EP0905840B1 - Lightning current withstanding arrester - Google Patents

Lightning current withstanding arrester

Info

Publication number
EP0905840B1
EP0905840B1 EP98112342A EP98112342A EP0905840B1 EP 0905840 B1 EP0905840 B1 EP 0905840B1 EP 98112342 A EP98112342 A EP 98112342A EP 98112342 A EP98112342 A EP 98112342A EP 0905840 B1 EP0905840 B1 EP 0905840B1
Authority
EP
European Patent Office
Prior art keywords
discharger
lightning current
dischargers
current according
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98112342A
Other languages
German (de)
French (fr)
Other versions
EP0905840A1 (en
Inventor
Jan Prof.Dr.-Ing. Meppelink
Christof Dipl.-Ing. Drilling
Jürgen Dipl.-Ing. Trinkwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obo Bettermann GmbH and Co KG
Original Assignee
Obo Bettermann GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obo Bettermann GmbH and Co KG filed Critical Obo Bettermann GmbH and Co KG
Publication of EP0905840A1 publication Critical patent/EP0905840A1/en
Application granted granted Critical
Publication of EP0905840B1 publication Critical patent/EP0905840B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/16Overvoltage arresters using spark gaps having a plurality of gaps arranged in series

Definitions

  • the invention relates to a lightning current carrying Spark gap with several series connected Radio links.
  • a line follow current flows with line frequency and one Height from a few kA to a few 10 kA, depending on the Distance of the building from the next Transformer station and the feed-in power.
  • the upstream fuse becomes the three-pole Disconnect short circuit from the mains, causing the power supply fails. It can only be replaced by the Main network backup by the Energy supply companies put back into operation become.
  • spark gaps To avoid damage due to lightning strikes in spark gaps are known in a building. Such Spark gaps become transient equipotential bonding used, with the subsequent line follow current is deleted. All previous solutions are based on that the spark gap at a lightning surge is ignited, the lightning current between earth and conductor to ensure a low voltage drop along of the arc is derived or conducted, the Mains sequence current is conducted and deleted and a The spark gap is reconsolidated.
  • FR 1 539 445 A1 describes a series connection of Spark gaps with a voltage-dependent resistance known, with ohmic resistances to the spark gaps are connected in parallel and to the first spark gap a capacitance is connected in parallel.
  • the control of the Voltage distribution is thereby through the parallel switched capacitor to the first spark gap like this switched that a dependency of Stress distribution from the Voltage rise rate of the applied voltage occurs.
  • the spark gaps switch again at the same time.
  • the spark gap capable of carrying lightning current according to the invention is based on the basic idea of arc quenching Multiple interruption of the arc with the help of a Multiple spark gap.
  • the voltage drop at the anodes and cathodes of the partial spark gaps Multiple spark gap for arc quenching and this prevents the follow-up current exploited.
  • the extinguishing effect can be done in the usual way can be increased in that the spark gap in one sealed housing is installed.
  • the Quenching can also be done by blowing the arc be increased with cold gas.
  • the arc is divided into multiple arcs.
  • the proposed multiple spark gap uses the effect of dividing the arc into several partial spark gaps, so that the anode and cathode drop (voltage drop, in particular at the arc base points on the anode and cathode) of the individual spark gaps is added.
  • N is the number of spark gaps of the multiple spark gap and U AK is the anode or cathode case of a partial spark gap of the multiple spark gap.
  • the formation of the first spark gap is decisive for the responsiveness.
  • On the chain of Spark gaps become the tension of each Partial arcs added up so high in total that they is higher than the mains voltage, so that actually none Mains sequence current arises.
  • the multi-spark gap can also be used with a Sliding discharge arrangement for reducing the Ignition delay time of the partial spark gaps in combination with the corresponding resistor circuit be equipped.
  • the sliding discharge arrangement exists from one arranged along the spark gaps Layer of an insulating material, in which a metallic Film or the like is let in on Earth potential is.
  • the electrodes of spark gaps from metals such as copper, tungsten copper or the like Metals after exposure to high Lightning currents on the surface Meltings show that there is metallic vapor on the surface of adjacent insulation arrangements reflected. These effects reduce the Life span of such a spark gap.
  • an electrode made of graphite proposed.
  • the partial spark gaps of the Multiple spark gaps are therefore preferably made Made of graphite. Because of the low metal burn-up when exposed to lightning currents up to 200 kA graphite is particularly suitable for this application. Even after repeated exposure to lightning impulse currents remains the surface of the electrodes of the Multiple spark gap clean and keeps its shape. This ensures that the response voltage of the Spark gap remains within the permissible spread.
  • the spark gap is preferably made of cylindrical or cube-shaped electrodes built up by an insulating film or washer heat-resistant material, especially PTFE or Ceramics, insulated from each other.
  • an insulating film or washer heat-resistant material especially PTFE or Ceramics, insulated from each other.
  • a spark gap is shown in FIG a head of the power supply network and at II an earth is connected.
  • the Partial spark gaps FS2 to FSN with the exception of those in Lightning current event case first appealing Spark gap FS1 through a graded network of ohmic resistors connected, so that Partial spark gaps FS2 to FSN successively by turn.
  • the network of resistors shows in Switching direction decreases resistance values. So
  • the resistance R2 can be 10 kilohms Resistor R3 1 kilohm, resistance R4 100 ohms Resistor R5 10 ohms and resistance Rn X ohms exhibit.
  • the resistors can preferably decrease logarithmically.
  • a resistor R2 to Rn connected in parallel and the resistances of all Partial spark gaps R2 to Rn are in series on earth (II) connected.
  • spark gap electrodes 2 made of graphite are provided, that by insulating washers made of PTFE from each other are spaced.
  • At 4 is a connection of one Control resistor shown.
  • With 5 is a housing shown, which surrounds the entire unit.
  • At 6 is the power connection shown.
  • the control resistors 10 are also in one protected space inside the insulating housing arranged. With 11 is another insulating plate shown. With 1 contact springs are shown, by means of which is the contacting link to the Spark gaps occur.
  • the electrodes 2 of the Spark gaps are preferably cylindrical or cuboid, sharp-edged elements. In the The embodiment according to FIG. 3 is the entire one Spark gap from two arranged parallel to each other Blocks of the same number of partial spark gaps.
  • the Sliding discharge ignition aid consists of a longitudinal arranged parallel to the spark gaps FS1 to FSN Layer 12 of insulating material, for example PTFE, in which is a metallic conductor 13, in particular one metallic foil, is embedded. This slide is at 14 connected to earth potential.
  • This slide is at 15 there is one Sliding discharge shown as the first pre-discharge ignites before the main discharge 16 as a result of first sliding discharge ignites.
  • the spark gaps FS2 to FSN are included Control resistors R2 to Rn connected.
  • the distance between the first spark gaps is FS1 decisive for the response behavior of the Total radio link.
  • FSN farnesoid voltage
  • the invention is not based on the embodiment limited, but often within the scope of the disclosure variable.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Insulators (AREA)
  • Elimination Of Static Electricity (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

The lightning current path consists of numerous arcing sections in series. The sections consist of n-part arcing sections, and are in series, so the arcing voltage is n-times the voltage of the part arcing sections. The arrangement preferably has graphite electrodes separated by PTFE insulating material. The arcing sections are preferably located in an epoxy resin molded housing.

Description

Die Erfindung betrifft eine blitzstromtragfähige Funkenstrecke mit mehreren in Reihe geschalteter Funkenstrecken.The invention relates to a lightning current carrying Spark gap with several series connected Radio links.

Bei einem Blitzeinschlag in ein Gebäude mit einer Niederspannungsstromversorgung fließt ein hoher kurzzeitiger Blitzstrom über die metallischen Strukturen nach Erde ab. Während dieses kurzzeitigen Blitzstromes wird das Potential der im Normalbetrieb als geerdet angesehenen metallischen Teile (genannt Erde) kurzzeitig um Werte von einigen 100 kV erhöht. Diese Potentialanhebung der Erde infolge eines Blitzeinschlages kommt dadurch zustande, daß der Blitzstrom als eingeprägter Strom in die Erde hineinfließen muß und dabei am endlichen Erdungswiderstand einen Spannungsabfall hervorruft. Die Leiter der Niederspannungsstromversorgung befinden sich auf dem vom Energieversorger bereitgestellten Potential gegenüber der Erde. Im Normalbetrieb führen diese Leiter daher die Nennspannung. Durch die vom Blitzstrom am Erdungswiderstand hervorgehobene Potentialanhebung entsteht nun eine kurzzeitige Stoßspannung zwischen der Erde und den Leitern, die sich aus der Differenz der Potentiale zwischen Erde und Leiter ergibt. Wird das Potential der Hauptpotentialausgleichschiene um einige 100 kV angehoben, wird die elektrische Festigkeit der Isolation zwischen den Leitern und der Erde überschritten und es kommt zum Überschlag durch die Luftisolationsstrecke und zum Durchschlag durch die Isolation der Leitungen. Die Folge dieses Überschlages oder Durchschlages ist ein dreipoliger Kurzschluß der Niederspannungsstromversorgung. Durch den dreipoligen Kurzschluß wird aber eine Verbindung zum einspeisenden Kabel hergestellt, so daß ein Teil des eingeprägten Blitzstromes in dieses Kabel hineinfließen kann.When lightning strikes a building with a Low voltage power supply flows a high brief lightning current over the metallic Structures down to earth. During this brief Lightning current becomes the potential of normal operation metallic parts (called Earth) briefly increased by values of a few 100 kV. This potential increase of the earth as a result of a Lightning strikes is caused by the fact that the Lightning current as an impressed current into the earth must flow into it and at the same time finite Earth resistance causes a voltage drop. The There are heads of the low-voltage power supply on the potential provided by the energy supplier towards the earth. These run in normal operation Conductor therefore the nominal voltage. By the lightning current Potential increase highlighted at the earth resistance there is now a brief surge voltage between the Earth and the ladders, which are the difference of the Potentials between earth and conductor results. Will that Potential of the main equipotential bonding bar by a few 100 kV raised, the electrical strength of the Isolation between the conductors and the earth exceeded and there is a rollover by the Air insulation route and to break through the Isolation of the lines. The consequence of this rollover or breakdown is a three-pole short circuit of the Low voltage power supply. Through the three-pole Short circuit becomes a connection to the feeder Cable made so that part of the embossed Lightning current can flow into this cable.

Der verbleibende Teil fließt weiterhin in die Erde.The remaining part continues to flow into the earth.

Die Wirkungen dieses dreipoligen Kurzschlusses sind

  • ein freibrennender Lichtbogen in der Niederspannungsverteilung oder in dem einspeisenden Kabel,
  • eine mögliche Vorschädigung eines Kabels oder Gerätes mit einem festen Isolierstoff mit der Gefahr eines späteren Schadens durch langsame Zerstörung der Isolation durch Teilentladungen oder Kriechströme,
  • Ausbreitung einer Druckwelle durch den Lichtbogen,
  • Gefahr eines Feuers durch Entzündungen von Isolierstoffen in dem heißen Lichtbogen.
  • The effects of this three-pole short circuit are
  • a free-burning arc in the low-voltage distribution or in the feeding cable,
  • possible pre-damage to a cable or device with a solid insulating material with the risk of later damage due to slow destruction of the insulation by partial discharges or leakage currents,
  • Propagation of a pressure wave through the arc,
  • Danger of fire due to ignition of insulating materials in the hot arc.
  • Es fließt ein Netzfolgestrom mit Netzfrequenz und einer Höhe von einigen kA bis zu einigen 10 kA, abhängig vom Abstand des Gebäudes von der nächsten Transformatorenstation und der Einspeiseleistung.A line follow current flows with line frequency and one Height from a few kA to a few 10 kA, depending on the Distance of the building from the next Transformer station and the feed-in power.

    Die vorgeschaltete Sicherung wird den dreipoligen Kurzschluss vom Netz trennen, wodurch die Stromversorgung ausfällt. Sie kann erst durch Ersetzen der Netzhauptsicherung durch das Energieversorgungsunternehmen wieder in Betrieb genommen werden.The upstream fuse becomes the three-pole Disconnect short circuit from the mains, causing the power supply fails. It can only be replaced by the Main network backup by the Energy supply companies put back into operation become.

    Zur Vermeidung der Schäden infolge Blitzeinschlages in ein Gebäude sind Funkenstrecken bekannt. Solche Funkenstrecken werden zum transienten Potentialausgleich eingesetzt, wobei auch der nachfolgende Netzfolgestrom gelöscht wird. Alle bisherigen Lösungen beruhen darauf, dass die Funkenstrecke bei einer Blitzüberspannung gezündet wird, der Blitzstrom zwischen Erde und Leiter zum Sicherstellen eines geringen Spannungsabfalls entlang des Lichtbogens abgeleitet bzw. geführt wird, der Netzfolgestrom geführt und gelöscht wird und eine Wiederverfestigung der Funkenstrecke erfolgt.To avoid damage due to lightning strikes in spark gaps are known in a building. Such Spark gaps become transient equipotential bonding used, with the subsequent line follow current is deleted. All previous solutions are based on that the spark gap at a lightning surge is ignited, the lightning current between earth and conductor to ensure a low voltage drop along of the arc is derived or conducted, the Mains sequence current is conducted and deleted and a The spark gap is reconsolidated.

    Aus der DE 42 40 138 A ist eine Funkenstrecke gattungsgemäßer Art bekannt. Aus dieser Druckschrift ist eine Mehrfachfunkenstrecke bekannt, die aus Teilfunkenstrecken mit hoch- und niederohmigen Isolationen besteht und deren Überschlagstrecke mit zunehmender Anzahl der Teilfunkenstrecken zunimmt. Diese Anordnung hat den Nachteil, dass beim Durchzünden derjenigen Funkenstrecke mit der hochohmigen Isolation die Spannung an allen anderen niederohmigen Funkenstrecken anliegt, so dass die gesamte Durchschlagspannung der gesamten Funkenstrecke gleich der n-fachen der Durchschlagspannung der hochohmigen Funkenstrecke ist. Die gesamte Spannung wird sozusagen auf viele Funkenstrecken aufgeteilt. Die Funkenstrecken schalten gleichzeitig durch.DE 42 40 138 A is a spark gap generic type known. From this publication a multiple spark gap known from Partial spark gaps with high and low impedance Insulations exist and their rollover distance with increasing number of partial spark gaps increases. This Arrangement has the disadvantage that when igniting of the spark gap with the high-resistance insulation the tension on everyone else low Spark gaps are present, so that the entire Breakdown voltage of the entire spark gap equal to that n times the breakdown voltage of the high-resistance Spark gap is. The whole tension is, so to speak divided over many spark gaps. The spark gaps switch through simultaneously.

    Aus der FR 1 539 445 A1 ist eine Reihenschaltung von Funkenstrecken mit einem spannungsabhängigen Widerstand bekannt, wobei zu den Funkenstrecken ohmsche Widerstände parallel geschaltet sind und zu der ersten Funkenstrecke eine Kapazität parallel geschaltet ist. Die Steuerung der Spannungsverteilung wird dabei durch den parallel geschalteten Kondensator zur ersten Funkenstrecke so geschaltet, dass eine Abhängigkeit der Spannungsverteilung von der Spannungsanstiegsgeschwindigkeit der anliegenden Spannung auftritt. Im Ereignisfall schalten die Funkenstrecken wiederum gleichzeitig durch.FR 1 539 445 A1 describes a series connection of Spark gaps with a voltage-dependent resistance known, with ohmic resistances to the spark gaps are connected in parallel and to the first spark gap a capacitance is connected in parallel. The control of the Voltage distribution is thereby through the parallel switched capacitor to the first spark gap like this switched that a dependency of Stress distribution from the Voltage rise rate of the applied voltage occurs. In the event of an event, the spark gaps switch again at the same time.

    Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine blitzstromtragfähige Funkenstrecke gattungsgemäßer Art zu schaffen, bei der ein Netzfolgestrom vollständig oder mindestens teilweise unterdrückt wird.Based on this state of the art Invention based on the object spark gap capable of carrying lightning current of the generic type to create a grid follow current completely or at least partially suppressed.

    Die Lösung dieser Aufgabe ist in den Patentansprüchen angegeben.The solution to this problem is in the claims specified.

    Die erfindungsgemäße blitzstromtragfähige Funkenstrecke basiert auf der Grundidee der Lichtbogenlöschung durch Mehrfachunterbrechung des Lichtbogens mit Hilfe einer Mehrfachfunkenstrecke. Dabei wird der Spannungsabfall an den Anoden und Kathoden der Teilfunkenstrecken der Mehrfachfunkenstrecke zur Lichtbogenlöschung und dadurch zur Unterbindung des Netzfolgestromes ausgenutzt. Die Löschwirkung kann in üblicher Weise dadurch erhöht werden, daß die Funkenstrecke in einem druckdicht abgeschlossenen Gehäuse eingebaut ist. Die Löschwirkung kann auch durch Beblasung des Lichtbogens mit Kaltgas erhöht werden.The spark gap capable of carrying lightning current according to the invention is based on the basic idea of arc quenching Multiple interruption of the arc with the help of a Multiple spark gap. The voltage drop at the anodes and cathodes of the partial spark gaps Multiple spark gap for arc quenching and this prevents the follow-up current exploited. The extinguishing effect can be done in the usual way can be increased in that the spark gap in one sealed housing is installed. The Quenching can also be done by blowing the arc be increased with cold gas.

    Bei der Funkenstrecke gemäß der Erfindung wird bei einem Blitzeinschlag zunächst durch die Überspannung zwischen PE (Erde) und den spannungsführenden Leitern gezündet, wenn die Ansprechspannung der Mehrfachfunkenstrecke erreicht ist.In the spark gap according to the invention a lightning strike initially caused by the surge between PE (earth) and the live conductors ignited when the response voltage of the Multiple spark gap is reached.

    Erfindungsgemäß erfolgt eine Aufteilung des Lichtbogens in Mehrfachlichtbögen. Hierbei wird durch die vorgeschlagene Mehrfachfunkenstrecke der Effekt genutzt, den Lichtbogen auf mehrere Teilfunkenstrecken aufzuteilen, so daß sich der Anoden- und Kathodenfall (Spannungsabfall insbesondere an den Lichtbogenfußpunkten an der Anode und Kathode) der einzelnen Funkenstrecken addiert. Der gesamte Spannungsabfall an der Mehrfachfunkenstrecke kann demnach durch folgende Beziehungen beschrieben werden: U = n x UAK. Dabei bedeutet n die Anzahl der Funkenstrecken der Mehrfachfunkenstrecke und UAK den Anoden- bzw. Kathodenfall einer Teilfunkenstrecke der Mehrfachfunkenstrecke.According to the invention, the arc is divided into multiple arcs. The proposed multiple spark gap uses the effect of dividing the arc into several partial spark gaps, so that the anode and cathode drop (voltage drop, in particular at the arc base points on the anode and cathode) of the individual spark gaps is added. The total voltage drop across the multiple spark gap can therefore be described by the following relationships: U = nx U AK . N is the number of spark gaps of the multiple spark gap and U AK is the anode or cathode case of a partial spark gap of the multiple spark gap.

    Um eine relativ niedrige Ansprechspannung von beispielsweise maximal 4 kV nicht zu überschreiten, ist die erste Funkenstrecke so ausgebildet und deren Anode und Kathode derart beabstandet, daß eine entsprechende Ansprechspannung erreicht wird.To have a relatively low response voltage of for example not to exceed a maximum of 4 kV the first spark gap and its anode and cathode spaced such that a corresponding Response voltage is reached.

    Bei der erfindungsgemäß vorgesehenen Mehrfachfunkenstrecke teilt sich die Spannung auf alle Teilfunkenstrecken auf. Durch die erfindungsgemäße Widerstandsbeschaltung der Mehrfachfunkenstrecke wird erreicht, daß an der obersten (eingangs) Teilfunkenstrecke das Potential der Erde anliegt. Sobald diese erste Teilfunkenstrecke gezündet hat, fließt ein Strom über die Widerstände, die abgestuft abnehmen, beispielsweise dekadisch oder vorzugsweise logarithmisch. Dadurch wird erreicht, daß nach dem Zünden der ersten Teilfunkenstrecke nahezu die gesamte Spannung an der zweiten Teilfunkenstrecke liegt und diese unmittelbar zündet. Dabei wird vorteilhaft die ultraviolette Strahlung des Funkenkanals in der ersten Teilfunkenstrecke zur Bereitstellung der Anfangselektronen in der jeweils folgenden Teilfunkenstrecke genutzt. Dieser Effekt setzt sich bis zur letzten Teilfunkenstrecke fort.In the case of the invention Multiple spark gaps the voltage is shared by all Partial spark gaps on. By the invention Resistor circuit of the multiple spark gap is achieved that at the top (input) Partial spark gap the potential of the earth is present. As soon as this first partial spark gap has ignited, a current flows across the resistors, which are graded decrease, for example decadal or preferably logarithmic. This ensures that after Ignition of the first partial spark gap almost the entire Voltage is on the second spark gap and this ignites immediately. This will be advantageous ultraviolet radiation of the spark channel in the first Partial spark gap to provide the Starting electrons in the following Partial spark gap used. This effect continues until to the last partial spark gap.

    Nach dem Zünden fließt ein Kurzschlußstrom und an jeder Funkenstrecke (Anoden- Kathodenfall) baut sich ein hoher Spannungsabfall auf, der sich durch die Vielzahl der Funkenstrecke aufsummiert, so daß entsprechend der Anzahl der Funkenstrecken die Lichtbogenbrennspannung größer als die Netzspannung ist, so daß kein Netzfolgestrom entsteht.After ignition, a short circuit current flows and at everyone Spark gap (anode-cathode case) builds up high voltage drop due to the large number the spark gap summed up, so that according to the Number of spark gaps the arc voltage is greater than the mains voltage, so that no Mains sequence current arises.

    Die Ausbildung der ersten Funkenstrecke ist maßgebend für das Ansprechverhalten. An der Kette der Funkenstrecken wird die Spannung der einzelnen Teillichtbögen in der Summe so hoch aufaddiert, daß sie höher als die Netzspannung ist, so daß tatsächlich kein Netzfolgestrom entsteht.The formation of the first spark gap is decisive for the responsiveness. On the chain of Spark gaps become the tension of each Partial arcs added up so high in total that they is higher than the mains voltage, so that actually none Mains sequence current arises.

    Die Mehrfunkenstrecke kann auch mit einer Gleitentladungsanordnung zur Herabsetzung der Zündverzugszeit der Teilfunkenstrecken in Kombination mit der entsprechenden Widerstandsbeschaltung ausgerüstet sein. Die Gleitentladungsanordnung besteht aus einer längs zu den Funkenstrecken angeordneten Schicht aus einem Isolierstoff, in den eine metallische Folie oder dergleichen eingelassen ist, die auf Erdpotential liegt. Durch das Einbringen der geerdeten Folie nahe der Elektroden der Teilfunkenstrecken wird das elektrische Feld in den Teilfunkenstrecken verzerrt, und es kommt zur Ausbildung von Gleitentladungen auf der Oberfläche des Isolierstoffes zwischen den Elektroden und der Teilfunkenstrecken.The multi-spark gap can also be used with a Sliding discharge arrangement for reducing the Ignition delay time of the partial spark gaps in combination with the corresponding resistor circuit be equipped. The sliding discharge arrangement exists from one arranged along the spark gaps Layer of an insulating material, in which a metallic Film or the like is let in on Earth potential is. By introducing the grounded Foil near the electrodes of the partial spark gaps the electric field in the partial spark gaps distorted, and there is formation of Sliding discharges on the surface of the insulating material between the electrodes and the partial spark gaps.

    Es ist bekannt, daß die Elektroden von Funkenstrecken aus Metallen wie Kupfer, Wolfram-Kupfer oder ähnlichen Metallen, nach einer Beanspruchung mit hohen Blitzströmen an der Oberfläche Anzeigen von Ausschmelzungen zeigen und daß sich metallischer Dampf auf der Oberfläche benachbarter Isolieranordnungen niederschlägt. Durch diese Effekte verringert sich die Lebensdauer einer solchen Funkenstrecke. Zur Vermeidung der Nachteile der metallischen Elektroden wird erfindungsgemäß eine Elektrode aus Graphit vorgeschlagen. Die Teilfunkenstrecken der Mehrfachfunkenstrecke werden daher vorzugsweise aus Graphit hergestellt. Wegen des geringen Metallabbrandes bei der Beanspruchung mit Blitzströmen bis zu 200 kA eignet sich Graphit besonders gut für diese Anwendung. Auch nach mehrfacher Beanspruchung mit Blitzstoßströmen bleibt die Oberfläche der Elektroden der Mehrfachfunkenstrecke sauber und behält ihre Form. Dadurch ist gewährleistet, daß die Ansprechspannung der Funkenstrecke innerhalb der zulässigen Streuung bleibt. Vorzugsweise ist die Funkenstrecke aus zylindrischen oder würfelförmigen Elektroden aufgebaut, die durch eine Isolierfolie oder Isolierscheibe aus wärmebeständigem Material, insbesondere PTFE oder auch Keramik, voneinander isoliert sind. Durch die Ausbildung von scharfkantigen Elektroden wird zur Bereitstellung von Startelektronen durch Ablösung der an Moleküle angelagerten Elektronen verbessert. Hierdurch kann durch die Ansprechspannung sowie deren statistische Streuung nennenswert vermindert werden. Durch entsprechende Ausführungen der Parallelplattenfunkenstrecke, zum Beispiel mit großenflächigen Elektroden, wird ein großes felderfülltes Volumen geschaffen, aus dem bei Spannungsbeanspruchung die Anfangselektroden bereitgestellt werden. Durch das vergrößerte felderfüllte Volumen wird die Ansprechspannung und deren Streuung nennenswert vermindert.It is known that the electrodes of spark gaps from metals such as copper, tungsten copper or the like Metals, after exposure to high Lightning currents on the surface Meltings show that there is metallic vapor on the surface of adjacent insulation arrangements reflected. These effects reduce the Life span of such a spark gap. To avoid of the disadvantages of the metallic electrodes according to the invention an electrode made of graphite proposed. The partial spark gaps of the Multiple spark gaps are therefore preferably made Made of graphite. Because of the low metal burn-up when exposed to lightning currents up to 200 kA graphite is particularly suitable for this application. Even after repeated exposure to lightning impulse currents remains the surface of the electrodes of the Multiple spark gap clean and keeps its shape. This ensures that the response voltage of the Spark gap remains within the permissible spread. The spark gap is preferably made of cylindrical or cube-shaped electrodes built up by an insulating film or washer heat-resistant material, especially PTFE or Ceramics, insulated from each other. Through the Training of sharp-edged electrodes is used Provision of starting electrons by detaching the improved electrons attached to molecules. This can by the response voltage and their statistical scatter can be significantly reduced. By appropriate designs of the Parallel plate spark gap, for example with large area electrodes, will be a big one created field-filled volume, from which Voltage stress on the starting electrodes to be provided. By the enlarged field-filled volume becomes the response voltage and their scatter significantly reduced.

    In der Zeichnung sind Ausführungsbeispiele der Erfindung prinzipiell gezeigt und nachfolgend näher beschrieben.In the drawing, embodiments of the Invention shown in principle and in more detail below described.

    Es zeigt:

    Figur 1
    die Prinzipdarstellung der Widerstandsbeschaltung einer Mehrfachfunkenstrecke;
    Figur 2
    den geometrischen Aufbau einer Mehrfachfunkenfunkenstrecke mit einer Gleitentladung;
    Figur 3
    eine Blitzstromfunkenstrecke mit achtstufiger Mehrfachfunkenstrecke mit ohmscher Steuerung.
    It shows:
    Figure 1
    the schematic diagram of the resistor circuit of a multiple spark gap;
    Figure 2
    the geometric structure of a multiple spark gap with a sliding discharge;
    Figure 3
    a lightning current spark gap with eight-stage multiple spark gap with ohmic control.

    In Figur 1 ist eine Funkenstrecke gezeigt, die bei I an einem Leiter des Stromversorgungsnetzes und bei II an eine Erde angeschlossen ist. Es sind dabei eine Vielzahl von Funkenstrecken in Reihe zueinander angeordnet (FS1 bis FSN). Dabei sind die Teilfunkenstrecken FS2 bis FSN mit Ausnahme der im Blitzstromereignisfall ersten ansprechenden Funkenstrecke FS1 durch ein abgestuftes Netz von ohmschen Widerständen beschaltet, so daß die Teilfunkenstrecken FS2 bis FSN sukzessive durchschalten. Das Netz von Widerständen weist in Durchschaltrichtung abnehmende Widerstandswerte auf. So kann beispielsweise der Widerstand R2 10 Kiloohm, der Widerstand R3 1 Kiloohm, der Widerstand R4 100 Ohm, der Widerstand R5 10 Ohm und der Widerstand Rn X Ohm aufweisen. Die Widerstände können vorzugsweise logarithmisch abnehmen. Zu der Kathode und Anode jeder Teilfunkenstrecke FS2 bis FSn ist ein Widerstand R2 bis Rn parallel geschaltet und die Widerstände aller Teilfunkenstrecken R2 bis Rn sind in Reihe an Erde (II) geschaltet. Wie insbesondere aus Figur 3 ersichtlich, sind Funkenstreckenelektroden 2 aus Graphit vorgesehen, die durch Isolierstoffscheiben aus PTFE voneinander beabstandet sind. Bei 4 ist ein Anschluß eines Steuerwiderstandes gezeigt. Mit 5 ist ein Gehäuse gezeigt, welches die Gesamteinheit umgibt. Bei 6 ist der Stromanschluß gezeigt. Bei 8 ist eine Stromschiene zur Verbindung der beiden Funkenstreckenblöcke, die parallel zueinander in dem Gehäuse 5 angeordnet sind, gezeigt. Auch die Steuerwiderstände 10 sind in einem geschützten Raum innerhalb des Isolierstoffgehäuses angeordnet. Mit 11 ist eine weitere Isolierstoffplatte gezeigt. Mit 1 sind Kontaktfedern gezeigt, mittels derer die kontaktierende Verbindung zu den Funkenstrecken erfolgt. Die Elektroden 2 der Funkenstrecken bestehen vorzugsweise zylindrischen oder quaderförmigen, scharfkantigen Elementen. Bei der Ausführungsform gemäß Figur 3 besteht die gesamte Funkenstrecke aus zwei parallel zueinander angeordneten Blöcken gleicher Anzahl von Teilfunkenstrecken.A spark gap is shown in FIG a head of the power supply network and at II an earth is connected. There are one Variety of spark gaps in series with each other arranged (FS1 to FSN). Here are the Partial spark gaps FS2 to FSN with the exception of those in Lightning current event case first appealing Spark gap FS1 through a graded network of ohmic resistors connected, so that Partial spark gaps FS2 to FSN successively by turn. The network of resistors shows in Switching direction decreases resistance values. So For example, the resistance R2 can be 10 kilohms Resistor R3 1 kilohm, resistance R4 100 ohms Resistor R5 10 ohms and resistance Rn X ohms exhibit. The resistors can preferably decrease logarithmically. To the cathode and anode everyone Partial spark gap FS2 to FSn is a resistor R2 to Rn connected in parallel and the resistances of all Partial spark gaps R2 to Rn are in series on earth (II) connected. As can be seen particularly from FIG. 3, spark gap electrodes 2 made of graphite are provided, that by insulating washers made of PTFE from each other are spaced. At 4 is a connection of one Control resistor shown. With 5 is a housing shown, which surrounds the entire unit. At 6 is the power connection shown. At 8 there is a busbar to connect the two spark gap blocks, the are arranged parallel to one another in the housing 5, shown. The control resistors 10 are also in one protected space inside the insulating housing arranged. With 11 is another insulating plate shown. With 1 contact springs are shown, by means of which is the contacting link to the Spark gaps occur. The electrodes 2 of the Spark gaps are preferably cylindrical or cuboid, sharp-edged elements. In the The embodiment according to FIG. 3 is the entire one Spark gap from two arranged parallel to each other Blocks of the same number of partial spark gaps.

    Bei der Ausführungsform nach Figur 2 ist die Mehrfachfunkenstrecke mit einer Gleitentladungszündhilfe gekoppelt. Die Gleitentladungszündhilfe besteht aus einer längs parallel zu den Funkenstrecken FS1 bis FSN angeordneten Schicht 12 aus Isolierstoff, beispielsweise PTFE, in die ein metallischer Leiter 13, insbesondere eine metallische Folie, eingebettet ist. Diese Folie ist bei 14 an Erdpotential gelegt. Bei 15 ist eine Gleitentladung gezeigt, die als erste Vorentladung zündet, bevor dann die Hauptentladung 16 als Folge der ersten Gleitentladung zündet. Infolge zündet dann die zweite Gleitentladung als zweite Vorentladung (17) woraufhin die nächste Hauptentladung 18 als Folge der zweiten Gleitentladung zündet. Der Vorgang setzt sich analog fort. Die Funkenstrecken FS2 bis FSN sind mit Steuerwiderständen R2 bis Rn beschaltet.In the embodiment according to FIG Multiple spark gap with one Sliding discharge ignition aid coupled. The Sliding discharge ignition aid consists of a longitudinal arranged parallel to the spark gaps FS1 to FSN Layer 12 of insulating material, for example PTFE, in which is a metallic conductor 13, in particular one metallic foil, is embedded. This slide is at 14 connected to earth potential. At 15 there is one Sliding discharge shown as the first pre-discharge ignites before the main discharge 16 as a result of first sliding discharge ignites. As a result, the ignites second sliding discharge as second pre-discharge (17) whereupon the next main discharge 18 as a result of the second sliding discharge ignites. The process continues continue analogously. The spark gaps FS2 to FSN are included Control resistors R2 to Rn connected.

    Der Abstand der jeweils ersten Funkenstrecke FS1 ist maßgebend für das Ansprechverhalten der Gesamtfunkenstrecke. An der Kette von Funkenstrecke FS1 bis FSN wird eine so hohe Lichtbogenbrennspannung erzeugt, daß diese größer als die Netzspannung ist, so daß kein Netzfolgestrom entsteht. The distance between the first spark gaps is FS1 decisive for the response behavior of the Total radio link. On the chain of spark gap FS1 until FSN is such a high arc voltage generates that this is greater than the mains voltage, so that there is no follow-up current.

    Die Erfindung ist nicht auf das Ausführungsbeispiel beschränkt, sondern im Rahmen der Offenbarung vielfach variabel.The invention is not based on the embodiment limited, but often within the scope of the disclosure variable.

    Alle neuen, in der Beschreibung und/oder Zeichnung offenbarten Einzel- und Kombinationsmerkmale werden als erfindungswesentlich angesehen.All new, in the description and / or drawing disclosed single and combination features are considered viewed essential to the invention.

    Claims (15)

    1. A discharger which can withstand lightning current, having several dischargers connected in series, wherein the discharger consists of n component dischargers (FS), the arc-drop voltage of which, by connecting the component dischargers (FS) in series, is brought to the n times value of the arc-drop voltage of a component discharger,
      characterised in that the component dischargers (FS), with the exception of the first discharger (FS1) responding in the event of a lightning current, are connected by a graded network of ohmic resistors, so that the component dischargers successively interconnect,
      and in that the network of resistors has resistances which decrease in the connection direction.
    2. A discharger according to Claim 1,
      characterised in that the arc-drop voltage of the component dischargers (FS) is in total higher than the mains voltage of the protected mains.
    3. A discharger which can withstand lightning current according to one of Claims 1 or 2,
      characterised in that linear or non-linear impedances are provided instead of the ohmic resistors.
    4. A discharger which can withstand lightning current according to one of Claims 1 to 3,
      characterised in that the resistances do not decrease linearly.
    5. A discharger which can withstand lightning current according to one of Claims 1 to 4,
      characterised in that the resistances decrease decimally.
    6. A discharger which can withstand lightning current according to one of Claims 1 to 4,
      characterised in that the resistances (R) decrease logarithmically.
    7. A discharger which can withstand lightning current according to one of Claims 1 to 6,
      characterised in that a resistor is switched in parallel to the cathode and anode of each component discharger (FS), with the exception of the input discharger (FS1), and the resistors (5) of all component dischargers are switched in series and to earth.
    8. A discharger which can withstand lightning current according to one of Claims 1 to 7,
      characterised in that the electrodes of the component dischargers (FS) are made from graphite.
    9. A discharger which can withstand lightning current according to one of Claims 1 to 8,
      characterised in that the electrodes of the partial dischargers (FS) consist of cylindrical or cuboidal elements.
    10. A discharger which can withstand lightning current according to one of Claims 1 to 9,
      characterised in that insulating sheets or insulating washers (3), in particular made from heat-resistant material, preferably from PTFE (polytetrafluoroethylene) or also from ceramics, are disposed between the electrodes (FS).
    11. A discharger which can withstand lightning current according to one of Claims 1 to 10,
      characterised in that the discharger (FS) consists of several mutually parallel blocks, preferably of the same number, of component dischargers (FS).
    12. A discharger which can withstand lightning current according to one of Claims 1 to 11,
      characterised in that the component dischargers (FS) are combined with a sliding discharge ignition aid.
    13. A discharger which can withstand lightning current according to Claim 12,
      characterised in that the sliding discharge ignition aid consists of a layer of insulating material (12) disposed longitudinally parallel to the dischargers (FS), into which a metal conductor (13), in particular a metal foil, is embedded, which is laid at earth potential.
    14. A discharger which can withstand lightning current according to one of Claims 1 to 13,
      characterised in that the dischargers (FS) are disposed in a housing filled with sulphur hexafluoride or in chambers filled therewith.
    15. A discharger which can withstand lightning current according to one of Claims 1 to 14,
      characterised in that the dischargers (FS) are disposed in a housing sealed with insulating material, in particular epoxy resin.
    EP98112342A 1997-09-25 1998-07-03 Lightning current withstanding arrester Expired - Lifetime EP0905840B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19742302A DE19742302A1 (en) 1997-09-25 1997-09-25 Spark gap capable of carrying lightning current
    DE19742302 1997-09-25

    Publications (2)

    Publication Number Publication Date
    EP0905840A1 EP0905840A1 (en) 1999-03-31
    EP0905840B1 true EP0905840B1 (en) 2003-07-02

    Family

    ID=7843577

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98112342A Expired - Lifetime EP0905840B1 (en) 1997-09-25 1998-07-03 Lightning current withstanding arrester

    Country Status (5)

    Country Link
    EP (1) EP0905840B1 (en)
    AT (1) ATE244463T1 (en)
    DE (3) DE19742302A1 (en)
    ES (1) ES2197395T3 (en)
    PT (1) PT905840E (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN100530868C (en) * 2007-04-29 2009-08-19 四川中光防雷科技有限责任公司 High efficient laminated graphic discharge gap device
    CN101471542B (en) * 2004-06-21 2011-11-16 西安交通大学 Multi-clearance combined protection device for overvoltage protection system
    DE102011102864A1 (en) 2010-10-22 2012-04-26 Dehn + Söhne GmbH Spark gap with several series-connected, stacked single spark gaps

    Families Citing this family (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE360906T1 (en) * 1999-07-09 2007-05-15 Leutron Gmbh LIGHTNING AND SURGE PROTECTION DEVICE
    WO2002043208A1 (en) * 2000-11-24 2002-05-30 Dehn + Söhne Gmbh + Co. Kg Encapsulated surge voltage protector with at least one spark gap
    DE10060426B4 (en) * 2000-11-24 2004-04-15 Dehn + Söhne Gmbh + Co. Kg Encapsulated surge arrester with at least one spark gap
    DE10114592A1 (en) * 2001-03-24 2002-09-26 Bettermann Obo Gmbh & Co Kg Spark gap for lightning current has dimensions of control capacitors given by number of capacitors, control capacitance, safety factor, line capacitance, peak overvoltage, protection level
    ES2282511T3 (en) 2001-09-02 2007-10-16 PHOENIX CONTACT GMBH & CO. KG SURVEY PROTECTION DEVICE.
    DE10146728B4 (en) * 2001-09-02 2007-01-04 Phoenix Contact Gmbh & Co. Kg Overvoltage protection device
    DE10212697A1 (en) * 2001-12-17 2003-07-10 Phoenix Contact Gmbh & Co Overvoltage protection device
    EP1353422B1 (en) * 2002-04-11 2004-08-11 OBO Bettermann GmbH & Co. KG. Overvoltage arrester
    DE10230827A1 (en) 2002-07-09 2004-02-05 Obo Bettermann Gmbh & Co. Kg Spark gap capable of carrying lightning current
    DE102004006988B4 (en) 2003-11-28 2014-02-06 Dehn + Söhne Gmbh + Co. Kg Spark-gap overvoltage protection device comprising at least two main electrodes located in a pressure-tight housing
    DE102008038486A1 (en) 2008-08-20 2010-02-25 Phoenix Contact Gmbh & Co. Kg Overvoltage protective device for use in low-voltage mains power supply, has arc combustion chamber formed between one electrode and another electrode, and insulation section connected in series with arc combustion chamber
    EP2287984B1 (en) 2009-07-20 2011-09-21 OBO Bettermann GmbH & Co. KG Surge absorbers
    DE102010016985A1 (en) 2010-05-18 2011-11-24 Obo Bettermann Gmbh & Co. Kg Surge arrester i.e. lightning current arrester, for being switched between phase- and null-or protective earthing conductors of electrical network, has plates aligned parallel to electrodes and pressed together with springy electrode
    DE102010021155B4 (en) 2010-05-21 2016-01-28 Obo Bettermann Gmbh & Co. Kg Surge arresters
    DE102012007102A1 (en) * 2012-01-11 2013-07-11 Dehn + Söhne Gmbh + Co. Kg Spark gap with several series-connected, stacked single spark gaps
    DE102013113614A1 (en) * 2013-12-06 2015-06-11 Obo Bettermann Gmbh & Co. Kg Multiple spark gap for lightning protection
    DE102015114504A1 (en) * 2015-08-31 2017-03-02 Epcos Ag Mehrfachfunkenstreckenableiter
    US10186842B2 (en) * 2016-04-01 2019-01-22 Ripd Ip Development Ltd Gas discharge tubes and methods and electrical systems including same
    CN108054744B (en) * 2018-01-30 2024-05-14 四川中光防雷科技股份有限公司 Multipole multilayer clearance type surge protector
    CN208158117U (en) * 2018-04-20 2018-11-27 菲尼克斯亚太电气(南京)有限公司 It is a kind of for fixing the structure of graphite flake and its clearance for insulation
    US10685805B2 (en) 2018-11-15 2020-06-16 Ripd Ip Development Ltd Gas discharge tube assemblies
    CN116490951A (en) 2020-11-09 2023-07-25 Ripd知识产权发展有限公司 Surge protection device including a bimetallic fuse element
    US12106922B2 (en) 2022-04-08 2024-10-01 Ripd Ip Development Ltd. Fuse assemblies and protective circuits and methods including same
    DE102022110330A1 (en) 2022-04-28 2023-11-02 Phoenix Contact Gmbh & Co. Kg Multiple spark gap
    CN117543342B (en) * 2024-01-10 2024-05-24 福建万嘉宝线缆有限公司 High-voltage power grid lightning arrester with self-protection spark gap

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1539445A (en) * 1966-10-07 1968-09-13 Bbc Brown Boveri & Cie Installation of surge arresters, in particular for semiconductor elements
    US3859568A (en) * 1974-01-16 1975-01-07 Gen Electric Overvoltage surge arrester with improved voltage grading circuit
    EP0065951A1 (en) * 1980-08-28 1982-12-08 Bowthorpe Emp Limited Improvements in surge arresters
    DE4240138C2 (en) * 1992-11-28 1995-05-24 Dehn & Soehne Arrangement capable of carrying lightning current with at least two spark gaps connected in series

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN101471542B (en) * 2004-06-21 2011-11-16 西安交通大学 Multi-clearance combined protection device for overvoltage protection system
    CN100530868C (en) * 2007-04-29 2009-08-19 四川中光防雷科技有限责任公司 High efficient laminated graphic discharge gap device
    DE102011102864A1 (en) 2010-10-22 2012-04-26 Dehn + Söhne GmbH Spark gap with several series-connected, stacked single spark gaps
    WO2012052388A1 (en) 2010-10-22 2012-04-26 Dehn + Söhne Gmbh + Co. Kg Spark gap having a plurality of series-connected individual spark gaps, which are located in a stack arrangement

    Also Published As

    Publication number Publication date
    PT905840E (en) 2003-10-31
    DE19742302A1 (en) 1999-04-08
    ES2197395T3 (en) 2004-01-01
    EP0905840A1 (en) 1999-03-31
    DE59808881D1 (en) 2003-08-07
    DE19755082A1 (en) 1999-06-17
    ATE244463T1 (en) 2003-07-15

    Similar Documents

    Publication Publication Date Title
    EP0905840B1 (en) Lightning current withstanding arrester
    DE19856939A1 (en) Circuit arrangement for protecting electrical installations against overvoltage events
    DE3302939A1 (en) Vacuum arc-extinguishing chamber
    DE2248117B2 (en) Surge arrester with a gas-filled housing
    DE4141681A1 (en) Overvoltage protection device e.g. for telecommunication equipment - has plastic web projecting into spark-gap between two vertical electrodes which releases electronegative gas when arc strikes
    EP1456921B1 (en) Overvoltage protection device
    WO2003021735A1 (en) Overload protection device
    CH668664A5 (en) Gas insulated load breaker.
    EP0734106B1 (en) Device for arresting overvoltages and for extinction of the sequential line current
    DE10146728B4 (en) Overvoltage protection device
    DE102008038486A1 (en) Overvoltage protective device for use in low-voltage mains power supply, has arc combustion chamber formed between one electrode and another electrode, and insulation section connected in series with arc combustion chamber
    EP1075064B1 (en) Lightning- and overvoltage protection device
    DE1513155B2 (en) SURGE ARRESTERS
    DE4141682A1 (en) Overvoltage protection device e.g. for electronic measurement and control circuits - has circular or elliptical electrode eccentrically located inside another with plastic web in spark-gap
    DE3829650A1 (en) Combined extinguishing spark gap
    DE4244051A1 (en) Overvoltage protection element for telecommunication circuits
    EP3659223A1 (en) Assembly having a gas-insulated switchgear
    DE69507499T2 (en) SURGE ARRESTERS
    DE3331819A1 (en) DISCONNECTOR FOR METAL-ENCLOSED, COMPRESSED-GAS INSULATED HIGH-VOLTAGE SWITCHGEAR
    EP0236257B1 (en) Metal-encapsulated gas-insulated high-voltage installation with an overvoltage arrester
    DE69828861T2 (en) Spark gap device for the protection of electrical lines and / or electrical apparatus against time overvoltages
    EP3561972B1 (en) Network influencing installation
    DE1220010B (en) Electric switch
    DE1922814A1 (en) Spark gap arrangement for flashover protection
    DE29724834U1 (en) Lightning current protection for buildings

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE ES FR GB GR IE IT LI NL PT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990805

    AKX Designation fees paid

    Free format text: AT CH DE ES FR GB GR IE IT LI NL PT

    17Q First examination report despatched

    Effective date: 20020923

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RTI1 Title (correction)

    Free format text: LIGHTNING CURRENT WITHSTANDING ARRESTER

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT CH DE ES FR GB GR IE IT LI NL PT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030731

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59808881

    Country of ref document: DE

    Date of ref document: 20030807

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031002

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2197395

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040405

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4H

    Effective date: 20030702

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20070629

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080703

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20110701

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20120704

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20120713

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20130103

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20120726

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20120801

    Year of fee payment: 15

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130103

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20140201

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 244463

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20130703

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20130703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130703

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130704

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20170728

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20170724

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170928

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59808881

    Country of ref document: DE