EP0890110A1 - Verfahren zum prüfen der massekontaktierung von teilen eines vernetzten systems - Google Patents
Verfahren zum prüfen der massekontaktierung von teilen eines vernetzten systemsInfo
- Publication number
- EP0890110A1 EP0890110A1 EP97916391A EP97916391A EP0890110A1 EP 0890110 A1 EP0890110 A1 EP 0890110A1 EP 97916391 A EP97916391 A EP 97916391A EP 97916391 A EP97916391 A EP 97916391A EP 0890110 A1 EP0890110 A1 EP 0890110A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- potential
- voltage
- line
- ground contact
- comparison
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000008569 process Effects 0.000 title abstract description 6
- 238000012360 testing method Methods 0.000 title abstract description 4
- 238000011156 evaluation Methods 0.000 claims description 4
- 230000001052 transient effect Effects 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/50—Testing arrangements
Definitions
- the present invention relates to a method for checking the ground contact of parts of a networked system.
- Data is written and read into the protocol of this data bus by applying a certain voltage level to the line or lines for a certain period of time. For this it is necessary that these control units have an almost identical reference potential. In the case of a motor vehicle, this is the vehicle mass with which all electrical devices in a motor vehicle are contacted as an equipotential surface.
- Networked systems of the type described are e.g. known as CAN systems.
- the subject of claim 1 describes the possibility of determining a test of the ground contact using the CAN H line.
- a further solution according to the invention is described in claim 2, according to which in a networked system in which data is sent and received via at least one line, at least one line on each part being connected to a part-specific potential of the parts via a resistor arrangement and via a controllable switch and a contact can be connected to a common potential, a method according to the invention is realized by comparing the voltage across the resistor arrangement with a predetermined potential if the line has a potential in a steady state, with a comparison of the voltage across the Resistor arrangement with the predetermined potential on the state of ground contact of the part is closed.
- REPLACEMENT SHEET ⁇ RULE 26 For both objects, a local shift in the voltage due to faulty ground contact is compared with the potential on the respective data line. On the data lines - via the connection to each control unit, ie each part of the networked system - there is an "averaged" potential via the connection to all parts. A possible ground fault of an individual participant has only a minor influence on the potential on the data line. This creates a voltage difference across the resistor arrangement in the event of a ground fault of an individual subscriber, which can be evaluated.
- the potential in the steady state is the common potential.
- the potential in the steady state corresponds to the part-specific potential.
- the comparison is made with a certain time lag after the line is switched to a certain potential by means of the controllable switches.
- the time lag must on the one hand be dimensioned such that the steady state is reached and on the other hand must be dimensioned such that the potential has not already been switched back.
- the comparison takes place within a time window after the switching state of the controllable switch has changed.
- the time delay that the component parts have until the switching process actually takes place is advantageously exploited.
- the state of the transceiver changes, it takes around 500ns until the switching process has taken place.
- the comparison takes place within this time window. This advantageously ensures that the potential is in a steady state. It also ensures that the right potential is available.
- the battery voltage ascertainable by the individual subscriber is compared with the battery voltage ascertainable by one or more reference subscribers, with faulty ground contact being concluded in the event of a deviation in the battery voltages ascertained above a certain threshold value.
- This method is suitable both for ascertaining a possibly faulty ground contact independently of the check described so far and in combination with the measures described so far.
- the locally ascertained battery voltage is sent, for example, as information via the bus to a further control device which itself determines the battery voltage ascertainable there as a reference. If the transmitted value of the battery voltage is lower or higher, a ground fault can be concluded.
- a drop in the locally determined battery voltage can also be due to faulty contacting to the + terminal.
- the method according to claim 7 is suitable in any case for verifying the results obtained.
- the contacting of the reference subscriber is carried out twice to improve the contacting. This advantageously minimizes the source of the error that faulty ground contact of the part that is to serve as a reference leads to incorrect results.
- the comparison of the battery voltage in a motor vehicle takes place only above a certain speed value.
- the comparison is activated when a certain minimum load current flows in the corresponding part.
- an entry is made in a diagnostic memory in the event of a detected deviation above the threshold value for the respective subscriber.
- the one-wire reception thresholds are shifted accordingly if a deviation is detected above the threshold value for the respective subscriber.
- the voltages to be measured are each fed to an input of a comparator and the potentials with which the voltages to be measured are to be compared are fed to the other input of the comparator.
- the different potentials which are fed to the inputs of the comparators are generated from a voltage via a multiplexer and are fed to the respective inputs of the comparators.
- the mass offset detection is queried several times.
- Mass displacements caused by events e.g. the blocking current of a variable motor can be filtered.
- Fig. 6 another exemplary embodiment of a circuit for detecting the mass error of a participant.
- Fig. 7 the temporal relationships between TxD and the bus level on CAN H
- Fig. 8 the transceiver internal voltage losses of a typical CAN H driver stage
- FIG. 1 shows the representation of several networked participants.
- the participants are formed by control devices that have a microcontroller.
- Coupling means (transceivers) are shown with these control devices, by means of which the subscribers are coupled to the network.
- These transceivers can advantageously be designed as integrated circuits.
- Participants networked in this way can be, for example, several control units in a motor vehicle, which have to exchange data with one another.
- Fig. 1 it is shown that the communication takes place via a data bus that consists of two lines (CAN_H and CAN L). Due to the system configuration, this communication over two lines tolerates mass errors of individual participants, which cause a potential shift of up to 4 volts.
- CAN H is connected to the masses present in each subscriber via specific termination resistances.
- CAN L is connected to the VCC voltage (+ 5V) in each participant via specific termination resistors.
- the voltage on CAN H and CAN_L represents an average value of the respective masses or VCC voltages of the individual participants. Any deviations from these voltages of individual participants only slightly influence the voltage on the data line. As a result, in the event of a local deviation of the potential due to incorrect ground contact to CAN_H or CAN L, measurable voltages occur that deviate from the expected values.
- the local supply voltage of the participants can be measured by the individual participants themselves.
- the individual subscriber measures the supply voltage compared to his own ground connection. In the event of a faulty ground connection, the supply voltage that can be measured by the individual subscriber is correspondingly lower.
- This value of the supply voltage can be transmitted via the data bus and compared with other determined supply voltages.
- a faulty contact can be inferred from a deviation, whereby the ground contact and / or the UBATT contact can be faulty.
- FIG. 2 shows the voltage relationships of a subscriber who has a mass offset.
- This ground offset of the participant i.e. a potential shift between GND SG compared to the vehicle mass
- Rx control unit
- Ry body mass
- U SG U BATT - U GND
- U GND I SG * (Rx + Ry)
- U RTL U VCC - U CAN_L
- U RTH U GND - U CAN H
- the local earth fault is determined in bus idle mode or in a recessive bus state. It should be noted that the maximum control unit operating current I SGmax flows, because then the largest potential shift occurs due to a ground fault:
- the measurement of the mass error is therefore usefully coupled to the control unit-specific application (for example, if the window lift motor is active).
- the voltage U SG can also be taken into account (for verification).
- the receiver single-wire reception thresholds can be manipulated, the detected error can be written to a diagnostic memory that can be read out, for example, during routine maintenance of the vehicle, or communication (transmission) can only be carried out if the control unit is free of a load current (emergency operation). In this case, there is no or only a slight potential shift.
- Figure 3 shows a first embodiment of a circuit for detecting a ground fault.
- the voltages U RTH and U RTL are each fed to an input of a comparator.
- the other input of this comparator is supplied with a voltage which is derived from the voltage VCC with respect to the ground potential (GND - SG).
- the measurement is carried out via a trigger module when the bus is in the steady recessive state. This can be deduced if a time has passed after the transition to the recessive state. This time must be selected so that the transient process is over and it must also be ensured that the dominant state has not yet been switched back to.
- the mass offset measurement can be verified x-fold by downstream flip-flops before an ERROR activation occurs.
- FIG. 4 shows a further exemplary embodiment of a circuit for detecting a ground fault, in which the battery voltage U BATT is also taken into account compared to the circuit according to FIG. 3. Furthermore, the reference potentials are generated by means of a single D / A converter via a multiplexer and fed to the respective inputs of the comparators.
- FIG. 5 shows an exemplary embodiment of a representation of the time relationships for determining the time of measurement of the mass error.
- the state of the bus can be seen in the upper part of this illustration.
- the lower part of the illustration shows when a measurement should take place depending on the bus state (enable).
- FIG. 6 shows a further exemplary embodiment of a circuit for detecting a ground fault, which is particularly suitable for integration into a system base chip.
- the quantities to be measured U RTH, U RTL, U BATT are fed via a multiplexer to a single A / D converter, via which the voltages to be evaluated are fed to a logic module.
- a signal representing the bus status is also fed to this module, so that the measurement and evaluation take place at the right time. This makes it possible in a simple manner to carry out the measurement with little hardware outlay.
- Diagram 7a shows the voltage U CAN_H when changing from the recessive to the dominant state and when changing from the dominant state to the recessive state.
- the time profile of the voltage U CAN H is such that when TX changes (see FIG. 7b) from “1" to "0” and vice versa, the signal shows an overshooting behavior.
- TX changes see FIG. 7b
- the voltage U CAN H becomes smaller than the voltage
- the voltage U CAN_H changes only after a certain time delay after a change in TX. This time delay is of the order of approximately 500ns.
- the output of the comparator changes due to the overshoot behavior during the transition from TX "1" to "0". However, this has nothing to do with poor ground contact. Therefore this change in the comparator output should not be considered an error.
- the measurement and the comparison of the voltages takes place at time t1.
- This point in time lies within a time window after the change from TX from "1" to "0".
- the voltage on the CAN_H line has not yet changed. It is also ensured that the recessive state has settled at this point in time (immediately before the transition to the dominant state).
- Figure 7d shows the logical variable, which may represent a ground fault. This variable is updated at time tl. Since there was no fault at this point in time, no fault is recognized.
- FIG. 8 shows an example on the CAN H line how the voltage conditions are in the dominant state.
- the voltage on the CAN_H line is determined via VCC, taking the following voltages into account:
- the sum of these voltages can be up to 1.4 volts. Since the components are not precisely defined with regard to their quality and tolerances, this can lead to deviations in the voltages. These deviations in the voltages would also be included in a measurement in the dominant bus state. When measuring in the recessive bus state, however, the transistor blocks, so that the components no longer play a role with regard to their tolerances.
Landscapes
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Engineering & Computer Science (AREA)
- Small-Scale Networks (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
- Dc Digital Transmission (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Monitoring And Testing Of Exchanges (AREA)
- Time-Division Multiplex Systems (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19611944A DE19611944C2 (de) | 1996-03-26 | 1996-03-26 | Integrierter Schaltkreis zur Kopplung eines mikrokontrollierten Steuergerätes an einen Zweidraht-Bus |
DE19611944 | 1996-03-26 | ||
WOPCT/EP96/05088 | 1996-11-19 | ||
PCT/EP1996/005088 WO1997036399A1 (de) | 1996-03-26 | 1996-11-19 | Verfahren zur bestimmung von potentialverschiebungen zwischen elektronikmodulen in einem drahtbusnetz oder der übereinstimmungsgüte ihrer kommunikationsbetriebspegel, und vorrichtung zur durchführung des verfahrens |
PCT/EP1997/001534 WO1997036184A1 (de) | 1996-03-26 | 1997-03-26 | Verfahren zum prüfen der massekontaktierung von teilen eines vernetzten systems |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0890110A1 true EP0890110A1 (de) | 1999-01-13 |
EP0890110B1 EP0890110B1 (de) | 2001-09-19 |
Family
ID=26024151
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97916390A Expired - Lifetime EP0890109B1 (de) | 1996-03-26 | 1997-03-26 | Verfahren zur prüfung und sicherung der verfügbarkeit eines vernetzten systems |
EP97916391A Expired - Lifetime EP0890110B1 (de) | 1996-03-26 | 1997-03-26 | Verfahren zum prüfen der massekontaktierung von teilen eines vernetzten systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97916390A Expired - Lifetime EP0890109B1 (de) | 1996-03-26 | 1997-03-26 | Verfahren zur prüfung und sicherung der verfügbarkeit eines vernetzten systems |
Country Status (5)
Country | Link |
---|---|
EP (2) | EP0890109B1 (de) |
JP (2) | JP3294852B2 (de) |
AT (2) | ATE205940T1 (de) |
DE (2) | DE59704664D1 (de) |
WO (2) | WO1997036184A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19754640A1 (de) * | 1997-12-09 | 1999-06-10 | Bosch Gmbh Robert | Verfahren zur Koordination von Netzwerkkomponenten |
DE10225556A1 (de) * | 2002-06-10 | 2003-12-18 | Philips Intellectual Property | Verfahren und Schaltungsanordnung zum Erfassen des Masseversatzes von Teilen eines vernetzten Systems |
US7330695B2 (en) * | 2003-12-12 | 2008-02-12 | Rosemount, Inc. | Bus powered wireless transmitter |
KR101590167B1 (ko) * | 2010-06-03 | 2016-01-29 | 현대모비스 주식회사 | Abs 시스템의 모터 구동부의 오동작 방지 회로 |
DE102013202064A1 (de) * | 2013-02-08 | 2014-08-14 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Vorrichtung zum Verbinden eines Diagnosegeräts mit einem Steuergerät in einem Kraftfahrzeug |
CN110504706B (zh) * | 2019-07-22 | 2021-05-04 | 中国农业大学 | 虚拟同步发电机并网的暂态稳定性预测方法及装置 |
CN111240287B (zh) * | 2020-01-20 | 2020-09-22 | 青岛成通源电子有限公司 | 汽车线束生产管理系统 |
DE102021213472A1 (de) | 2021-11-30 | 2023-06-01 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Ausführung einer Fahraufgabe in einem dezentralen Steuereinheitensystem und dezentrales Steuereinheitensystem |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3713825A1 (de) * | 1987-04-24 | 1988-11-10 | Siemens Ag | Hochverfuegbares serielles bussystem |
DE3826774A1 (de) * | 1988-08-06 | 1990-02-08 | Bosch Gmbh Robert | Netzwerkschnittstelle |
US4908822A (en) * | 1988-12-07 | 1990-03-13 | Chrysler Motors Corporation | Electrical devices command system, single wire bus and smart dual controller arrangement therefor |
CA2025173C (en) * | 1990-09-12 | 1995-08-22 | Kazuya Akashi | Diagnostic apparatus for a vehicle network system and method of diagnosing a vehicle network system |
DE4212742A1 (de) * | 1992-04-16 | 1993-10-21 | Bayerische Motoren Werke Ag | Verfahren zur Fehlererkennung bei einem Datenbus |
DE4306361A1 (de) * | 1993-03-02 | 1994-09-08 | Daimler Benz Ag | Datenkommunikationssystem |
-
1997
- 1997-03-26 JP JP53382697A patent/JP3294852B2/ja not_active Expired - Fee Related
- 1997-03-26 WO PCT/EP1997/001534 patent/WO1997036184A1/de active IP Right Grant
- 1997-03-26 AT AT97916391T patent/ATE205940T1/de active
- 1997-03-26 JP JP53404097A patent/JP3263813B2/ja not_active Expired - Fee Related
- 1997-03-26 DE DE59704664T patent/DE59704664D1/de not_active Expired - Lifetime
- 1997-03-26 EP EP97916390A patent/EP0890109B1/de not_active Expired - Lifetime
- 1997-03-26 AT AT97916390T patent/ATE200932T1/de not_active IP Right Cessation
- 1997-03-26 EP EP97916391A patent/EP0890110B1/de not_active Expired - Lifetime
- 1997-03-26 WO PCT/EP1997/001533 patent/WO1997036183A1/de active IP Right Grant
- 1997-03-26 DE DE59703473T patent/DE59703473D1/de not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9736184A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1997036184A1 (de) | 1997-10-02 |
EP0890109B1 (de) | 2001-05-02 |
JP2000505262A (ja) | 2000-04-25 |
JP3263813B2 (ja) | 2002-03-11 |
ATE205940T1 (de) | 2001-10-15 |
WO1997036183A1 (de) | 1997-10-02 |
ATE200932T1 (de) | 2001-05-15 |
EP0890110B1 (de) | 2001-09-19 |
EP0890109A1 (de) | 1999-01-13 |
DE59704664D1 (de) | 2001-10-25 |
DE59703473D1 (de) | 2001-06-07 |
JP3294852B2 (ja) | 2002-06-24 |
JP2000501268A (ja) | 2000-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007056234B4 (de) | Spannungsversorgungseinheit zur Diagnose einer in einem Kommunikationssystem auftretenden elektrischen Unterbrechung und die Spannungsversorgungseinheit verwendende Vorrichtung | |
DE102008002946B4 (de) | Verfahren zum Detektieren eines Fehlers auf einer Datenleitung | |
DE10349600B4 (de) | Verfahren zur Überprüfung von Leitungsfehlern in einem Bussystem und Bussystem | |
EP0382794B1 (de) | Netzwerkschnittstelle | |
DE19742716C2 (de) | Steuer- und Datenübertragungsanlage und Verfahren zum Übertragen von sicherheitsbezogenen Daten | |
EP0964549B1 (de) | ÜBerwachungsschaltung für ein Datenübertragungsnetz | |
EP0412085B1 (de) | Netzwerkschnittstelle | |
DE4403899B4 (de) | Vorrichtung zur seriellen Übertragung von Daten zwischen mindestens zwei Stationen | |
WO2008043404A1 (de) | Vorrichtung zum sensieren eines fehlerstromes in einem feldbussystem | |
DE69019013T2 (de) | Übertragungsfehler-Diagnosevorrichtung. | |
DE19509133A1 (de) | Anordnung zur Überwachung von Zweidraht-Busleitungen | |
EP0658258A1 (de) | Netzwerkschnittstelle. | |
DE4307794C2 (de) | Einrichtung zur Überwachung symmetrischer Zweidraht-Busleitungen und -Busschnittstellen | |
EP0890110B1 (de) | Verfahren zum prüfen der massekontaktierung von teilen eines vernetzten systems | |
DE19750317A1 (de) | Empfangsschaltung für ein CAN-System | |
DE10256631A1 (de) | Verfarhen zur Adressierung der Teilnehmer eines Bussystems | |
DE19726538C1 (de) | Verfahren und Schaltungsanordnung zur Überprüfung von Leitungsfehlern in einem Zweidraht-Bus-System | |
DE4421083A1 (de) | Verfahren zur Überwachung einer seriellen Übertragung von digitalen Daten auf einer Ein-Draht-Multiplexverbindung zwischen untereinander kommunizierenden Signalverarbeitungsgeräten | |
DE10225556A1 (de) | Verfahren und Schaltungsanordnung zum Erfassen des Masseversatzes von Teilen eines vernetzten Systems | |
EP1227406B1 (de) | Transceiver mit Mitteln zum Fehlermanagement | |
EP1469627B1 (de) | Verfahren zur signaltechnisch sicheren Datenübertragung | |
EP1192551B1 (de) | Interface zum ankoppeln eines busteilnehmers an die busleitung eines bussystems | |
WO1990008437A2 (de) | Ankopplung eines busteilnehmers | |
DE19826388B4 (de) | Fehlerverarbeitungsschaltung für eine Empfangsstelle eines Datenübertragungssystems | |
WO2019121383A1 (de) | Verfahren zum selbsttest, datenbusanordnung und verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980902 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 19990114 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIMLERCHRYSLER AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE ES FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 205940 Country of ref document: AT Date of ref document: 20011015 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 59704664 Country of ref document: DE Date of ref document: 20011025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20011219 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020326 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020326 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110404 Year of fee payment: 15 Ref country code: IT Payment date: 20110324 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110321 Year of fee payment: 15 Ref country code: DE Payment date: 20110325 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120326 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120402 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120326 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59704664 Country of ref document: DE Effective date: 20121002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121002 |