EP0918632A1 - Gut kompostierbare verbundmehrschichtfolie, verfahren zu deren herstellung sowie verwendung derselben - Google Patents

Gut kompostierbare verbundmehrschichtfolie, verfahren zu deren herstellung sowie verwendung derselben

Info

Publication number
EP0918632A1
EP0918632A1 EP97942856A EP97942856A EP0918632A1 EP 0918632 A1 EP0918632 A1 EP 0918632A1 EP 97942856 A EP97942856 A EP 97942856A EP 97942856 A EP97942856 A EP 97942856A EP 0918632 A1 EP0918632 A1 EP 0918632A1
Authority
EP
European Patent Office
Prior art keywords
films
polyester
barrier layer
multilayer film
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97942856A
Other languages
English (en)
French (fr)
Inventor
Frank-Martin Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sengewald Verpackungen GmbH
Original Assignee
Sengewald Verpackungen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sengewald Verpackungen GmbH filed Critical Sengewald Verpackungen GmbH
Publication of EP0918632A1 publication Critical patent/EP0918632A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/62Compostable, hydrosoluble or hydrodegradable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention relates to a well compostable composite multilayer film comprising at least one barrier layer made of polyvinyl alcohol, to which one or more films are laminated on both sides by means of an adhesive or applied by means of coextrusion or by hot coating, a method for producing such multilayer films and their use.
  • Thermoplastic processable and biodegradable materials for biodegradable (compostable) films are already known, for example from EP-0-641 817 A2.
  • polyesteramides are disclosed, for example, from adipic acid, butanediol and aminocarboxylic acid with an ester content of 45% by weight, which in the biological degradation test show a large microbial growth of, for example, 102 mg in 14 days.
  • a sample is also referred to as well compostable, which, under certain conditions, enables a biomass growth of at least 30 mg / l on the polymers within a maximum of two weeks.
  • the prior art also includes mixed polyurethane prepolymers which can be used as adhesives for laminating film materials, as they are made of EP 0 150 444 B1 are accessible.
  • These polyurethane prepolymers have terminal isocyanate groups from diisocyanates of different reactivity and polyfunctional alcohols, and are suitable in bulk or in aqueous solution for bonding plastics, in particular for laminating plastic films. It is known that the products obtainable with such polyurethane prepolymers (manufactured film composites) show a high level of processing reliability when heat-sealing. This may be attributed to a reduced proportion of low molecular weight products capable of migration in the prepolymers.
  • the invention has now set itself the task of providing a polyethylene or polyolefin film replacement in general, which contains a corresponding barrier layer, so that all the requirements for barrier films are met and which still fulfills all processing requirements for a film composite and at the same time is outstandingly biological is degradable (compostable). Furthermore, a method for producing such biodegradable multilayer films is to be specified. Finally, the present invention also relates to the use of the well rot and compostable films.
  • a multilayer film which has at least one polyvinyl alcohol film as the barrier layer and on both sides of the barrier layer has at least one film consisting of biodegradable aliphatic polyester amides and / or biodegradable polyesters which are connected to the polyvinyl alcohol layer by hot coating or laminated thereon by means of an adhesive to provide a multilayer film which has excellent biodegradability (compostability).
  • compostability of the multi-layer film is better than the compostability of the materials involved in the construction of the multi-layer film, seen in isolation.
  • the most poorly compostable component for example the layer made of polyester amide and / or polyester
  • compostability is understood to mean a property of the individual materials used and of the entire composite, that is to say the composite multilayer film, the compostability being in a specific connection to the biodegradability.
  • compostability means biodegradability in the soil under composting conditions.
  • Biodegradable polymers and plastics are materials that are quantitatively converted into either CO 2 and H 2 O or CH 4 and H 2 O by microorganisms under aerobic or anaerobic conditions.
  • good compostability means that a material in the biodegradation test according to ASTM G22 produces> 30 mg / 1 biomass. In a preferred embodiment of the invention, this is met or exceeded both by the individual layers and by the composite as a whole. The measuring method is explained in more detail in the example section.
  • the barrier PVOH layer is laminated with the aliphatic polyester amide and / or polyester layer (s) by means of a polyurethane adhesive
  • the polyurethane adhesive used also has excellent biodegradability (compostability). This was previously unknown and cannot be expected based on the data available.
  • the invention thus provides a film which can be used universally as a polyolefin film substitute for a variety of purposes.
  • the basic structure of the film according to the invention with a core of polyvinyl alcohol as a barrier layer and film layers of biodegradable goods surrounding this core from both sides, in particular of aliphatic polyester amides and / or polyesters, can be used universally and can be modified in many ways. Among other things, it is possible to apply a thin aluminum layer (a few nanometers) to the biodegradable goods by vapor deposition or sputtering, this thin aluminum layer acting as an aroma sealing layer. Even the most sensitive substances (vanillin) do not lose their aroma when wrapped in the appropriate foil.
  • a thin aluminum layer in the range of a few nanometers is readily environmentally compatible, since it can be assumed that, for example, aluminum is converted to oxides or hydroxides, which do not stand in the way of compostability.
  • a combination with paper goods, for example in the form of superabsorbers, is also conceivable.
  • the film according to the invention can be used as a polyethylene or polypropylene substitute in hygiene goods, for example diapers, sanitary napkins, etc.
  • the films according to the invention have excellent processing properties, are extrudable, optionally coextrudable, and can be stretched not only individually but also in combination, for example a multilayer film according to the invention can be stretched biaxially.
  • the core of the material according to the invention is in any case a film layer made of polyvinyl alcohol.
  • Such materials are familiar to the person skilled in the art and can be produced, for example, by saponification of polyvinyl acetate. It is known that such films made of polyvinyl alcohol are largely impenetrable for gases such as oxygen, nitrogen, carbon dioxide etc., but that they do allow water vapor to pass through.
  • gases such as oxygen, nitrogen, carbon dioxide etc.
  • Various characteristics can be used to characterize polyvinyl alcohol, which is generally free of residual monomers as a commercial product Partial and full saponification.
  • the fully hydrolyzed (fully hydrolyzed) vinyl acetate polymer corresponds to the basic building block of the PVOH.
  • the partial saponification leads to a polymer of -CH 2 -CH (OH) - and -CH 2 -CH (OCOH 3 ) - building blocks
  • the molecular weight, expressed in Mw which is 1.7 x 10 5 to 2.5 x 10 5 for highly viscous, fully saponified types and only 1 x 10 4 - 6 x 10 4 for low-viscosity types.
  • polyvinyl alcohol generally has excellent biodegradability, which can be demonstrated for aqueous PVOH solutions in a test with adapted activated sludge, the PVOH elimination from water generally being determined by determining the chemical oxygen demand (COD).
  • PVOH films are also biodegradable, measured in the Zahn-Wellens test. Both findings are therefore a clear indication of excellent compostability, although this depends to a certain extent on the degree of saponification of the polyvinyl acetate. For example, a certain residual concentration of acetate groups has proven to be beneficial for biodegradability, in particular compostability.
  • the thickness of the core layer made of polyvinyl alcohol is not particularly critical in the context of the multilayer film structure according to the invention. It can be varied beyond the usual values and is preferably in the range from about 3-20 .mu.m.
  • Thicknesses in the range between 5 and 12 ⁇ m are particularly preferred.
  • particularly useful barrier layers result if the PVOH fulfills one or more of the following criteria:
  • Mw between 14,000 and 210,000, preferably between 14,000 and 175,000, particularly preferably between 18,000 and 175,000;
  • Viscosity between 3 and 60 mPa.s, preferably between 3 and 40 mPa.s, particularly preferably between 5 and 40 mPa.s;
  • PVOH grades include the Mowiol® ® from Hoechst.:
  • Polyesteramide materials which are suitable for films which are suitable in combination with polyvinyl alcohol films in the context of the invention generally have relatively high molecular weights with ester contents between 30 and 70% by weight, are easy and reproducible to produce and have good mechanical properties also for the production of transparent films and good biodegradability or compostability. Such materials are known for example from EP 0 641 817 A2.
  • the aliphatic polyester amides have aliphatic ester and aliphatic amide structures and have melting points of at least 75 ° C. The weight fraction of the ester structures is between 30 and 70%, the proportion of the amide structures between 70 and 30%.
  • the copolymers suitable for the production of the films have an average molecular weight (MW determined by gel chromatography in m-cresol against standard polystyrene) of 10,000 to 300,000, preferably 20 to 150,000.
  • Such polyester amides are preferably synthesized by mixing the amides or ester-forming starting components and polymerization at elevated temperature under autogenous pressure and then distilling off the water of reaction and excess monomers in vacuo and at elevated temperature.
  • the arrangement of the ester or amide segments is carried out purely statistically by the synthesis conditions, ie these compounds are not to be referred to as thermoplastic elastomers but as thermoplastics.
  • the structure of thermoplastic elastomers is described in the specialist literature with "the simultaneous presence of soft and elastic segments with high ductility and low glass transition temperature (to Tg value) as well as hard and crystallizable segments with low ductility, high Tg value and the tendency to form associatees". This segment arrangement is not given.
  • block copolymers with ester and amide structures which have the composition according to the invention can also be composted. However, their synthesis is significantly more complex.
  • the monomers used to prepare the copolymers can come from the following groups:
  • Dialcohols such as ethylene glycol, 1,4-butanediol, 1,3-propanediol, 1,6-hexanediol, diethylene glycol and others, and / or dicarboxylic acids such as oxalic acid, succinic acid, adipic acid and others also in the form of their respective esters (methyl, ethyl, etc .) and / or hydroxycarboxylic acids and lactones such as caprolactone and others and / or amino alcohols such as ethanolamine, propanolamine etc. and / or cyclic lactams such as epsilon-captrolactam or laurolactam etc.
  • dicarboxylic acids such as oxalic acid, succinic acid, adipic acid and others also in the form of their respective esters (methyl, ethyl, etc .) and / or hydroxycarboxylic acids and lactones such as caprolactone
  • omega-aminocarboxylic acid such as aminocaproic acid etc. and / or mixtures ( 1: 1 salts) from dicarboxylic acid such as adipic acid, succinic acid etc. and diamines such as hexamethylene diamine, diaminobutane etc.
  • both hydroxyl- or acid-terminated polyesters with molecular weights between 200 and 10,000 can be used as the ester-forming component.
  • the synthesis can be carried out either by the polyamide method by stoichiometric mixing of the starting components, optionally with the addition of water and subsequent removal of water from the reaction mixture, or by the polyester method by adding an excess of diol with esterification of the acid groups and subsequent transesterification or transamidation of these esters. In this second case, the excess glycol is distilled off in addition to water.
  • caprolactam, diol and dicarboxylic acid are preferably mixed in the desired stoichiometry for the production of polyester amides for biodegradable film components.
  • the polyester amides which can be used can furthermore contain 0.1 to 5% by weight, preferably 0.1 to 2% by weight, of branching agents.
  • branching agents can include, for example, alcohols such as trimethylolpropane or glycerol, tetrafunctional alcohols such as pentaerythritol, trifunctional carboxylic acids such as citric acid.
  • the branching agents increase the melt viscosity of the polyester amides according to the invention to such an extent that extrusion blow molding of these polymers is possible. This does not hinder the biodegradation of these materials.
  • Aliphatic polyesteramides which can be used in the context of the invention have ester fractions between 35 and 80% by weight, containing aliphatic dialcohols with a chain length of C 2 to C 12 , preferably C 2 to C 5 , aliphatic dicarboxylic acids or their esters with a chain length of C-, to C 12 , preferably C 2 to C 6 , omega-aminocarboxylic acids with a chain length of C, to C 12 , preferably C 4 to C 6 , or cyclic lactams with a ring size of C 5 to C 12 , preferably C 5 to C ⁇ , or a 1: 1 salt of aliphatic dicarboxylic acid and aliphatic diamine with a chain length of C 4 to C 12 , preferably C 4 to C 6 , with optionally 0.01 to 5% by weight, preferably 0.01 to 3 % By weight of branching. They have a melting point of more than 75 ° C and a molecular weight
  • the aliphatic polyesteramides suitable for film production can contain 0 to 50% by weight of inorganic or organic fillers or reinforcing materials, mineral fillers, UV stabilizers, antioxidants, pigments, dyes, nucleating agents, crystallization accelerators or retarders, flow aids, lubricants, Mold release agents, flame retardants and modified or unmodified rubbers.
  • inorganic or organic fillers or reinforcing materials mineral fillers, UV stabilizers, antioxidants, pigments, dyes, nucleating agents, crystallization accelerators or retarders, flow aids, lubricants, Mold release agents, flame retardants and modified or unmodified rubbers.
  • additives and auxiliaries mentioned it should preferably be ensured that the compostability of the polyester amides is essentially not adversely affected.
  • biodegradable copolyesters and their blends with starch are suitable as biodegradable goods.
  • the basic framework of biodegradable Polyesters form copolyesters from well-known aliphatic diols, aliphatic and aromatic dicarboxylic acids. All monomers used are biodegradable and ecotoxicologically harmless. The statistical incorporation of the aromatic dicarboxylic acid units is important since, in the presence of longer aromatic blocks, complete degradability is no longer achieved.
  • Copolyester and starch blends are also suitable.
  • Thermoplastic starch is first produced from native wheat, maize or potato starch and a plasticizer such as glycerin in an extruder and then processed "on line" with the copolyester to form a blend.
  • Important parameters are a complete digestion of the native starch in the extruder (i.e. destruction of the crystalline superstructures in the starch grain, but no reduction in molecular weight) and the setting of the desired blend morphology.
  • the copolyester is present as a continuous phase in which the thermoplastic starch is finely dispersed. This targeted hydrophobicization of the starch achieves the water resistance of the starch blend required for many areas of application. Films made from them show good mechanical properties such as high tear resistance and -expansion, are antistatic, permeable to oxygen and water vapor, printable, sealable and are characterized by an extremely pleasant soft handle.
  • the film layers made of biodegradable goods such as polyester amides or polyesters of the type mentioned above are in the form of a composite with a polyvinyl alcohol film. They can be laminated with this, for example using an adhesive.
  • a polyurethane prepolymer with isocyanate end groups based on diisocyanates of different reactivity can be used as the adhesive.
  • Such compounds with isocyanate groups have been known for a long time and can be converted to high polymers in a simple manner with suitable hard materials - usually polyfunctional alcohols. So their use as a sealant, as a varnish or adhesive is known.
  • polyurethane prepolymers with terminal isocyanate groups of different reactivity and polyfunctional alcohols which can be obtained by reacting 2,4-tolylene diisocyanate with polyfunctional alcohols in the ratio OH: NCO between 4 and 0.55 in a first reaction step and after the reaction of virtually all fast NCO groups with some of the OH groups present, in a second reaction step compared to the less reactive NCO groups of the 2,4-toluylene diisocyanate from reaction step one, more reactive diisocyanate in equimolar amounts or in excess to still free OH groups, if desired using customary catalysts and / or elevated temperatures.
  • a large number of polyfunctional alcohols can be used. Aliphatic alcohols with 2 to 4 hydroxyl groups per molecule are suitable in this stage. Although primary like secondary alcohols can also be used, the secondary are preferred.
  • the reaction products of low molecular weight polyfunctional alcohols with alkylene oxides with up to 4 carbon atoms can be used.
  • the reaction products of ethylene glycol, propylene glycol, of the isomeric butane ions or hexane ions with ethylene oxide, propylene oxide and / or butene oxide are suitable.
  • reaction products of trifunctional alcohols such as glycerol, trimethylolethane and / or trimethylpropane or higher functional alcohols such as, for example, pentaerythritol or sugar alcohols can also be used with the alkene oxides mentioned.
  • trifunctional alcohols such as glycerol, trimethylolethane and / or trimethylpropane or higher functional alcohols
  • pentaerythritol or sugar alcohols can also be used with the alkene oxides mentioned.
  • Particularly suitable are polyether polyols with a molecular weight of 100 to 10,000, preferably 1,000 to 5,000 and in particular polypropylene glycol.
  • polyether polyols can be produced by condensation of, for example, glycerol or pentaerythritol with elimination of water. Polyols commonly used in polyurethane chemistry continue to be formed by the polymerization of tetrahydrofuran.
  • the reaction products of polyfunctional low molecular weight alcohols such as propylene oxide are particularly suitable under conditions in which secondary hydroxyl groups are at least partially formed.
  • Other suitable polyether polyols are e.g. described in DE 2 559 759.
  • polyester polyols with a molecular weight of 200 to 10,000 can be used in the context of the invention for producing the adhesive that can be used.
  • polyester polyols can be used which are converted to 1 to by reacting low molecular weight alcohols, in particular ethylene glycol, propylene glycol, glycerol or trimethylolpropane 50 moles of caprolactone are formed.
  • suitable polyester polyols can be produced by polycondensation.
  • difunctional and / or trifunctional alcohols with a deficit of dicarboxylic acids and / or tricarboxylic acids or their reactive derivatives can be condensed to give polyester polyols.
  • Suitable dicarboxylic acids here are succinic acid and its higher homologues with up to 12 carbon atoms, furthermore unsaturated dicarboxylic acids such as maleic acid or fumaric acid and aromatic dicarboxylic acids, in particular the isomeric phthalic acids.
  • Citric acid or trimellitic acid are suitable as tricarboxylic acids.
  • Polyester polyols from the cited dicarboxylic acids and glycerol which have a residual content of secondary OH groups are particularly suitable for the purposes of the invention.
  • reaction products of 2,4-tolylene diisocyanate with polyfunctional alcohols which can be used according to the invention in the second reaction stage as a solvent or reactive diluent, it is important to maintain a certain ratio between hydroxyl groups and isocyanate groups. This results in suitable products which, after the more reactive NCO groups have reacted, still contain OH groups if the number of OH groups divided by the number of isocyanate groups is between 4 and 0.55, preferably between 1 and 0.6.
  • the second stage to produce the adhesive in the OH and NCO-functional reaction products of the first reaction stage, symmetrical, dicyclic diisocyanates are reacted with the remaining OH groups as reactive diluents.
  • the amount of the dicyclic diisocyanates based on the total amount of the diisocyanates in stages 1 and 2, is 5 to 80% by weight, preferably 5 to 60% by weight and in particular 10 to 40% by weight.
  • the molar ratio of OH groups: NCO groups expressed as the quotient of the OH groups, is divided by isocyanate groups, preferably 0.5 to 1.0, in particular 0.6 to 0.8, based on the remaining OH groups.
  • dicyclic diisocyanates it is important that the reactivity of their isocyanate groups towards hydroxyl groups is higher than that of the terminal isocyanate groups of the reactive diluent.
  • the diaryl diisocyanates are therefore primarily suitable. 4,4'-Diphenylmethane diisocyanate and / or substituted 4,4'-diphenylmethane diisocyanates are preferred.
  • the products which are preferably obtainable at temperatures between 40 and 100 ° C., have a substantially reduced proportion of free, monomeric tolylene diisocyanate but also of free, monomeric dicyclic diisocyanates.
  • the prepolymers are used over a large area at elevated temperatures, about 80 to 100 ° C., there is no nuisance caused by volatile tolylene diisocyanate.
  • Another advantage of the process products is their relatively low viscosity, which they e.g. suitable for solvent-free adhesive applications.
  • Such prepolymers were known to be suitable in bulk or as a solution in organic solvents for bonding plastics, in particular for laminating plastic foils, whereby customary hardeners, such as polyfunctional higher molecular alcohols, can be added (2-component systems) or surfaces with a defined moisture content can be glued directly with such available products, whereby film composites with high processing reliability can be obtained during heat sealing.
  • customary hardeners such as polyfunctional higher molecular alcohols
  • the polyurethane prepolymer adhesives of a multilayer film composite according to the invention have an equally good and excellent biodegradability and compostability as this is the case for the biodegradable goods consisting of polyester amides and / or polyester and the barrier layer made of polyvinyl alcohol.
  • the compostable composite multilayer film is characterized in that the films made of polyester and / or polyester amide are coextruded together with the barrier layer with the aid of an adhesion promoter based on polyether epoxides.
  • an adhesion promoter based on polyether epoxides.
  • the multilayer films according to the invention have an excellent spectrum of applicability and, at the same time, excellent biodegradability.
  • the invention also relates to a method for producing fully biodegradable and compostable multilayer films of the type mentioned at the beginning.
  • a barrier layer made of polyvinyl alcohol is provided according to the invention, to which one or more film layers or layers made of a biodegradable polyester and / or polyester amide are applied on both sides.
  • the films made of a biodegradable polyester and / or polyester amide are laminated with an adhesive based on a polyurethane prepolymer.
  • the films of polyester and / or polyester amide are coextruded with the barrier layer with the aid of an adhesion promoter based on polyether epoxides.
  • the adhesion promoter is used only in very small amounts and, moreover, polyether epoxy compounds are biodegradable, rot and compostable, so that either the small amount of polyether epoxide is ecologically essentially harmless or can be composted without problems.
  • the invention also relates to the use and the films mentioned above for packaging purposes, preferably in the food industry or detergent industry, medical hygiene purposes and in special composites.
  • the compostable composite multilayer film is a replacement for Polyolefin films are ideal for packaging purposes in the food industry.
  • their food safety is to be emphasized, their positive properties such as high transparency and tear resistance, which can be enhanced by biaxial stretching.
  • the compostable composite multilayer film according to the invention is outstandingly suitable for use in medical hygiene areas, applications in particular as an insert in diapers or sanitary napkins being considered.
  • polyolefin films it is possible to create a product that is completely decomposable more quickly than is the case with the hygiene articles previously available on the market.
  • FIG. 1 shows a schematic cross section through a first embodiment of a compostable composite multilayer film according to the invention, the individual layers which are close to one another being shown at a distance to improve clarity;
  • FIG. 2 shows a schematic cross section through a second embodiment of the compostable composite multilayer film according to the invention, the individual layers and layers firmly connected to one another in the finished film also being shown at a distance from one another here in order to simplify the illustration and improve clarity.
  • 1 denotes a compostable composite multilayer film.
  • This has a core layer or middle layer Foil layer 2 made of polyvinyl alcohol material.
  • the polyvinyl alcohol film acts as a barrier layer.
  • Layers 3 of biodegradable goods are arranged on both the front and the back of the polyvinyl alcohol film 2.
  • the layers 3 and the layers 2 are connected to one another by heat sealing.
  • FIG. 2 represents a modification of this first embodiment according to the invention.
  • reference number 1 denotes a compostable multilayer composite film according to the invention, which, however, in addition to the barrier layer 2 and the film layers 3 made of biodegradable goods, also has two layers 4.
  • the layers 4 denote adhesive materials based on polyurethane prepolymer, which are used to laminate the films 3 onto the barrier film 2.
  • the embodiments shown in the two Figures 1 and 2 each illustrate a symmetrical structure. However, modifications of this structure are possible within the scope of the invention.
  • the invention also includes an asymmetrical structure in which, for example, only one layer 3 is laminated onto a barrier layer 2. Finally, depending on requirements, further layers 3 or 2 can also be laminated onto the embodiment of FIGS. 1 or 2 by gluing or applied by hot coating. It is also conceivable to provide more than one barrier layer made of a PVOH.
  • Compostability of a film is defined as follows: The polymers and films to be tested are incubated in a liquid medium according to ASTM G22 (composition Table 1) with a mixture of microorganisms from garden compost with swirling (220 rpm) and air admission at 37 ° C. For this purpose, about 1 g of the polymer is inoculated into several cm 2 pieces in 250 ml of nutrient salt solution in 11 Erlenmeyer flasks with 2 ml of a suspension of 10 g of garden compost with 100 ml of nutrient salt solution. Coarse parts are separated from the compost suspension beforehand using a fine sieve. The dry matter (TS) content of the inoculated amount is then about 50 mg.
  • ASTM G22 composition Table 1
  • TS dry matter
  • HgCl 2 500 mg / 1
  • Other control batches contain cellulose (4 g / 1 type DP 500, Wolff, Walsrode) to check the growth with a natural substrate or are used without the addition of a C source to determine the background growth and the TS decrease in the inoculum.
  • Table 1 Composition of the nutrient solution according to ASTMG 22
  • ATP adenosine triphosphate
  • samples are not compostable which, under the above-mentioned conditions, allow a biomass growth of at most 15 mg / l within a maximum of 2 weeks.
  • the individual materials of a multilayer film according to the invention in the individual test each have good compostability according to the criteria mentioned. Fe he can be seen that in the composite the compostability the individual materials are better in themselves than in individual examinations.
  • the multilayer films according to the invention therefore have a quasi-synergistic biological compostability.
  • Comparative Example 1 Polyester amide from adipic acid, butanediol and aminocaproic acid with 45% by weight ester fraction 146 g (1 mol) of adipic acid, 90 g (1 mol) of 1,4-butanediol and 131 g (0.1 mol) of 6-aminocaproic acid are combined and heated up to 120 ° C within 30 minutes. After 2 hours at this temperature, the mixture is heated to 220 ° C. and a vacuum is applied. Finally, the mixture is polymerized with an oil pump vacuum at 220 ° C. for 4 h. A light yellow product is obtained which can be granulated. The melting point according to DSC is 125 ° C. The relative viscosity (1 g% in m-cresol at 25 ° C) is 2.2. In the biological degradation test, the material shows a microbial growth of 102 mg in 14 days.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Laminated Bodies (AREA)

Abstract

Gut kompostierbare Verbundmehrschichtfolien (1) weisen wenigstens eine Barriereschicht aus Polyvinylalkohol (2) auf, auf welche beidseitig ein oder mehrere Folien (3) aus einem biologisch abbaubaren Polyester und/oder Polyesteramid mit einem Kleber und/oder Haftvermittler (4) aufkaschiert oder durch Coextrusion oder Heißbeschichtung aufgebracht sind. Alle zur Herstellung der Verbunde eingesetzten Materialien sind biologisch abbaubar, insbesondere verrott- und kompostierbar, wobei der Verbund sogar noch besser kompostierbar ist als die Einzelmaterialien. Die Verbundmehrschichtfolie kann als Barrierefolie entsprechende Polyolefinfolien bei allen Anwendungszwecken wie Verpackungen oder in Hygieneprodukten ersetzen.

Description

Gut kompostierbare Verbundmehrschichtfolie, Verfahren zu deren Herstellung sowie Verwendung derselben
Die Erfindung betrifft eine gut kompostierbare Verbundmehrschichtfolie aufweisend wenigstens eine Barriereschicht aus Polyviπylalkohoi, auf welche beidseitig ein oder mehrere Folien mittels eines Klebers aufkaschiert oder mittels Coextrusion oder durch Heißbeschichtung aufgebracht sind, ein Verfahren zur Herstellung solcher Verbundmehrschichtfolien und deren Verwendung.
Im Stand der Technik zu Verpackungszwecken, Medizinhygienezwecken oder anderen Spezialzwecken eingesetzte Verbünde sind grundsätzlich nicht biologisch abbaubar. An sich thermoplastisch verarbeitbare und biologisch abbaubare Materialien für biologisch abbaubare (kompostierbare) Folien sind bereits, zum Beispiel aus der EP-0-641 817 A2 bekannt. Dort werden Polyesteramide beispielsweise aus Adipinsäure, Butandiol und Aminocarbonsäure mit 45 Gew.-% Esteranteil offenbart, die im biologischen Abbautest einen großen Mikrobenbewuchs von beispielsweise 102mg in 14 Tagen zeigen. Nach den in der genannten Patentanmeldung offenbarten Kriterien wird auch als gut kompostierbar eine Probe bezeichnet, die unter bestimmten Bedingungen innerhalb von maximal zwei Wochen ein Btomassewachstum auf den Polymeren von mindestens 30 mg/1 ermöglicht.
Zum Stand der Technik gehören ebenfalls als Kleber für Kaschierungen von Folieniriaterialien einsetzbare gemischte Polyurethanprepolymere, wie sie aus der EP 0 150 444 Bl zugänglich sind. Diese Polyurethanprepoiymere weisen endständige Isocyanatgruppen aus Diisocyanaten unterschiedlicher Reaktivität und mehrfunktionellen Alkoholen auf, und eignen sich in Substanz oder in wässriger Lösung zum Verkleben von Kunststoffen, insbesondere zum Kaschieren von Kunststoffolien. Es ist bekannt, daß die mit solchen Polurethanprepolymeren erhältlichen Produkte (hergestellte Folienverbunde) eine hohe Verarbeitungssicheruheit beim Heißsiegeln zeigen. Dies wird möglicherweise einem verminderten Anteil migrationsfähiger niedermolekularer Produkte in den Prepolymeren zugeschrieben.
Über die biologische Abbaubarkeit solcher Kleber ist bislang nichts bekannt.
Die Erfindung hat es sich nun zur Aufgabe gestellt, einen Polyethylen- oder allgemein einen Polyolefinfolienersatz zur Verfugung zu stellen, der eine entsprechende Barriereschicht enthält, so daß alle Anforderungen an Barrierefolien erfüllt werden und der trotzdem alle verarbeitungstechnischen Anforderungen an einen Folienverbund erfüllt und zugleich hervorragend biologisch abbaubar (kompostierbar) ist. Ferner soll ein Verfahren zur Herstellung solcher biologisch abbaubarer Mehrlagenfolien angegeben werden. Schließlich ist Gegenstand der vorliegenden Erfindung auch die Verwendung der gut verrott- und kompostierbaren Folien.
Gelöst werden diese sowie andere nicht einzeln genannte Aufgaben durch eine Verbundfolie der eingangs genannten Art mit den Merkmalen des kennzeichnenden Teils von Anspruch 1. Bevorzugte Ausfuhrungsformen werden in den von Anspurch 1 abhängigen Unteransprüchen unter Schutz gestellt, während in verfahrentechnischer Hinsicht der Gegenstand des Anspruches 5 eine Lösung der erfindungsgemäßen Probleme präsentiert. Erfindungsgemäße Verwendungen schließlich werden in den entsprechenden Ansprüchen 9 und 10 unter Schutz gestellt. Überraschenderweise gelingt es durch eine Mehrlagenfolie, welche mindestens eine Polyvinylalkoholfolie als Barriereschicht sowie beidseitig der Barrierelage wenigstens eine aus biologisch abbaubaren aliphatischen Polyesteramiden und/oder biologisch abbaubaren Polyestern bestehende Folie aufweist, die mit der Polyviπylalkoholschicht durch Heißbeschichten verbunden sind oder auf diese mittels eines Klebers kaschiert sind, eine Mehrlagenfolie zur Verfügung zu stellen, welche eine hervorragende biologische Abbaubarkeit (Kompostier- barkeit) aufweist. Hierbei überrascht insbesondere, daß die Kompostierbarkeit der Mehrlagenfolie besser ist als die Kompostierbarkeit der am Aufbau der Mehrlagenfolie beteiligten Materialien für sich allein gesehen. D.h. , innerhalb des Mehrschichtenverbundes der Mehrlagenfolie verrottet die am schlechtesten kompostierbare Komponente (beispielsweise die Schicht aus Polyesteramid und/oder Polyester) schneller als die vergleichbare Einzelschicht unter entsprechenden Kompostierungsbedingungen. Dieser quasi synergistische Effekt war nicht vorhersehbar und völlig überraschend.
Im Rahmen der Erfindung wird dabei unter "Kompostierbarkeit" eine Eigenschaft der einzelnen eingesetzten Materialien sowie des gesamten Verbundes also der Verbundmehrschichtfolie verstanden, wobei die Kompostierbarkeit in bestimmtem Zusammenhang zur biologischen Abbaubarkeit steht. Insbesondere bedeutet Kompostierbarkeit biologische Abbaubarkeit im Boden unter Kompostierbedingungen. Dabei sind biologisch abbaubare Polymere und Kunststoffe Materialien, die durch Mikroorganismen quantitativ in entweder CO2 und H2O oder CH4 und H2O umgewandelt werden, unter aeroben bzw. anaeroben Bedingungen.
Zur Untersuchung der Kompostierbarkeit existieren eine Reihe von Tests, wie Tests mit isolierten Enzymen, Folien-Kompostiertests, bei denen Folien bei 58 °C in ausgereiften Kompost eingegraben und der biologische Abbau visuell bonitiert wird oder Abbautests in Kompostierversuchen oder Erdeingrabversuche.
Im erfindungsgemäßen Sinne heißt gut kompostierbar, daß ein Material im biologischen Abbautest nach ASTM G22 > 30 mg/1 Biomasse erzeugt. Dies wird in bevorzugter Ausführungsform der Erfindung sowohl von den einzelnen Schichten als auch dem Verbund insgesamt erfüllt oder übertroffen. Die Meßmethode wird im Beispielteil eingehender erläutert.
Außerdem ist es bei der Erfindung besonders bemerkenswert, daß sofern die Barriere-PVOH-Schicht mit den aliphatischen Polyesteramid und/oder Polyesterschicht(en) mittels eines Polyurethanklebers kaschiert wird, der eingesetzte Polyurethankleber ebenfalls über eine hervorragende biologische Abbaubarkeit (Kompostierbarkeit) verfügt. Dies war bislang nicht bekannt und aufgrund der vorhandenen Daten nicht zu erwarten. Damit stellt die Erfindung eine universell als Polyolefinfolienersatz für vielfältige Zwecke verwendbare Folie zur Verfügung.
Der Grundaufbau der erfindungsgemäßen Folie mit einem Kern aus Polyvinylalkohol als Barriereschicht sowie diesen Kern von beiden Seiten umgebenden Folienschichten aus biologisch abbaubarer Ware, insbesondere aus aliphatischen Polyesteramiden und/oder Polyestern ist universell einsetzbar und vielfältig abwandelbar. So ist es unter anderem möglich, auf die biologisch abbaubare Ware eine dünne Aluminiumschicht (wenige Nanometer) durch Bedampfen oder Sputtern aufzutragen, wobei diese dünne Aluminiumschicht als Aromaversiegelungsschicht wirkt. Selbst die empfindlichsten Substanzen (Vanillin) verlieren in eine entsprechende Folie eingepackt nicht ihre Aroma. Darüberhinaus ist eine dünne Aluminiumschicht im Bereich von einigen Nanometern ohne weiteres umweltverträglich, da davon auszugehen ist, daß beispielsweise Aluminium zu Oxiden oder Hydroxiden umgewandelt wird, welche auch der Kompostierbarkeit nicht entgegenstehen. Ferner ist eine Kombination mit Papierware beispielsware in Form von Superabsorbern denkbar. In diesem Falle läßt sich die erfindungsgemäße Folie als Polyethylen- oder Polypropylenersatz in Hygienewaren beispielsweise Windeln, Damenbinden etc. einsetzen. Unter Verwendung entsprechender Superabsorber aus biologisch vollständig abbaubaren Materialien beispielsweise auf Basis von Propfcopolymeren, welche ein Rückgrat aus Stärke oder einem anderen biologisch abbaubaren Material aufweisen und auf welches Rückgrat entsprechende leicht biologisch abbaubare Seitenketten aufgepropft sind, beispielsweise aus Maleinsäureanhydrid, Bemsteinsäureanhydrid etc. , lassen sich insbesondere Spezialverbunde mit hervorragender biologischer Abbaubarkeit und Verrottbarkeit schaffen. Ferner eigenen sich die erfindungsgemäßen Folien und Folienverbunde hervorragend für Verpackungen auf dem Lebensmittelsektor und auch für alle anderen Zwecke, bei denen heutzutage vornehmlich Polyethylen oder Polypropylenfolien zum Einsatz kommen.
Die erfindungsgemäßen Folien weisen hervorragende Verarbeitungseigenschaften aus, sind extrudierbar, gegebenenfalls coextrudierbar, und lassen sich nicht nur einzeln sondern auch im Verbund recken, so kann beispielsweise eine erfindungsgemäße Mehrlagenfolie biaxial gereckt werden.
Kern des erfindungsgemäßen Materials ist in jedem Falle eine Folienschicht aus Polyvinylalkohol. Solche Materialien sind dem Fachmann geläufig und beispielsweise durch Verseifung von Polyvinylacetat herstellbar. Es ist bekannt, daß solche Folien aus Polyvinylalkohl weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Kohlendioxid etc. sind, daß sie jedoch Wasserdampf hindurchtreten lassen. Zur Charakterisierung von Polyvinylalkohol, der als Handelsprodukt in der Regel restmonomerfrei ist, können verschiedene Merkmale dienen wie Teil- und Vbllverseifung. Das vollverseifte (voll hydrolysierte) Vinylacetat-Pölymer entspricht dem Grundbaustein des PVOH. Die Teilverseifung führt zu einem Polymer aus -CH2-CH(OH)- und -CH2-CH(OCOH3)- Bausteinen
die Viskosität, gemessen an 4-% igen wäßrigen Lösungen, ausgedrückt in m Pa s.
das Molekulargewicht, ausgedrückt in Mw, das für hochviskose, vollverseifte Typen bei 1 ,7 x 105 bis 2,5 x 105 und für niedrig viskose Typen nur 1 x 104 - 6 x 104 liegt.
Ferner verfügt Polyvinylalkohol im allgemeinen über eine hervorragende biologische Abbaubarkeit, die sich für wäßrige PVOH-Lösungen im Versuch mit adaptiertem Belebteschlamm nachweisen läßt, wobei die Bewertung der PVOH-Eliminierung aus Wässer im allgemeinen über die Bestimmung des chemischen Sauerstoffbedarfs (CSB) erfolgt. Auch PVOH-Folien sind biologisch abbaubar, gemessen im Zahn-Wellens-Test. Beide Befunde sind mithin ein eindeutiges Indiz für eine auch hervorragende Kompostierbarkeit, wobei diese im gewissen Maße vom Verseifungsgrad des Polyvinylacetats abhängt. So hat sich eine gewisse Restkonzentration an Acetatgruppen als förderlich für die biologische Abbaubarkeit, insbesondere Kompostierbarkeit erwiesen.
Die Dicke der Kernschicht aus Polyvinylalkohol ist im Rahmen des erfindungsgemäßen Mehrlagenfolienaufbaus nicht besonders kritisch. Sie läßt sich über die üblichen Werte hin variieren und liegt bevorzugt im Bereich von etwa 3-20 .um.
Besonders bevorzugt sind Dicken im Bereich zwischen 5 und 12μm. Im Rahmen der Erfindung ergeben sich besonders zweckmäßige Barriereschichten, wenn das PVOH eines oder mehrere der folgenden Kriterien erfüllt:
Mw zwischen 14.000 und 210.000, bevorzugt zwischen 14.000 und 175.000, besonders bevorzugt zwischen 18.000 und 175.000;
und/oder
Viskosität zwischen 3 und 60 mPa.s, bevorzugt zwischen 3 und 40 mPa.s, besonders bevorzugt zwischen 5 und 40 mPa.s;
und/oder
Verse ifungsgrad zwischen 73 und 99 Mol-%, bevorzugt zwischen 82 und 99 Mol.-%.
Zu erfindungsgemäß verwendbaren PVOH-Typen gehören u.a. die Mowiole® der Fa. Hoechst:
Mowiol® 15 - 79, Ilowiol® 30- 92,
4-80, 3 - 98,
3 -83, 4- 92,
4-88, 6- 98,
5-88, 10- 98,
18 - 88, 20- 98,
23 - 88, 28- 99,
26 - 88, 66 - 100,
40 - 88, ' GE 4- 86. Polyesteramidmaterialien, die für Folien in Frage kommen, welche im Verbund mit Polyvinylalkoholfolien im Rahmen der Erfindung geeignet sind, weisen im allgemeinen relativ hohe Molekulargewichte mit Estergehalten zwischen 30 und 70 Gew.-% auf, sind leicht und reproduzierbar herstellbar und verfügen über gute mechanische Eigenschaften auch zur Herstellung von transparenten Folien sowie über eine gute biologische Abbaubarkeit bzw. Kompostierbarkeit. Solche Materialien sind beispielsweise aus der EP 0 641 817 A2 bekannt. Die aliphatischen Polyesteramide weisen aliphatische Ester- und aliphatische Amidstrukturen auf und besitzen Schmelzpunkte von mindestens 75 °C. Der Gewichtsanteil der Esterstrukturen liegt zwischen 30 und 70% , der Anteil der Amidstrukturen zwischen 70 und 30% . Die zur Herstellung der Folien geeigneten Copolymere haben ein mittleres Molekulargewicht (MW ermittelt nach Gel Chromotographie in m- Kresol gegen Standard Polystyrol) von 10.000 bis 300.000, vorzugsweise 20.00 bis 150.000.
Die Synthese solcher Polyesteramide erfolgt bevorzugt durch Mischen der Amide bzw. esterbildenden Ausgangskomponenten und Polymerisation bei erhöhter Temperatur unter Eigendruck und anschließendes Abdestillieren des Reaktionswassers sowie überschüssiger Monomere im Vakuum und bei erhöhter Temperatur. Die Anordnung der Ester- bzw. Amidsegmente erfolgt durch die Synthesebedingungen rein statistisch, d.h. diese Verbindungen sind nicht als thermoplastische Elastomere sondern als Thermoplaste zu bezeichnen. Die Struktur von thermoplastischen Elastomeren wird in der Fachliteratur mit "gleichzeitigem Vorliegen weicher und elastischer Segmente mit hoher Dehnbarkeit und niedriger Glastemperatur (auf Tg-Wert) sowie harter und kristallisierbarer Segmente mit geringer Dehnbarkeit, hohem Tg-Wert und der Neigung zur Asoziatbildung" beschrieben. Diese Segmentanordnung ist nicht gegebenen. Allerdings sind auch Blockcopolymere mit Ester- und- Amidstrukturen, die die erfindungsgemäße Zusammensetzung haben, kompostierbar. Ihre Synthese ist jedoch bedeutend aufwendiger. Die zur Herstellung der Copolymere verwendeten Monomere können aus folgenden Gruppen stammen:
Dialkohole wie Ethylenglycol, 1,4-Butandiol, 1,3-Propandiol, 1,6-Hexandiol, Diethylenglycol und andere, und/oder Dicarbonsäuren wie Oxalsäure, Bernsteinsäure, Adipinsäure und andere auch in Form ihrer jeweiligen Ester (Methyl, Ethyl- usw.) und/oder Hydroxycarbonsäuren und Lactone wie Caprolacton und andere und/oder Aminoalkohole wie Ethanolamin, Propanolamin usw. und/oder zyklische Lactame wie Epsilon-Captrolactam oder Laurinlactam usw. und/oder omega-Amiπocarbonsäure wie Aminocapronsäure usw. und/oder Mischungen (1 : 1 Salze) aus Dicarbonsäure wie Adipinsäure, Bernsteinsäure usw. und Diaminen wie Hexamethylendiamin, Diaminobutan usw.
Ebenso können sowohl Hydroxyl- oder Säure-terminierte Polyester mit Molekulargewichten zwischen 200 und 10.000 als esterbildende Komponente eingesetzt werden. Die Synthese kann sowohl nach der Polyamidmethode durch stöchiometrisches Mischen der Ausgangskomponenten gegebenenfalls unter Zusatz von Wasser und anschließendes Entfernen von Wasser aus dem Reaktionsgemisch als auch nach der Polyestermethode durch Zugabe eines Überschusses an Diol mit Veresterung der Säuregruppen und nachfolgender Umesterung bzw. Umamidierung dieser Ester erfolgen. In diesem zweiten Fall wird neben Wasser auch der Überschuß an Glycol wieder abdestilliert. Bevorzugt werden von den genannten Monomeren im Sinne der Erfindung zur Herstellung von Polyesteramiden für biologisch abbaubare Folienbestandteile Caprolactam, Diol und Dicarbonsäure in der gewünschten Stöchiometrie gemischt.
Die einsetzbaren Polyesteramide können weiterhin 0, 1 bis 5 Gew.-%, bevorzugt 0,1 bis 2 Gew.-% an Verzweigern enthalten. Diese Verzweiger können z.B. trininktionelle Alkohole wie Trimethylolpropan oder Glycerin, tetrafunktionelle Alkohole wie Pentaerythrit, trifunktionelle Carbonsäuren wie Zitronensäure sein. Die Verzweiger erhöhen die Schmelzviskosität der erfindungsgemäßen Polyesteramide soweit, daß Extrusionsblasformen dieser Polymere möglich wird. Der biologische Abbau dieser Materialien wird dadurch nicht behindert.
Im Rahmen der Erfindung einsetzbare aliphatische Polyesteramide haben Esteranteile zwischen 35 und 80 Gew.-%, enthaltend aliphatische Dialkohole mit einer Kettenlänge von C2 bis C12, bevorzugt C2 bis C5, aliphatische Dicarbonsäuren oder deren Estern mit einer Kettenlänge von C-, bis C12, bevorzugt C2 bis C6, omega-Aminocarbonsäuren mit einer Kettenlänge von C, bis C12, bevorzugt C4 bis C6, bzw. zyklische Lactame mit einer Ringgröße von C5 bis C12, bevorzugt C5 bis Cπ, bzw. ein 1 : 1 Salz aus aliphatischer Dicarbonsäure und aliphatischem Diamin mit einer Kettenlänge von C4 bis C12, bevorzugt C4 bis C6, mit gegebenenfalls 0,01 bis 5 Gew.-% , bevorzugt 0,01 bis 3 Gew.-% an Verzweiger. Sie haben einen Schmelzpunkt von mehr als 75 °C und ein Molekulargewicht MW > 30.000.
Die für die Folienherstellung geeigneten aliphatischen Polyesteramide können als Zusatzstoffe von 0 bis 50 Gew.-% anorganischer oder organischer Füller bzw. Verstärkungsstoffe, mineralische Füllstoffe, UV-Stabilisatoren, Antioxidantien, Pigmente, Farbstoffe, Nukleirungsmittel, Kristallisationsbeschleuniger bzw. Verzögerer, Flieshilfsmittel, Gleitmittel, Entformungsmittel, Flammschutzmittel sowie modifizierte bzw. nichtmodifi- zierte Kautschuke enthalten. Bevorzugt ist bei den genannten Zusatz- und Hilfsstoffen darauf zu achten, daß die Kompostierbarkeit der Polyesteramide im wesentlichen nicht nachteilig beeinträchtigt wird.
Neben diesen Polyesteramiden sind als biologisch abbaubare Ware insbesondere Polyester vor allem biologisch abbaubare Copolyester sowie deren Blends mit Stärke geeignet. Das Grundgerüst der biologisch abbaubaren Polyester bilden Copolyester aus altbekannten aliphatischen Diolen, aliphatischen und aromatischen Dicarbonsäuren. Alle verwendeten Monomere sind biologisch abbaubar und ökotoxikologisch unbedenklich. Wichtig ist der statistische Einbau der aromatischen Dicarbonsäureeinheiten, da bei Vorhandensein von längeren aromatischen Blöcken keine vollständige Abbaubarkeit mehr erreicht wird.
Von entscheidender Bedeutung für die praktische Anwendung sind die zusätzlichen Modifikationen an diesem Grundgerüst. Dadurch wurden neue Copolyester erhalten. Es können zum Beispiel durch Einbau von hydrophilen Komponenten, verzweigend wirkenden Monomeren und/oder von Verbindungen, die zu einer Kettenverlängerung und damit Erhöhung des Molekulargewichts führen, gezielt biologisch abbaubare Copolyester für Folienanwendungen erhalten werden, die elastisch sind und eine hohe Reißfestigkeit und -dehnung aufweisen.
Auch Blends aus Copolyester und Stärke sind geeignet. Aus nativer Weizen-, Mais oder Kartoffelstärke und einem Weichmacher wie Glycerin wird in einem Extruder zunächst thermoplastische Stärke hergestellt und dann "on line" mit dem Copolyester zu einem Blend verarbeitet. Wichtige Parameter sind ein vollständiger Aufschluß der nativen Stärke im Extruder (das heißt Zerstörung der kristallinen Überstrukturen im Stärkekorn, aber kein Molekulargewichtsabbau) und die Einstellung der gewünschten Blendmorphologie. Der Copolyester liegt dabei als kontinuierliche Phase vor, in welche die thermoplastische Stärke fein dispers eingelagert ist. Durch diese gezielte Hydrophobierung der Stärke wird die für viele Anwendungsbereiche notwendige Wasserresistenz des Stärkeblends erreicht. Daraus hergestellte Folien zeigen gute machanische Eigenschaften wie hohe Reißfestigkeit und - -dehnung, sind antistatisch, durchlässig für Sauerstoff und Wasserdampf, bedruckbar, siegelfähig und zeichnen sich durch einen ausgesprochen angenehmen weichen Griff aus.
Die Folienschichten aus biologisch abbaubarer Ware wie beispielsweise Polyesteramiden oder Polyestem der hierin oben genannten Art liegen bei einer erfindungsgemäßen Mehrlagenfolie in Form eines Verbundes mit einer Polyvinylalkoholfolie vor. Sie können mit dieser kaschiert sein, beispielsweise unter Verwendung eines Klebers. Als Kleber ist im Rahmen der Erfindung ein Polyurethanprepolymeres mit Isocyanat End-Gruppen auf Basis von Diisocyanaten unterschiedlicher Reaktivität einsetzbar. Solche Verbindungen mit Isocyanatgruppen sind seit langem bekannt und können mit geeigneten Hartem - meist mehrfunktionellen Alkoholen - in einfacher Weise zu Hochpolymeren umgesetzt werden. So ist deren Verwendung als Dichtungsmasse, als Lack oder Klebstoff bekannt. Als Kleber insbesondere geeignet sind im Rahmen der Erfindung Polyurethanprepoiymere mit endständigen Isocyanatgruppen unterschiedlicher Reaktivität und mehrfunktionellen Alkoholen, die dadurch erhältlich sind, daß man in einem ersten Reaktionsschritt 2,4-Toluylendiisocyanat mit mehrfunktionellen Alkoholen im Verhältnis OH:NCO zwischen 4 und 0,55 umsetzt und nach Abreaktion praktisch aller schnellen NCO-Gruppen mit einem Teil der vorhandenen OH-Gruppen in einem zweiten Reaktionsschritt ein im Vergleich zu den weniger reaktiven NCO-Gruppen des 2,4-ToluyIen-diisocyanat aus Reaktionsschritt eins reaktiveres Diisocyanat equimolar oder im Überschuß, bezogen auf noch freie OH-Gruppen, zusetzt, wobei gewünschtenfalls übliche Katalysatoren und/oder erhöhte Temperaturen angewendet werden.
In der ersten Stufe dieses Verfahrens nach dem der im Rahmen der Erfindung einsetzbare Kleber erhältlich ist, kann eine Vielzahl von mehrfunktionellen Alkoholen eingesetzt werden. Geeignet sind in dieser Stufe aliphatische Alkohole mit 2 bis 4 Hydroxylgruppen pro Moleküle. Wenngleich primäre wie auch sekundäre Alkohole eingesetzt werden können, sind die sekundären bevorzugt. So können insbesondere die Umsetzungsprodukte niedermolekularer mehrfunktioneller Alkohole mit Alkylenoxiden mit bis zu 4 C-Atomen eingesetzt werden. Geeignet sind beispielsweise die Umsetzungsprodukte von Ethylenglycol, Propylenglycol, von den isomeren Butandionen oder Hexandionen mit Ethylenoxid, Propylenoxid und/oder Butenoxid. Femer können die Umsetzungsprodukte trifunktioneller Alkohole wie Glycerin, Trimethylolethan und/oder Trimethylpropan oder höher funkionelle Alkohole wie beispielsweise Pentaerythrit oder Zuckeralkohole mit den genannten Alkenoxiden eingesetzt werden. Besonders geeignet sind Polyetherpolyole mit einem Molekulargewicht von 100 bis 10.000 vorzugsweise 1.000 bis 5.000 und insbesondere Polypropylenglycol.
Somit können je nach gewünschtem Molekulargewicht Anlagerungsprodukte von wenigen mol Ethylenoxid und/oder Propylenoxid pro mol oder aber von mehr als 100 mol Ethylenoxid und/oder Propylenoxid pro mol an niedermolekulare mehrfunktionelle Alkohole eingesetzt werden. Weitere Polyetherpolyole sind durch Kondensation von zum Beispiel Glycerin oder Pentaerythrit unter Wasserabspaltung herstellbar. In der Polyurethan-Chemie gebräuchliche Polyole entstehen weiterhin durch Polymerisation von Tetrahydrofuran. Unter den genannten Polyetherpolyolen sind die Umsetzungsprodukte von mehrfunktionellen niedermolekularen Alkoholen wie Propylenoxid unter Bedingungen, bei denen zumindest teilweise sekundäre Hydroxylgruppen entstehen, besonders geeignet. Weitere geeignete Polyetherpolyole sind z.B. in der DE 2 559 759 beschrieben.
Weiterhin sind im Rahmen der Erfindung verwendbar zur Herstellung des einsetzbaren Klebers Polyesterpolyole mit einem Molekulargewicht von 200 bis 10.000. Nach einer ersten Ausfuhrungsform könne Polyesterpolyole verwendet werden, die durch Umsetzung von niedermolekularen Alkoholen, insbesondere von Ethylenglycol, Propylenglycol, Glycerin oder Trimethylolpropan mit 1 bis 50 Mol Caprolacton entstehen. Weitere geeignete Polyesterpolyole sind durch Polykondensation herstellbar. So können difunktionelle und/oder trifunktionelle Alkohle mit einem Unterschuß an Dicarbonsäuren und/oder Tricarbonsäuren oder deren reaktive Derivate zu Polyesterpolyolen kondensiert werden.
Geeignete Dicarbonsäuren sind hier Bernsteinsäure und ihre höheren Homologen mit bis zu 12 C-Atomen, ferner ungesättige Dicarbonsäuren wie Maleinsäure oder Fumarsäure sowie aromatische Dicarbonsäuren, insbesondere die isomeren Phthalsäuren. Als Tricarbonsäuren sind Zitronensäure oder Trimellitsäure geeignet. Im Sinne der Erfindung besonders geeignet sind Polyesterpolyolel aus den genannten Dicarbonsäuren und Glycerin, welche einen Restgehalt an sekundären OH-Gruppen aufweisen.
Um Umsetzungsprodukte von 2,4-Toluylendiisocyanat mit mehrfunktionellen Alkoholen zu erhalten, welche erfindungsgemäß in der zweiten Reaktionsstufe als Lösungsmittel oder Reaktivverdünner eingesetzt werden können, ist es wichtig ein bestimmtes Verhältnis zwischen Hydroxylgruppen und Isocyanatgruppen einzuhalten. So entstehen geeignete Produkte, die nach Abreaktion der reaktiveren NCO-Gruppen noch OH-Gruppen enthalten, wenn die Anzahl der OH-Gruppen geteilt durch die Anzahl von Isocyanatgruppen zwischen 4 und 0,55 eingestellt wird, vorzugsweise zwischen 1 und 0,6.
In der zweiten Stufe werden zur Herstellung des Klebers in den OH- und NCO-funktionellen Reaktionsprodukten der ersten Reaktionsstufe als Reaktivverdünner symmetrische, dicyclische Diisocyanaate mit den restlichen OH-Gruppen zur Reaktion gebracht. Die Menge der dicyclischen Diisocyanate, bezogen auf die Gesamtmenge der Diisocyanate in Stufe 1 und 2, beträgt 5 bis 80 Gew.-%, vorzugsweise 5 bis 60 Gew.-% und insbesondere 10 bis 40 Gew.- % . Für die Reaktion der zweiten Stufe beträgt das Molverhältnis OH- Gruppen: NCO-Gruppen, ausgedrückt als Quotient der OH-Gruppen geteilt durch Isocyanatgruppen, bevorzugt 0,5 bis 1,0, insbesondere 0,6 bis 0,8, bezogen auf restliche OH-Gruppen.
Bei der Auswahl der dicyclischen Diisocyanate ist es wichtig, daß die Reaktivität ihrer Isocyanatgruppen gegenüber Hydroxylgruppen höher liegt als die der endständigen Isocyanatgruppen des Reaktivverdünners. Somit sind in erster Linie die Diaryldiisocyanate geeignet. Bevorzugt sind 4, 4'- Diphenylmethandiisocyanaat und/oder substituierte 4,4'-Diphenylmethandiisocyanate.
Die bevorzugt bei Temperaturen zwischen 40 und 100°C erhältlichen Produkte weisen einen substantiell verminderten Anteil an freiem, monomeren Toluylendiisocyanat aber auch an freien, monomeren dicyclischen Diisocyanaten auf. So tritt bei großflächiger Anwendung der Prepolymeren bei erhöhten Temperaturen also etwa 80 bis 100°C keine Belästigung durch flüchtiges Toluylendiisocyanat auf. Ein weiterer Vorteil der Verfahrensprodukte ist ihre relativ geringe Viskosität, die sie z.B. für losungmittelfreie Klebstoffanwendungen geeignet macht.
Von solchen Prepolymeren bekannt war, daß sie sich in Substanz oder als Lösung in organischen Lösungsmitteln zum Verkleben von Kunststoffen, insbesondere zum Kaschieren von Kunststofffolien eignen, wobei übliche Härter, etwa mehrfunktionelle höhermolekulare Alkohole zugesetzt werden können (2 Komponentensysteme) oder daß Oberflächen mit definiertem Feuchtigkeitsgehalt mit solcherlei erhältlichen Produkten direkt verklebt werden können, wobei Folienverbunde mit hoher Verarbeitungssicherheit beim Heißsiegeln erhalten werden können. Es muß angesichts der ansonsten nicht befriedigenden biologischen Abbaubarkeit von Polyurethanprepolymer-Klebern umsomehr überraschen, daß die Polyurethanprepolymerkleber eines erfindungsgemäßen mehrlagigen Folienverbundes eine ebenso gute und hervorragende biologische Abbaubarkeit und Kompostierbarkeit aufweisen, wie dies bei der biologisch abbaubaren Ware bestehend aus Polyesteramiden und/oder Polyestem sowie der Barriereschicht aus Polyvinylalkolhol der Fall ist.
In einer besonderen Ausführungsform kennzeichnet sich die kompostierbare Verbundmehrschichtfolie dadurch, daß die Folien aus Polyester und/oder Polyesteramid zusammen mit der Barriereschicht unter Zuhilfenahme eines Haftvermittlers auf Basis von Polyetherepoxiden coextrudiert sind. Obwohl die Haftung zwischen Barriereschicht und darauf aufgebrachten Polyester- und/oder Polyesteramid-Schichten für viele Anwendungszwecke ausreichend sein kann, kann diese durch einen Haftvermittler deutlich gesteigert werden. Zu den einsetzbaren Haftvermittlern gehören u.a. solche auf Basis von Polyetherepoxiden.
Ebenso wie die potentielle Verbindbarkeit erfindungsgemäßer Folienaufbauten zu Spezialverbunden mit etwa Papier, Superabsorbermaterialien oder Metallschichten, weisen die erfindungsgemäßen Mehrlagenfolien an sich ein hervorragendes Anwendbarkeitsspektrum bei gleichzeitig hervorragender biologischer Abbaubarkeit auf.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung von vollständig biologisch abbaubaren und kompostierbaren Mehrlagenfolien der eingangs genannten Art.
Beim Verfahren zur Herstellung von gut kompostierbaren Verbundmehrschichtfolien wird erfindungsgemäß eine Barriereschicht aus Polyvinylalkohol bereitgestellt auf welche beidseitig eine oder mehrere Folienschichten oder -lagen aus einem biologisch abbaubaren Polyester und/oder Polyesteramid aufgebracht werden. In zweckmäßiger Abwandlung dieses Verfahrens werden die Folien aus einem biologisch abbaubaren Polyester und/oder Polyesteramid mit einem Kleber auf Basis eines Polyurethanprepolymeres aufkaschiert. Hierdurch gelingt die Kombination einer sehr einfachen Herstellung mit einem Produkt, welches alle an eine handelsübliche Polyolefinfolie gestellten Anforderungen ebenso befriedigen kann wie es darüberhinaus eine gute biologische Abbaubarkeit, insbesonder Verrottbarkeit und Kompostierbarkeit, aufweist.
In abgewandelter besonders zweckmäßiger Modifikation des Verfahrens der Erfindung werden die Folien aus Polyester und/oder Polyesteramid mit der Barriereschicht unter Zuhilfenahme eines Haftvermittlers auf Basis von Polyetherepoxiden coextrudiert.
Hierbei wird der Haftvermittler nur in sehr geringen Mengen eingesetzt und darüberhinaus sind auch Polyetherepoxid-Verbindungen biologisch abbaubar, verrott- und kompostierbar, so daß entweder der geringe Anteil Polyetherepoxid ökologisch im wesentlichen unbedenklich bzw. problemlos kompostierbar ist.
Schließlich ist weiterhin die einfache Heißverschweißung von Folien und Barriereschicht möglich, sofern der Anwendungszweck keine besondere Haftung zwischen den einzelnen Lagen der erfindungsgemäßen Verbundfolie erforderlich macht.
Gegenstand der Erfindung ist auch die Verwendund der hierin oben genannten Folien zu Verpackungszwecken, vorzugsweise in der Lebensmittelindustrie oder Waschmittelindustrie, Medizinhygienezwecken sowie in Spezialverbunden.
Gemäß einer erfindungsgemäßen Verwendung ist die kompostierbare Verbundmehrschichtfolie, wie sie hierin beschrieben, ist als Ersatz für Polyolefinfolien zu Verpackungszwecken in der Lebensmittelindustrie bestens geeignet. Hierbei ist deren Lebensmittelunbedenklichkeit hervorzuheben, deren positive Eigenschaften wie hohe Transparenz und Reißfestigkeit, welche durch eine biaxiale Reckung verstärkt werden kann. Daneben eignet sich die erfindungsgemäße kompostierbare Verbundmehrschichtfolie hervorragend zur Anwendung in Medizinhygienebereichen, wobei insbesondere Anwendungen als Einlage in Windeln oder Damenbinden in Frage kommen. Hierdurch, insbesondere durch den Ersatz von Polyolefinfolien, gelingt die Schaffung eines schneller vollständig verrottbaren Produktes, als es bei den bisher am Markt befindlichen Hygieneartikeln der Fall ist.
Nachfolgende Beispiele dienen zur eingehenden Erläuterung des Gegenstands der Erfindung. Zunächst werden verschiedene Ausführungsformen erfindungsgemäßer kompostierbarer Verbundfolien unter Bezugnahme auf die beigefügten Figuren näher beschrieben.
In den Figuren zeigen:
Figur 1 einen schematischen Querschnitt durch eine erste Ausführungsform einer erfindungsgemäßen kompostierbaren Verbundmehrschichtfolie, wobei zur Verbesserung der Übersichtlichkeit die an sich eng aneinanderliegenden einzelnen Lagen mit einem Abstand dargestellt sind; und
Figur 2 einen schematischen Querschnitt durch eine zweite Ausfuhrungsform der erfindungsgemäßen kompostierbaren Verbundmehrschichtfolie, wobei auch hier zur Vereinfachung der Darstellung und zur Verbesserung der Übersichtlichkeit die in der fertigen Folie fest miteinander verbundenen einzelnen Lagen und Schichten mit Abstand zueinander dargestellt sind.
In Figur 1 bezeichnet 1 eine erfindungsgemäße kompostierbare Verbundmehrschichtfolie. Diese weist als Kemschicht oder mittlere Lage eine Folienschicht 2 aus Polyvinylalkoholmaterial auf. Die Polyvinylalkoholfolie wirkt im gezeigten Aufbau als Barriereschicht. Sowohl auf der Vorder- als auch der Rückseite der Polyvinylalkoholfolie 2 sind Schichten 3 aus biologisch abbaubarer Ware angeordnet. Im vorliegenden Beispiel sind die Schichten 3 und die Schichten 2 durch Heißversiegelung miteinander verbunden.
Eine Abwandlung von dieser ersten erfindungsgemäßen Ausführungsform stellt Figur 2 dar. Auch hierin bezeichnet das Bezugszeichen 1 eine erfindungsgemäße kompostierbare Mehrschichtverbundfolie, die jedoch neben der Barrierelage 2 und den Folienlagen 3 aus biologisch abbaubarer Ware noch zwei Schichten 4 aufweist. Die Schichten 4 bezeichnen Klebematerialien auf Polyurethanprepolymerbasis, welche zum Kaschieren der Folien 3 auf die Barrierefolie 2 dienen.
Die in den beiden Figuren 1 und 2 gezeigten Ausführungsformen verdeutlichen jeweils einen symmetrischen Aufbau. Im Rahmen der Erfindung sind jedoch Abwandlungen dieses Aufbaus möglich. So gehört zur Erfindung ebenso ein asymmetrischer Aufbau, bei dem beispielsweise nur eine Schicht 3 auf eine Barriereschicht 2 kaschiert ist. Schließlich können je nach Bedarf auch weitere Schichten 3 oder 2 auf die Ausführungsform der Figuren 1 oder 2 durch Verkleben kaschiert oder durch Heißbeschichtung aufgebracht werden. Ebenso ist es denkbar mehr als eine Barriereschicht aus einem PVOH vorzusehen.
Schließlich ist auch die Bedampfung der Schichten 3 mit Metallen wie beispielsweise Aluminium möglich.
Testmethode
Die erfindungsgemäße Eigenschaft der biologischen Abbaubarkeit bzw.
Kompostierbarkeit einer Folie wird wie folgt definiert: Die zu testenden Polymere und Folien werden in einem Flüssigmedium nach ASTM G22 (Zusammensetzung Tabelle 1) mit einer Mischung von Mikroorganismen aus Gartenkompost unter Schwenken (220 upm) und Luftzutritt bei 37 °C inkubiert. Hierzu wird ca. 1 g des Polymeren in mehreren cm2-großen Stücken in 250ml Nährsalzlösung in 11 Erlenmeyerkolben mit 2ml einer Suspension von 10 g Gartenkompost mit 100ml Nährsalzlösung beimpft. Aus der Kompostsuspension werden vorher grobe Teile über ein Feinsieb abgetrennt. Der Trockensubstanz (TS)-Gehalt der Animpfmenge beträgt dann ca. 50 mg. Als Kontrolle zur Messung des abiotischen Gewichtsverlustes der Polymerprobe wird ein Ansatz mit HgCl2 (500 mg/1) versetzt. Weitere Kontrollansätze enthalten Cellulose (4 g/1 Typ DP 500, Firma Wolff, Walsrode) zur Überprüfung des Wachstums mit einem natürlichen Substrat bzw. werden ohne Zusatz einer C-Quelle zur Bestimmung des Hintergrundwachstums und der TS-Abnahme des Inokulums angesetzt.
Tabelle 1 : Zusammensetzung der Nährlösung nach ASTMG 22
KH2PO4 0,7g
K2HPO4 0,7g
MgSO47H2O 0,7g
NH4NO3 1,0g
NaCl 0,005g
FeSO47H2O 0,002g
ZnSO47H2O 0,002g
MnSO4H2O 0,001g
H2Odest 1.000g Zur Bestimmung des TS-Gehaltes der wasserlöslichen Anteile (Polymere bzw. Polymerreste, Biomasse und Inokulum) wird der gesamte Inhalt eines Kolbens abzentrifugiert, einmal in 0,05m Phosphatpuffer gewaschen und der unlösliche Rest bei 80°C mindestens 48 Stunden getrocknet. In Parallelkolben wird die Biomasse und das reine Inokulum bestimmt. Durch Substraktion dieser Meßgrößen kann der Anteil der Polymerreste errechnet werden.
Zur Messung der Biomasse wird ebenfalls der gesamte Inhalt eines Kolbens aufgearbeitet. Hierzu wird eine Modifizierung der Adenosintriphosphat (ATP)- Bestimmung der Firma Lumac-3M verwendet: Zehn Minuten nach der Zugabe des Reaktivreagenzes (Lumac) werden 2,5 ml einer 33%-igen Tetrabutylammoniumhydroxidlösung zugegeben. Dies führt zu einer vollständigen ATP-Freisetzung aus der gesamten Biomasse innerhalb von 30 Sekunden. Nach dieser Zeit kann der ATP-Gehalt nach der üblichen Luciferin/Luciferase-Reaktion nach Angaben von Lumac bestimmt werden. Zur Korrelation des ATP-Gehaltes mit der Trockensubstanz wird eine 24-h Kultur von Kl. planticola mitgemessen, deren ATP/TS-Verhältnis vorher bestimmt wird.
Als gut kompostierbar im erfindungsgemäßen Sinn werden alle Proben bezeichnet, die unter den oben genannten Bedingungen innerhalb von maximal 2 Wochen an Biomassewachstum auf dem Polymeren von mindestens 30 mg/1 ermöglichen.
Nicht kompostierbar im erfindungsgemäßen Sinn sind Proben, die unter den oben genannten Bedingungen innerhalb von maximal 2 Wochen ein Biomassewachstum von höchstens 15 mg/1 ermöglichen.
Die Einzelmaterialien einer erfindungsgemäßen Mehrlagenfolie im Einzeltest weisen für sich jeweils eine gute Kompostierbarkeit nach den genannten Kriterien auf. Fe er läßt sich ersehen, daß im Verbund die Kompostierbarkeit der Einzelmaterialien für sich gesehen besser ist, als bei Einzeluntersuchung. Daher weisen die erfindungsgemäßen Mehrlagenfolien eine quasi synergistische biologische Kompostierbarkeit auf.
Vergleichsbeispiel 1 : Polyesteramid aus Adipinsäure, Butandiol und Aminocapronsäure mit 45 Gew.-% Esteranteil 146 g(l mol) Adipinsäure, 90 g (1 mol) 1 ,4-Butandiol und 131g (0,1 mol) 6-Aminocapronsäure werden zusammengegeben und innerhalb von 30 Minuten auf 120°C hochgeheizt. Nach 2 h bei dieser Temperatur wird auf 220°C hochgeheizt und Vakuum angelegt. Zum Schluß wird mit Ölpumpenvakuum 4 h bei 220 °C auspolyme- risiert. Man erhält ein hellgelbes Produkt das sich granulieren läßt. Der Schmelzpunkt laut DSC beträgt 125°C. Die relative Viskosität (1 g-%-ig in m- Kresol bei 25°C) beträgt 2,2. Im biologischen Abbautest zeigt das Material einen Mikrobenbewuchs von 102mg in 14 Tagen.

Claims

Patentansprüche
1. Gut kompostierbare Verbundmehrschichtfolie aufweisend wenigstens eine Barriereschicht aus Polyvinylalkohol, auf weiche beidseitig ein oder mehrere Folien mittels eines Klebers und/oder Haftvermittlers aufkaschiert oder durch Coextrusion oder Heißbeschichtung aufgebracht sind, dadurch gekennzeichnet, daß die ein oder mehreren Folien aus einem biologisch abbaubaren Polyester und/oder Polyesteramid bestehen.
2. Kompostierbare Verbundmehrschichtfolie nach Anspurch 1, dadurch gekennzeichnet, daß die ein oder mehreren Folien > 30 mg/1 Biomasse, bestimmt im biologischen Abbautest nach ASTM G 22, erzeugen.
3. Kompostierbare Verbundmehrschichtfolie nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß die Folien aus Polyester und/oder Polyesteramid auf die Barriereschicht mit einem Kleber auf Basis von Polyurethanprepolymer aufkaschiert sind.
4. Kompostierbare Verbundmehrschichtfolie nach Anspurch 1 oder 2, dadurch gekennzeichnet, daß die Folien aus Polyester und/oder Polyesteramid zusammen mit der Barriereschicht unter Zuhilfenahme eines Haftvermittlers auf Basis von Polyetherepoxiden coextrudiert sind.
5. Verfahren zur Herstellung von gut kompostierbaren Verbundmehrschichtfolien der Ansprüche 1 - 4, bei dem wenigstens eine Barriereschicht aus Polyvinylalkohol bereitgestellt wird, auf welche beidseitig ein oder mehrere Folien aus einem biologisch abbaubaren Polyester und/oder Polyesteramid aufgebracht werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Folien mit einem Kleber auf Basis eines Polyurethanprepolymers aufkaschiert werden.
7. Verfahren nach Anspurch 5, dadurch gekennzeichnet, daß die Folien aus Polyester und/oder Polyesteramid zusammen mit der Barriereschicht unter Zuhilfenahme eines Haftvermittlers auf Basis von Polyetherepoxiden coextrudiert werden.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Folien thermisch mit der Barriereschicht verschweißt werden.
9. Verwendung einer gut kompostierbaren Verbundmehrschichtfolie gemäß den Ansprüchen 1 - 4 als Ersatz für Polyolefinfolien zu Verpackungszwecken in der Waschmittelindustrie.
10. Verwendung einer gut kompostierbaren Verbundmehrschichtfolie gemäß den Ansprüchen 1 - 4 als Ersatz für Polyolefinfolien zu Medizinhygienezwecken, insbesondere als Einlage in Windeln oder Damenbinden.
EP97942856A 1996-08-14 1997-08-13 Gut kompostierbare verbundmehrschichtfolie, verfahren zu deren herstellung sowie verwendung derselben Withdrawn EP0918632A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19632799 1996-08-14
DE19632799A DE19632799A1 (de) 1996-08-14 1996-08-14 Gut kompostierbare Verbundmehrschichtfolie, Verfahren zu deren Herstellung sowie Verwendung derselben
PCT/EP1997/004389 WO1998006571A1 (de) 1996-08-14 1997-08-13 Gut kompostierbare verbundmehrschichtfolie, verfahren zu deren herstellung sowie verwendung derselben

Publications (1)

Publication Number Publication Date
EP0918632A1 true EP0918632A1 (de) 1999-06-02

Family

ID=7802641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97942856A Withdrawn EP0918632A1 (de) 1996-08-14 1997-08-13 Gut kompostierbare verbundmehrschichtfolie, verfahren zu deren herstellung sowie verwendung derselben

Country Status (4)

Country Link
EP (1) EP0918632A1 (de)
AU (1) AU4454497A (de)
DE (1) DE19632799A1 (de)
WO (1) WO1998006571A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811226A1 (de) * 1998-03-18 1999-09-30 Wolff Walsrode Ag Mehrschichtige, thermoplastische Folien aus Polyesteramid und Verfahren zu deren Herstellung
EP1022127A3 (de) * 1999-01-25 2001-08-08 Cryovac, Inc. Abbaubare Sperrfolie für Ostomiebeutel
DE102006024568A1 (de) * 2006-05-23 2007-12-06 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Verfahren zur Herstellung einer biologisch abbaubaren Kunststofffolie und Folie
CN100350982C (zh) * 2006-06-07 2007-11-28 北京联合大学生物化学工程学院 外科用液体敷料
GB0806271D0 (en) * 2008-04-07 2008-05-14 Chemlink Specialities Ltd pakaging and method of manufacturing thereof
DE102008028394A1 (de) * 2008-06-13 2009-12-31 Amphenol-Tuchel Electronics Gmbh Kompostierbare Verpackung für elektronische Bauelemente
EP2261022B1 (de) * 2009-06-12 2013-08-14 Flexopack S.A. Abbaubare Folie
EP2589366A1 (de) 2011-11-07 2013-05-08 IDT Biologika GmbH Biologisch abbaubare Folienverpackung für orale Biologika
NL2021594B1 (en) * 2018-09-10 2019-10-07 Compostable Coffee Cups Ip B V Improved cartridge for the preparation of a beverage
NL2021596B1 (en) * 2018-09-10 2019-10-07 Compostable Coffee Cups Ip B V Biodegradable beverage cartridge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196247A (en) * 1991-03-01 1993-03-23 Clopay Corporation Compostable polymeric composite sheet and method of making or composting same
JP3066138B2 (ja) * 1991-09-27 2000-07-17 株式会社クラレ 易崩壊性多層体
JPH07106269B2 (ja) * 1992-11-02 1995-11-15 アイセロ化学株式会社 風 船
DE4244000A1 (de) * 1992-12-23 1994-06-30 Buck Chem Tech Werke Biologisch abbaubarer Verpackungswerkstoff
JPH07285192A (ja) * 1994-04-19 1995-10-31 Dainippon Printing Co Ltd 樹脂積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9806571A1 *

Also Published As

Publication number Publication date
DE19632799A1 (de) 1998-02-19
AU4454497A (en) 1998-03-06
WO1998006571A1 (de) 1998-02-19

Similar Documents

Publication Publication Date Title
EP3642268B1 (de) Biologisch abbaubare dreischichtfolie
DE60214913T2 (de) Ternäre Mischungen von bioabbaubaren Polyestern und daraus hergestellten Produkten
EP0641817B1 (de) Thermoplastisch verarbeitbare und biologisch abbaubare aliphatische Polyesteramide
DE60213142T2 (de) Ternäre Mischung von bioabbaubaren Polyestern und daraus hergestellten Produkten
EP1816174B1 (de) Biologisch abbaubare Klebefolie auf der Basis von nachwachsenden Rohstoffen
DE19753534A1 (de) Schnell kristallisierende, biologisch abbaubare Polyesteramide
EP0906367A1 (de) Biologisch abbaubarer werkstoff, bestehend im wesentlichen aus oder auf basis thermoplastischer stärke
EP3079907B1 (de) Polymermischung für barrierefolie
DE19811773A1 (de) Thermoplastische, biologisch abbaubare und kompostierbare opake Folie und Verfahren zu deren Herstellung
DE602005003050T2 (de) Folien aus Zusammensetzungen von aliphatischen Polyestern und daraus hergestellte Mehrschichtfolien
WO1998055527A1 (de) Bioabbaubare polyesterurethane, verfahren zu ihrer herstellung sowie ihre verwendung
DE60207316T2 (de) Compoundierte Folie
EP0918632A1 (de) Gut kompostierbare verbundmehrschichtfolie, verfahren zu deren herstellung sowie verwendung derselben
DE60207206T2 (de) Binäre mischungen von bioabbaubaren aliphatischen polyestern und daraus hergestellte produkte
DE19805672A1 (de) Vollständig kompostierbarer mehrlagiger Wandbekleidungsverbund und Verfahren zu dessen Herstellung
EP0593975B1 (de) Verwendung thermoplastischer Poly(ester-urethane) als kompostierbare Kunststoffe
EP0914371A1 (de) Monoaxial gereckte, biologisch abbaubare und kompostierbare folie mit verbesserten eigenschaften
EP3668926A1 (de) Spritzgussartikel enthaltend oberflächenmodifizierte silikate
WO1997009364A1 (de) Biologisch abbaubare polyester, werkstoffe aus dem polyester und herstellungsverfahren
DE19630233A1 (de) Biaxial gereckte, biologisch abbaubare und kompostierbare Folie mit verbesserten Gleiteigenschaften
WO2023052360A1 (de) Biologisch abbaubare laminierfolie
DE19954403A1 (de) Ein- und mehrschichtige, biologisch abbaubare, thermoplastische Folien mit verbesserten Barriereeigenschaften sowie deren Verwendung als Verpackungsfolie oder in Kosmetik- und Hygieneartikeln
DE10104829A1 (de) Mehrschichtige Polymerfolie
WO1999047349A1 (de) Mindestens zweischichtige, thermoplastische folien aus polyesteramid mit verbessertem siegelverhalten, verfahren zu deren herstellung und ihre verwendung
DE19954404A1 (de) Ein- oder mehrschichtige, biologisch abbaubare, thermoplastische Folie mit verbesserten Barriereeigenschaften gegenüber Geruchsstoffen und deren Verwendung in Verpackungsmaterialien und Hygiene- und Kosmetik-Artikeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19991108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20000317