EP0893817B1 - Pompage ionique d'un écran plat à micropointes - Google Patents

Pompage ionique d'un écran plat à micropointes Download PDF

Info

Publication number
EP0893817B1
EP0893817B1 EP98410073A EP98410073A EP0893817B1 EP 0893817 B1 EP0893817 B1 EP 0893817B1 EP 98410073 A EP98410073 A EP 98410073A EP 98410073 A EP98410073 A EP 98410073A EP 0893817 B1 EP0893817 B1 EP 0893817B1
Authority
EP
European Patent Office
Prior art keywords
microtips
screen
sacrificial
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98410073A
Other languages
German (de)
English (en)
Other versions
EP0893817A1 (fr
Inventor
Stéphane Mougin
Lionel Rivière-Cazaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP07102656A priority Critical patent/EP1814136B1/fr
Publication of EP0893817A1 publication Critical patent/EP0893817A1/fr
Application granted granted Critical
Publication of EP0893817B1 publication Critical patent/EP0893817B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J41/00Discharge tubes for measuring pressure of introduced gas or for detecting presence of gas; Discharge tubes for evacuation by diffusion of ions
    • H01J41/12Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps
    • H01J41/18Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps with ionisation by means of cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/94Selection of substances for gas fillings; Means for obtaining or maintaining the desired pressure within the tube, e.g. by gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/14Means for obtaining or maintaining the desired pressure within the vessel
    • H01J7/16Means for permitting pumping during operation of the tube or lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/39Degassing vessels

Definitions

  • the present invention relates to the field of flat microtip display screens.
  • the invention relates more particularly to the manufacture of such screens.
  • a microtip screen generally consists of a cathode provided with electron emission microtips placed opposite an anode provided with phosphor elements capable of being excited by electron bombardment.
  • the cathode is associated with a grid provided with holes corresponding to the locations of the microtips.
  • This device uses the electric field that is created between the cathode and the grid so that electrons are extracted from microtips. These electrons are then attracted by the phosphor elements of the anode if they are suitably polarized.
  • the microtips are generally deposited on cathode conductors arranged in columns and addressable individually.
  • the grid is organized in rows perpendicular to the columns of the cathode, also addressable individually.
  • the anode is generally provided with alternating bands of phosphor elements each corresponding to a color (Red, Green, Blue).
  • the bands are parallel to columns of the cathode and are separated from each other by an insulator.
  • the phosphor elements are deposited on electrodes consisting of corresponding strips of a transparent conductive layer, for example indium tin oxide (ITO).
  • ITO indium tin oxide
  • intersection of a column of the cathode and a row of the grid defines a pixel of the screen.
  • the sets of red, green, blue bands are alternately polarized with respect to the cathode so that electrons extracted from the microtips of a pixel of the cathode-grid are alternately directed towards each of the colors.
  • the intersection of a row of the grid with a column of the cathode then defines a subpixel of a color.
  • the rows of the gate are sequentially polarized at a potential of the order of 80 volts, while the bands of phosphor elements to be excited are biased at a voltage of the order of 400 volts via the ITO strip on which these phosphor elements are deposited.
  • the ITO strips carrying the other strips of phosphor elements are at a low or zero potential.
  • the columns of the cathode are brought to respective potentials between a maximum emission potential and a no-emission potential (for example, respectively 0 and 30 volts). This fixes the brightness of a color component of each of the pixels of a line.
  • the anode In a monochrome screen, the anode generally consists of a plane of phosphor elements of the same color polarized simultaneously, or two sets of alternating strips of phosphor elements of the same color addressed alternately.
  • the choice of the polarization potential values is related to the characteristics of the phosphor elements and the microtips.
  • the manufacture of microtip screens uses techniques commonly used in the manufacture of integrated circuits.
  • the cathode is generally formed of deposits in thin layers on a substrate, for example glass constituting the bottom of the screen.
  • the anode is generally formed on a glass substrate constituting the screen surface.
  • the anode and the cathode-grid are made independently of one another on the two substrates, and are then assembled by means of a peripheral sealing joint by providing, between the gate and the anode, an empty space for allow the circulation of the electrons emitted by the cathode up to the anode.
  • the screen is subjected to various heat treatment degassing. These treatments are generally carried out under pumping by means of a tube communicating with the empty space and intended to be closed at the end of the manufacturing process.
  • An impurity trapping element is generally introduced into the screen, for example into the tube, before closing.
  • This getter has the role of trapping desorbed elements, in particular by the anode, during operation of the screen.
  • this getter is inactive with respect to the neutral species, in particular rare gases, which remain in the empty space after closure of the screen.
  • This final step is performed once the pumping tube is closed. It consists in causing an electron emission of the microtips in order to ionize neutral species remaining in the inter-electrode space. The bombardment of the neutral species causes an extraction of an electron from their valence layer and these species are then positively charged. They are then attracted by the microtips to the potential more negative. This step is commonly referred to as ion pumping.
  • the present invention relates more particularly to improving the vacuum of the inter-electrode space by ion pumping.
  • the state of the art there are as the documents WO 96/39582 and FR 2709373 .
  • a disadvantage of conventional screens is that ion pumping damages the microtips of the cathode. Indeed, the collection of species ionized by microtips causes mechanical erosion and / or chemical (in particular, rare gases) microtips. If the vacuum of the screen is improved, there is a decrease in the emissivity of the microtips.
  • the present invention aims to propose a new method of ion pumping a microtip screen that overcomes the disadvantages of known methods.
  • the invention aims in particular to improve the emissive capacity of the microtips.
  • the present invention also aims to allow, in a simple manner, the implementation of ion pumping by the control system of the screen and, in particular, to not require the provision of other potentials than those which are conventionally used in a conventional screen for its operation.
  • the present invention further aims to provide a method that allows a vacuum improvement not only during the manufacture of the screen but also after the commissioning of the screen.
  • the present invention provides a vacuum improvement method in a flat screen according to claim 1.
  • an ionic pumping phase is carried out before putting the screen into operation, according to claim 2.
  • an ion pumping phase is carried out after each operating period of the screen, according to claim 3.
  • a feature of the present invention is to provide, in addition to microtips participating in the display, at least one area of sacrificial micropoints dedicated to ion pumping.
  • FIG. 1 shows an embodiment of a display screen according to the present invention.
  • a screen according to the invention consists of a cathode 1 with microtips 2 and a grid 3 provided with holes 4 corresponding to the locations of the microtips 2.
  • the cathode 1 is placed facing a cathodoluminescent anode 5 a glass substrate 6 constitutes the screen surface.
  • the microtips 2 are generally deposited on cathode conductors 7 organized in columns. Most often, the microtips 2 are made on a resistive layer (not shown) deposited on the cathode conductors organized in a stitch from a conductive layer, the microtips being arranged inside the cells defined by the cathode conductors. .
  • the grid 3 consists of a conductive layer organized in rows perpendicular to the columns of cathode conductors with the interposition of an insulator 8 between the cathode and the gate.
  • the grid rows 3 are provided with a hole 4 in line with each microtip 2.
  • the intersection of a column 7 of the cathode and a row of the grid 3 defines a pixel of the screen.
  • only one microtip 2 has been shown associated with each cathode conductor 7. Note however that the microtips are generally several thousand per pixel screen.
  • the cathode / grid is made on a substrate 9, for example glass, constituting the bottom of the screen.
  • the anode substrate 6 carries an electrode 10 consisting of a plane of a transparent conductive layer such as indium tin oxide. (ITO). Phosphor elements 16 of the same color are deposited on this 10.
  • the anode is generally provided with alternating bands of phosphor elements each corresponding to a color (red, green, blue). The strips are parallel to the columns of the cathode and are separated from each other by an insulator. The phosphor elements are then deposited on electrodes consisting of corresponding bands of ITO.
  • An empty space 11 is formed between the anode and the cathode / gate during the assembly of the substrates 6 and 9.
  • Spacers generally regularly distributed between the grid 3 and the anode 5 define the height of the space 11 and a sealing peripheral seal (not shown) seals the assembly.
  • such a screen is controlled by means of an electronic circuit 12 capable of individually addressing the columns of conductors 7 of the cathode by links 13, to address sequentially the rows of the grid 3 by links 14, and to polarizing the anode electrode 10 by means of a link 15.
  • an electronic circuit 12 capable of individually addressing the columns of conductors 7 of the cathode by links 13, to address sequentially the rows of the grid 3 by links 14, and to polarizing the anode electrode 10 by means of a link 15.
  • the sets of red, green and blue bands are alternately polarized with respect to the cathode by means of appropriate links.
  • the cathode 1 comprises a sacrificial zone of microtips 2 'addressable independently of the columns 7 by means of an additional electrode 7'.
  • This zone is associated with a secondary grid 3 'which, according to the embodiment shown in FIG. 1, is addressable independently of the rows of the grid 3.
  • the secondary grid may correspond to row extensions of the grid. main grid 3 participating in the display.
  • the microtip sacrificial zone 2 is intended to be addressed, once the screen has been completed, to improve the vacuum in the inter-electrode space 11.
  • the screen comprises active zones of microtips 2 and at least one sacrificial zone of microtips 2 'addressable independently of each other.
  • the sacrificial micropoints are damaged by the ionic pumping in which they participate while the microtips of the active area of the screen are preserved.
  • the anode is provided with a secondary electron collection electrode 10 'emitted by the microtip sacrificial zone.
  • a secondary electron collection electrode 10 'emitted by the microtip sacrificial zone For example, an ITO zone, preferably devoid of phosphor elements, is provided in line with the microtip sacrificial zone.
  • This electrode 10 ' is, during the ionic pumping, polarized at a potential that is definitely greater than the potential of the gate 3'.
  • This electrode 10 ' is, during the ionic pumping, polarized at a potential that is definitely greater than the potential of the gate 3'.
  • the electrons then cross the entire inter-electrode space, which increases the probability of hitting a neutral molecule and turning it into a positive ion.
  • the region where the ionized molecules will be housed (the
  • the secondary electrode 10 'of the anode is coincident with the electrode 10, the phosphor elements 16 being however deposited, preferably, only vertically above the active areas of microtips.
  • the secondary electrode 10 ' may be coated with a secondary emission coefficient material greater than one so as to multiply the number of electrons emitted. In this case, it will be possible to apply a transverse field to this secondary electrode 10 'to further increase the number of electrons by avalanche effect.
  • the electrode 7 ', the secondary gate 3' and the secondary electrode 10 ' are addressable by the circuit 12 by means of links 13', 14 'and 15'. Ionic pumping can then be controlled by the electronic control circuit of the screen.
  • the drivers 13 ', 14' and 15 ' are also accessible to be connected individually, during the manufacture of the screen or of maintenance operations, to a particular ion pump system which will be described later in connection with FIG. 2 .
  • an ionic pumping of the inter-electrode space is carried out once the screen has been completed by biasing the secondary gate electrode 3 'to a suitable potential, preferably corresponding to the nominal potential of the gate 3 in operation (for example, of the order of 80 volts), and by bringing the electrode 7 'to a potential for electronic emission.
  • the bias potential of the electrode 7 ' is in the range of nominal potentials (for example, between 0 and 30 volts) of operation of the active area of the screen.
  • the choice of the bias potential of the electrode 7 ' dependss on the desired electron emission intensity for the ionic pumping.
  • the sacrificial zone of microtips 2 ' will be biased to a potential (for example, 0 volts) corresponding to a maximum emission.
  • the secondary electrode 10 'of the anode 5 is biased to a potential (for example of the order of 400 volts) corresponding to the nominal polarization potential of the electrode 10 of the screen.
  • An advantage of the present invention is that, while allowing ionic pumping of the inter-electrode space 11, the emissive power of the microtips 2 which participate in the display is substantially not impaired.
  • control circuit 12 is adapted to control the sacrificial zone of microtips 2 ', ionic pumping is carried out after putting the screen into operation in order to trap species not absorbed by the getter and thus prevent the degradation of the vacuum.
  • this ion pumping is carried out outside the operating periods of the screen, that is to say out of the periods when the screen displays images.
  • this ionic pumping is controlled after each extinction of the screen at the end of use for display.
  • the vacuum is regenerated for the next use. It has indeed been found that the vacuum is degraded despite ionic pumping that could perform active areas of microtips during periods of operation. It is assumed that species continue to be desorbed just after extinction.
  • One advantage of providing ionic pumping by means of the sacrificial microtips after each use is that these species are then immediately trapped. In addition, damage to the micropoints of the active zones which are otherwise polluted during the next ignition of the screen is minimized.
  • zones of sacrificial microtips may be provided in different regions of the screen in order to improve the spatial distribution of ion pumping.
  • it may provide columns parallel to the columns 7, outside the display area, that is to say on either side of the screen.
  • sacrificial zones are organized in columns arranged between two adjacent columns 7 of active microtips 2, that is to say used for display.
  • the columns of sacrificial microtips thus obtained are addressable independently of the active columns.
  • the grid rows 3 serving for the normal addressing of the screen in operation are used to address the sacrificial zones during the ionic pumping phases.
  • the active zones of the anode are then preferably biased to their nominal operating potential and serve to collect electrons, not only during the operating phases but also during the ionic pumping phases.
  • sacrificial zone locations depend on the characteristics (shape, resolution, available space between columns) of the active microtip area.
  • An advantage of the present invention is that ion pumping requires no additional potential generation compared to those available in the electronic control circuit 12 of the screen, which limits the adaptations of this circuit 12 if one wish to perform an ionic pumping after commissioning the screen.
  • the grid 3 ' may be covered with a specific material (for example, titanium) which will sublimate when it is struck by an ionized molecule.
  • a specific material for example, titanium
  • the gas emitted by this material is then redeposited on the gate and the ionized molecules are then buried under the metal. They are therefore more stable and will have a much harder time being extracted.
  • This variant is more particularly intended for cases where the anode is devoid of secondary electrode facing the sacrificial zone of microtips.
  • this area of sacrificial microtips 2 may be placed opposite orifices (not shown) formed in the substrate 6 to communicate with a housing enclosure of the getter. This benefits from the presence of an unusable surface for the active area of the screen.
  • a screen according to the present invention does not require any modification of the manufacturing process of the cathode, the anode and the grid. Only the deposition and etching masks used for the different layers are, according to the invention, adapted to create the sacrificial zone or zones, the secondary grid (s), and the additional anode electrode (s).
  • FIG. 2 illustrates an embodiment of an ion pumping method of a screen according to the present invention. This mode of implementation is more particularly intended for ion pumping during the manufacture of the screen or during maintenance operation by means of a system independent of the circuit 12 (FIG. 1) for controlling the screen.
  • the screen has been schematically represented in the form of a cathode plate 1 and an anode plate 5.
  • the active and sacrificial zones of microtips are illustrated by the respective positions of the main grids. 3 and 3 'secondary represented in dashed line.
  • An ion pumping system comprises a controllable supply circuit (ALIM) capable of generating the polarization potentials required for ionic pumping.
  • the circuit 20 generates a voltage Va (for example, 400 volts) of polarization of the secondary electrode (10 ', FIG. 1) of the anode.
  • This voltage Va is sent on a voltage divider 21 generating the Vg secondary gate voltage and Vc polarization of the electrode 7 '( Figure 1) carrying the sacrificial microtips.
  • the voltage Vgc is positive and is preferably adjustable to obtain an adjustable transmitting current.
  • the sacrificial zone of microtips can be addressed either in pulsed mode or in continuous mode. The advantage of continuous mode addressing is that it reduces ion pumping time.
  • the voltage Va is a constant voltage greater than the gate voltage Vg in order to collect the emitted electrons.
  • the duration of ion pumping during manufacture depends on the volume of the screen, the initial standard of living and the area of sacrificial microtips.
  • a sacrificial zone representing between 0.1% and 10% of the active zone constitutes, according to the invention, a good compromise between the necessary duration of ion pumping and the size of the screen.
  • the present invention is susceptible of various variations and modifications which will be apparent to those skilled in the art.
  • the polarization potentials during the ionic pumping phase will preferably be chosen as a function of the nominal operating potentials of the screen.
  • the practical realization of an ion pump system as shown in Figure 2 is within the reach of the art according to the functional indications given above.
  • the adaptations of the control circuit (12, FIG. the screen, in an embodiment where it is desired ion pumping after commissioning of the screen are within the reach of the skilled person.

Description

  • La présente invention concerne le domaine des écrans plats de visualisation à micropointes. L'invention concerne plus particulièrement la fabrication de tels écrans.
  • Un écran à micropointes est généralement constitué d'une cathode pourvue de micropointes d'émission électronique placée en regard d'une anode pourvue d'éléments luminophores propres à être excités par bombardement électronique. La cathode est associée à une grille pourvue de trous correspondant aux emplacements des micropointes.
  • Ce dispositif utilise le champ électrique qui est créé entre la cathode et la grille pour que des électrons soient extraits de micropointes. Ces électrons sont ensuite attirés par les éléments luminophores de l'anode si ceux-ci sont convenablement polarisés.
  • Les micropointes sont généralement déposées sur des conducteurs de cathode organisés en colonnes et adressables individuellement. La grille est organisée en rangées perpendiculaires aux colonnes de la cathode, également adressables individuellement.
  • Dans un écran couleur, l'anode est généralement pourvue de bandes alternées d'éléments luminophores correspondant chacune à une couleur (Rouge, Vert, Bleu). Les bandes sont parallèles aux colonnes de la cathode et sont séparées les unes des autres par un isolant. Les éléments luminophores sont déposés sur des électrodes constituées de bandes correspondantes d'une couche conductrice transparente, par exemple, en oxyde d'indium et d'étain (ITO).
  • L'intersection d'une colonne de la cathode et d'une rangée de la grille définit un pixel de l'écran. Pour un écran couleur, les ensembles de bandes rouges, vertes, bleues sont alternativement polarisées par rapport à la cathode pour que des électrons extraits des micropointes d'un pixel de la cathode-grille soient alternativement dirigés vers chacune des couleurs. Dans certains écrans couleurs où les colonnes de cathode (ou les lignes de grille) sont subdivisées en trois pour correspondre à chaque couleur, l'intersection d'une rangée de la grille avec une colonne de la cathode définit alors un sous-pixel d'une couleur.
  • Généralement, les rangées de la grille sont séquentiellement polarisées à un potentiel de l'ordre de 80 volts, tandis que les bandes d'éléments luminophores devant être excitées sont polarisées sous une tension de l'ordre de 400 volts par l'intermédiaire de la bande d'ITO sur laquelle ces éléments luminophores sont déposés. Les bandes d'ITO, portant les autres bandes d'éléments luminophores sont à un potentiel faible ou nul. Les colonnes de la cathode sont portées à des potentiels respectifs compris entre un potentiel d'émission maximale et un potentiel d'absence d'émission (par exemple, respectivement 0 et 30 volts). On fixe ainsi la brillance d'une composante couleur de chacun des pixels d'une ligne.
  • Dans un écran monochrome, l'anode est généralement constituée d'un plan d'éléments luminophores de même couleur polarisés simultanément, ou de deux ensembles de bandes alternées d'éléments luminophores de même couleur adressés alternativement.
  • Le choix des valeurs des potentiels de polarisation est lié aux caractéristiques des éléments luminophores et des micropointes. Classiquement, en dessous d'une différence de potentiel de 50 volts entre la cathode et la grille, il n'y a pas d'émission électronique, et l'émission maximale utilisée correspond à une différence de potentiel de 80 volts.
  • La fabrication des écrans à micropointes fait appel aux techniques couramment utilisées dans la fabrication des circuits intégrés. La cathode est généralement formée de dépôts en couches minces sur un substrat, par exemple, de verre constituant le fond de l'écran. L'anode est généralement formée sur un substrat de verre constituant la surface d'écran.
  • L'anode et la cathode-grille sont réalisées indépendamment l'une de l'autre sur les deux substrats, puis sont assemblées au moyen d'un joint périphérique de scellement en ménageant, entre la grille et l'anode, un espace vide pour permettre la circulation des électrons émis par la cathode jusqu'à l'anode.
  • Lors de l'assemblage, l'écran est soumis à divers traitements thermiques de dégazage. Ces traitements s'effectuent généralement sous pompage au moyen d'un tube communiquant avec l'espace vide et destiné à être fermé à la fin du processus de fabrication.
  • Un élément de piégeage d'impureté (getter) est généralement introduit dans l'écran, par exemple dans le tube, avant fermeture. Ce getter a pour rôle de piéger des éléments désorbés, en particulier par l'anode, lors du fonctionnement de l'écran. Toutefois, ce getter est inactif vis-à-vis des espèces neutres, en particulier des gaz rares, qui subsistent dans l'espace vide après fermeture de l'écran.
  • On doit donc généralement provoquer un piégeage des espèces subsistant dans l'espace inter-électrodes afin d'améliorer le vide. Cette étape ultime s'effectue une fois le tube de pompage fermé. Elle consiste à provoquer une émission électronique des micropointes afin d'ioniser des espèces neutres subsistant dans l'espace inter-électrodes. Le bombardement des espèces neutres provoque une extraction d'un électron de leur couche de valence et ces espèces se trouvent alors chargées positivement. Elles sont alors attirées par les micropointes au potentiel le plus négatif. Cette étape est communément appelée un pompage ionique.
  • La présente invention concerne plus particulièrement l'amélioration du vide de l'espace inter-électrodes par pompage ionique. A cet égard, comme l'état de la technique, il y a comme les documents WO 96/39582 et FR 2709373 .
  • Un inconvénient des écrans classiques est que le pompage ionique endommage les micropointes de la cathode. En effet, la collection des espèces ionisées par les micropointes provoque une érosion mécanique et/ou chimique (en particulier, par les gaz rares) des micropointes. Si le vide de l'écran est amélioré, on constate une diminution du pouvoir émissif des micropointes.
  • Un autre inconvénient des écrans classiques est que, pendant le fonctionnement de l'écran, certaines espèces dégazées ne parviennent pas à être piégées par le getter. Il en découle une dégradation de la qualité du vide qui nuit à la fiabilité de l'écran.
  • La présente invention vise à proposer un nouveau procédé de pompage ionique d'un écran à micropointes qui pallie aux inconvénients des procédés connus. L'invention vise en particulier à améliorer la capacité émissive des micropointes.
  • La présente invention vise également à permettre, de façon simple, la mise en oeuvre d'un pompage ionique par le système de commande de l'écran et, en particulier, à ne pas nécessiter la fourniture d'autres potentiels que ceux qui sont classiquement utilisés dans un écran classique pour son fonctionnement.
  • La présente invention vise en outre à proposer un procédé qui permette une amélioration du vide non seulement lors de la fabrication de l'écran mais également après la mise en service de l'écran.
  • Pour atteindre ces objets, la présente invention prévoit un procédé d'amélioration du vide dans un écran plat selon la revendication 1.
  • Selon un mode de réalisation de la présente invention, on effectue une phase de pompage ionique avant la mise en service de l'écran, selon la revendication 2.
  • Selon un mode de réalisation de la présente invention, on effectue une phase de pompage ionique après chaque période de fonctionnement de l'écran, selon la revendication 3.
  • Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
    • la figure 1 représente, partiellement et en coupe, un écran plat de visualisation à micropointes selon un mode de réalisation de la présente invention ; et
    • la figure 2 illustre un mode de mise en oeuvre du procédé de pompage ionique selon la présente invention.
  • Pour des raisons de clarté, seuls les éléments de l'écran et les étapes de procédé nécessaires à la compréhension de l'invention ont été représentés aux figures et seront décrits par la suite.
  • Une caractéristique de la présente invention est de prévoir, en plus des micropointes participant à l'affichage, au moins une zone de micropointes sacrificielles dédiées au pompage ionique.
  • La figure 1 représente un mode de réalisation d'un écran de visualisation selon la présente invention. De façon classique, un écran selon l'invention est constitué d'une cathode 1 à micropointes 2 et d'une grille 3 pourvue de trous 4 correspondant aux emplacements des micropointes 2. La cathode 1 est placée en regard d'une anode cathodoluminescente 5 dont un substrat de verre 6 constitue la surface d'écran. Les micropointes 2 sont généralement déposées sur des conducteurs 7 de cathode organisés en colonnes. Le plus souvent, les micropointes 2 sont réalisées sur une couche résistive (non représentée) déposée sur les conducteurs de cathode organisés en mailles à partir d'une couche conductrice, les micropointes étant disposées à l'intérieur des mailles définies par les conducteurs de cathode. La grille 3 est constituée d'une couche conductrice organisée en rangées perpendiculaires aux colonnes de conducteurs de cathode avec interposition d'un isolant 8 entre la cathode et la grille. Les rangées de grille 3 sont pourvues d'un trou 4 à l'aplomb de chaque micropointe 2. L'intersection d'une colonne 7 de la cathode et d'une rangée de la grille 3 définit un pixel de l'écran. Pour des raisons de clarté, une seule micropointe 2 a été représentée associée à chaque conducteur de cathode 7. On notera toutefois que les micropointes sont généralement au nombre de plusieurs milliers par pixel d'écran. La cathode/grille est réalisée sur un substrat 9, par exemple en verre, constituant le fond de l'écran.
  • En supposant que la représentation de la figure 1 correspond à un écran monochrome, le substrat 6 d'anode 5 porte une électrode 10 constituée d'un plan d'une couche conductrice transparente telle que de l'oxyde d'indium et d'étain (ITO). Des éléments luminophores 16 de même couleur sont déposés sur cette électrode 10. Dans le cas d'un écran couleur (non représenté), l'anode est généralement pourvue de bandes alternées d'éléments luminophores correspondant chacune à une couleur (rouge, vert, bleu). Les bandes sont parallèles aux colonnes de la cathode et sont séparées les unes des autres par un isolant. Les éléments luminophores sont alors déposés sur des électrodes constituées de bandes correspondantes d'ITO.
  • Un espace vide 11 est ménagé entre l'anode et la cathode/grille lors de l'assemblage des substrats 6 et 9. Des espaceurs (non représentés) généralement régulièrement répartis entre la grille 3 et l'anode 5 définissent la hauteur de l'espace 11 et un joint périphérique de scellement (non représenté) assure l'étanchéité de l'assemblage.
  • De façon classique, un tel écran est commandé au moyen d'un circuit électronique 12 propre à adresser individuellement les colonnes de conducteurs 7 de la cathode par des liaisons 13, à adresser séquentiellement les rangées de la grille 3 par des liaisons 14, et à polariser l'électrode d'anode 10 au moyen d'une liaison 15. Dans le cas d'un écran couleur, les ensembles de bandes rouges, vertes et bleues sont alternativement polarisées par rapport à la cathode au moyen de liaisons appropriées.
  • Selon la présente invention, la cathode 1 comporte une zone sacrificielle de micropointes 2' adressable indépendamment des colonnes 7 au moyen d'une électrode 7' additionnelle. Cette zone est associée à une grille secondaire 3' qui, selon le mode de réalisation représenté à la figure 1, est adressable indépendamment des rangées de la grille 3. A titre de variante, la grille secondaire peut correspondre à des prolongements de rangées de la grille principale 3 participant à l'affichage.
  • Selon l'invention, la zone sacrificielle de micropointes 2 est destinée à être adressée, une fois l'écran terminé, pour améliorer le vide dans l'espace 11 inter-électrodes. Ainsi, selon la présente invention, l'écran comporte des zones actives de micropointes 2 et au moins une zone sacrificielle de micropointes 2' adressables indépendamment les unes des autres. Les micropointes sacrificielles sont endommagées par le pompage ionique auquel elles participent tandis que les micropointes de la zone active de l'écran sont préservées.
  • De préférence, l'anode est pourvue d'une électrode secondaire 10' de collection des électrons émis par la zone sacrificielle de micropointes. Par exemple, une zone d'ITO, de préférence dépourvue d'éléments luminophores, est prévue à l'aplomb de la zone sacrificielle de micropointes. Cette électrode 10' est, pendant le pompage ionique, polarisée à un potentiel nettement supérieur au potentiel de la grille 3'. Cela présente l'avantage que les électrons émis par les micropointes sacrificielles 2' ne sont pas collectés par la grille secondaire 3' qui se trouve ainsi préservée. De plus, les électrons traversent alors tout l'espace inter-électrodes, ce qui augmente la probabilité de heurter une molécule neutre et de la transformer en un ion positif. En outre, on fixe ainsi la zone où vont se loger les molécules ionisées (la grille secondaire 3'). Cet avantage est particulièrement intéressant dans le cas où la grille secondaire est constituée de prolongements de rangées de la grille 3 servant à l'extraction des électrons de la zone active.
  • A titre de variante, l'électrode secondaire 10' de l'anode est confondue avec l'électrode 10, les éléments luminophores 16 étant toutefois déposés, de préférence, uniquement à l'aplomb des zones actives de micropointes.
  • Le cas échéant, l'électrode secondaire 10' pourra être revêtue d'un matériau à coefficient d'émission secondaire supérieur à un de façon à multiplier le nombre d'électrons émis. Dans ce cas, on pourra appliquer un champ transversal à cette électrode secondaire 10' pour encore accroître le nombre d'électrons par effet d'avalanche.
  • Dans le mode de réalisation représenté, l'électrode 7', la grille secondaire 3' et l'électrode secondaire 10' sont adressables par le circuit 12 au moyen de liaisons 13', 14' et 15'. Le pompage ionique peut alors être commandé par le circuit électronique de commande de l'écran. A titre de variante, les conducteurs 13', 14' et 15' sont également accessibles pour être connectés individuellement, lors de la fabrication de l'écran ou d'opérations de maintenance, à un système particulier de pompage ionique qui sera décrit par la suite en relation avec la figure 2.
  • Selon l'invention, un pompage ionique de l'espace inter-électrodes est mis en oeuvre une fois l'écran terminé en polarisant l'électrode secondaire de grille 3' à un potentiel adapté, correspondant de préférence au potentiel nominal de la grille 3 en fonctionnement (par exemple, de l'ordre de 80 volts), et en portant l'électrode 7' à un potentiel permettant une émission électronique. De préférence, le potentiel de polarisation de l'électrode 7' est compris dans la plage de potentiels nominaux (par exemple, entre 0 et 30 volts) de fonctionnement de la zone active de l'écran. Le choix du potentiel de polarisation de l'électrode 7' dépend de l'intensité d'émission électronique souhaitée pour le pompage ionique. De préférence, pour accélérer le pompage ionique, la zone sacrificielle de micropointes 2' sera polarisée à un potentiel (par exemple, 0 volt) correspondant à une émission maximale. De préférence, l'électrode secondaire 10' de l'anode 5 est polarisée à un potentiel (par exemple de l'ordre de 400 volts) correspondant au potentiel nominal de polarisation de l'électrode 10 de l'écran.
  • Un avantage de la présente invention est que, tout en permettant un pompage ionique de l'espace inter-électrodes 11, le pouvoir émissif des micropointes 2 qui participent à l'affichage n'est sensiblement pas altéré.
  • Un autre avantage de la présente invention est qu'elle permet, si le circuit 12 de commande est adapté à commander la zone sacrificielle de micropointes 2', de procéder à un pompage ionique après la mise en service de l'écran pour piéger des espèces non absorbées par le getter et empêcher ainsi la dégradation du vide.
  • Selon l'invention, on effectue ce pompage ionique hors des périodes de fonctionnement de l'écran, c'est-à-dire hors des périodes où l'écran affiche des images. De préférence, ce pompage ionique est commandé après chaque extinction de l'écran à la fin d'une utilisation pour affichage. Ainsi, le vide est régénéré pour l'utilisation suivante. On a en effet constaté que le vide se dégradait malgré le pompage ionique que pourraient effectuer les zones actives de micropointes pendant les périodes de fonctionnement. On suppose que des espèces continuent à être désorbées juste après l'extinction. Un avantage de prévoir un pompage ionique au moyen des micropointes sacrificielles après chaque utilisation est que ces espèces sont alors immédiatement piégées. De plus, on minimise l'endommagement des micropointes des zones actives qui sont autrement polluées lors de l'allumage suivant de l'écran.
  • On notera que plusieurs zones de micropointes sacrificielles pourront être prévues dans différentes régions de l'écran afin d'améliorer la répartition spatiale du pompage ionique. Par exemple, on pourra prévoir des colonnes parallèles aux colonnes 7, hors de la zone d'affichage, c'est-à-dire de part et d'autre de l'écran. Selon un autre mode de réalisation non représenté, des zones sacrificielles sont organisées en colonnes ménagées entre deux colonnes voisines 7 de micropointes actives 2, c'est-à-dire servant à l'affichage. Les colonnes de micropointes sacrificielles ainsi obtenues sont adressables indépendamment des colonnes actives. Dans ce mode de réalisation, les rangées de grille 3 servant à l'adressage normal de l'écran en fonctionnement sont utilisées pour adresser les zones sacrificielles pendant les phases de pompage ionique. Les zones actives de l'anode sont alors, de préférence, polarisées à leur potentiel nominal de fonctionnement et servent à collecter des électrons, non seulement pendant les phases de fonctionnement mais également pendant les phases de pompage ionique.
  • Le choix et la taille des emplacements des zones sacrificielles dépendent des caractéristiques (forme, résolution, espace disponible entre colonnes) de la zone active de micropointes.
  • Un avantage de la présente invention est que le pompage ionique ne requiert aucune génération de potentiel supplémentaire par rapport à ceux qui sont disponibles dans le circuit électronique 12 de commande de l'écran, ce qui limite les adaptations de ce circuit 12 si l'on souhaite effectuer un pompage ionique après la mise en service de l'écran.
  • Le cas échéant, la grille 3' peut être recouverte d'un matériau spécifique (par exemple, du titane) qui va sublimer quand il sera frappé par une molécule ionisée. Le gaz émis par ce matériau se redépose alors sur la grille et les molécules ionisées se trouvent alors enterrées sous le métal. Elles sont donc plus stables et auront beaucoup plus de mal à être extraites. Cette variante est plus particulièrement destinée aux cas où l'anode est dépourvue d'électrode secondaire en regard de la zone sacrificielle de micropointes.
  • Dans le cas où les électrons émis par les zones sacrificielles ne sont pas collectés par l'anode, cette zone de micropointes 2 sacrificielles pourra être placée en regard d'orifices (non représentés) ménagés dans le substrat 6 pour communiquer avec une enceinte de logement du getter. On profite ainsi de la présence d'une surface inutilisable pour la zone active de l'écran.
  • On notera que la réalisation d'un écran selon la présente invention ne requiert aucune modification du procédé de fabrication de la cathode, de l'anode et de la grille. Seuls les masques de dépôt et de gravure utilisés pour les différentes couches sont, selon l'invention, adaptés pour créer la ou les zones sacrificielle, la ou les grilles secondaires, et la ou les électrodes d'anode additionnelles.
  • La figure 2 illustre un mode de mise en oeuvre d'un procédé de pompage ionique d'un écran selon la présente invention. Ce mode de mise en oeuvre est plus particulièrement destiné à un pompage ionique lors de la fabrication de l'écran ou lors d'opération de maintenance au moyen d'un système indépendant du circuit 12 (figure 1) de commande de l'écran.
  • A la figure 2, l'écran a été représenté de façon schématique sous la forme d'une plaque de cathode 1 et d'une plaque d'anode 5. Les zones actives et sacrificielles de micropointes sont illustrées par les positions respectives des grilles principale 3 et secondaire 3' représentées en pointillé.
  • Un système de pompage ionique selon la présente invention comporte un circuit 20 d'alimentation (ALIM.) commandable et propre à générer les potentiels de polarisation nécessaires au pompage ionique. Par exemple, le circuit 20 génère une tension Va (par exemple, 400 volts) de polarisation de l'électrode secondaire (10', figure 1) d'anode. Cette tension Va est envoyée sur un diviseur de tension 21 générant les tensions Vg de grille secondaire et Vc de polarisation de l'électrode 7' (figure 1) portant les micropointes sacrificielles. La tension Vgc est positive et est, de préférence, réglable afin d'obtenir un courant d'émission réglable. La zone sacrificielle de micropointes pourra être adressée soit en mode pulsé soit en mode continu. L'avantage d'un adressage en mode continu est qu'il réduit le temps de pompage ionique. La tension Va est une tension constante supérieure à la tension de grille Vg afin de collecter les électrons émis.
  • La durée du pompage ionique lors de la fabrication dépend du volume de l'écran, du niveau de vie initial et de la surface de micropointes sacrificielles. Par exemple, une zone sacrificielle représentant entre 0,1% et 10% de la zone active constitue, selon l'invention, un bon compromis entre la durée nécessaire de pompage ionique et l'encombrement de l'écran.
  • Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, les potentiels de polarisation pendant la phase de pompage ionique seront, de préférence, choisis en fonction des potentiels nominaux de fonctionnement de l'écran. De plus, la réalisation pratique d'un système de pompage ionique tel que représenté à la figure 2 est à la portée de l'homme du métier en fonction des indications fonctionnelles données ci-dessus. De même, les adaptations du circuit (12, figure 1) de commande de l'écran, dans un mode de réalisation où l'on souhaite un pompage ionique après la mise en service de l'écran, sont à la portée de l'homme du métier.

Claims (3)

  1. Procédé d'amélioration du vide dans un écran plat comportant une cathode (1) pourvue de zones actives de micropointes (2) d'émission électronique; une anode cathodoluminescente (5) pourvue, au moins en regard desdites zones actives de micropointes, de zones actives d'éléments luminophores (16); une couche conductrice principale (3) d'extraction d'électrons émis par les micropointes actives (2) en direction des éléments luminophores (16); et des zones sacrificielles comportant, côté cathode (1), des micropointes sacrificielles (2') et, côté anode (5), des pistes conductrices (10') à l'aplomb desquelles, hors desdites zones actives, le procédé comportant l'étape suivante:
    appliquer une tension positive entre les micropointes sacrificielles et les pistes conductrices (10'),
    caractérisé par
    l'adressage des micropointes sacrificielles (2') hors de périodes de fonctionnement de l'écran, indépendamment des micropointes d'émission électronique.
  2. Procédé selon la revendication 1,
    caractérisé par
    l'adressage des micropointes sacrificielles (2') avant la mise en service de l'écran, indépendamment des micropointes d'émission électronique.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé par
    l'adressage des micropointes sacrificielles (2') après chaque période de fonctionnement de l'écran, indépendamment des micropointes d'émission électronique.
EP98410073A 1997-06-27 1998-06-26 Pompage ionique d'un écran plat à micropointes Expired - Lifetime EP0893817B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07102656A EP1814136B1 (fr) 1997-06-27 1998-06-26 Pompage ionique d'un écran plat à micropointes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9708363 1997-06-27
FR9708363A FR2765392B1 (fr) 1997-06-27 1997-06-27 Pompage ionique d'un ecran plat a micropointes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07102656A Division EP1814136B1 (fr) 1997-06-27 1998-06-26 Pompage ionique d'un écran plat à micropointes

Publications (2)

Publication Number Publication Date
EP0893817A1 EP0893817A1 (fr) 1999-01-27
EP0893817B1 true EP0893817B1 (fr) 2007-09-26

Family

ID=9508759

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07102656A Expired - Lifetime EP1814136B1 (fr) 1997-06-27 1998-06-26 Pompage ionique d'un écran plat à micropointes
EP98410073A Expired - Lifetime EP0893817B1 (fr) 1997-06-27 1998-06-26 Pompage ionique d'un écran plat à micropointes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07102656A Expired - Lifetime EP1814136B1 (fr) 1997-06-27 1998-06-26 Pompage ionique d'un écran plat à micropointes

Country Status (5)

Country Link
US (1) US6107745A (fr)
EP (2) EP1814136B1 (fr)
JP (1) JP4011742B2 (fr)
DE (2) DE69841931D1 (fr)
FR (1) FR2765392B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161010A1 (en) * 1998-08-04 2007-07-12 Gjerde Douglas T Methods and compositions for mutation analysis
DE10241549B4 (de) * 2002-09-05 2004-07-22 Nawotec Gmbh Orbitron-Pumpe
JP3908708B2 (ja) * 2003-09-22 2007-04-25 株式会社東芝 画像形成装置の駆動方法
JP4475646B2 (ja) * 2004-08-27 2010-06-09 キヤノン株式会社 画像表示装置
JP2006066267A (ja) * 2004-08-27 2006-03-09 Canon Inc 画像表示装置
JP4817641B2 (ja) * 2004-10-26 2011-11-16 キヤノン株式会社 画像形成装置
US20060113888A1 (en) * 2004-12-01 2006-06-01 Huai-Yuan Tseng Field emission display device with protection structure
GB2454508B (en) * 2007-11-09 2010-04-28 Microsaic Systems Ltd Electrode structures
JP2009244625A (ja) 2008-03-31 2009-10-22 Canon Inc 画像表示装置およびその駆動方法
GB2479191B (en) * 2010-04-01 2014-03-19 Microsaic Systems Plc Microengineered multipole ion guide
GB2479190B (en) * 2010-04-01 2014-03-19 Microsaic Systems Plc Microengineered multipole rod assembly

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240421A (en) * 1963-01-24 1966-03-15 Itt Ion transport pump
JPS5650042A (en) * 1979-09-29 1981-05-07 Univ Tohoku Ion pump for super high vacuum
US5063323A (en) * 1990-07-16 1991-11-05 Hughes Aircraft Company Field emitter structure providing passageways for venting of outgassed materials from active electronic area
JPH04289640A (ja) * 1991-03-19 1992-10-14 Hitachi Ltd 画像表示素子
KR0139489B1 (ko) * 1993-07-08 1998-06-01 호소야 레이지 전계방출형 표시장치
JP3430560B2 (ja) * 1993-07-08 2003-07-28 双葉電子工業株式会社 ゲッター装置及びゲッター装置を有する蛍光表示管
JP3217579B2 (ja) * 1994-03-07 2001-10-09 株式会社東芝 表示装置
JP2992927B2 (ja) * 1994-11-29 1999-12-20 キヤノン株式会社 画像形成装置
US5655886A (en) * 1995-06-06 1997-08-12 Color Planar Displays, Inc. Vacuum maintenance device for high vacuum chambers
JP3183122B2 (ja) * 1995-08-31 2001-07-03 双葉電子工業株式会社 電界放出型表示素子
US5578900A (en) * 1995-11-01 1996-11-26 Industrial Technology Research Institute Built in ion pump for field emission display
US5697827A (en) * 1996-01-11 1997-12-16 Rabinowitz; Mario Emissive flat panel display with improved regenerative cathode
FR2748347B1 (fr) * 1996-05-06 1998-07-24 Pixtech Sa Anode d'ecran plat de visualisation a anneau de protection
GB2321335A (en) * 1997-01-16 1998-07-22 Ibm Display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US6107745A (en) 2000-08-22
EP0893817A1 (fr) 1999-01-27
EP1814136A3 (fr) 2007-08-15
DE69838467D1 (de) 2007-11-08
FR2765392A1 (fr) 1998-12-31
DE69838467T2 (de) 2008-06-26
EP1814136B1 (fr) 2010-10-06
DE69841931D1 (de) 2010-11-18
EP1814136A2 (fr) 2007-08-01
FR2765392B1 (fr) 2005-08-26
JP4011742B2 (ja) 2007-11-21
JPH1125889A (ja) 1999-01-29

Similar Documents

Publication Publication Date Title
EP0893817B1 (fr) Pompage ionique d'un écran plat à micropointes
EP0704877B1 (fr) Protection électrique d'une anode d'écran plat de visualisation
FR2708380A1 (fr) Dispositif d'affichage d'images et circuit de commande associé.
FR2736464A1 (fr) Dispositif de visualisation a emission de champ
FR2682211A1 (fr) Dispositif d'affichage fluorescent de type plat.
EP1139374A1 (fr) Plaque de cathode d'écran plat de visualisation
EP0734042B1 (fr) Anode d'écran plat de visualisation à bandes résistives
EP1210721B1 (fr) Ecran plat a emission de champ avec electrode de modulation
EP0817232B1 (fr) Procédé de régénération de micropointes d'un écran plat de visualisation
EP0802559B1 (fr) Ecran plat de visualisation à source d'hydrogène
EP0806788A1 (fr) Anode d'écran plat de visualisation à anneau de protection
EP0649162B1 (fr) Ecran plat à micropointes à anode commutée
EP0747875B1 (fr) Procédé de commande d'écran plat de visualisation
EP0943153A1 (fr) Ecran d'affichage comprenant une source d'electrons a micropointes, observable a travers le support des micropointes, et procede de fabrication de cette source
FR2800512A1 (fr) Ecran plat de visualisation a grille de protection
EP0844642A1 (fr) Ecran plat de visualisation à grilles focalisatrices
EP0734043A1 (fr) Ecran plat de visualisation a double grille
FR2762927A1 (fr) Anode d'ecran plat de visualisation
FR2704967A1 (fr) Ecran plat à micropointes à anode doublement commutée.
EP0806787A1 (fr) Réalisation d'une anode d'écran plat de visualisation
FR2805663A1 (fr) Procede de nettoyage par plasma d'un ecran plat de visualisation
FR2798507A1 (fr) Dispositif permettant de produire un champ electrique module au niveau d'une electrode et son application aux ecrans plats a emission de champ
EP1147538A1 (fr) Procede de commande de structure comportant une source d'electrons a effet de champ
FR2800511A1 (fr) Ecran plat de visualisation a grille de protection
FR2804243A1 (fr) Regeneration d'anodes d'ecran plat de visualisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990703

AKX Designation fees paid

Free format text: DE FR GB IT

111Z Information provided on other rights and legal means of execution

Free format text: 20000403 DE FR GB IT

17Q First examination report despatched

Effective date: 20030213

19U Interruption of proceedings before grant

Effective date: 20020621

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20050502

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CANON KABUSHIKI KAISHA

17Q First examination report despatched

Effective date: 20030213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070926

REF Corresponds to:

Ref document number: 69838467

Country of ref document: DE

Date of ref document: 20071108

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130624

Year of fee payment: 16

Ref country code: DE

Payment date: 20130630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130606

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130718

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69838467

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140626

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69838467

Country of ref document: DE

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140626

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630