 86154 Augsburg Pipe junction and device for their manufacture
    DE4428435A1 (en) * 1994-08-11 1996-02-15 Huber & Bauer Gmbh Production method for air gap insulated tube
    DE19511514C1 (en) 1995-03-29 1996-08-01 Daimler Benz Ag Exhaust manifold for IC engine
    DE19518252C2 (en) * 1995-05-18 1997-05-22 Schaefer Maschbau Wilhelm Method and device for producing a metal downpipe using the hydroforming process
    US5673470A (en) 1995-08-31 1997-10-07 Benteler Automotive Corporation Extended jacket end, double expansion hydroforming
    DE19546509A1 (en) 1995-12-13 1997-06-19 Zeuna Staerker Kg Exhaust manifold and process for its manufacture
    DE19713411C2 (en) 1997-04-01 2001-02-15 Benteler Werke Ag Process for producing a double-walled exhaust manifold
    DE19752772C2 (en) * 1997-11-28 1999-09-02 Daimler Chrysler Ag Process for producing an air-gap-insulated exhaust pipe provided with a branch connection
    US6182487B1 (en) * 1998-02-18 2001-02-06 Nippon Sanso Corporation Metal vessel and a fabrication method for the same

    Also Published As

    Publication number Publication date
    US20020011002A1 (en) 2002-01-31
    US6349468B1 (en) 2002-02-26
    DE19752772A1 (en) 1999-06-02
    US20020014007A1 (en) 2002-02-07
    US6539764B2 (en) 2003-04-01
    US6519851B2 (en) 2003-02-18
    DE59803604D1 (en) 2002-05-08
    DE19752772C2 (en) 1999-09-02
    EP0919704A1 (en) 1999-06-02

    Similar Documents

    Publication Publication Date Title
    EP0919704B1 (en) Method for manufacturing an air gap insulated exhaust pipe junction
    EP0919703B1 (en) Method of making an air gap isolated exhaust manifold for a vehicle
    DE10358502B3 (en) Production of a hollow profile used as a branched part for pipes comprises stamping a secondary molding element to connect to a further component in a pre-curved region before winding
    EP2912736B1 (en) Device and method for the preparation of a cable end
    DE4441097A1 (en) Device for producing and attaching a protective cover when opening a wall for a container
    DD231900A5 (en) METHOD FOR PRODUCING CONTACT SPRING JACKS
    DE3232297A1 (en) METHOD FOR CONNECTING MISCELLANEOUS TUBULAR PARTS OF A HEAT EXCHANGER AND TOOL FOR CARRYING OUT THE METHOD
    DE19719629C2 (en) Method and device for manufacturing motor vehicle axle housings
    DE3824699C2 (en) Method for producing a rotationally symmetrical hollow body with a continuous, axially extending central opening and a circumferential, groove-shaped constriction in the outer surface by non-cutting shaping of a solid cylindrical blank
    EP0759120A1 (en) Exhaust manifold for a multi-cylinder internal combustion engine
    DE19733477C2 (en) Method for producing a hollow profile connected to a joining part from an initial shape by means of internal high pressure into a final shape, and device for carrying out the method
    EP2729679B1 (en) Method for producing an exhaust gas system, and exhaust gas system
    EP0941780B1 (en) Method and device for producing a hollow body with bulges at a distance from oneanother
    DE19742444C2 (en) Process for producing a hollow body from two metal plates
    EP0894548B1 (en) Method and device for forming bulges on elements
    DE19820124A1 (en) Steering rod tube production
    DE19818362C2 (en) Process for producing a hollow body by hydroforming and tool for carrying out the process
    EP0876860B1 (en) Method and apparatus for making bulged hollow profiles
    DE102007017190A1 (en) Connecting internal high pressure shaping part to connecting part involves forming push connection of dome part and of connecting part using internal high pressure shaping technique
    DE19857445A1 (en) Air gap insulated exhaust pipe has outer pipe formed by internal high pressure moulding, and inner pipe guided within outer pipe by radial bearing points formed by indented sections in outer pipe
    DE3418307A1 (en) Method for the production of a thin-walled shell in the shape of an annular channel and an apparatus for carrying out the method
    EP4098851B1 (en) Silencer
    DE10061635A1 (en) Forming and joining process of at least two components and device
    DE102007007932B3 (en) Connecting method for connecting connection component with inner high pressure-molded part, involves punching retainer, forming additional receiving opening and plugging connection component
    EP4046261A1 (en) Method and device for producing a housing

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990309

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 19991103

    AKX Designation fees paid

    Free format text: DE ES FR GB IT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20020403

    REF Corresponds to:

    Ref document number: 59803604

    Country of ref document: DE

    Date of ref document: 20020508

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020628

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021030

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030106

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: CA

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101021

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20111031

    Year of fee payment: 14

    Ref country code: FR

    Payment date: 20111115

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20121228

    Year of fee payment: 15

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20121030

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130628

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121030

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59803604

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140501

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 59803604

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: F01N0007140000

    Ipc: F01N0013140000

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59803604

    Country of ref document: DE

    Effective date: 20140501

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 59803604

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: F01N0007140000

    Ipc: F01N0013140000

    Effective date: 20141031