EP0893663B1 - Procédé de commande pour des cycles de dégivrage dans un système de pompe à chaleur - Google Patents

Procédé de commande pour des cycles de dégivrage dans un système de pompe à chaleur Download PDF

Info

Publication number
EP0893663B1
EP0893663B1 EP97830379A EP97830379A EP0893663B1 EP 0893663 B1 EP0893663 B1 EP 0893663B1 EP 97830379 A EP97830379 A EP 97830379A EP 97830379 A EP97830379 A EP 97830379A EP 0893663 B1 EP0893663 B1 EP 0893663B1
Authority
EP
European Patent Office
Prior art keywords
value
threshold value
defrosting
max
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97830379A
Other languages
German (de)
English (en)
Other versions
EP0893663A1 (fr
Inventor
Giuseppe Guarini
Roberto Dall'olio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aermec SpA
Original Assignee
Aermec SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES97830379T priority Critical patent/ES2184054T3/es
Priority to PT97830379T priority patent/PT893663E/pt
Priority to AT97830379T priority patent/ATE225022T1/de
Priority to DE69715835T priority patent/DE69715835T2/de
Priority to EP97830379A priority patent/EP0893663B1/fr
Application filed by Aermec SpA filed Critical Aermec SpA
Priority to DK97830379T priority patent/DK0893663T3/da
Priority to SI9730447T priority patent/SI0893663T1/xx
Publication of EP0893663A1 publication Critical patent/EP0893663A1/fr
Application granted granted Critical
Publication of EP0893663B1 publication Critical patent/EP0893663B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits

Definitions

  • the present invention relates to a method of controlling the defrosting cycles in a heat-pump system.
  • a heat pump is a thermal machine which, with an expenditure of mechanical work, draws a quantity of heat from an outside environment (a source) and sends all of the thermal energy into an inside environment (a recipient) so as to heat it.
  • the heat pump can also operate in reverse as a cooler, taking thermal energy from the inside environment (source) so as to cool it.
  • a problem with heat-pump systems in which an air heat-exchanger (a battery) is used in the outside environment is that, when the temperature of a surface of the battery which is contact with the outside environment falls below 0°C, a layer of frost forms on the battery owing to atmospheric water vapour. This layer of frost obstructs the flow of air through the battery, compromising the exchange of heat.
  • Known heat-pump systems have a transducer which periodically measures the value of a state parameter (pressure or temperature) of a refrigerant fluid passing through the ouside battery, or the temperature of the surface of the battery which is in contact with the outside environment. When this measurement falls below a predetermined threshold value, the heat-pump system performs a defrosting cycle, for example by reversing the operation of the system. The outside battery is thus heated (taking heat from the inside environment) and melts the frost formed thereon.
  • a state parameter pressure or temperature
  • a disadvantage of known heat-pump systems is that, particularly when the outside temperature and the relative humidity value are low, the defrosting cycle is triggered even when the outside battery is not frosty; unnecessary defrosting cycles are therefore performed, consequently reducing the output of the system as a whole.
  • the object of the present invention is to prevent the afore mentioned drawbacks. To achieve this object, a method as described in the first claim is proposed.
  • the method of the present invention triggers the defrosting cycle in dependence on the actual conditions of the outside battery.
  • the frequency of the defrosting cycles can thus be reduced considerably. This achieves a greater output and improved performance of the heat-pump system with a consequent considerable energy saving.
  • a heat-pump system is constituted, in particular, by an air-conditioner for winter heating and for summer cooling; the method of the present invention may, however, also be used in different applications, for example, in a central heating plant, in a distillation device, etc.
  • the heat-pump system 100 uses a refrigerant fluid (for example, Freon) which is subjected to a thermodynamic cycle (as described in detail below) and which flows through a circuit 103 formed by suitable pipes.
  • the heat-pump system 100 includes a heat exchanger 130 which is in contact with an outside environment and which operates as a heat source or as a heat recipient during winter and summer, respectively.
  • the exchange of heat takes place in air; in particular, the heat exchanger 130 (the battery) is constituted by pipes, generally having fins, the refrigerant fluid flowing through the pipes and the air passing over them externally.
  • the air circulation is forced by means of a fan 135 or takes place by natural convection.
  • a similar battery 140 in contact with an inside environment operates as a heat recipient or a heat source in winter and in summer, respectively; a fan 145 forces, for example, the air circulation in the inside environment from an intake duct 151 to an outlet duct 153.
  • the present invention may, however, also be used with internal heat exchangers of different types, for example, with an exchange of heat in water, in the floor, etc.
  • the heat-pump system 100 is constituted by a single body; alternatively, two separate units are provided in the outside environment and in the inside environment, respectively.
  • a compressor unit 150 connected by means of a three-way valve (not shown in the drawing) for the winter-summer reversal of the circuit 103, and two expansion valves 155, 156 (or, alternatively, small calibrated holes or sections of capillary tube) for the winter and summer refrigerant-fluid circuits, respectively.
  • a transducer 160 periodically measures a state parameter relating to the refrigerant fluid and supplies a value S indicative of this measurement to an electronic microprocessor board 165 (or other equivalent logic means).
  • a temperature transducer with a defrosting probe disposed inside the battery 130 is used; alternatively, in certain circumstances, the temperature transducer may be disposed in the inside battery 140, or a pressure transducer is used.
  • the microprocessor 165 is connected to the compressor 150 in order to control the operation of the heat-pump system 100 by means of suitable control signals and to perform a cycle for defrosting the outside battery 130.
  • the refrigerant fluid in the vapour state at the output of the outside battery 130 is compressed in the unit 150.
  • the battery 140 operates as a condenser in which the refrigerant fluid cools until it condenses to the liquid state, supplying heat to the inside environment.
  • the refrigerant fluid then expands with partial vaporization in the valve 155 so as to regulate the flow-rate of the refrigerant fluid so that it is completely vaporized in the battery 130 (which acts as an evaporator) owing to the heat taken from the outside environment.
  • the present invention may also be used in a water-vapour, air, or absorption system etc.
  • a defrosting cycle is performed periodically (as described in detail below) in order to melt a layer of frost deposited on an outside surface of the battery 130.
  • the operation of the system 100 is reversed, so that the outside battery 130 (acting as a condenser) is heated, melting the frost.
  • the operation of the heat-pump system 100 is interrupted and the frost is melted by electrical heating, by a flow of air or of water at a suitable temperature, or by the injection of hot gas coming from inside the outside battery.
  • a method 200 of controlling the defrosting cycles in the heat-pump system described above starts in box 203, in which the system is activated, for example, when it is switched on, when it leaves a stand-by state, or when it starts up again after a thermostatic intervention to regulate the temperature of the inside environment.
  • a parameter S Th which represents a threshold temperature for the implementation of the defrosting cycle is set at a predetermined initial (default) value, for example, equal to a few degrees centigrade below zero, such as -2°C.
  • a parameter T Wait which represents a minimum waiting time between two consecutive defrosting cycles or between the activation of the system and a first defrosting cycle (used for limiting the repetition of the defrosting cycles with regard to time) is preferably set at a further predetermined initial value, for example, of a few minutes, such as 15 minutes. It should be noted that, in general, the time is measured in relation to the operation of the heat-pump system, for example, as the period of operation of the compressor.
  • the method checks whether a first defrosting cycle has been carried out since the heat-pump system was activated; this preferably enables the parameters (S Th and T Wait ) of the system to be modified only after this first defrosting cycle. If the answer is negative, the method goes on to box 212 (described below). If the answer is affirmative, the method checks, in box 215, whether the operating time T D which has elapsed since the last defrosting cycle exceeds a predetermined minimum value, for example, of a few minutes, such as 10 minutes; the system parameters are preferably modified only after this operating period, so as to allow the system to reach a steady state.
  • the method goes directly to box 212. If the operating time T D since the last defrosting cycle is greater than 10 minutes, the method according to the present invention calculates a value correlated with a maximum value of the measured temperature S. In a preferred embodiment, an average value of the measured temperatures S is calculated periodically for this purpose. For example, in the box 221, an average value S Ave of the temperatures S measured since a last modification cycle is updated. The method then goes on to box 223 in which it is checked whether a predetermined period of time, for example of 1 minute, has elapsed since a last modification cycle. If the answer is negative, the method goes directly to box 212.
  • a predetermined period of time for example of 1 minute
  • the method then goes on to box 224 in which it is checked whether the average value S Ave is greater than a maximum temperature value S Max (set initially at an invalid value). If the answer is affirmative, in box 227 the value S Max is set at the average value S Ave and the method then goes on to box 230. If the average value S Ave is not greater than the maximum value S Max , the method goes directly to box 230.
  • the method according to the present invention modifies the parameter S Th which is representative of the threshold temperature for performing the defrosting cycle in dependence on the maximum value S Max ;
  • the parameter S Th is preferably set at the maximum value S Max minus a predetermined value, for example, of a few degrees centigrade, such as 3°C.
  • the parameter T Wait which is representative of the minimum waiting time between two consecutive defrosting cycles is advantageously modified in dependence on the value of the parameter S Th .
  • the method checks whether the parameter S Th is below a predetermined minimum value, for example, of a few degrees centigrade below zero, such as -4°C. If the answer is negative, the method goes directly to box 212. If the parameter S Th is below the minimum value, the parameter T Wait is set at a higher predetermined value, for example, 45 minutes, in box 236. The method then goes on to box 212.
  • the method checks whether a defrosting cycle is in operation. If not, the method goes to box 239 in which it is checked whether the measured temperature S is below the parameter S Th and whether the time T D since the last defrosting cycle (or since the activation of the system) is greater than the parameter T Wait . If at least one of these conditions is not satisfied, the method goes to box 242 (described below).
  • the method goes to box 245 in which a defrosting cycle is started, for example, by the reversal of the operation of the heat-pump system; if this is the first defrosting cycle, the parameter T Wait is also modified, preferably to a predetermined value, for example, of 30 minutes, between the initial value (15 minutes) and the value set in box 236 (45 minutes). The method then goes to box 242.
  • a defrosting cycle is started, for example, by the reversal of the operation of the heat-pump system; if this is the first defrosting cycle, the parameter T Wait is also modified, preferably to a predetermined value, for example, of 30 minutes, between the initial value (15 minutes) and the value set in box 236 (45 minutes).
  • the method preferably controls the duration of this operation. For example, in box 248 it is checked whether a predetermined minimum time T Min , for example, of 2.5 minutes, has elapsed since the start of the defrosting cycle. In general, it is in fact preferable for the defrosting cycle to have a minimum duration since excessively frequent reversals of the operation of the heat-pump system may cause excessive leakage of oil in the compressor with consequent damage to the system. If the minimum defrosting time T Min has not elapsed, the method goes directly to box 242.
  • T Min for example, of 2.5 minutes
  • the method goes to box 251 in which it is checked whether the measured temperature S is greater than a predetermined maximum end of defrosting temperature S End , for example, of a few tens of degrees centigrade, such as 20°C, or whether a predetermined maximum time T Max , for example, of 6 minutes, has elapsed since the start of the defrosting cycle. If at least one of these conditions is satisfied, the defrosting cycle is terminated in box 253 and the method then goes to box 242. If neither of the conditions is satisfied, however, the method goes directly to box 242.
  • the method preferably checks whether the time T D which has elapsed since the last defrosting cycle is greater than a predetermined maximum value, for example of a few tens of minutes, such as 90 minutes. If not, the method returns to box 207 in order to repeat the steps described above. If a longer time has elapsed, however, the method goes back to box 206 so as to reset the initial values of the parameters of the system.
  • a predetermined maximum value for example of a few tens of minutes, such as 90 minutes.

Claims (16)

  1. Procédé (200) de commande des cycles de dégivrage d'un échangeur de chaleur à air extérieur (130) dans un système de pompe à chaleur (100) comprenant les étapes suivantes :
    on mesure périodiquement (207) dans ledit échangeur de chaleur à air extérieur (130) une première valeur (S) indicative d'un paramètre d'état se rapportant à un fluide réfrigérant utilisé dans le système (100),
    on compare (239) la première valeur (S) à une valeur de seuil (STh),
    on exécute (245) un cycle de dégivrage en fonction d'un résultat de la comparaison,
    on détermine (221, 227) une seconde valeur (SMax) corrélée avec une valeur maximum de la première valeur (S) mesurée périodiquement, et
    on modifie (230) la valeur de seuil (STh) en fonction de la seconde valeur (SMax).
  2. Procédé (200) de commande des cycles de dégivrage d'un échangeur de chaleur à air extérieur (130) dans un système de pompe à chaleur (100), comprenant les étapes suivantes :
    on mesure périodiquement (207) une première valeur (S) indicative d'un paramètre d'état se rapportant à un fluide réfrigérant utilisé dans le système (100),
    on compare (239) la première valeur (S) à une valeur de seuil (STh),
    on effectue (245) un cycle de dégivrage en fonction d'un résultat de la comparaison,
    on détermine (221, 227) une seconde valeur (SMax) corrélée avec une valeur maximum de la première valeur (S) mesurée périodiquement,
    on modifie (230) la valeur de seuil (STh) en fonction de la seconde valeur (SMax),
       dans lequel l'étape de détermination (221, 227) de la seconde valeur (SMax) inclut les étapes suivantes :
    on calcule périodiquement (221, 223) une valeur moyenne (SAve) de la première valeur (S), et
    on règle (224, 227) la seconde valeur (SMax) à un maximum des valeurs moyennes (SAve).
  3. Procédé (200) selon la revendication 1 ou 2 dans lequel l'étape de modification (230) de la valeur de seuil (STh) consiste dans le réglage de la valeur de seuil (STh) à la seconde valeur (SMax) moins une première valeur prédéterminée.
  4. Procédé selon l'une quelconque des revendications 1 à 3 comportant de plus l'étape de réglage (206) de la valeur de seuil (STh) à une valeur initiale prédéterminée lors de chaque activation du système (100).
  5. Procédé selon la revendication 4 comprenant en outre l'étape de réglage (242, 206) de la valeur de seuil (STh) à la valeur initiale prédéterminée quand une période de fonctionnement (TD) depuis un dernier cycle de dégivrage est supérieure à une première valeur maximum prédéterminée.
  6. Procédé (200) selon l'une quelconque des revendications 1 à 5 dans lequel l'étape de modification (230) de la valeur de seuil (STh) n'est exécutée qu'après (209) un premier cycle de dégivrage après l'activation du système (100).
  7. Procédé (200) selon l'une quelconque des revendications 1 à 6 dans lequel l'étape de modification (230) de la valeur de seuil (STh) n'est exécutée (215) que quand la période de fonctionnement (TD) depuis le dernier cycle de dégivrage est supérieure à une première valeur minimum prédéterminée.
  8. Procédé selon l'une quelconque des revendications 1 à 7 dans lequel le cycle de dégivrage (239, 245) n'est exécuté que si, au même moment, la période de fonctionnement (TD) depuis le dernier cycle de dégivrage ou depuis l'activation du système (100) est supérieure à une autre valeur de seuil (TWait), le procédé (200) comportant en outre les étapes de réglage (206) de l'autre valeur de seuil (TWait) à une autre valeur initiale prédéterminée chaque fois que le système (100) est activé, de modification (245) de l'autre valeur de seuil (TWait) à une seconde valeur prédéterminée supérieure à l'autre valeur initiale prédéterminée après l'exécution du premier cycle de dégivrage, et de modification (233, 236) de l'autre valeur de seuil (TWait) à une troisième valeur prédéterminée supérieure à la seconde valeur prédéterminée quand la valeur de seuil (STh) est au-dessous d'une seconde valeur minimum prédéterminée.
  9. Procédé selon la revendication 8 comprenant en outre l'étape de réglage (242, 206) de l'autre valeur de seuil (TWait) à l'autre valeur initiale prédéterminée quand la période de fonctionnement (TD) depuis le dernier cycle de dégivrage est supérieure à la première valeur maximum prédéterminée.
  10. Procédé (200) selon l'une quelconque des revendications 1 à 9 dans lequel une durée de chaque cycle de dégivrage est supérieure à une troisième valeur minimum prédéterminée (248), et le cycle de dégivrage est terminé (253) quand la première valeur (S) dépasse une seconde valeur maximum prédéterminée ou quand la durée dépasse une troisième valeur maximum prédéterminée (251).
  11. Procédé (200) selon l'une quelconque des revendications 1 à 10 dans lequel l'étape de réalisation (245) du cycle de dégivrage consiste dans l'inversion du fonctionnement du système de pompe à chaleur (100) de façon à chauffer l'échangeur de chaleur à air extérieur (130).
  12. Procédé (200) selon l'une quelconque des revendications 1 à 11 dans lequel le paramètre d'état est une température.
  13. Système de pompe à chaleur (100) pour exécuter le procédé selon l'une quelconque des revendications 1 à 12 comprenant un échangeur de chaleur à air extérieur (130), des moyens de détection (160) pour mesurer périodiquement, dans ledit échangeur de chaleur à air extérieur (130), une première valeur (S) indicative d'un paramètre d'état se rapportant à un fluide réfrigérant utilisé dans le système (100), des moyens logiques (165) pour comparer la première valeur (S) à une valeur de seuil (STh) et pour faire exécuter un cycle de dégivrage par l'échangeur de chaleur à air extérieur (130) en fonction d'un résultat de la comparaison, et
       des moyens logiques (165) pour déterminer une seconde valeur (SMax) corrélée avec une valeur maximum de la première valeur (S) et pour modifier (230) la valeur de seuil (STh) en fonction de la seconde valeur (SMax).
  14. Système de pompe à chaleur (100) pour mettre en oeuvre le procédé selon l'une quelconque des revendications 2 à 12, comprenant un échangeur de chaleur à air extérieur (130), des moyens de détection (160) pour mesurer périodiquement une première valeur (S) indicative d'un paramètre d'état se rapportant à un fluide réfrigérant utilisé dans le système (100), des moyens logiques (165) pour comparer la première valeur (S) avec une valeur de seuil (STh) et pour effectuer un cycle pour dégivrer l'échangeur de chaleur à air extérieur (130) en fonction d'un résultat de la comparaison, et
       des moyens logiques (165) pour calculer périodiquement (221, 223) une valeur moyenne (SAve) de la première valeur (S), pour établir une seconde valeur (SMax) à un maximum des valeurs moyennes (SAve) et pour modifier (230) la valeur de seuil (STh) en fonction de ladite seconde valeur (SMax).
  15. Système de pompe à chaleur (100) selon la revendication 13 ou 14 dans lequel les moyens de détection (160) comprennent un transducteur de température disposé dans l'échangeur de chaleur à air extérieur (130).
  16. Système de pompe à chaleur (100) selon la revendication 13 ou 14 ou 15 dans lequel le système (100) est un conditionneur d'air.
EP97830379A 1997-07-22 1997-07-22 Procédé de commande pour des cycles de dégivrage dans un système de pompe à chaleur Expired - Lifetime EP0893663B1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PT97830379T PT893663E (pt) 1997-07-22 1997-07-22 Metodo de controlo dos ciclos de descongelacao num sistema de bomba de calor
AT97830379T ATE225022T1 (de) 1997-07-22 1997-07-22 Steuerverfahren für abtauvorgänge in einer wärmepumpenanlage
DE69715835T DE69715835T2 (de) 1997-07-22 1997-07-22 Steuerverfahren für Abtauvorgänge in einer Wärmepumpenanlage
EP97830379A EP0893663B1 (fr) 1997-07-22 1997-07-22 Procédé de commande pour des cycles de dégivrage dans un système de pompe à chaleur
ES97830379T ES2184054T3 (es) 1997-07-22 1997-07-22 Pprocedimiento para el control de los ciclos de descongelacion en un sistema de bomba de calor.
DK97830379T DK0893663T3 (da) 1997-07-22 1997-07-22 Fremgangsmåde til styring af afrimningscyklerne i et varmepumpesystem
SI9730447T SI0893663T1 (en) 1997-07-22 1997-07-22 A method for controlling the defrosting cycles in a heat-pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97830379A EP0893663B1 (fr) 1997-07-22 1997-07-22 Procédé de commande pour des cycles de dégivrage dans un système de pompe à chaleur

Publications (2)

Publication Number Publication Date
EP0893663A1 EP0893663A1 (fr) 1999-01-27
EP0893663B1 true EP0893663B1 (fr) 2002-09-25

Family

ID=8230727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97830379A Expired - Lifetime EP0893663B1 (fr) 1997-07-22 1997-07-22 Procédé de commande pour des cycles de dégivrage dans un système de pompe à chaleur

Country Status (7)

Country Link
EP (1) EP0893663B1 (fr)
AT (1) ATE225022T1 (fr)
DE (1) DE69715835T2 (fr)
DK (1) DK0893663T3 (fr)
ES (1) ES2184054T3 (fr)
PT (1) PT893663E (fr)
SI (1) SI0893663T1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371355B (en) 2001-01-18 2005-05-25 Jtl Systems Ltd Defrost control method and apparatus
EP2426436A1 (fr) 2010-09-07 2012-03-07 AERMEC S.p.A. Méthode pour contrôler les cycles dégivrer dans une pompe de chaleur et une pompe de chaleur

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302947A (en) * 1980-01-04 1981-12-01 Honeywell Inc. Heat pump system defrost control
FR2486217A1 (fr) * 1980-07-04 1982-01-08 Anectron Dispositif de commande d'un cycle de degivrage d'une pompe a chaleur
US4373349A (en) * 1981-06-30 1983-02-15 Honeywell Inc. Heat pump system adaptive defrost control system
JPS59189243A (ja) * 1983-04-13 1984-10-26 Matsushita Electric Ind Co Ltd 空気調和機の除霜制御装置
JPS6159137A (ja) * 1984-08-28 1986-03-26 Sanyo Electric Co Ltd 着霜検出方法
KR900005722B1 (ko) * 1985-11-18 1990-08-06 마쯔시다덴기산교 가부시기가이샤 공기조화기의 제상(除霜)제어장치
US4882908A (en) * 1987-07-17 1989-11-28 Ranco Incorporated Demand defrost control method and apparatus
JPH01134146A (ja) * 1987-11-18 1989-05-26 Mitsubishi Electric Corp 空気調和機の霜取り装置
US5515689A (en) * 1994-03-30 1996-05-14 Gas Research Institute Defrosting heat pumps
US5507154A (en) * 1994-07-01 1996-04-16 Ranco Incorporated Of Delaware Self-calibrating defrost controller

Also Published As

Publication number Publication date
DK0893663T3 (da) 2002-10-28
ATE225022T1 (de) 2002-10-15
SI0893663T1 (en) 2003-04-30
EP0893663A1 (fr) 1999-01-27
DE69715835T2 (de) 2003-05-28
PT893663E (pt) 2003-01-31
ES2184054T3 (es) 2003-04-01
DE69715835D1 (de) 2002-10-31

Similar Documents

Publication Publication Date Title
US5257506A (en) Defrost control
EP1134518B1 (fr) Procédé de régulation d'un robinet électronique d'expansion basé sur l'étranglement du refroidisseur et sur la surchauffe de sortie
US20080127663A1 (en) Air-treatment system with secondary circuit
US6334321B1 (en) Method and system for defrost control on reversible heat pumps
CN108072214A (zh) 空调装置及其控制方法
JPH038921Y2 (fr)
US6263686B1 (en) Defrost control method and apparatus
GB2218499A (en) Air-cooled cooling apparatus
JP7135493B2 (ja) ヒートポンプ給湯装置
WO2006114983A1 (fr) Dispositif à cycle de réfrigération
JP2001147038A (ja) 空気調和機
EP0893663B1 (fr) Procédé de commande pour des cycles de dégivrage dans un système de pompe à chaleur
CN107906811A (zh) 热泵机组防冷冻控制方法
CN111664505A (zh) 一种空调装置及其控制方法
JP2002349979A (ja) 二酸化炭素ガス圧縮システム
JP2002130896A (ja) 熱媒体流体用の温度調整装置
KR200405714Y1 (ko) 히트펌프식 난방장치
JPH0755236A (ja) 空気調和機
JP3546102B2 (ja) エンジン駆動式空気調和機
JP3889529B2 (ja) エンジン冷却装置及びこのエンジン冷却装置を備えたガスヒートポンプ式空気調和装置
JP6052494B2 (ja) 空気調和装置
KR19990042257A (ko) 공기조화기의 냉/난방 제어방법
JPH0612209B2 (ja) 冷却装置
JP3572124B2 (ja) エンジン駆動式空気調和機の運転方法
JPS62125244A (ja) 空気調和機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19990702

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AXX Extension fees paid

Free format text: AL PAYMENT 19990702;LT PAYMENT 19990702;LV PAYMENT 19990702;RO PAYMENT 19990702;SI PAYMENT 19990702

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AERMEC S.P.A.

17Q First examination report despatched

Effective date: 20010814

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: A METHOD FOR CONTROLLING THE DEFROSTING CYCLES IN A HEAT-PUMP SYSTEM

RTI1 Title (correction)

Free format text: A METHOD FOR CONTROLLING THE DEFROSTING CYCLES IN A HEAT-PUMP SYSTEM

RTI1 Title (correction)

Free format text: A METHOD FOR CONTROLLING THE DEFROSTING CYCLES IN A HEAT-PUMP SYSTEM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 19990702;LT PAYMENT 19990702;LV PAYMENT 19990702;RO PAYMENT 19990702;SI PAYMENT 19990702

REF Corresponds to:

Ref document number: 225022

Country of ref document: AT

Date of ref document: 20021015

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 69715835

Country of ref document: DE

Date of ref document: 20021031

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020403839

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20021212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2184054

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030722

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030722

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030722

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030722

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030723

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030626

BERE Be: lapsed

Owner name: *AERMEC S.P.A.

Effective date: 20030731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040205

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

LTLA Lt: lapse of european patent or patent extension

Effective date: 20030722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040201

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050722