EP0907822B1 - Procede pour dilater une colonne de production en acier et puits avec ladite colonne - Google Patents

Procede pour dilater une colonne de production en acier et puits avec ladite colonne Download PDF

Info

Publication number
EP0907822B1
EP0907822B1 EP97930490A EP97930490A EP0907822B1 EP 0907822 B1 EP0907822 B1 EP 0907822B1 EP 97930490 A EP97930490 A EP 97930490A EP 97930490 A EP97930490 A EP 97930490A EP 0907822 B1 EP0907822 B1 EP 0907822B1
Authority
EP
European Patent Office
Prior art keywords
tubing
expansion
expanded
steel
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97930490A
Other languages
German (de)
English (en)
Other versions
EP0907822A1 (fr
Inventor
Martin Donnelly
Alban Michel Faure
Franz Marketz
Robert Bruce Stewart
Wilhelmus Christianus Maria Lohbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority to EP97930490A priority Critical patent/EP0907822B1/fr
Publication of EP0907822A1 publication Critical patent/EP0907822A1/fr
Application granted granted Critical
Publication of EP0907822B1 publication Critical patent/EP0907822B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • C21D7/12Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings

Definitions

  • the invention relates to expansion of tubings. More particularly the invention relates to a method of expanding a steel tubing by moving an expansion mandrel through the tubing.
  • European patent specification 643794 discloses a method of expanding a casing against the wall of an underground borehole wherein the casing is made of a malleable material which preferably is capable of plastic deformation of at least 25% uniaxial strain and the casing may be expanded by an expansion mandrel which is pumped, pulled or pushed through the casing.
  • corrugated or slotted pipes serves to reduce the expansion forces that need to be exerted to the tube to create the desired expansion.
  • a method in accordance with the preamble of claim 1 is known from US patent specification No. 5,366,012 .
  • a slotted tube is expanded by an expansion mandrel having a tapering expansion section.
  • the method according to the invention thereto comprises the step of moving an expansion mandrel of which the tapering expansion section has a tapering ceramic outer surface through an at least partly solid tubing which is made of a formable steel grade which is subject to strain hardening without incurring any necking and ductile fracturing as a result of the expansion process.
  • strain-hardening and work-hardening are synonyms and are both used to denote an increase of strength caused by plastic deformation.
  • formable steel grade as used in this specification means that the tubing is able to maintain its structural integrity while being plastically deformed into various shapes.
  • necking refers to a geometrical effect leading to non-uniform plastic deformations at some location by occurrence of a local constriction. From the point of necking on, the continual work hardening in the necked region no longer compensates for the continual reduction of the smallest cross-section in the neck, and therefore, the load carrying capacity of the steel decreases. With continuing loading, practically all further plastic deformation is restricted to the region of the neck, so that a highly non-uniform deformation occurs to develop in the necked region until fracture occurs.
  • ductile fracturing means that a failure occurs if plastic deformation of a component that exhibits ductile behaviour is carried to the extreme so that the component separates locally into two pieces. Nucleation, growth and coalescence of internal voids propagate to failure, leaving a dull fibrous rupture surface. A detailed description of the terms necking and ductile fracturing is given in the handbook " Failure of Materials in Mechanical Design" by J.A. Collins second edition, issued by John Wiley and Sons, New York (USA) in 1993 .
  • the tubing is made of a high-strength steel grade with formability and having a yield strength-tensile strength ratio which is lower than 0.8 and a yield strength of at least 275 MPa.
  • high-strength steel denotes a steel with a yield strength of at least 275 MPa.
  • tubing is made of a formable steel grade having a yield stress/tensile stress ratio which is between 0.6 and 0.7.
  • Dual phase (DP) high-strength, low-alloy (HSLA) steels lack a definite yield point which eliminates Luders band formation during the tubular expansion process which ensures good surface finish of the expanded tubular.
  • Suitable HSLA dual phase (DP) steels for use in the method according to the invention are grades DP55 and DP60 developed by Sollac having a tensile strength of at least 550 MPa and grades SAFH 540 D and SAFH 590 D developed by Nippon Steel Corporation having a tensile strength of at least 540 MPa.
  • the above-mentioned DP and other suitable steels each have a strain hardening exponent n of at least 0.16 which allows an expansion of the tubing such that the external diameter of the expanded tubing is at least 20% larger than the external diameter of the unexpanded tubing.
  • strain hardening work hardening and the strain hardening exponent n are given in chapters 3 and 17 of the handbook " Metal Forming-Mechanics and Metallurgy", 2nd edition, issued by Prentice Hall, New Jersey (USA), 1993 .
  • the expansion mandrel contains an expansion section that has a conical ceramic outer surface. It is observed that US patent specification No. 3,901,063 discloses a plug having a conical ceramic outer surface for use in tube-drawing operations. If the expansion mandrel is pumped through the tubing then the mandrel preferably comprises a sealing section which is located at such a distance from the tapering expansion section that when the expansion mandrel is moved through the tubing by means of exerting a hydraulic pressure behind the mandrel the sealing section engages a plastically expanded part of the tubing. This will generally be achieved if said distance is at least three times the wall thickness of the expanded tubing.
  • the expansion mandrel contains a vent line for venting to the surface any fluids that are present in the borehole and tubing ahead of the expansion mandrel.
  • tubing is expanded such that the outer diameter of the expanded tubing is slightly smaller than the internal diameter of the borehole or of any casing that is present in the borehole and any fluids that are present in the borehole and tubing ahead of the expansion mandrel are vented to surface via the annular space that remains open around the tubing after the expansion process.
  • a well is provided with a tubing which is expanded using the method according to the invention.
  • the tubing may serve as production tubing through which hydrocarbon fluid is transported to the surface and a reelable service and/or kill line passes through at least a substantial part of the length of the tubing, through which line fluid can be pumped towards the bottom of the borehole while hydrocarbon fluid is produced via the surrounding production tubing.
  • the use of such an expanded production tubing allows the use of almost the full wellbore for the transport of hydrocarbon fluids so that a relatively slim borehole may be utilized to attain the desired production rate.
  • the tubing may be expanded against the inner surface of a casing which is present in the borehole.
  • the tubing may either be used as a production tubing and/or as a protective cladding for protecting the well casing against corrosive well fluids and damage from tools that may be lowered into the well during maintenance and workover operations.
  • FIG. 1 is schematic longitudinal sectional view of an underground borehole in which a tubing is expanded in accordance with the method according to the invention.
  • FIG. 1 there is shown a borehole traversing an underground formation 1 and a casing 2 that is fixed within the borehole by means of an annular body of cement 3.
  • a production tubing 4 which is made of a dual phase, high-strength low-alloy (HSLA) steel or other formable high-strength steel is suspended within the casing 2.
  • HSLA high-strength low-alloy
  • An expansion mandrel 5 is moved in longitudinal direction through the tubing 4 thereby expanding the tubing 4 such that the outer diameter of the expanded tubing is slightly smaller than or is about equal to the internal diameter of the casing 2.
  • the expansion mandrel 5 is equipped with a series of ceramic surfaces 6 which restrict frictional forces between the pig and tubing 4 during the expansion process.
  • the semi top angle A of the conical ceramic surface that actually expands the tubing is about 25°.
  • zirconium oxide is a suitable ceramic material which can be formed as a smooth conical ring. Experiments and simulations have shown that if the semi cone top angle A is between 20° and 30° the pipe deforms such that it obtains an S-shape and touches the tapering part of the ceramic surface 6 essentially at the outer tip or rim of said conical part and optionally also about halfway the conical part.
  • said semi top angle A is preferably selected between 15° and 30° and should always be between 5° and 45°.
  • the tapering part of the expansion mandrel 5 should have a non-metallic outer surface to avoid galling of the tubing during the expansion process.
  • the use of a ceramic surface for the tapering part of the expansion mandrel furthermore caused the average roughness of the inner surface of the tubing 4 to decrease as a result of the expansion process.
  • the expansion mandrel 5 provided with a ceramic tapering surface 6 could expand a tubing 4 made of a formable steel such that the outer tubing diameter D2 after expansion was at least 20% larger than the outer diameter D1 of the unexpanded tubing and that suitable formable steels are dual phase (DP) high-strength low alloy (HSLA) steels known as DP55 and DP60; ASTM A106 HSLA seamless pipe, ASTM A312 austenitic stainless steel pipes, grades TP 304 L and TP 316 L and a high-retained austenite high-strength hot rolled steel, known as TRIP steel manufactured by the Nippon Steel Corporation.
  • DP dual phase
  • HSLA high-strength low alloy
  • the mandrel 5 is provided with a pair of sealing rings 7 which are located at such a distance from the conical ceramic surface 6 that the rings 7 face the plastically expanded section of the tubing 4.
  • the sealing rings serve to avoid that fluid at high hydraulic pressure would be present between the conical ceramic surface 6 of the mandrel 5 and the expanding tubing 4 which might lead to an irregularly large expansion of the tubing 4.
  • the expansion mandrel 5 is provided with a central vent passage which is in communication with a coiled vent line 8 through which fluid may be vented to the surface.
  • a coiled kill and/or service line (not shown) may be lowered into the expanded tubing 4 to facilitate injection of kill and/or treatment fluids towards the hydrocarbon fluid inflow zone which is normally be done via the annulus between the production tubing and the well casing.
  • the tubing 4 is expanded to a smaller diameter then the residual annular space between the casing 2 and expanded tubing 4 can be used for venting of fluids during the expansion process and for injection of fluids during the production process, in which case there is no need for using a vent line 8 and kill and/or service lines.
  • the mandrel can also be pulled through the tubing by means of a cable or pushed through the tubing by means of pipe string or rod.
  • the method according to the invention can also be used to expand tubings that are used outside a wellbore, for example to expand oilfield tubulars at surface facilities or to expand a tubing inside an existing tubing which has been damaged or corroded.
  • the expansion mandrel was designed such that the outer diameter of the expanded tubular would be 127 mm, so that the increase in diameter would be 20%.
  • the tubular burst during the expansion process. Analysis showed that the ductility limit of the material had been exceeded so that ductile fracturing occurred.
  • An expansion mandrel was pumped through the pipe, which mandrel comprised a ceramic conical surface such that the semi top angle A of a cone enveloping the conical surface was 20° and such that the outer diameter of the expanded pipe was 127 mm (5") and the outer diameter increased by 21%.
  • the pipe was expanded successfully and the hydraulic pressure exerted to the mandrel to move the mandrel through the pipe was between 275 and 300 bar.
  • the burst pressure of the expanded pipe was between 520 and 530 bar.

Abstract

L'invention concerne une colonne de production (4) constituée d'une qualité d'acier ductile, qui est soumise à un écrouissage sans que le processus de dilatation n'entraîne de rétrécissement ou de rupture ductile. On dilate la colonne de production en déplaçant à l'intérieur un mandrin de dilatation (5) ayant une surface externe conique non métallique, ce qui augmente la résistance de ladite colonne sans augmenter les forces de dilatation.

Claims (15)

  1. Procédé pour dilater un tubage (4) en acier qui est constitué d'une qualité d'acier postformable, le procédé comprenant l'étape consistant à déplacer un mandrin de dilatation (5) ayant une section de dilatation conique (6) dans le tubage (4) dilatant ainsi plastiquement le tubage, caractérisé en ce qu'un tubage (4) au moins en partie solide est dilaté, lequel tubage est fait d'une qualité d'acier postformable qui est soumise à un écrouissage sans subir de striction ou de rupture ductile du fait du processus de dilatation et en ce que la section de dilatation conique (6) du mandrin de dilatation (5) a une surface extérieure conique en céramique.
  2. Procédé de la revendication 1, dans lequel le tubage (4) est constitué d'une qualité d'acier postformable ayant un rapport qui est inférieur à 0,8 et une limite l'élasticité d'au moins 275 MPa.
  3. Procédé de la revendication 1 ou 2, dans lequel le tubage (4) est constitué d'un acier ayant un rapport limite d'élasticité - résistance à la traction qui est compris entre 0,6 et 0,7.
  4. Procédé de la revendication 1, 2 ou 3, dans lequel le tubage (4) est constitué d'un acier haute résistance faiblement allié (HSLA) à double phase (DP).
  5. Procédé de la revendication 4, dans lequel le tubage (4) est constitué de Sollac qualité DP55 ou DP60 ayant une résistance à la traction d'au moins 550 MPa ou Nippon qualité SAFH 540 D ou SAFH 590 D.
  6. Procédé de la revendication 1, 2 ou 3, dans lequel le tubage (4) est constitué d'une qualité d'acier haute résistance postformable qui est choisi dans le groupe suivant des qualités d'acier :
    - un tuyau sans soudure haute résistance faiblement allié (HSLA) selon la norme ASTM A106,
    - un tuyau d'acier inoxydable austénitique selon la norme ASTM A312, qualité TP 304 L,
    - un tuyau d'acier inoxydable austénitique selon la norme ASTM A312, qualité TP 316 L, et
    - un acier à haute teneur résiduelle en austénite, haute résistance, laminé à chaud, qui est également connu en tant qu'acier TRIP.
  7. Procédé d'une quelconque revendication précédente, dans lequel le tubage est dilaté de telle manière que le diamètre extérieur du tubage dilaté soit au moins de 20 % supérieur au diamètre extérieur du tubage (4) non dilaté et dans lequel l'exposant n d'écrouissage de l'acier postformable du tubage (4) est au moins de 0,16.
  8. Procédé d'une quelconque revendication précédente, dans lequel le mandrin de dilatation (5) comprend une section de dilatation conique (6) qui a surface extérieure lisse en céramique qui est orientée à un angle aigu A qui est compris entre 5° et 45° par rapport à un axe longitudinal du mandrin (5) et qui induit le tubage (4) à se dilater sans induire d'éraillures dans le tubage et de telle manière que la rugosité moyenne de la surface intérieure du tubage (4) diminue du fait du processus de dilatation.
  9. Procédé de la revendication 8, dans lequel la surface extérieure en céramique de la section de dilatation conique (6) est constituée d'oxyde de zirconium et est orientée à un angle aigu A qui est compris entre 15° et 30° par rapport à un axe longitudinal du mandrin (5).
  10. Procédé d'une quelconque revendication précédente, dans lequel le tubage (4) est dilaté par pompage du mandrin de dilatation (5) dans le tubage (4).
  11. Procédé de la revendication 7 et 10, dans lequel le mandrin de dilatation (5) comprend une section d'étanchéité (7) qui est située à une distance telle de la section de dilatation (6) que, quand le mandrin de dilatation (5) est pompé dans le tubage (4), la section d'étanchéité (7) entre en prise avec une partie plastiquement dilatée du tubage.
  12. Procédé de la revendication 10 ou 11, dans lequel le tubage (4) est dilaté à l'intérieur d'un trou de forage en sous-sol et le mandrin de dilatation (5) contient une conduite de mise à l'air libre (8) pour évacuer des fluides qui sont présents dans le tubage (4) en tête du mandrin de dilatation (5) vers la surface.
  13. Procédé de la revendication 10 ou 11, dans lequel le tubage (4) est dilaté à l'intérieur d'un trou de forage en sous-sol de telle manière que le diamètre extérieur (D2) du tubage dilaté (4) soit légèrement plus petit que le diamètre intérieur du trou de forage ou d'un quelconque cuvelage (2) qui est présent dans le trou de forage et que des fluides qui sont présent dans le trou de forage et le tubage (4) en tête du mandrin de dilatation soient évacués vers la surface via l'espace annulaire qui reste ouvert autour du tubage (4) après le processus de dilatation.
  14. Procédé d'une quelconque revendication précédente, dans lequel le tubage (4) est descendu dans un trou de forage en sous-sol après avoir dévidé le tubage d'un tambour de dévidage.
  15. Puits pourvu d'un tubage (4) qui est dilaté en utilisant le procédé d'une quelconque revendication précédente, dans lequel le tubage (4) sert de tubage de production par lequel du fluide hydrocarboné est transporté vers la surface et un service dévidable et / ou une conduite d'injection passe par au moins une partie substantielle de la longueur de l'intérieur du tubage (4), par laquelle conduite du fluide peut être pompé vers le fond du trou de forage tandis que le fluide hydrocarboné est produit via le tubage de production environnant.
EP97930490A 1996-07-01 1997-06-30 Procede pour dilater une colonne de production en acier et puits avec ladite colonne Expired - Lifetime EP0907822B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97930490A EP0907822B1 (fr) 1996-07-01 1997-06-30 Procede pour dilater une colonne de production en acier et puits avec ladite colonne

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP96201809 1996-07-01
EP96201809 1996-07-01
PCT/EP1997/003489 WO1998000626A1 (fr) 1996-07-01 1997-06-30 Procede pour dilater une colonne de production en acier et puits avec ladite colonne
EP97930490A EP0907822B1 (fr) 1996-07-01 1997-06-30 Procede pour dilater une colonne de production en acier et puits avec ladite colonne

Publications (2)

Publication Number Publication Date
EP0907822A1 EP0907822A1 (fr) 1999-04-14
EP0907822B1 true EP0907822B1 (fr) 2008-12-17

Family

ID=8224125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97930490A Expired - Lifetime EP0907822B1 (fr) 1996-07-01 1997-06-30 Procede pour dilater une colonne de production en acier et puits avec ladite colonne

Country Status (14)

Country Link
EP (1) EP0907822B1 (fr)
JP (1) JP4289686B2 (fr)
AU (1) AU723337B2 (fr)
BR (1) BR9710016A (fr)
CA (1) CA2260191C (fr)
DE (1) DE69739166D1 (fr)
DK (1) DK0907822T3 (fr)
EA (1) EA000543B1 (fr)
ID (1) ID17661A (fr)
MY (1) MY116920A (fr)
NO (1) NO317755B1 (fr)
NZ (1) NZ333945A (fr)
OA (1) OA10949A (fr)
WO (1) WO1998000626A1 (fr)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085838A (en) * 1997-05-27 2000-07-11 Schlumberger Technology Corporation Method and apparatus for cementing a well
US6029748A (en) * 1997-10-03 2000-02-29 Baker Hughes Incorporated Method and apparatus for top to bottom expansion of tubulars
GB9723031D0 (en) * 1997-11-01 1998-01-07 Petroline Wellsystems Ltd Downhole tubing location method
JP4085403B2 (ja) * 1997-12-31 2008-05-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素生産井の掘削及び仕上げ方法
EP0952305A1 (fr) 1998-04-23 1999-10-27 Shell Internationale Researchmaatschappij B.V. Conduit déformable
EA002432B1 (ru) * 1998-10-29 2002-04-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ транспортировки и установки расширяемых стальных труб
US6575240B1 (en) * 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
GB2344606B (en) * 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
GB2356651B (en) * 1998-12-07 2004-02-25 Shell Int Research Lubrication and self-cleaning system for expansion mandrel
WO2000037766A2 (fr) 1998-12-22 2000-06-29 Weatherford/Lamb, Inc. Procedes et materiel de façonnage et d'assemblage de tuyaux
US6352112B1 (en) * 1999-01-29 2002-03-05 Baker Hughes Incorporated Flexible swage
MY121129A (en) * 1999-02-01 2005-12-30 Shell Int Research Method for creating secondary sidetracks in a well system
AU770008B2 (en) * 1999-02-25 2004-02-12 Shell Internationale Research Maatschappij B.V. Mono-diameter wellbore casing
AU770359B2 (en) * 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
GB2348223B (en) * 1999-03-11 2003-09-24 Shell Internat Res Maatschhapp Method of creating a casing in a borehole
OA11859A (en) 1999-04-09 2006-03-02 Shell Int Research Method for annular sealing.
WO2000061310A1 (fr) 1999-04-09 2000-10-19 Shell Internationale Research Maatschappij B.V. Procédé de fabrication de tuyau cylindrique
CA2306656C (fr) * 1999-04-26 2006-06-06 Shell Internationale Research Maatschappij B.V. Connexion extensible
GB2388862B (en) * 1999-06-07 2004-02-18 Shell Int Research A method of selecting a group of tubular members
JP4508509B2 (ja) * 1999-09-06 2010-07-21 イー2テック リミテッド 拡大可能な坑井管
GB9920935D0 (en) * 1999-09-06 1999-11-10 E2 Tech Ltd Apparatus for and a method of anchoring a first conduit to a second conduit
GB9920936D0 (en) * 1999-09-06 1999-11-10 E2 Tech Ltd Apparatus for and a method of anchoring an expandable conduit
GB2390628B (en) * 1999-11-01 2004-03-17 Shell Oil Co Wellbore casing repair
GB2374622B (en) * 1999-11-01 2003-12-10 Shell Oil Co Wellbore casing repair
JP2001137978A (ja) * 1999-11-08 2001-05-22 Daido Steel Co Ltd 金属管拡管用工具
GB0216074D0 (en) * 2002-07-11 2002-08-21 Weatherford Lamb Improving collapse resistance of tubing
US8746028B2 (en) 2002-07-11 2014-06-10 Weatherford/Lamb, Inc. Tubing expansion
KR100514119B1 (ko) * 2000-02-28 2005-09-13 신닛뽄세이테쯔 카부시키카이샤 성형성이 우수한 강관 및 그의 제조방법
EP1167852A3 (fr) 2000-05-18 2003-11-12 Daido Tokushuko Kabushiki Kaisha Canalisation de métal liée par diffusion, méthode d'expansion de canalisation de métal liée par diffusion et procédures d'inspection de la canalisation de métal liée par diffusion
FR2811056B1 (fr) 2000-06-30 2003-05-16 Vallourec Mannesmann Oil & Gas Joint filete tubulaire apte a subir une expansion diametrale
US6799637B2 (en) 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
US6789621B2 (en) 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
US6695054B2 (en) 2001-01-16 2004-02-24 Schlumberger Technology Corporation Expandable sand screen and methods for use
AU782084B2 (en) 2000-08-15 2005-06-30 Baker Hughes Incorporated Self lubricating swage
AU781921B2 (en) * 2000-09-11 2005-06-23 Baker Hughes Incorporated Multi layer screen and downhole completion method
US6478092B2 (en) 2000-09-11 2002-11-12 Baker Hughes Incorporated Well completion method and apparatus
EP1324855B1 (fr) 2000-10-13 2004-08-18 Shell Internationale Researchmaatschappij B.V. Procede d'interconnexion de tuyaux expansibles adjacents
US7168485B2 (en) 2001-01-16 2007-01-30 Schlumberger Technology Corporation Expandable systems that facilitate desired fluid flow
US6695067B2 (en) 2001-01-16 2004-02-24 Schlumberger Technology Corporation Wellbore isolation technique
JP3885615B2 (ja) * 2001-03-09 2007-02-21 住友金属工業株式会社 埋設拡管用鋼管および油井用鋼管の埋設方法
EP1375820B1 (fr) 2001-03-09 2005-11-30 Sumitomo Metal Industries, Ltd. Tubage d'acier enfoui et dilate et son procede d'enfouissement dans un puits de petrole
MY134794A (en) 2001-03-13 2007-12-31 Shell Int Research Expander for expanding a tubular element
US7350585B2 (en) 2001-04-06 2008-04-01 Weatherford/Lamb, Inc. Hydraulically assisted tubing expansion
GB2406120B (en) * 2001-09-07 2005-08-31 Enventure Global Technology Radially expanding and plastically deforming a tubular member
US20030075337A1 (en) * 2001-10-24 2003-04-24 Weatherford/Lamb, Inc. Method of expanding a tubular member in a wellbore
FR2834326A1 (fr) 2002-01-03 2003-07-04 Vallourec Mannesmann Oil & Gas Joint filete tubulaire etanche apres expansion diametrale
FR2834325B1 (fr) 2002-01-03 2004-03-26 Vallourec Mannesmann Oil & Gas Joint filete tubulaire comportant des surfaces d'etancheite
FR2844331B1 (fr) 2002-01-03 2004-11-26 Vallourec Mannesmann Oil & Gas Procede de realisation d'un joint tubulaire etanche avec expansion plastique
GB0201955D0 (en) 2002-01-29 2002-03-13 E2 Tech Ltd Apparatus and method
WO2003074837A1 (fr) * 2002-03-04 2003-09-12 Shell Internationale Research Maatschappij B.V. Colonne de production expansible
FR2841626B1 (fr) 2002-06-28 2004-09-24 Vallourec Mannesmann Oil & Gas Joint filete tubulaire renforce pour etancheite amelioree apres expansion plastique
CN100377828C (zh) 2002-07-17 2008-04-02 国际壳牌研究有限公司 连接可膨胀管的方法
US7282663B2 (en) 2002-07-29 2007-10-16 Shell Oil Company Forge welding process
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
CA2461855C (fr) 2003-03-25 2008-05-20 Weatherford/Lamb, Inc. Expansion de colonne de production assistee par vibrations
US7774917B2 (en) 2003-07-17 2010-08-17 Tubefuse Applications B.V. Forge welding tubulars
US20070163785A1 (en) * 2003-08-14 2007-07-19 Enventure Global Technology Expandable tubular
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
GB2427212B (en) * 2003-09-05 2008-04-23 Enventure Global Technology Expandable tubular
WO2005038067A1 (fr) 2003-10-20 2005-04-28 Jfe Steel Corporation Conduite en acier continue a potentiel d'expansion pour puits de petrole et procede d'elaboration
GB2432866A (en) 2004-08-13 2007-06-06 Enventure Global Technology Expandable tubular
BRPI0609856A2 (pt) 2005-04-28 2010-05-11 Jfe Steel Corp tubo de aço inoxidável tendo excelente capacidade de dilatação para produtos tubulares para campos petrolìferos
GB2442393B (en) 2005-07-22 2010-01-27 Shell Int Research Apparatus and methods for creation of down hole annular barrier
CA2584492C (fr) * 2006-05-09 2009-10-13 Enventure Global Technology Cone et systeme d'expansion
CN101541998B (zh) 2007-03-30 2012-06-06 住友金属工业株式会社 在矿井内被扩径的扩径用油井管及其制造方法
FR2956466B1 (fr) 2010-02-17 2012-06-08 Vallourec Mannesmann Oil & Gas Joint filete expansible et procede de realisation
JP5163764B2 (ja) * 2011-02-25 2013-03-13 Jfeスチール株式会社 金属管の拡管製造方法
CN102626721A (zh) * 2012-04-13 2012-08-08 宜兴市创天管业有限公司 一种小口径螺旋管冷拔内模及其表面渗层处理方法
CN104349853B (zh) * 2012-05-29 2016-03-30 杰富意钢铁株式会社 金属管的扩管制造方法
US9296165B1 (en) 2013-01-04 2016-03-29 Dale L. Henson Apparatuses for expanding tubing and methods of use
CN104226833B (zh) * 2013-06-09 2016-03-30 宝山钢铁股份有限公司 一种钢管全长扩径时的在线整圆方法及扩径模具
CN103742093A (zh) * 2013-12-27 2014-04-23 中国石油天然气股份有限公司 一种仿生耐磨损膨胀锥及其制造方法
CN103742094A (zh) * 2013-12-27 2014-04-23 中国石油天然气股份有限公司 一种耐磨损膨胀锥及其加工方法
CN103790536B (zh) * 2014-01-03 2017-05-10 中国石油天然气股份有限公司 一种膨胀锥
BR112016029819B1 (pt) 2014-06-25 2022-05-31 Shell Internationale Research Maatschappij B.V. Sistema e método para criar uma conexão tubular de vedação em um furo de poço
CA2953415C (fr) 2014-06-25 2022-07-19 Shell Internationale Research Maatschappij B.V. Ensemble et procede d'extension d'un element tubulaire
CA2956239C (fr) 2014-08-13 2022-07-19 David Paul Brisco Ensemble et procede de creation d'un element tubulaire dilate dans un trou de forage
WO2018125230A1 (fr) * 2016-12-30 2018-07-05 Halliburton Energy Services, Inc. Ensemble d'expansion pour dispositif de suspension de colonne perdue expansible
CN109659050A (zh) * 2018-11-26 2019-04-19 中广核核电运营有限公司 一种用于核电站燃料组件的替换棒及其制造方法
CN110805409A (zh) * 2019-07-12 2020-02-18 大港油田集团有限责任公司 一种基于重复压裂套管井的膨胀管封堵方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH180467A (fr) * 1935-03-06 1935-10-31 Theintz Fernand Mandrin métallique pour rectifier un tuyau.
GB861603A (en) * 1956-10-22 1961-02-22 Lasalle Steel Co Metallurgical process for treating steel
US3203483A (en) * 1962-08-09 1965-08-31 Pan American Petroleum Corp Apparatus for forming metallic casing liner
US3162245A (en) * 1963-04-01 1964-12-22 Pan American Petroleum Corp Apparatus for lining casing
DE1583992B1 (de) * 1968-01-03 1971-06-09 Mannesmann Ag Verfahren zur steigerung der festigkeitseigenschaften dickwandiger metallener hoechstdruckrohre
US3489220A (en) * 1968-08-02 1970-01-13 J C Kinley Method and apparatus for repairing pipe in wells
US3901063A (en) * 1973-10-17 1975-08-26 Std Services Ltd Plugs for use in tube-drawing
JPS58157948A (ja) * 1982-03-16 1983-09-20 Kawasaki Steel Corp 耐水素誘起割れ性にすぐれた鋼材の製造方法
US4533405A (en) * 1982-10-07 1985-08-06 Amax Inc. Tubular high strength low alloy steel for oil and gas wells
GB2155950B (en) * 1984-03-01 1988-01-20 Nippon Steel Corp Erw-oil well pipe and process for producing same
US4960643A (en) * 1987-03-31 1990-10-02 Lemelson Jerome H Composite synthetic materials
US4832757A (en) * 1987-07-08 1989-05-23 Amax Inc. Method for producing normalized grade D sucker rods
US4938266A (en) * 1987-12-11 1990-07-03 Nippon Steel Corporation Method of producing steel having a low yield ratio
DE3887905D1 (de) * 1988-11-22 1994-03-24 Tatarskij Gni Skij I Pi Neftja Aufweitwerkzeug für rohre.
JPH02290920A (ja) * 1989-04-28 1990-11-30 Nippon Steel Corp 高強度二相ステンレス鋼管の製造方法
US5224560A (en) * 1990-10-30 1993-07-06 Modular Engineering Modular drill bit
US5366012A (en) * 1992-06-09 1994-11-22 Shell Oil Company Method of completing an uncased section of a borehole
MY108743A (en) * 1992-06-09 1996-11-30 Shell Int Research Method of greating a wellbore in an underground formation
IT1263251B (it) * 1992-10-27 1996-08-05 Sviluppo Materiali Spa Procedimento per la produzione di manufatti in acciaio inossidabile super-duplex.
DE9304218U1 (fr) * 1993-03-22 1993-07-08 Purmo Ag, 3008 Garbsen, De

Also Published As

Publication number Publication date
OA10949A (en) 2003-02-27
WO1998000626A1 (fr) 1998-01-08
EA199900072A1 (ru) 1999-06-24
AU3442097A (en) 1998-01-21
DE69739166D1 (de) 2009-01-29
NO986171L (no) 1999-02-22
CA2260191C (fr) 2007-11-27
EP0907822A1 (fr) 1999-04-14
NO986171D0 (no) 1998-12-29
MY116920A (en) 2004-04-30
JP4289686B2 (ja) 2009-07-01
EA000543B1 (ru) 1999-10-28
NZ333945A (en) 2000-03-27
CA2260191A1 (fr) 1998-01-08
DK0907822T3 (da) 2009-03-02
ID17661A (id) 1998-01-15
BR9710016A (pt) 1999-08-10
NO317755B1 (no) 2004-12-13
AU723337B2 (en) 2000-08-24
JP2001508144A (ja) 2001-06-19

Similar Documents

Publication Publication Date Title
EP0907822B1 (fr) Procede pour dilater une colonne de production en acier et puits avec ladite colonne
EP1169547B1 (fr) Procede permettant de creuser un puits de forage dans une formation souterraine
US6419025B1 (en) Method of selective plastic expansion of sections of a tubing
AU740213B2 (en) Method for drilling and completing a hydrocarbon production well
US6712401B2 (en) Tubular threaded joint capable of being subjected to diametral expansion
US6070671A (en) Creating zonal isolation between the interior and exterior of a well system
US7607333B2 (en) Helical groove for a tubular connection
US7588270B2 (en) Threaded tubular joint comprising sealing surfaces
US20070163785A1 (en) Expandable tubular
US20070151360A1 (en) Expandable tubular
US6390201B1 (en) Method of creating a downhole sealing and hanging device
Sutter et al. Development of grades for seamless expandable tubes
CN202832276U (zh) 一种具有不同强度区段的连续油管
JP2001001082A (ja) 金属管接合体の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT NL

17Q First examination report despatched

Effective date: 19990423

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69739166

Country of ref document: DE

Date of ref document: 20090129

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160622

Year of fee payment: 20

Ref country code: GB

Payment date: 20160629

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160610

Year of fee payment: 20

Ref country code: NL

Payment date: 20160610

Year of fee payment: 20

Ref country code: FR

Payment date: 20160516

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69739166

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20170630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170629

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170629