EP0918853A2 - Antisense rna with a secondary structure - Google Patents

Antisense rna with a secondary structure

Info

Publication number
EP0918853A2
EP0918853A2 EP97936610A EP97936610A EP0918853A2 EP 0918853 A2 EP0918853 A2 EP 0918853A2 EP 97936610 A EP97936610 A EP 97936610A EP 97936610 A EP97936610 A EP 97936610A EP 0918853 A2 EP0918853 A2 EP 0918853A2
Authority
EP
European Patent Office
Prior art keywords
sense rna
expression
vector
secondary structure
pj3ω
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97936610A
Other languages
German (de)
French (fr)
Inventor
Dieter Werner
Christof Granzow
Gaby Joswig
Karsten Rothbarth
Marie Schubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Krebsforschungszentrum DKFZ
Original Assignee
Deutsches Krebsforschungszentrum DKFZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum DKFZ filed Critical Deutsches Krebsforschungszentrum DKFZ
Publication of EP0918853A2 publication Critical patent/EP0918853A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01028Chloramphenicol O-acetyltransferase (2.3.1.28)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed

Definitions

  • the present invention relates to an anti-sense RNA with a secondary structure, a combination containing it and the use of both.
  • New techniques for inhibiting gene expression often involve the use of anti-sense RNA.
  • This is an RNA that is complementary to and binds to regions of the mRNA of a gene.
  • a duplex molecule is formed that is not translated by the mRNA. An inhibition of gene expression can thus be achieved.
  • duplex molecule is often not stable, i.e. the mRNA becomes free for translation again, whereby the inhibition of gene expression is weak or does not occur at all.
  • the present invention is therefore based on the object of providing a means with which a strong inhibition of gene expression can be achieved.
  • anti-sense RNA encompasses any RNA molecule which is suitable as anti-sense RNA, ie is complementary to regions of an RNA, in particular mRNA and very particularly regulatory elements thereof, and by binding to these regions inhibits the Gene expression.
  • the anti-sense RNA can also include DNA sequences.
  • the anti-sense RNA can be present as such or in the form of a vector encoding it. Such a vector can be a common expression vector. It can be favorable if the expression of the sequence coding for the anti-sense RNA is under the control of a constitutive or inducible promoter, such as a tissue- or tumor-specific promoter.
  • secondary structure encompasses any DNA and / or RNA sequence which can be present in an anti-sense RNA and which has an at least partially “hairpin” structure, ie individual base pairs are subject to refolding.
  • the secondary structure can exist within the anti-sense RNA. It can also be present at the 5 'and / or 3' end of the anti-sense RNA. If there are several secondary structures, these can be the same or different from one another.
  • Complicated palindromes such as (AGCT) n or (GAATTC) n are also preferred.
  • An anti-sense RNA according to the invention can be produced by customary methods. It is favorable to produce a double-stranded (GC) 20 EcoRI (GC) 20 sequence by oligonucleotide synthesis and to ligate this to the 5 'end of the cDNA sequence of a gene to be inhibited. The DNA molecule obtained is ligated in the 3 ' ⁇ 5' direction to the promoter of a vector. The vector obtained leads to the expression of the anti-sense RNA according to the invention.
  • GC double-stranded
  • EcoRI GC
  • An anti-sense RNA according to the invention can be introduced into cells as such or in the form of a vector encoding it.
  • the cells can be any cells, such as plant and animal, especially mammalian and very particularly human cells.
  • the cells can be inside or outside of an organism. The latter can be freshly isolated or kept in culture.
  • the anti-sense RNA can be introduced into the cells by conventional transfection techniques, such as electroporation.
  • Another object of the present invention is a combination of an anti-sense RNA according to the invention and a (ds) RNAse. This is an RNAse that can recognize and break down double-stranded RNA.
  • a (ds) RNAse is found, for example, in the yeast strain Schizosaccharomyces pombe (pad +).
  • the anti-sense RNA according to the invention can be present as such or in the form of a vector encoding it.
  • the (ds) RNAse can be present as such or in the form of a vector encoding it.
  • a vector can be a common expression vector. It can be advantageous if the expression of the sequence coding for the (ds) RNAse is under the control of a constitutive or inducible promoter, such as a tissue- or tumor-specific one
  • the combination consists in the presence of a vector which codes both for the anti-sense RNA according to the invention and for the (ds) RNAse.
  • vector With regard to the vector, reference is made to the above statements.
  • the combination of an anti-sense RNA according to the invention and a (ds) RNAse can be introduced into cells.
  • the (ds) RNAse as such, i.e. as a protein, by conventional methods such as lipofection.
  • the form of a vector encoding it the
  • RNAse can be introduced by methods as they were called for the anti-sense RNA.
  • the present invention provides an anti-sense RNA and a combination containing it which cause potent inhibition of gene expression.
  • the present invention is thus widely used in molecular biology and medicine.
  • diseases in which individual proteins trigger or reinforce are, for example, diseases in which hormones play a major role, tumor diseases and viral infections, such as HIV and AIDS.
  • diseases in which hormones play a major role are, for example, diseases in which hormones play a major role, tumor diseases and viral infections, such as HIV and AIDS.
  • FIG. 1 shows the inhibition of gene expression by an anti-sense RNA according to the invention.
  • (1) is the rate of expression of the CAT gene in the presence of an anti-sense RNA.
  • (2) is the expression rate of the
  • CAT gene in the presence of an anti-sense RNA with secondary structure I.
  • (3) is the expression rate of the CAT gene in the presence of an anti-sense RNA with secondary structure II.
  • FIG. 2 shows the inhibition of gene expression by an anti-sense RNA according to the invention.
  • (1) is the rate of expression of the CAT gene in the presence of an anti-sense RNA with secondary structure I.
  • (2) is the rate of expression of the CAT gene in the presence of an anti-sense RNA with secondary structure I and a (ds) RNAse.
  • Example 1 Production of expression vectors which contain the chioramphenicolacetyl transferase (CAT) gene in the 5 ' ⁇ 3' or 3 ' ⁇ 5' direction.
  • CAT chioramphenicolacetyl transferase
  • the CAT gene was isolated from a conventional CAT vector and inserted into the "multiple cloning site" of the expression vector pJ3 ⁇ (cf. Nuclear acids res. 1 8, (1 990), 1068). In one case the insertion was in the 5 ' ⁇ 3' direction and the expression vector pJ3 ⁇ -CAT was obtained. In the other case, the insertion was carried out in the 3 '- * 5' direction and the expression vector pJ3 ⁇ -TAC was obtained.
  • Example 2 Production of expression vectors which contain the CAT gene in the 3 ' ⁇ 5' direction and a sequence coding for a secondary structure I or II.
  • AATTC- (GO 20-GAATTC- (GC) 20-GAATTC- (GC) 0-G.
  • Cloning vector pBluescript (Stratagene) was used, from which it could be removed by suitable restriction enzymes for recloning into the vector which has the CAT gene in the 3 '- * 5' direction.
  • the vector pJ3 ⁇ -TAC from Example 1 was cut in the "multiple cloning site" between the promoter and the TAC insert with suitable restriction enzymes.
  • Sequence was taken from the pBluescript vector of Example 2 (e) with the appropriate enzymes. The two nucleic acids were linked by ligation.
  • Example 3 Preparation of an expression vector which codes for a (ds) RNAse.
  • the gene (pad +) coding for a (ds) RNAse was isolated from a conventional genomic library of Schizosaccharomyces pombe by means of PCR amplification. For this purpose, primers were used which had been derived from the known sequence of the pad + gene (cf. database: embl: S78982). The pad + gene was cloned in the known vector pBluescript and confirmed by sequencing. After cloning into the usual expression vector pcDNA3 (InVitrogen), the expression vector pcDNA3-pad + was obtained.
  • Example 4 Inhibition of gene expression by an anti-sense RNA with a secondary structure
  • Ehrlich ascites tumor cells (10 7 cells / ml) were expressed with the expression vectors pJ3 ⁇ -CAT, pJ3 ⁇ -TAC, pJ3 ⁇ -TAC-sec. I or pJ3 ⁇ -TAC-sec. II transfected (see Table 1).
  • RNAse activity is produced or generated by means of the described methods.

Abstract

An antisense RNA with special secondary structures is disclosed, as well as a combination of the antisense RNA and of a (ds)RNAse. The antisense RNA and its combination may be used to inhibit gene expression.

Description

Anti-Sinn-RNA mit Sekundärstruktur Anti-sense RNA with secondary structure
Die vorliegende Erfindung betrifft eine Anti-Sinn-RNA mit Sekundärstruktur, eine sie enthaltende Kombination sowie die Verwendung beider.The present invention relates to an anti-sense RNA with a secondary structure, a combination containing it and the use of both.
Neue Techniken zur Hemmung der Genexpression umfassen häufig den Einsatz von Anti-Sinn-RNA. Dies ist eine RNA, die zu Bereichen der mRNA eines Gens komplementär ist und an diese bindet. Es entsteht ein Duplexmolekül, das der Translation der mRNA entzogen ist. Damit kann eine Hemmung der Genexpression erreicht werden.New techniques for inhibiting gene expression often involve the use of anti-sense RNA. This is an RNA that is complementary to and binds to regions of the mRNA of a gene. A duplex molecule is formed that is not translated by the mRNA. An inhibition of gene expression can thus be achieved.
Es hat sich allerdings gezeigt, daß das Duplexmolekül häufig nicht stabil ist, d.h. die mRNA wird wieder frei für die Translation, wodurch die Hemmung der Genexpression schwach ist oder gar nicht eintritt.However, it has been shown that the duplex molecule is often not stable, i.e. the mRNA becomes free for translation again, whereby the inhibition of gene expression is weak or does not occur at all.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Mittel bereitzu- stellen, mit dem eine starke Hemmung der Genexpression erzielt werden kann.The present invention is therefore based on the object of providing a means with which a strong inhibition of gene expression can be achieved.
Erfindungsgemäß wird dies durch eine Anti-Sinn-RNA mit besonderen Sekundärstrukturen erreicht.According to the invention, this is achieved by an anti-sense RNA with special secondary structures.
Mit dem Ausdruck "besonderer Sekundärdruck" ist gemeint, daß es sich nicht um eine natürlich vorkommende Sekundärstruktur handelt, sondern daß diese künstlich erzeugt worden ist.The expression "special secondary pressure" means that it is not a naturally occurring secondary structure, but that it has been created artificially.
Der Ausdruck "Anti-Sinn-RNA" umfaßt jegliches RNA-Molekül, das sich als Anti- Sinn-RNA eignet, d.h. komplementär zu Bereichen einer RNA, insbesondere mRNA und ganz besonders Regulationselementen dieser, ist und durch Bindung an diese Bereiche eine Hemmung der Genexpression bewirkt. Die Anti-Sinn-RNA kann auch DNA-Sequenzen umfassen. Ferner kann die Anti-Sinn-RNA als solche oder in Form eines sie kodierenden Vektors vorliegen. Ein solcher Vektor kann ein üblicher Expressionsvektor sein. Günstig kann es sein, wenn die Expression der für die Anti-Sinn-RNA kodierenden Sequenz unter der Kontrolle eines kon- stitutiven oder induzierbaren Promotors, wie eines Gewebe- oder Tumor-spezifischen Promotors, steht.The term “anti-sense RNA” encompasses any RNA molecule which is suitable as anti-sense RNA, ie is complementary to regions of an RNA, in particular mRNA and very particularly regulatory elements thereof, and by binding to these regions inhibits the Gene expression. The anti-sense RNA can also include DNA sequences. Furthermore, the anti-sense RNA can be present as such or in the form of a vector encoding it. Such a vector can be a common expression vector. It can be favorable if the expression of the sequence coding for the anti-sense RNA is under the control of a constitutive or inducible promoter, such as a tissue- or tumor-specific promoter.
Der Ausdruck "Sekundärstruktur" umfaßt jegliche DNA- und/oder RNA-Sequenz, die in einer Anti-Sinn-RNA vorliegen kann und eine zumindest teilweise "Hair- pin"-Struktur aufweist, d.h. einzelne Basenpaare unterliegen einer Rückfaltung. Die Sekundärstruktur kann innerhalb der Anti-Sinn-RNA vorliegen. Auch kann sie am 5'- und/oder 3'-Ende der Anti-Sinn-RNA vorliegen. Liegen mehrere Sekundärstrukturen vor, können diese gleich oder verschieden voneinander sein. Vorzugsweise ist die Sekundärstruktur eine (GC)n-Palindrom-(GC)n-, <AT)n-Palindrom- (AT)n-, oder (CG)n-Palindrom-(CG)n-Sequenz, wobei es besonders bevorzugt ist, wenn n = 20 und das Palindrom eine EcoRI-Restriktionsstelle ist. Bevorzugt sind auch komplizierte Palindrome wie (AGCT)n oder (GAATTC)n.The term “secondary structure” encompasses any DNA and / or RNA sequence which can be present in an anti-sense RNA and which has an at least partially “hairpin” structure, ie individual base pairs are subject to refolding. The secondary structure can exist within the anti-sense RNA. It can also be present at the 5 'and / or 3' end of the anti-sense RNA. If there are several secondary structures, these can be the same or different from one another. The secondary structure is preferably a (GC) n -palindrome (GC) n -, <AT) n -palindrome (AT) n -, or (CG) n -palindrome (CG) n sequence, with particular preference is when n = 20 and the palindrome is an EcoRI restriction site. Complicated palindromes such as (AGCT) n or (GAATTC) n are also preferred.
Eine erfindungsgemäße Anti-Sinn-RNA kann durch übliche Verfahren hergestellt werden. Günstig ist es, durch Oligonukleotidsynthese eine doppelsträngige (GC)20-EcoRI-(GC)20-Sequenz herzustellen und diese an das 5'-Ende der cDNA- Sequenz eines zu hemmenden Gens zu ligieren. Das erhaltene DNA-Molekül wird in 3'→ 5' Richtung an den Promotor eines Vektors ligiert. Der erhaltene Vektor führt zur Expression der erfindungsgemäßen Anti-Sinn-RNA. Ergänzend wird auf Sambrook, Fritsch, Maniatis, A Laboratory Mannual, Cold Spring Harbor Labora- tory Press, 1 989, verwiesen.An anti-sense RNA according to the invention can be produced by customary methods. It is favorable to produce a double-stranded (GC) 20 EcoRI (GC) 20 sequence by oligonucleotide synthesis and to ligate this to the 5 'end of the cDNA sequence of a gene to be inhibited. The DNA molecule obtained is ligated in the 3 '→ 5' direction to the promoter of a vector. The vector obtained leads to the expression of the anti-sense RNA according to the invention. In addition, reference is made to Sambrook, Fritsch, Maniatis, A Laboratory Mannual, Cold Spring Harbor Laboratory Press, 1 989.
Eine erfindungsgemäße Anti-Sinn-RNA kann als solche oder in Form eines sie kodierenden Vektors in Zellen eingebracht werden. Die Zellen können jegliche Zellen, wie Pflanzen- und tierische, insbesondere Säugetier- und ganz besonders menschliche Zellen, sein. Die Zellen können innerhalb eines Organismus oder außerhalb eines solchen vorliegen. Letztere können frisch isoliert oder in Kultur gehalten sein. Das Einbringen der Anti-Sinn-RNA in die Zellen kann durch übliche Transfektionstechniken, wie Elektroporation, erfolgen. Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Kombination aus einer erfindungsgemäßen Anti-Sinn-RNA und einer (ds)RNAse. Dies ist eine RNAse, die doppelsträngige RNA erkennen und abbauen kann. Eine (ds)RNAse findet sich z.B. in dem Hefestamm Schizosaccharomyces pombe (pad + ) . In der Kombination kann die erfindungsgemäße Anti-Sinn-RNA als solche oder in Form eines sie kodierenden Vektors vorliegen. Ebenso kann die (ds)RNAse als solche oder in Form eines sie kodierenden Vektors vorliegen. Ein solcher Vektor kann ein üblicher Expressionsvektor sein. Günstig kann es sein, wenn die Expression der für die (ds)RNAse kodierenden Sequenz unter der Kontrolle eines konstituti- ven oder induzierbaren Promotors, wie eines Gewebe- oder Tumor-spezifischenAn anti-sense RNA according to the invention can be introduced into cells as such or in the form of a vector encoding it. The cells can be any cells, such as plant and animal, especially mammalian and very particularly human cells. The cells can be inside or outside of an organism. The latter can be freshly isolated or kept in culture. The anti-sense RNA can be introduced into the cells by conventional transfection techniques, such as electroporation. Another object of the present invention is a combination of an anti-sense RNA according to the invention and a (ds) RNAse. This is an RNAse that can recognize and break down double-stranded RNA. A (ds) RNAse is found, for example, in the yeast strain Schizosaccharomyces pombe (pad +). In combination, the anti-sense RNA according to the invention can be present as such or in the form of a vector encoding it. Likewise, the (ds) RNAse can be present as such or in the form of a vector encoding it. Such a vector can be a common expression vector. It can be advantageous if the expression of the sequence coding for the (ds) RNAse is under the control of a constitutive or inducible promoter, such as a tissue- or tumor-specific one
Promotors, steht. Ferner kann es von Vorteil sein, wenn die Kombination darin besteht, daß ein Vektor vorliegt, der sowohl für die erfindungsgemäße Anti-Sinn- RNA als auch für die (ds)RNAse kodiert. Hinsichtlich des Vektors wird auf vorstehende Ausführungen verwiesen.Promoter, stands. Furthermore, it may be advantageous if the combination consists in the presence of a vector which codes both for the anti-sense RNA according to the invention and for the (ds) RNAse. With regard to the vector, reference is made to the above statements.
Die Kombination aus einer erfindungsgemäßen Anti-Sinn-RNA und einer (ds)RNAse kann in Zellen eingebracht werden. Hinsichtlich der Zellen und des Einbringens der Anti-Sinn-RNA wird auf vorstehende Ausführungen verwiesen. Die (ds)RNAse kann als solche, d.h. als Protein, durch übliche Verfahren, wie Lipofektion, eingebracht werden. In Form eines sie kodierenden Vektors kann dieThe combination of an anti-sense RNA according to the invention and a (ds) RNAse can be introduced into cells. With regard to the cells and the introduction of the anti-sense RNA, reference is made to the above statements. The (ds) RNAse as such, i.e. as a protein, by conventional methods such as lipofection. In the form of a vector encoding it, the
(ds)RNAse durch Verfahren eingebracht werden, wie sie für die Anti-Sinn-RNA genannt wurden.(ds) RNAse can be introduced by methods as they were called for the anti-sense RNA.
Die vorliegende Erfindung stellt eine Anti-Sinn-RNA und eine sie enthaltende Kombination bereit, die eine starke Hemmung der Genexpression bewirken. Die vorliegende Erfindung findet somit eine breite Anwendung in der Molekularbiologie und der Medizin. Insbesondere kann an die Diagnose und/oder Therapie von Erkrankungen gedacht werden, bei denen einzelne Proteine auslösend oder verstärkend sind. Dies sind z.B. Erkrankungen, bei denen Hormone eine große Rolle spielen, Tumorerkrankungen und virale Infektionen, wie HIV und AIDS. Kurze Beschreibung der ZeichnungThe present invention provides an anti-sense RNA and a combination containing it which cause potent inhibition of gene expression. The present invention is thus widely used in molecular biology and medicine. In particular, one can think of the diagnosis and / or therapy of diseases in which individual proteins trigger or reinforce. These are, for example, diseases in which hormones play a major role, tumor diseases and viral infections, such as HIV and AIDS. Brief description of the drawing
Fig. 1 zeigt die Hemmung der Genexpression durch eine erfindungsgemäße Anti-Sinn-RNA. ( 1 ) ist die Expressionsrate des CAT-Gens in Anwesenheit einer Anti-Sinn-RNA. (2) ist die Expressionsrate des1 shows the inhibition of gene expression by an anti-sense RNA according to the invention. (1) is the rate of expression of the CAT gene in the presence of an anti-sense RNA. (2) is the expression rate of the
CAT-Gens in Anwesenheit einer Anti-Sinn-RNA mit Sekundärstruktur I. (3) ist die Expressionsrate des CAT-Gens in Anwesenheit einer Anti-Sinn-RNA mit Sekundärstruktur II.CAT gene in the presence of an anti-sense RNA with secondary structure I. (3) is the expression rate of the CAT gene in the presence of an anti-sense RNA with secondary structure II.
Fig. 2 zeigt die Hemmung der Genexpression durch eine erfindungsgemäße Anti-Sinn-RNA. ( 1 ) ist die Expressionsrate des CAT-Gens in Anwesenheit einer Anti-Sinn-RNA mit Sekundärstruktur I. (2) ist die Expressionsrate des CAT-Gens in Anwesenheit einer Anti-Sinn-RNA mit Sekundärstruktur I und einer (ds)RNAse.2 shows the inhibition of gene expression by an anti-sense RNA according to the invention. (1) is the rate of expression of the CAT gene in the presence of an anti-sense RNA with secondary structure I. (2) is the rate of expression of the CAT gene in the presence of an anti-sense RNA with secondary structure I and a (ds) RNAse.
Die Erfindung wird durch die nachfolgenden Beispiele erläutert.The invention is illustrated by the following examples.
Beispiel 1 : Herstellung von Expressions- Vektoren, die das Chioramphenicolace- tyltransferase (CAT)-Gen in 5'→ 3' bzw. 3'→ 5' Richtung enthalten.Example 1: Production of expression vectors which contain the chioramphenicolacetyl transferase (CAT) gene in the 5 '→ 3' or 3 '→ 5' direction.
Das CAT-Gen wurde aus einem üblichen CAT-Vektor isoliert und in die "multiple cloning site" des Expressionsvektors pJ3Ω (vgl. Nu- cleic acids res. 1 8, ( 1 990), 1068) inseriert. In einem Fall erfolgte die Insertion in 5'→3' Richtung und es wurde der Expressionsvektor pJ3Ω-CAT erhalten. Im anderen Fall erfolgte die Insertion in 3'-*5' Richtung und es wurde der Expressionsvektor pJ3Ω-TAC erhalten. Beispiel 2: Herstellung von Expressionsvektoren, die das CAT-Gen in 3'→ 5' Richtung und eine für eine Sekundärstruktur I bzw. II kodierende Sequenz enthalten.The CAT gene was isolated from a conventional CAT vector and inserted into the "multiple cloning site" of the expression vector pJ3Ω (cf. Nuclear acids res. 1 8, (1 990), 1068). In one case the insertion was in the 5 '→ 3' direction and the expression vector pJ3Ω-CAT was obtained. In the other case, the insertion was carried out in the 3 '- * 5' direction and the expression vector pJ3Ω-TAC was obtained. Example 2: Production of expression vectors which contain the CAT gene in the 3 '→ 5' direction and a sequence coding for a secondary structure I or II.
(A) Expressionsvektor mit einer (GC)20-EcoRI-{GC)20-Sequeπz am 5'-Ende des CAT-Gens (Sekundärstruktur I)(A) Expression vector with a (GC) 20 -EcoRI- (GC) 20 sequence at the 5 'end of the CAT gene (secondary structure I)
1 . Herstellung einer (GC)20-EcoRI-(GC)20-Sequenz.1 . Preparation of a (GC) 20 EcoRI (GC) 20 sequence.
(a) Mittels eines automatischen Synthese-Geräts (Oligonukleotid-(a) Using an automatic synthesis device (oligonucleotide
Synthesizer) wurden 2 Oligodesoxynukleotide hergestellt:2 oligodeoxynucleotides were produced:
AATTC- (GC) 20-G undAATTC- (GC) 20-G and
G- (GC ) 2θ-CTTAAG- (GC) 2 θ-CTTAA
(b) Die beiden Oligodesoxynukleotide wurden im Verhältnis 1 : 1 gemischt, auf 90°C erhitzt, danach langsam unter "annea- Iing"-Bedingungen auf Raumtemperatur abgekühlt. Dabei ent- stand ein DNA Dopplestrang folgender Struktur:(b) The two oligodeoxynucleotides were mixed in a ratio of 1: 1, heated to 90 ° C., then slowly cooled to room temperature under "annealing" conditions. This resulted in a DNA double strand of the following structure:
AATTC- (GC ) 20-G * * * *AATTC- (GC) 20-G * * * *
G- ( GC ) 20-CTTAAG- (GC) 20-CTTAA
(c) Unter Ligationsbedingungen entstanden Vielfache der in (b) beschriebenen DNA(c) Multiples of the DNA described in (b) were generated under ligation conditions
AATTC- (GO 20-GAATTC- (GC ) 20-GAATTC- (GC ) 0-G .AATTC- (GO 20-GAATTC- (GC) 20-GAATTC- (GC) 0-G.
* ** ****** ** ***** ** →,* ** ****** ** ***** ** →,
G- (GC) 20-CTTAAG- (GC) 20-CTTAAG- (GC) 20-CTTAA..G- ( GC ) 20-CTTAAG- (GC) 20-CTTAAG- (GC) 20-CTTAA ..
(d) Die Ligationsprodukte wurden durch Gelelektrophorese nach Größe aufgetrennt und eine Sequenz, bestehend aus Dimeren, wurde aus dem Gel eluiert und mittels Polynukleotidkinase /ATP phosphoryliert.(d) The ligation products were refined by gel electrophoresis Size separated and a sequence consisting of dimers was eluted from the gel and phosphorylated using polynucleotide kinase / ATP.
AATTC- (GC) 0-GAATTC- (GC) 20-G-PAATTC- (GC) 0-GAATTC- (GC) 20-G-P
* * * * * * * * * * * ** * * * * * * * * * * *
P-G- ( GC ) 20-CTTAAG- (GC) 20"CPG- (GC) 20-CTTAAG- (GC) 2 0 "C
(e) Diese Sequenz wurde zunächst in die EcoRI-Stelle des üblichen(e) This sequence was first inserted into the EcoRI site of the usual
Klonierungsvektors pBluescript (Stratagene) eingesetzt, aus dem sie durch geeignete Restriktionsenzyme zur Umklonierung in- den Vektor, der das CAT-Gen in 3'-* 5' Richtung aufweist, entnommen werden konnte.Cloning vector pBluescript (Stratagene) was used, from which it could be removed by suitable restriction enzymes for recloning into the vector which has the CAT gene in the 3 '- * 5' direction.
2. Einbau der {GC)2o-EcoRI-(GC)2o) Sequenz in den Vektor, der das CAT- Gen in 3'→ 5' Richtung aufweist.2. Incorporation of the {GC) 2 o-EcoRI (GC) 2 o) sequence into the vector which has the CAT gene in the 3 '→ 5' direction.
Der Vektor pJ3Ω-TAC von Beispiel 1 wurde in der "multiple cloning site" zwischen dem Promotor und der TAC-Insertion mit geeigneten Restriktionsenzymen geschnitten. Die (GC)20-EcoRI-(GC)20| Sequenz wurde mit den entsprechenden Enzymen aus dem pBluescript-Vektor von Beispiel 2(e) entnommen. Die beiden Nukleinsäuren wurden per Ligation verbunden. Es wurde der Expressionsvektor pJ3Ω-TAC-Sek. I erhalten.The vector pJ3Ω-TAC from Example 1 was cut in the "multiple cloning site" between the promoter and the TAC insert with suitable restriction enzymes. The (GC) 20 -EcoRI- (GC) 20 | Sequence was taken from the pBluescript vector of Example 2 (e) with the appropriate enzymes. The two nucleic acids were linked by ligation. The expression vector pJ3Ω-TAC-sec. I received.
(B) Expressionsvektor mit einer (GC)20-EcoRI-(GC,20-Sequenz am 3'-Ende des CAT-Gens (Sekundärstruktur II).(B) Expression vector with a (GC) 20 EcoRI (GC, 20 sequence at the 3 'end of the CAT gene (secondary structure II).
Die unter Beispiel 2 (A) hergestellte (GC)20-EcoRI-(GC)20-Sequenz wurde in den Vektor pJ3Ω-TAC am 3'-Ende des TAC-Gens eingesetzt. Es wurde der Expressionsvektor pJ3Ω-TAC-Sek.ll erhalten. Beispiel 3: Herstellung eines Expressionsvektors, der für eine (ds) RNAse kodiert.The (GC) 20 EcoRI (GC) 20 sequence prepared in Example 2 (A) was inserted into the vector pJ3Ω-TAC at the 3 'end of the TAC gene. The expression vector pJ3Ω-TAC-Sek.ll was obtained. Example 3: Preparation of an expression vector which codes for a (ds) RNAse.
Aus einer üblichen genomischen Bibliothek von Schizosaccharomy- ces pombe wurde mittels einer PCR-Amplifikation das für eine (ds)RNAse kodierende Gen (pad + ) isoliert. Hierzu wurden Primer verwendet, die aus der bekannten Sequenz des Gens pad + (vgl. Datenbank: embl: S78982) abgeleitet worden waren. Das Gen pad + wurde in dem bekannten Vektor pBluescript kloniert und durch Sequenzierung bestätigt. Nach Umklonierung in den üblichen Expressionsvektor pcDNA3 (InVitrogen) wurde der Expressionsvektor pcDNA3-pad + erhalten.The gene (pad +) coding for a (ds) RNAse was isolated from a conventional genomic library of Schizosaccharomyces pombe by means of PCR amplification. For this purpose, primers were used which had been derived from the known sequence of the pad + gene (cf. database: embl: S78982). The pad + gene was cloned in the known vector pBluescript and confirmed by sequencing. After cloning into the usual expression vector pcDNA3 (InVitrogen), the expression vector pcDNA3-pad + was obtained.
Beispiel 4: Hemmung der Genexpression durch eine Anti-Sinn-RNA mit SekundärstrukturExample 4: Inhibition of gene expression by an anti-sense RNA with a secondary structure
(a) Ehrlich Ascites Tumorzellen ( 107 Zellen/ml) wurden mit den Expressionsvektoren pJ3Ω-CAT, pJ3Ω-TAC, pJ3Ω-TAC-Sek. I bzw. pJ3Ω-TAC-Sek. II transfiziert (vgl. Tabelle 1 ) . Die Transfektion wurde mittels Elektroporation (366V/950μF/Ele- ktrodenabstand D = 4mm) durchgeführt. 24 h nach Transfektion wurden die Zellen geerntet, lysiert und Aliquote mit radioaktiv markiertem Chloramphenicol inkubiert. Es wurde die Konversionsrate (in Ac-, Di-Ac-Chloramphenicol) nach DC durch Messung der Radioaktivität bestimmt. (a) Ehrlich ascites tumor cells (10 7 cells / ml) were expressed with the expression vectors pJ3Ω-CAT, pJ3Ω-TAC, pJ3Ω-TAC-sec. I or pJ3Ω-TAC-sec. II transfected (see Table 1). The transfection was carried out by means of electroporation (366V / 950μF / electrode distance D = 4mm). 24 hours after transfection, the cells were harvested, lysed and aliquots were incubated with radioactively labeled chloramphenicol. The conversion rate (in Ac-, Di-Ac-Chloramphenicol) after DC was determined by measuring the radioactivity.
Tabelle 1 :Table 1 :
pJ3Ω-CAT 3//g 3/yg 3/ gpJ3Ω-CAT 3 // g 3 / yg 3 / g
pJ3Ω-TAC-Sek. I - 7,5/ygpJ3Ω TAC sec. I - 7.5 / yg
pJ3Ω-TAC-Sek. II - - 7,5μgpJ3Ω TAC sec. II - - 7.5μg
Aus Fig. 1 geht hervor, daß durch Transfektion von pJ3Ω-TAC-Sek. I bzw. pJ3Ω-TAC-Sek. II (vgl. Fig. 1 , (2), (3) eine stärkere Hemmung der Expression des CAT-Gens erreicht werden kann, als wenn ρJ3Ω-TAC (vgl. Fig. 1 , ( 1 ) verwendet wird.From Fig. 1 it appears that by transfection of pJ3Ω-TAC-sec. I or pJ3Ω-TAC-sec. II (cf. FIG. 1, (2), (3) a greater inhibition of the expression of the CAT gene can be achieved than if ρJ3Ω-TAC (cf. FIG. 1, (1) is used.
(b) Ehrlich Ascites Tumorzellen ( 107 Zellen/ml) wurden mit den Expressionsvektoren pJ3Ω-CAT, pJ3Ω-TAC-Sek. I bzw. pcDNA3-pad + tranfiziert (vgl. Tabelle 2). Die Transfektionsbedingungen waren wie in Beispiel 4 (a) beschrieben.(b) Ehrlich ascites tumor cells (10 7 cells / ml) were expressed with the expression vectors pJ3Ω-CAT, pJ3Ω-TAC-Sek. I or pcDNA3-pad + transfected (see Table 2). The transfection conditions were as described in Example 4 (a).
Tabelle 2:Table 2:
1 2 pJ3Ω-CAT 5 vg 5μg pJ3Ω-TAC-Sek. 10/yg 10/yg pcDNA3-pad + - 10/yg1 2 pJ3Ω-CAT 5 vg 5μg pJ3Ω-TAC-sec. 10 / yg 10 / yg pcDNA3-pad + - 10 / yg
Aus Fig. 2 geht hervor, daß durch Kotransfektion von pJ3Ω-TAC-Sek. I mit pcDNA3-pad + (vgl. Fig. 2 (2)) eine stärkere Hemmung der Expres- sion von CAT erhalten wird, als wenn pJ3Ω-TAC-Sek. I (vgl. Fig. 2, ( 1 ) alleine verwendet wird. Somit wird deutlich, daß eine Anti-Sinn-RNA mit Sekundärstruktur eine größere Hemmwirkung auf die Genexpression hat als eine Anti-Sinn-RNA ohne Sekundärstruktur. Ferner wird deutlich, daß die Hemmwirkung der Anti-Sinn-RNA mit Sekundärstruktur noch gesteigert werden kann, wenn zusätzlich zu gegebenenfalls natürlich vorhandenen (ds)RNAsen eineFrom Fig. 2 it appears that by co-transfection of pJ3Ω-TAC-sec. I with pcDNA3-pad + (see FIG. 2 (2)) a stronger inhibition of the expression of CAT is obtained than if pJ3Ω-TAC-sec. I (see Fig. 2, (1) is used alone. It is thus clear that an anti-sense RNA with a secondary structure has a greater inhibitory effect on gene expression than an anti-sense RNA without a secondary structure. It is also clear that the inhibitory effect of the anti-sense RNA with a secondary structure can be increased if, in addition to any naturally present (ds) RNAses
(ds)RNAse-Aktivität mittels der beschriebenen Verfahren hervorgerufen bzw. erzeugt wird. (ds) RNAse activity is produced or generated by means of the described methods.

Claims

Patentansprüche claims
1 . Anti-Sinn-RNA mit besonderen Sekundärstrukturen.1 . Anti-sense RNA with special secondary structures.
2. Anti-Sinn-RNA nach Anspruch 1 , dadurch gekennzeichnet, daß die Sekundärstruktur am 5'- und/oder 3'-Ende der Anti-Sinn-RNA geschaffen wor- den ist.2. Anti-sense RNA according to claim 1, characterized in that the secondary structure at the 5 'and / or 3' end of the anti-sense RNA has been created.
3. Anti-Sinn-RNA nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sekundärstruktur eine (GOn-PalindrorrHGC),,- oder (CG)n-Palindrom-(CG)n- Sequenz ist.3. Anti-sense RNA according to claim 1 or 2, characterized in that the secondary structure is a (GO n -PalindrorrHGC) ,, - or (CG) n -Palindrome- (CG) n - sequence.
4. Anti-Sinn-RNA nach Anspruch 3, dadurch gekennzeichnet, daß n = 20 und das Palindrom eine EcoRI-Restriktionsstelle ist.4. Anti-sense RNA according to claim 3, characterized in that n = 20 and the palindrome is an EcoRI restriction site.
5. Anti-Sinn-RNA nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, daß die Anti-Sinn-RNA durch einen Vektor kodiert ist.5. Anti-sense RNA according to one of claims 1-4, characterized in that the anti-sense RNA is encoded by a vector.
6. Kombination, umfassend die Anti-Sinn-RNA nach einem der Ansprüche 1 - 5 und eine (ds)RNAse.6. Combination comprising the anti-sense RNA according to any one of claims 1-5 and a (ds) RNAse.
7. Kombination nach Anspruch 6, dadurch gekennzeichnet, daß die Anti-7. Combination according to claim 6, characterized in that the anti
Sinn-RNA und die (ds)RNAse durch einen oder mehrere Vektoren kodiert sind.Sense RNA and the (ds) RNAse are encoded by one or more vectors.
8. Verwendung der Anti-Sinn-RNA nach einem der Ansprüche 1 -5 und der Kombination nach Anspruch 6 oder 7 zur Hemmung der Genexpression. 8. Use of the anti-sense RNA according to one of claims 1 -5 and the combination according to claim 6 or 7 for inhibiting gene expression.
EP97936610A 1996-08-07 1997-08-05 Antisense rna with a secondary structure Withdrawn EP0918853A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19631919 1996-08-07
DE1996131919 DE19631919C2 (en) 1996-08-07 1996-08-07 Anti-sense RNA with secondary structure
PCT/DE1997/001691 WO1998005770A2 (en) 1996-08-07 1997-08-05 Antisense rna with a secondary structure

Publications (1)

Publication Number Publication Date
EP0918853A2 true EP0918853A2 (en) 1999-06-02

Family

ID=7802056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936610A Withdrawn EP0918853A2 (en) 1996-08-07 1997-08-05 Antisense rna with a secondary structure

Country Status (3)

Country Link
EP (1) EP0918853A2 (en)
DE (1) DE19631919C2 (en)
WO (1) WO1998005770A2 (en)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
ES2374290T3 (en) 1998-03-20 2012-02-15 Commonwealth Scientific And Industrial Research Organisation SYNTHETIC GENES AND GENETIC CONSTRUCTS THAT INCLUDE THE SAME.
AUPP249298A0 (en) 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
US20040214330A1 (en) 1999-04-07 2004-10-28 Waterhouse Peter Michael Methods and means for obtaining modified phenotypes
US8598332B1 (en) 1998-04-08 2013-12-03 Bayer Cropscience N.V. Methods and means for obtaining modified phenotypes
NZ507093A (en) 1998-04-08 2003-08-29 Commw Scient Ind Res Org Methods and means for reducing the phenotypic expression of a nucleic acid of interest in a plant
GB9827152D0 (en) 1998-07-03 1999-02-03 Devgen Nv Characterisation of gene function using double stranded rna inhibition
AU776150B2 (en) 1999-01-28 2004-08-26 Medical College Of Georgia Research Institute, Inc. Composition and method for (in vivo) and (in vitro) attenuation of gene expression using double stranded RNA
DE19956568A1 (en) * 1999-01-30 2000-08-17 Roland Kreutzer Method and medicament for inhibiting the expression of a given gene
AU2008202208C1 (en) * 1999-01-30 2014-04-24 Alnylam Pharmaceuticals, Inc. Method and medicament for inhibiting the expression of a defined gene
EP1171586B1 (en) 1999-04-21 2013-06-12 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhibiting the function of polynucleotide sequences
US6423885B1 (en) 1999-08-13 2002-07-23 Commonwealth Scientific And Industrial Research Organization (Csiro) Methods for obtaining modified phenotypes in plant cells
US7067722B2 (en) 1999-08-26 2006-06-27 Monsanto Technology Llc Nucleic acid sequences and methods of use for the production of plants with modified polyunsaturated fatty acids
US7531718B2 (en) 1999-08-26 2009-05-12 Monsanto Technology, L.L.C. Nucleic acid sequences and methods of use for the production of plants with modified polyunsaturated fatty acids
WO2001014538A2 (en) 1999-08-26 2001-03-01 Calgene Llc Plants with modified polyunsaturated fatty acids
GB9927444D0 (en) * 1999-11-19 2000-01-19 Cancer Res Campaign Tech Inhibiting gene expression
US7829693B2 (en) 1999-11-24 2010-11-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
DE10100586C1 (en) * 2001-01-09 2002-04-11 Ribopharma Ag Inhibiting gene expression in cells, useful for e.g. treating tumors, by introducing double-stranded complementary oligoRNA having unpaired terminal bases
DE10160151A1 (en) * 2001-01-09 2003-06-26 Ribopharma Ag Inhibiting expression of target gene, useful e.g. for inhibiting oncogenes, by administering double-stranded RNA complementary to the target and having an overhang
ATE450621T2 (en) 2000-03-30 2009-12-15 Whitehead Biomedical Inst MEDIATORS OF RNA INTERFERENCE THAT ARE RNA SEQUENCE SPECIFIC
US20040259247A1 (en) 2000-12-01 2004-12-23 Thomas Tuschl Rna interference mediating small rna molecules
US7767802B2 (en) 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US8546143B2 (en) 2001-01-09 2013-10-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of a target gene
US7423142B2 (en) 2001-01-09 2008-09-09 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
CA2369944A1 (en) 2001-01-31 2002-07-31 Nucleonics Inc. Use of post-transcriptional gene silencing for identifying nucleic acid sequences that modulate the function of a cell
US7612194B2 (en) 2001-07-24 2009-11-03 Monsanto Technology Llc Nucleic acid sequences from Diabrotica virgifera virgifera LeConte and uses thereof
US7745418B2 (en) 2001-10-12 2010-06-29 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting viral replication
CN1604783A (en) * 2001-10-26 2005-04-06 里伯药品公司 Drug for treating a fibrotic disease through rna interfence
AU2003209814B2 (en) 2002-03-14 2008-12-04 Commonwealth Scientific & Industrial Research Organisation Modified gene-silencing RNA and uses thereof
US7601888B2 (en) 2002-03-21 2009-10-13 Monsanto Technology L.L.C. Nucleic acid constructs and methods for producing altered seed oil compositions
US7566813B2 (en) 2002-03-21 2009-07-28 Monsanto Technology, L.L.C. Nucleic acid constructs and methods for producing altered seed oil compositions
US7166771B2 (en) 2002-06-21 2007-01-23 Monsanto Technology Llc Coordinated decrease and increase of gene expression of more than one gene using transgenic constructs
US20040180438A1 (en) 2002-04-26 2004-09-16 Pachuk Catherine J. Methods and compositions for silencing genes without inducing toxicity
EP1857547B2 (en) 2002-08-05 2020-12-02 Silence Therapeutics GmbH Further novel forms of interfering RNA molecules
US7078234B2 (en) 2002-12-18 2006-07-18 Monsanto Technology Llc Maize embryo-specific promoter compositions and methods for use thereof
US8158768B2 (en) 2002-12-23 2012-04-17 Dynavax Technologies Corporation Immunostimulatory sequence oligonucleotides and methods of using the same
CN100546998C (en) * 2002-12-23 2009-10-07 戴纳伐克斯技术股份有限公司 Immunostimulatory sequence oligonucleotides and using method
CA2519912A1 (en) 2003-03-28 2004-10-14 Monsanto Technology Llc Regulatory regions that promote early plant seed enhanced transcription
US20060041961A1 (en) 2004-03-25 2006-02-23 Abad Mark S Genes and uses for pant improvement
PT1818405E (en) 2004-04-09 2015-10-20 Monsanto Technology Llc Compositions and methods for control of insect infestations in plants
US20060075522A1 (en) 2004-07-31 2006-04-06 Jaclyn Cleveland Genes and uses for plant improvement
EP2489726A3 (en) 2005-01-12 2012-11-28 Monsanto Technology LLC Genes and uses for plant improvement
CA2606220A1 (en) 2005-04-19 2006-12-21 Basf Plant Science Gmbh Starchy-endosperm and/or germinating embryo-specific expression in mono-cotyledonous plants
EP3173486B1 (en) 2005-09-16 2019-02-13 Monsanto Technology LLC Methods for genetic control of insect infestations in plants and compositions thereof
EP1929020A2 (en) 2005-09-16 2008-06-11 Devgen NV Dsrna as insect control agent
BRPI0615792A2 (en) 2005-09-16 2009-06-16 Devgen Nv pest control methods based on the use of rnai
AR059433A1 (en) 2006-02-10 2008-04-09 Monsanto Technology Llc IDENTIFICATION AND USE OF WHITE GENES FOR THE CONTROL OF PARASITE PLANT NEMATODES
CN101421406B (en) 2006-02-13 2016-08-31 孟山都技术有限公司 For producing nucleic acid construct and the method that the seed oil of change forms
EP1984511A2 (en) 2006-02-13 2008-10-29 Monsanto Technology LLP Selecting and stabilizing dsrna constructs
CN101195821A (en) 2006-12-04 2008-06-11 中国科学院上海生命科学研究院 Method for improving insect resistance of plant by using RNAi technique
CN101631868B (en) 2007-02-16 2016-02-10 巴斯福植物科学有限公司 For regulating the nucleotide sequence of embryo-specific expression in monocotyledons
CA2738474C (en) 2008-09-29 2020-05-12 Monsanto Technology Llc Soybean transgenic event mon87705 and methods for detection thereof
JP2012523850A (en) 2009-04-20 2012-10-11 モンサント テクノロジー エルエルシー Multiple virus resistance in plants
WO2012092573A2 (en) 2010-12-30 2012-07-05 Dow Agrosciences Llc Nucleic acid molecules that target the vacuolar atpase c subunit and confer resistance to coleopteran pests
CA2822958A1 (en) 2010-12-30 2012-07-05 Dow Agrosciences Llc Nucleic acid molecules that confer resistance to coleopteran pests
BRPI1107329A2 (en) 2010-12-30 2019-11-19 Dow Agrosciences Llc nucleic acid molecules that target the vacuolar atpase h-subunit that confer resistance to Coleoptera pests, plant transformation vector, transformed cell, as well as methods for controlling a Coleoptera pest population, controlling an infestation by said pest, improving the yield of a crop and to produce a transgenic cell
US9012722B2 (en) 2010-12-30 2015-04-21 Dow Agrosciences Llc Nucleic acid molecules that target the RHO1 small GTP-binding protein and confer resistance to coleopteran pests
US9688983B2 (en) 2012-12-20 2017-06-27 Dow Agrosciences Llc Nucleic acid molecules that confer resistance to coleopteran pests
EP2810952A1 (en) 2013-06-03 2014-12-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Novel pest control methods
BR102014031844A2 (en) 2013-12-20 2015-10-06 Dow Agrosciences Llc RAS and related nucleic acid molecules that confer resistance to Coleoptera and Hemiptera pests
KR20160093728A (en) 2013-12-20 2016-08-08 다우 아그로사이언시즈 엘엘씨 Rnapii-140 nucleic acid molecules that confer resistance to coleopteran pests
EP3116998A4 (en) 2014-03-12 2017-10-11 The University Of Sydney Sirna production in plastids of higher plants
CA2947756A1 (en) 2014-05-07 2015-11-12 Dow Agrosciences Llc Dre4 nucleic acid molecules that confer resistance to coleopteran pests
ES2811279T3 (en) 2014-12-22 2021-03-11 Fraunhofer Ges Forschung Nucampholin nucleic acid molecules for controlling beetle insect pests
EP3067424A1 (en) 2015-03-13 2016-09-14 Dow AgroSciences LLC Rna polymerase i1 nucleic acid molecules to control insect pests
WO2016165729A1 (en) 2015-04-13 2016-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Novel aflatoxin and fungal infection control methods
BR102016012010A2 (en) 2015-05-29 2020-03-24 Dow Agrosciences Llc NUCLEIC ACID, RIBONUCLEIC ACID (RNA) AND DOUBLE-FILAMENT RIBONUCLEIC ACID (DSRNA) MOLECULE, CELL, PLANT AND SEED USES, PRIMARY PRODUCT, AS WELL AS METHODS TO CONTROL A POPULATION OF HOLIDAYS, OR HOSPITALS, OR HOSPITALS, OR HOSPITALS, OR HOSPITALS THE INCOME OF A CULTURE, AND TO PRODUCE A TRANSGENIC VEGETABLE CELL AND A TRANSGENIC PLANT
CN108431207A (en) 2015-10-12 2018-08-21 美国陶氏益农公司 Assign the WUPA nucleic acid molecules to the resistance of coleoptera and Hemipteran pest
CA3008141A1 (en) 2015-12-18 2017-06-22 Dow Agrosciences Llc Ribosomal protein l40 (rpl40) nucleic acid molecules that confer resistance to coleopteran and hemipteran pests
EP3342780A1 (en) 2016-12-30 2018-07-04 Dow AgroSciences LLC Pre-mrna processing factor 8 (prp8) nucleic acid molecules to control insect pests
EP3825408A1 (en) 2019-11-19 2021-05-26 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Methods of multi-species insect pest control

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675803B1 (en) * 1991-04-25 1996-09-06 Genset Sa CLOSED, ANTISENSE AND SENSE OLIGONUCLEOTIDES AND THEIR APPLICATIONS.
DK0592685T3 (en) * 1992-04-17 2002-02-11 Kirin Brewery Plant resistant to two or more viruses and their production
NZ255028A (en) * 1992-07-02 1997-03-24 Hybridon Inc Antisense oligonucleotides resistant to nucleolytic degradation
GB2273932A (en) * 1992-11-24 1994-07-06 Stiefel Laboratories Stable oligonucleotides
FR2703053B1 (en) * 1993-03-26 1995-06-16 Genset Sa STAPLE AND SEMI-STAPLE OLIGONUCLEOTIDES, PREPARATION METHOD AND APPLICATIONS.
US5624803A (en) * 1993-10-14 1997-04-29 The Regents Of The University Of California In vivo oligonucleotide generator, and methods of testing the binding affinity of triplex forming oligonucleotides derived therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9805770A3 *

Also Published As

Publication number Publication date
WO1998005770A3 (en) 1998-03-26
DE19631919A1 (en) 1998-02-12
DE19631919C2 (en) 1998-07-16
WO1998005770A2 (en) 1998-02-12

Similar Documents

Publication Publication Date Title
DE19631919C2 (en) Anti-sense RNA with secondary structure
EP1798285B1 (en) Methods and medicament for inhibition the expression of a defined gene
DE69232032T3 (en) ANTISENSE OLIGONUCLEOTIDE
EP0519463B1 (en) Synthetic, catalytic oligonucleotides
DE19935756A1 (en) Covalently closed nucleic acid molecule for immune stimulation
EP0753580A2 (en) Cell-specific gene therapy, using the tissue inhibitor of metalloproteinase-3 promoter
DE69634698T2 (en) TISSUE SPECIFIC AND TARGET RNA SPECIFIC RIBOZYMES
DE69233106T2 (en) Process for the production of single-strand &#34;stem-loop&#34; DNS
EP1951870B1 (en) Dna constructs for specific inhibition of gene expression by rna interference
DE69937444T2 (en) ISOLATED AND CLEANED NUCLEIC ACIDS CONTAINING A GENE EXPRESSED IN HOP WIPES
EP0299303B1 (en) Eucaryotic expression vectors with multimeric enhancer subelements, process for their preparation and use
DE3819463A1 (en) EXPRESSION VECTORS FOR THE PRODUCTION OF UNFUSIONED PROTEINS IN MICROORGANISMS
DE4444949C1 (en) Vectors and viruses for gene therapy
WO1998005771A1 (en) Method for increasing the effect of antisense rna in cells
DE69933382T2 (en) PREPARATION OF SSDNA INSIDE THE CELL
DE4422259C2 (en) Anti-sense oligonucleotides for aromatase inhibition
WO2000043501A2 (en) Ribozymes directed against the catalytic subunit of the human telomerase (htert)
WO2001005993A1 (en) Cellular absorption of dna
DE3929822A1 (en) DNA vector including multiple cloning site - for cloning, specific mutagenesis, sequencing and optimised expression of inserted genes, and construction of gene banks
WO2002074953A2 (en) Gene library and a method for producing the same
EP0733713A1 (en) Procedure for measuring the transcription - regulatory activities of DNA-sequences

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990128

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20020313

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030301