EP0886887B1 - Planar emitter - Google Patents

Planar emitter Download PDF

Info

Publication number
EP0886887B1
EP0886887B1 EP97914238A EP97914238A EP0886887B1 EP 0886887 B1 EP0886887 B1 EP 0886887B1 EP 97914238 A EP97914238 A EP 97914238A EP 97914238 A EP97914238 A EP 97914238A EP 0886887 B1 EP0886887 B1 EP 0886887B1
Authority
EP
European Patent Office
Prior art keywords
layer
ply
electrically conductive
dielectric
radiator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97914238A
Other languages
German (de)
French (fr)
Other versions
EP0886887A1 (en
Inventor
Lutz Rothe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pates Technology Patentverwertungsgesellschaft Fue
Original Assignee
PATES TECHNOLOGY PANTENTVERWERTUNGSGESELLSCHAFT fur SATELLITEN- und MODERNE INFORMATIONSTECHNOLOGIEN MBH
PATES TECHNOLOGY PANTENTVERWER
Pates Technology Pantentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PATES TECHNOLOGY PANTENTVERWERTUNGSGESELLSCHAFT fur SATELLITEN- und MODERNE INFORMATIONSTECHNOLOGIEN MBH, PATES TECHNOLOGY PANTENTVERWER, Pates Technology Pantentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh filed Critical PATES TECHNOLOGY PANTENTVERWERTUNGSGESELLSCHAFT fur SATELLITEN- und MODERNE INFORMATIONSTECHNOLOGIEN MBH
Publication of EP0886887A1 publication Critical patent/EP0886887A1/en
Application granted granted Critical
Publication of EP0886887B1 publication Critical patent/EP0886887B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays

Definitions

  • the invention relates to a planar radiator with a Radiator level having surface resonators and a Coupling network having network level, the Area resonators with each other via the coupling network are coupled galvanically and in phase.
  • the reception or the Radiation of directed electromagnetic radiation fields linear polarization in the microwave spectrum will be required today reflector antenna or planar antennas or radiators used.
  • the radiation properties of the reflector antennas is based on the generation of a corresponding amplitude and Phase assignment of the electromagnetic Radiation field components on the reflector surface by means of suitable pathogen.
  • the reflectors used are here either in the form of closed surfaces of defined curvature and border are designed or are latticed Arrangements of discrete conductive linear elements defined Length and spacing carried out.
  • Known planar solutions are based on the arrangement of galvanically and parallel fed Area resonators of defined group size and spacing to each other.
  • EP 0 200 819 describes a planar array antenna in Stripline technology known.
  • the mechanical structure is there from a first substrate plate as a carrier for Antenna elements under the second substrate plate as a carrier for the couplers and the signal processing. Both substrate plates are connected by a thick metal plate, where the thickness of the metal plate is half Operating wavelength corresponds.
  • a planar antenna is known from EP 0 383 292, in which Antenna elements on the ground surface of a two-sided coated circuit board are glued on which the Coupling network and additional electronics is located.
  • the Antenna element consists of a surface resonator plate, which is applied to a dielectric substrate layer is.
  • the substrate layer of the antenna element is made of "glass epoxy ".
  • a planar antenna is known from WO 95/09455, which is also sandwich-like, and where the die Layer carrying antenna elements for manufacturing reasons two layers of the same material because the Antenna elements are capacitively coupled.
  • a disadvantage of the known planar antennas is that mostly high system quality only in a small spectral range and therefore only with restrictions for use Suitable for multipoint multichannel communication services are, because of the small bandwidth, only relatively few Frequency bands can be transmitted with a single antenna.
  • the planar emitter according to the invention advantageously only needs a common ground area for the emitter and network level, which significantly reduces the overall height of the emitter compared to known planar emitters and reduces the manufacturing material costs.
  • the bandwidth of the radiation field to be transmitted and received by the radiator can also be varied without influencing the characteristic impedance of the coupling network by suitable choice of the thickness of the first dielectric layer, a high system quality being achieved in the entire spectral range at the same time. It is necessary for a planar radiator that the first layer is made of a material with the smallest possible dielectric constant ( ⁇ r ⁇ 1).
  • the thin layer supporting the resonator surfaces can be manufactured from a heat-resistant material such as polyethylene terephthalate, on which the resonator surfaces can be applied permanently.
  • the first layer can be made from an inexpensive foamed material. So that the planar radiator becomes flexible or pliable, the thickness of the first layer is greater than the thickness of the second layer.
  • the first layer forms the actual base material of the planar emitter and essentially determines the properties of the emitter plane with its ⁇ r and loss angle tan ⁇ ⁇ .
  • the material of the first layer is advantageously the cheap material polystyrene, which is flexible in its foamed form and in particular has a specific volume weight of 20kg / m 3 .
  • the second layer is advantageously formed by a polyethylene terephthalate film which is glued to the first layer.
  • the advantage of this polyethylene terephthalate film is that it forms a firm and permanent connection with copper, which means that the resonator surfaces have firm adhesion.
  • Each surface resonator is electrical by means of an conductive connecting pin with the coupling network in electrically conductive connection, the electrically conductive Connecting pin in a perpendicular to the radiator and Through hole located at the network level.
  • the connecting pins are relatively long, as a result of which the pins themselves have an electrically transforming effect.
  • the inductive reactive component represented by the pen can therefore no longer be neglected and must be compensated for.
  • This can be done on the one hand by means of a sleeve which at least in sections envelops the pin and is made of a material, in particular Teflon, which has a higher dielectric constant than the materials forming the dielectric layers, which serve as the base material for the radiator and network level.
  • Teflon Teflon
  • the electrically conductive thin Layer in the areas where the electrically conductive pins pass through the layer especially circular has window-like recesses, such that the pins with the electrically conductive layer not in electrical connection are.
  • Form these circular window-like recesses Apertures, by means of the diameter of the recesses Coupling factor is adjustable.
  • the coupling factor determines the portion of the signal intensity, which of the Radiator level is led to the network level.
  • the optimal one Diameter of the orifices can be obtained by simulation or experimental tests.
  • the surface resonators can be shaped and arranged as desired become. To generate the necessary impedance profile along the line of symmetry of the Area resonators, as well as to generate the necessary radiation-related individual characteristic of Area resonators it is recommended that Surface resonators to be rectangular, the Broadside is identical to the radiant edge.
  • the Surface resonators are advantageously matrix-shaped arranged to each other. It has been shown that it is for most areas of application is sufficient, only eight Area resonators in particular in two lines and four Arrange columns. Also for the sake of simple Predictability and minimizing the dimensions of the planar emitter, it is advantageous if line and Column spacing of the matrix Area resonators are equal to each other.
  • the planar has to enable components and plug-in systems Spotlights an extension that carries a wave path that a coupling point of the coupling network with a Connector connects.
  • the connector is one commercially available N socket, which is modified in this way is that the inner conductor of the socket with the Microstrip line on the extension of the dielectric carrier of the coupling network is applied, is connected, and that the ground plane of the extension, the at the same time the extension of the electrically conductive layer is, with the outer surface of the socket by means of of a dielectric press block generated press pressure is.
  • the wave path is through a microstrip line, the second dielectric layer and the ground surface, connected to the coaxial connector accordingly is.
  • the first dielectric layer 5 one material.
  • On top of layer 5 are made of a thin layer of copper Resonator surfaces 4 applied.
  • Between the first dielectric layer 5 and the second dielectric Layer 7 is the conductive ground plane 6.
  • the ground plane 6 is an approx. 17-18 ⁇ m thick copper layer.
  • On the The flat side of layer 7 facing away from the ground surface is the Microstrip lines 8 or the coupling network 3 arranged.
  • the coupling points 12 and 13 are by means of a electrically conductive pin 9 in connection.
  • the pin 9 has a small diameter so that by the location of the Coupling point 12 determined input impedance of the Surface resonator 4 is not due to large-area contact of pin 9 with the resonator surface is undetermined.
  • the diameter of the pin 9 should therefore be chosen so small that the strip width of the coupling network 3 is not is exceeded.
  • the thickness of the pin 9 should therefore be 1 mm do not exceed.
  • the pen is used for fixing purposes and better permanent contact with the copper layers the network and the radiator level are soldered and is one Surround sleeve 11, which stiffens the radiator.
  • the thickness D2 of the layer 5 essentially determines that Total height of the planar emitter.
  • the ground surface 6 has in the areas in which the pin 9th a circular one passes through the ground surface 6 Recess 10, the diameter of which is larger than that Outside diameter of the pin 9. Is the length of the sleeve 11 equal to the lengths D2 plus D3, the diameter is the Recess 10 at least as large as the outer diameter of the To choose sleeve 11.
  • Layer 5 is made of polysterol, which is foamed in State is flexible, which makes the planar emitter in certain Is flexible. This bendability is only marginal through the thin copper layers 4, 6 and 8 and the layer 7 impaired.
  • the coupling point 12 not be arranged centrally to the resonator surfaces 4. With the help of known simulation methods, it can be used for frequency and bandwidth required Calculate the input impedance of the surface resonators, from which the Location of the coupling point 12 can be derived.
  • Figure 3 is the coupling network 3 with which the signals Coupling or decoupling wave path 16 shown.
  • the Network 3 consists of striplines 3a-3f and 16. Die Stripline sections have different lengths and Widths to the inductive portion, which is determined by the length of the Pen 9 was caused to compensate as well impedance-matched merging of the to Allow surface resonators to guide waveguide paths.
  • Figure 5 shows a cross-sectional view of the Wave path 16 and the connector 18 carrying projection 24.
  • the projection 24 lies between the connector 18 and the pressure block 22.
  • the connector 18 and the pressure block 22 are by means of the projection 24 and the provided holes 23 cross fastening screws screwed together so that the connector 18 with the Projection 24 is in firm connection.
  • planar emitter in Frequency spectrum from 2,500 GHz to 2,686 GHz a high System quality.
  • the resonator surfaces have a length of 47 mm, a width of 53 mm and a row and column spacing of 87 mm.
  • the feed or coupling point 12 is located approximately 2 mm from the center of the broad side within the surface.
  • the thicknesses D1, D3 and D5 of the copper layers are approximately 18 ⁇ m thick.
  • the layer 5 has two layers, the first layer 14 having a thickness L1 equal to 10.5 mm and consisting of foamed polystyrene, the spec. Volume weight is 20kg / m 3 .
  • the second layer 15 has a thickness L2 of 100 ⁇ m and consists of polyethylene terephthalate.
  • the second dielectric layer 7 consists of glass fiber reinforced polytetrafluoroethylene with a thickness of 381 ⁇ m.
  • the Layer 14 is glued to the layer 15 and the adhesive connection has a thickness of 7 ⁇ m.
  • the pin 9 has a diameter of 1.2 mm and lies with its one end in the bore of layer 7, whose Diameter is also 1.2 mm and passes through Coupling point 13.
  • the layers 5 and 6 have in the area of Pins 9 also on holes, the diameter of Recording of the pin 9 and the sleeve 11 is 4.2 mm.
  • the coupling network 3 is constructed symmetrically, such that all resonator surfaces are in phase from coupling point 17 be fed.
  • the coupling points 13 have one Inner diameter of 1.2 mm and an outer diameter of 2.1 mm.
  • each coupling point 13 goes in the direction of the line adjacent feed point 13 a conductor 3a of Width 0.49 mm for a length of 27 mm.
  • This head 3a then jumps into a conductor 3b with a width of 1.15 mm over which is 31 mm long.
  • the head 3b again in a width of 0.49 mm across to the neighboring one To reach feeding point 13 after a length of 27 mm.
  • the dining points are outside in every row lying resonator surfaces 4 with the feed points 13 of the in each case in the row adjacent and below Resonator surfaces 4 connected.
  • the conductor 3e opens a width of 1.15 mm for a length of 129.4 mm over (Head 3f).
  • the width of the conductor 3f changes to 1.88 mm for a length of 22.3 mm.
  • To the middle of the 3f includes a waveguide 1.88 mm wide as well the length of 22.3 mm to then jump in width to 1.15 mm and to the decoupling point 21 of the Network 3 to be managed.
  • the inductive dummy components of the pins 9 by the Dimensions of the elongated pins 9, which in turn from the Thickness D2 of the first dielectric layer 5 are conditional, compensated.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Bipolar Transistors (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Polarising Elements (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A planar emitter equipped with planar resonators that is simple, small in construction and consists of few, easily manufactural components, while at the same time having high frequency dependent system quality with the widest possible spectral range, has a plurality of sandwich-like layers (4, 5, 6, 7, 8) that are planned parallel to each other with the layer (5) being made of two different dielectric materials (14) and (15). The thickness (L1) of layer (14) is greater than the thickness (L2) of layer (15) with layer (4) having a plurality of spaced, thin layer, electrically conductive planar resonators (4) in contact with one side of layer (15). One side of layer (14) is in contact with an electrically conductive thin layer (6) that defines a common earthing member that has its opposite side in contact with layer (17) made of a dielectric material. A coupling network (3) is included in layer (8) and comprises microstrip circuits (3a-3f) in contact with layer (7). Means in the form of pins (9) extends through the layers (5, 6, 7) from said coupling network (3) to said planar resonators (4) to couple said planar resonators (4) electrically in phase.

Description

Die Erfindung betrifft einen planaren Strahler mit einer Flächenresonatoren aufweisenden Strahlerebene und einer ein Kopplungsnetzwerk aufweisenden Netzwerkebene, wobei die Flächenresonatoren über das Kopplungsnetzwerk miteinander galvanisch und phasengleich gekoppelt sind.The invention relates to a planar radiator with a Radiator level having surface resonators and a Coupling network having network level, the Area resonators with each other via the coupling network are coupled galvanically and in phase.

Für Kommunikationsdienste insbesondere Multipoint-Multichannel-Kommunikationsdienste, die den Empfang bzw. die Abstrahlung gerichteter elektromagnetischer Strahlungsfelder linearer Polarisation im Mikrowellenspektrum erfordern, werden heute Reflektorantenne oder planare Antennen bzw. Strahler eingesetzt. Die Strahlungseigenschaften der Reflektorantennen beruht auf der Erzeugung einer entsprechenden Amplituden- und Phasenbelegung der elektromagnetischen Strahlungsfeldkomponenten auf der Reflektorfläche mittels geeigneter Erreger. Die verwendeten Reflektoren sind hierbei entweder in Form geschlossener Flächen definierter Krümmung und Berandung ausgelegt oder werden durch gitterartige Anordnungen diskreter leitfähiger Linearelemente definierter Länge und Distanzierung ausgeführt. Bekannte planare Lösungen beruhen auf der Anordnung galvanisch und parallel gespeister Flächenresonatoren definierter Gruppengröße und Distanzierung zueinander.For communication services, in particular multipoint multichannel communication services, the reception or the Radiation of directed electromagnetic radiation fields linear polarization in the microwave spectrum will be required today reflector antenna or planar antennas or radiators used. The radiation properties of the reflector antennas is based on the generation of a corresponding amplitude and Phase assignment of the electromagnetic Radiation field components on the reflector surface by means of suitable pathogen. The reflectors used are here either in the form of closed surfaces of defined curvature and border are designed or are latticed Arrangements of discrete conductive linear elements defined Length and spacing carried out. Known planar solutions are based on the arrangement of galvanically and parallel fed Area resonators of defined group size and spacing to each other.

Aus der EP 0 200 819 ist eine planare Array-Antennen in Streifenleitertechnik bekannt. Der mechanische Aufbau besteht aus einer ersten Substratplatte als Träger für Antennenelemente under zweiten Substratplatte als Träger für die Koppler und die Signalverarbeitung. Beide Substratplatten sind durch eine dicke Metallplatte miteinander verbunden, wobei die Dicke der Metallplatte der halben Betriebswellenlänge entspricht. Die elektrische Verbindung zwischen den Antennenelementen auf der Antennenvorderseite und den Kopplern auf der Antennenrückseite stellen koaciale Leiterstücke her, die isoliert durch Bohrungen in der Metallplatte geführt werden.EP 0 200 819 describes a planar array antenna in Stripline technology known. The mechanical structure is there from a first substrate plate as a carrier for Antenna elements under the second substrate plate as a carrier for the couplers and the signal processing. Both substrate plates are connected by a thick metal plate, where the thickness of the metal plate is half Operating wavelength corresponds. The electrical connection between the antenna elements on the front of the antenna and put the couplers on the back of the antenna Conductor pieces, which are isolated by holes in the Metal plate.

Aus der EP 0 383 292 ist eine planare Antenne bekannt, bei der Antennenelemente auf der Massefläche einer zweiseitig beschichteten Leiterplatte aufgeklebt werden, auf der sich das Kopplungsnetzwerk und zusätzliche Elektronik befindet. Das Antennenelement besteht aus einem Flächenresonatorplättchen, welches auf einer dielektrischen Substratschicht aufgebracht ist. Die Substratschicht des Antennenelements ist aus "glas epoxy".A planar antenna is known from EP 0 383 292, in which Antenna elements on the ground surface of a two-sided coated circuit board are glued on which the Coupling network and additional electronics is located. The Antenna element consists of a surface resonator plate, which is applied to a dielectric substrate layer is. The substrate layer of the antenna element is made of "glass epoxy ".

Aus der WO 95/09455 ist eine planare Antenne bekannt, welche ebenfalls sandwich-artig aufgebaut ist, und bei der die die Antennenelemente tragende Schicht aus Fertigungsgründen aus zwei Lagen des selben Materials besteht, da die Antennenelemente kapazitiv gekoppelt sind.A planar antenna is known from WO 95/09455, which is also sandwich-like, and where the die Layer carrying antenna elements for manufacturing reasons two layers of the same material because the Antenna elements are capacitively coupled.

Nachteilig bei den bekannten planaren Antennen ist, daß sie meist nur in einem kleinen Spektralbereich hohe Systemgüten aufweisen und somit nur mit Einschränkungen für den Einsatz für Multipoint-Multichannel-Kommunikationsdienste geeignet sind, da durch die kleine Bandbreite nur relativ wenige Frequenzbänder mit einer einzigen Antenne übertragbar sind. A disadvantage of the known planar antennas is that mostly high system quality only in a small spectral range and therefore only with restrictions for use Suitable for multipoint multichannel communication services are, because of the small bandwidth, only relatively few Frequency bands can be transmitted with a single antenna.

Es ist daher Aufgabe der Erfindung, einen planaren Strahler mit Flächenresonatoren bereitzustellen, der einfach und klein in seinem Aufbau ist und aus wenigen leicht zu fertigenden und kostengünstigen Teilen besteht und zugleich in einem möglichst breiten Spektralbereich eine hohe frequenzunabhängige Systemgüte hat, derart, daß er für eine mehrkanalige Punkt-zu-Punkt-Übertragung insbesondere im Frequenzbereich zwischen 2.500 GHz bis 2.686 GHz geeignet ist.It is therefore an object of the invention to provide a planar radiator to provide with surface resonators that are simple and small is in its structure and from a few easy to manufacture and there are inexpensive parts and at the same time in one if possible wide spectral range a high frequency independent System quality is such that it is for multi-channel point-to-point transmission especially in the frequency range between 2,500 GHz to 2,686 GHz is suitable.

Diese Aufgabe wird erfindungsgemäß durch einen planaren Strahler gemäß Anspruch 1 gelöst.This object is achieved by a planar Radiator according to claim 1 solved.

Der erfindungsgemäße planare Strahler benötigt vorteilhaft nur noch eine gemeinsame Masse fläche für die Strahler- und Netzwerkebene, wodurch sich die Gesamthöhe des Strahlers gegenüber bekannten planaren Strahlern deutlich verringert und die Fertigungs- Materialkosten verringert werden. Auch kann ohne Beeinflussung des Wellenwiderstandes des Kopplungsnetzwerks durch geeignete Wahl der Dicke der ersten dielektrischen Schicht die Bandbreite des vom Strahler zu sendenden und empfangenen Strahlungsfeldes variiert werden, wobei gleichzeitig eine hohe Systemgüte im gesamten Spektralbereich erzielt wird. Es ist für einen planaren Strahler erforderlich, daß die erste Schicht aus einem Material mit einer möglichst kleinen Dielektrizitätskonstanten (εr → 1) ist. Durch den zweilagigen Aufbau der ersten Schicht, ist es möglich, die dünne die Resonatorflächen tragende Lage aus einem hitzebeständigen Material wie z.B. Polyethylenterephtalat herzustellen, auf dem die Resonatorflächen dauerhaft aufgebracht werden können. Die erste Lage kann aus einem preiswerten geschäumten Material hergestellt werden. Damit der planare Strahler flexibel bzw. biegsam wird, ist die Dicke der ersten Lage größer als die Dicke der zweiten Lage. Die erste Lage bildet dabei das eigentliche Basismaterial des planaren Strahlers und bestimmt mit seinem εr sowie Verlustwinkel tan δε im wesentlichen die Eigenschaften der Strahlerebene. Das Material der ersten Lage ist vorteilhaft der billige Werkstoff Polystyrol, welcher in seiner ausgeschäumten Form flexibel ist, und insbesondere ein spezifisches Volumengewicht von 20kg/m3 hat. Die zweite Lage ist vorteilhaft durch eine Polyethylenterephtalat-Folie gebildet, die mit der ersten Lage verklebt ist. Der Vorteil dieser Polyethylenterephtalat-Folie ist, daß sie mit Kupfer eine feste und dauerhafte Verbindung eingeht, wodurch die Resonatorflächen eine feste Haftung haben.The planar emitter according to the invention advantageously only needs a common ground area for the emitter and network level, which significantly reduces the overall height of the emitter compared to known planar emitters and reduces the manufacturing material costs. The bandwidth of the radiation field to be transmitted and received by the radiator can also be varied without influencing the characteristic impedance of the coupling network by suitable choice of the thickness of the first dielectric layer, a high system quality being achieved in the entire spectral range at the same time. It is necessary for a planar radiator that the first layer is made of a material with the smallest possible dielectric constant (ε r → 1). Due to the two-layer structure of the first layer, it is possible to manufacture the thin layer supporting the resonator surfaces from a heat-resistant material such as polyethylene terephthalate, on which the resonator surfaces can be applied permanently. The first layer can be made from an inexpensive foamed material. So that the planar radiator becomes flexible or pliable, the thickness of the first layer is greater than the thickness of the second layer. The first layer forms the actual base material of the planar emitter and essentially determines the properties of the emitter plane with its ε r and loss angle tan δ ε . The material of the first layer is advantageously the cheap material polystyrene, which is flexible in its foamed form and in particular has a specific volume weight of 20kg / m 3 . The second layer is advantageously formed by a polyethylene terephthalate film which is glued to the first layer. The advantage of this polyethylene terephthalate film is that it forms a firm and permanent connection with copper, which means that the resonator surfaces have firm adhesion.

Jeder Flächenresonator ist dabei mittels eines elektrisch leitenden Verbindungsstiftes mit dem Kopplungsnetzwerk in elektrisch leitender Verbindung, wobei der elektrisch leitende Verbindungsstift in einer senkrecht zur Strahler- und Netzwerkebene befindlichen Durchgangsbohrung einliegt.Each surface resonator is electrical by means of an conductive connecting pin with the coupling network in electrically conductive connection, the electrically conductive Connecting pin in a perpendicular to the radiator and Through hole located at the network level.

Durch die unverhältnismäßig große Dicke der ersten dielektrischen Schicht, sind die Verbindungsstifte relativ lang, wodurch die Stifte selbst elektrisch transformierend wirken. Die vom Stift repräsentierte induktive Blindkomponente kann daher nicht mehr vernachlässigt werden und muß ausgeglichen werden. Dies kann zum einen mittels einer Hülse geschehen, die den Stift zumindest abschnittsweise umhüllt und aus einem Material insbesondere Teflon ist, das eine höhere Dielektrizitätszahl hat, als die die dielektrischen Schichten bildenden Materialien, die als Basismaterial für die Strahler- und Netzwerkebene dienen. Mittels der Einstellung der Wandstärke, der Höhe und des εr der Hülse kann der Kapazitätsbelag der Stift-Hülse-Kombination eingestellt werden, wodurch die induktive Blindkomponente des Stiftes kompensiert wird.Due to the disproportionate thickness of the first dielectric layer, the connecting pins are relatively long, as a result of which the pins themselves have an electrically transforming effect. The inductive reactive component represented by the pen can therefore no longer be neglected and must be compensated for. This can be done on the one hand by means of a sleeve which at least in sections envelops the pin and is made of a material, in particular Teflon, which has a higher dielectric constant than the materials forming the dielectric layers, which serve as the base material for the radiator and network level. By adjusting the wall thickness, the height and the ε r of the sleeve, the capacitance of the pin-sleeve combination can be adjusted, whereby the inductive blind component of the pin is compensated.

Zum anderen kann jedoch auch vorteilhaft die Kompensation der induktiven Blindkomponente des Stiftes mittels des Kopplungsnetzwerks erfolgen, indem die transformierende Wirkung der Längen- und Breitenverhältnisse der verwendeten Mikrostreifenleitungen ausgenutzt werden. Derartige Transformationen mittels Mikrostreifenleitern sind hinlänglich aus der einschlägigen Literatur bekannt. Auf eine Hülse kann in diesem Fall gegebenenfalls verzichtet werden.On the other hand, however, the compensation of the inductive blind component of the pin by means of the Coupling network done by the transforming Effect of the length and width ratios of the used Microstrip lines are used. Such Transformations using microstrip lines are sufficient known from the relevant literature. Can on a sleeve in this case, if necessary, be waived.

Es ist ferner erforderlich, daß die elektrisch leitende dünne Schicht in den Bereichen, wo die elektrisch leitenden Stifte die Schicht durchtreten, insbesondere kreisförmig fensterartige Aussparungen hat, derart, daß die Stifte mit der elektrisch leitenden Schicht nicht in elektrischer Verbindung sind. Diese kreisförmig fensterartigen Aussparungen bilden Blenden, wobei mittels des Durchmessers der Aussparungen der Kopplungsfaktor einstellbar ist. Der Kopplungsfaktor bestimmt dabei den Anteil der Signalintensität, welcher von der Strahlerebene zur Netzwerkebene geführt wird. Den optimalen Durchmesser der Blenden erhält man durch Simulation oder experimentelle Tests.It is also required that the electrically conductive thin Layer in the areas where the electrically conductive pins pass through the layer, especially circular has window-like recesses, such that the pins with the electrically conductive layer not in electrical connection are. Form these circular window-like recesses Apertures, by means of the diameter of the recesses Coupling factor is adjustable. The coupling factor determines the portion of the signal intensity, which of the Radiator level is led to the network level. The optimal one Diameter of the orifices can be obtained by simulation or experimental tests.

Ein weiterer Vorteil durch den Einsatz der oben beschriebenen Hülsen ergibt sich dadurch, daß durch die steif ausgeführten Hülsen der Abstand zwischen der Strahler- und der Netzwerkebene zumindest in den Bereichen der Stifte auch unter Einwirkung äußerer Kräfte sowie bei der Antennenmontage konstant bleibt. Die Systemgüte verändert sich somit auch beim Verbiegen und Zusammendrücken des planaren Strahlers nicht.Another advantage of using the above described Sleeves result from the fact that the stiffly executed Sleeves the distance between the emitter and the Network level at least in the areas of the pens also below Influence of external forces as well as during antenna assembly remains constant. The system quality also changes with Do not bend and compress the planar radiator.

Die Flächenresonatoren können beliebig geformt und angeordnet werden. Zur Erzeugung des notwendigen Impedanzprofils entlang der quer zur strahlenden Kante liegenden Symmetrielinie der Flächenresonatoren, sowie zur Erzeugung der erforderlichen strahlungsbezogenen Einzelcharakteristik der Flächenresonatoren ist es empfehlenswert, die Flächenresonatoren rechteckig zu gestalten, wobei die Breitseite identisch der strahlenden Kante ist. Die Flächenresonatoren werden dabei vorteilsmäßig matrixförmig zueinander angeordnet. Es hat sich hierbei gezeigt, daß es für die meisten Einsatzgebiete ausreicht, lediglich acht Flächenresonatoren insbesondere in zwei Zeilen und vier Spalten anzuordnen. Ebenfalls aus Gründen der einfachen Berechenbarkeit und der Minimierung der Abmessungen des planaren Strahlers ist es von Vorteil, wenn Zeilen- und Spaltenabstände der matrixförmig angeordneten Flächenresonatoren zueinander gleich sind.The surface resonators can be shaped and arranged as desired become. To generate the necessary impedance profile along the line of symmetry of the Area resonators, as well as to generate the necessary radiation-related individual characteristic of Area resonators it is recommended that Surface resonators to be rectangular, the Broadside is identical to the radiant edge. The Surface resonators are advantageously matrix-shaped arranged to each other. It has been shown that it is for most areas of application is sufficient, only eight Area resonators in particular in two lines and four Arrange columns. Also for the sake of simple Predictability and minimizing the dimensions of the planar emitter, it is advantageous if line and Column spacing of the matrix Area resonators are equal to each other.

Um eine gute Auskopplung bzw. Einkopplung des empfangenen bzw. zu sendenden Signals mit möglichst schon bestehenden Komponenten und Stecksystemen zu ermöglichen, hat der planare Strahler eine Verlängerung, die einen Wellenpfad trägt, die einen Kopplungspunkt des Kopplungsnetzwerks mit einem Anschlußstück verbindet. An das Anschlußstück ist eine handelsübliche N-Buchse anschließbar, die derart modifiziert ist, daß der Innenleiter der Buchse mit dem Mikrostreifenleiter, der auf der Verlängerung des dielektrischen Trägers des Kopplungsnetzwerks aufgebracht ist, verbunden ist, und daß die Massefläche der Verlängerung, die gleichzeitig die Verlängerung der elektrisch leitenden Schicht ist, mit dem Außenmantel der Buchse flächig durch den mittels eines dielektrischen Preßblocks erzeugten Preßdrucks verbunden ist. Der Wellenpfad wird durch eine Mikrostreifenleitung, der zweiten dielektrischen Schicht und der Massefläche gebildet, der mit dem koaxialen Anschlußstück entsprechend verbunden ist.To ensure good decoupling or coupling of the received or signals to be sent with existing ones if possible The planar has to enable components and plug-in systems Spotlights an extension that carries a wave path that a coupling point of the coupling network with a Connector connects. At the connector is one commercially available N socket, which is modified in this way is that the inner conductor of the socket with the Microstrip line on the extension of the dielectric carrier of the coupling network is applied, is connected, and that the ground plane of the extension, the at the same time the extension of the electrically conductive layer is, with the outer surface of the socket by means of of a dielectric press block generated press pressure is. The wave path is through a microstrip line, the second dielectric layer and the ground surface, connected to the coaxial connector accordingly is.

Nachfolgend werden einige Ausführungsformen der Erfindung anhand von Zeichnungen näher erläutert.Below are some embodiments of the invention explained in more detail with reference to drawings.

Es zeigen:

Figur 1:
Eine Querschnittsdarstellung des planaren Strahlers;
Figur 2:
eine Draufsicht auf die Strahlerebene;
Figur 3:
eine Draufsicht auf die Netzwerkebene;
Figur 4:
eine Draufsicht auf die elektrisch leitende Massefläche;
Figur 5:
eine Querschnittsdarstellung des Wellenpfades und des Anschlußstücks;
Figur 6:
eine Querschnittsdarstellung des erfindungsgemäßen Strahlers, mit zwei die erste dielektrische Schicht bildenden Lagen;
Figur 7:
eine Darstellung gemäß Figur 6, wobei die Länge der Hülse verkürzt und ihre Wandstärke vergrößert ist.
Show it:
Figure 1:
A cross-sectional view of the planar radiator;
Figure 2:
a plan view of the radiator level;
Figure 3:
a top view of the network level;
Figure 4:
a plan view of the electrically conductive ground plane;
Figure 5:
a cross-sectional view of the wave path and the connector;
Figure 6:
a cross-sectional view of the radiator according to the invention, with two layers forming the first dielectric layer;
Figure 7:
a representation according to Figure 6, wherein the length of the sleeve is shortened and its wall thickness is increased.

Die Figur 1 stellt eine Ausführungsform des erfindungsgemäßen. Strahlers dar, bei dem die erste dielektrische Schicht 5 aus einem einzigen Material ist. Auf der Oberseite der Schicht 5 sind die aus einer dünnen Kupferschicht bestehenden Resonatorflächen 4 aufgebracht. Zwischen der ersten dielektrischen Schicht 5 und der zweiten dielektrischen Schicht 7 liegt die leitende Massefläche 6. Die Massefläche 6 ist eine ca. 17-18µm starke Kupferschicht. Auf der der Massefläche abgewandten flachen Seite der Schicht 7 sind die Mikrostreifenleitungen 8 bzw. das Kopplungsnetzwerk 3 angeordnet. Die Kopplungspunkte 12 und 13 sind mittels eines elektrisch leitenden Stifts 9 in Verbindung. Der Stift 9 hat einen kleinen Durchmesser, damit die durch die Lage des Kopplungspunktes 12 bestimmte Eingangsimpedanz des Flächenresonators 4 nicht durch einen großflächigen Kontakt des Stiftes 9 mit der Resonatorfläche unbestimmt wird. Der Durchmesser des Stiftes 9 ist daher so klein zu wählen, daß die Streifenbreite des Kopplungsnetzwerks 3 nicht überschritten wird. Die Dicke des Stiftes 9 sollte daher 1 mm nicht überschreiten. Der Stift wird zu Zwecken des Festsetzens und des besseren dauerhaften Kontakts mit den Kupferschichten der Netzwerk- und der Strahlerebene verlötet und ist von einer Hülse 11 umgeben, die eine Versteifung des Strahlers bewirkt.1 shows an embodiment of the invention. Radiator, in which the first dielectric layer 5 one material. On top of layer 5 are made of a thin layer of copper Resonator surfaces 4 applied. Between the first dielectric layer 5 and the second dielectric Layer 7 is the conductive ground plane 6. The ground plane 6 is an approx. 17-18µm thick copper layer. On the the The flat side of layer 7 facing away from the ground surface is the Microstrip lines 8 or the coupling network 3 arranged. The coupling points 12 and 13 are by means of a electrically conductive pin 9 in connection. The pin 9 has a small diameter so that by the location of the Coupling point 12 determined input impedance of the Surface resonator 4 is not due to large-area contact of pin 9 with the resonator surface is undetermined. Of the The diameter of the pin 9 should therefore be chosen so small that the strip width of the coupling network 3 is not is exceeded. The thickness of the pin 9 should therefore be 1 mm do not exceed. The pen is used for fixing purposes and better permanent contact with the copper layers the network and the radiator level are soldered and is one Surround sleeve 11, which stiffens the radiator.

Die Dicke D2 der Schicht 5 bestimmt im wesentlichen die Gesamthöhe des planaren Strahlers.The thickness D2 of the layer 5 essentially determines that Total height of the planar emitter.

Die Massefläche 6 hat in den Bereichen, in denen der Stift 9 durch die Massefläche 6 hindurchtritt eine kreisförmige Aussparung 10, deren Durchmesser größer ist, als der Außendurchmesser des Stifts 9. Ist die Länge der Hülse 11 gleich den Längen D2 plus D3, so ist der Durchmesser der Aussparung 10 mindestens so groß wie der Außendurchmesser der Hülse 11 zu wählen.The ground surface 6 has in the areas in which the pin 9th a circular one passes through the ground surface 6 Recess 10, the diameter of which is larger than that Outside diameter of the pin 9. Is the length of the sleeve 11 equal to the lengths D2 plus D3, the diameter is the Recess 10 at least as large as the outer diameter of the To choose sleeve 11.

Die Schicht 5 ist aus Polysterol, welches im ausgeschäumten Zustand flexibel ist, wodurch der planare Strahler in gewissen Grenzen biegbar ist. Diese Verbiegbarkeit wird nur geringfügig durch die dünnen Kupferschichten 4, 6 und 8 sowie die Schicht 7 beeinträchtigt.Layer 5 is made of polysterol, which is foamed in State is flexible, which makes the planar emitter in certain Is flexible. This bendability is only marginal through the thin copper layers 4, 6 and 8 and the layer 7 impaired.

Wie aus Figur 2 ersichtlich ist, muß der Kopplungspunkt 12 nicht zentrisch zu den Resonatorflächen 4 angeordnet sein. Mit Hilfe bekannter Simmulationsmethoden, läßt sich die für die jeweilige Frequenz und Bandbreite erforderliche Eingangsimpedanz der Flächenresonatoren berechnen, woraus die Lage des Kopplungspunktes 12 ableitbar ist.As can be seen from FIG. 2, the coupling point 12 not be arranged centrally to the resonator surfaces 4. With With the help of known simulation methods, it can be used for frequency and bandwidth required Calculate the input impedance of the surface resonators, from which the Location of the coupling point 12 can be derived.

In Figur 3 ist das Kopplungsnetzwerk 3 mit dem die Signale ein- bzw. auskoppelnden Wellenpfad 16 dargestellt. Das Netzwerk 3 besteht aus Streifenleitungen 3a-3f sowie 16. Die Streifenleitungsabschnitte haben unterschiedliche Längen und Breiten, um den induktiven Anteil, welcher durch die Länge des Stifts 9 verursacht wurde, auszugleichen, sowie die impedanzangepaßte Zusammenführung der zu den Flächenresonatoren führenden Wellenleiterpfade zu ermöglichen. In Figure 3 is the coupling network 3 with which the signals Coupling or decoupling wave path 16 shown. The Network 3 consists of striplines 3a-3f and 16. Die Stripline sections have different lengths and Widths to the inductive portion, which is determined by the length of the Pen 9 was caused to compensate as well impedance-matched merging of the to Allow surface resonators to guide waveguide paths.

In Figur 4 ist die leitende Kupferschicht der Massefläche 6 dargestellt. Die schwarzen Punkte 10, 19 und 20 repräsentieren dabei Stellen, an denen das Kupfer ausgespart wurde. Durch diese Stellen sind zudem Bohrungen entsprechenden Durchmessers vorgesehen, damit die Stifte 9 und 21, Hülsen 11, sowie Befestigungsschrauben für das Anschlußstück 18 durch die Massefläche 6 durchgreifen können.In Figure 4, the conductive copper layer of the ground surface 6th shown. The black dots represent 10, 19 and 20 places where the copper was cut out. By these points are also holes of the appropriate diameter provided so that the pins 9 and 21, sleeves 11, and Fastening screws for the connector 18 through the Can reach through ground surface 6.

Die Figur 5 zeigt eine Querschnittsdarstellung des den Wellenpfad 16 sowie das Anschlußstück 18 tragenden Vorsprungs 24. Der Vorsprung 24 liegt zwischen dem Anschlußstück 18 und dem Anpreßblock 22. Das Anschlußstück 18 und der Anpreßblock 22 werden mittels durch den Vorsprung 24 und den dafür vorgesehenen Bohrungen 23 greifenden Befestigungsschrauben miteinander verschraubt, so daß das Anschlußstück 18 mit dem Vorsprung 24 in fester Verbindung ist.Figure 5 shows a cross-sectional view of the Wave path 16 and the connector 18 carrying projection 24. The projection 24 lies between the connector 18 and the pressure block 22. The connector 18 and the pressure block 22 are by means of the projection 24 and the provided holes 23 cross fastening screws screwed together so that the connector 18 with the Projection 24 is in firm connection.

Nachfolgend werden beispielhafte geometrische Daten aufgeführt, mittels der der planare Strahler im Frequenzspektrum von 2.500 GHz bis 2.686 GHz eine hohe Systemgüte aufweist.The following are exemplary geometric data listed, by means of which the planar emitter in Frequency spectrum from 2,500 GHz to 2,686 GHz a high System quality.

Die Resonatorflächen haben dazu die Länge 47 mm, die Breite 53 mm sowie einen Zeilen- und Spaltenabstand von 87 mm. Der Speise- bzw. Kopplungspunkt 12 befindet sich von der Mitte der breiten Seite ca. 2 mm entfernt innerhalb der Fläche. Die Dicken D1, D3 und D5 der Kupferschichten sind ca. 18µm stark. Die Schicht 5 ist wie in Figur 6 dargestellt zweilagig, wobei die erste Lage 14 eine Dicke L1 gleich 10.5 mm hat und aus verschäumten Polystyrol besteht, dessen spez. Volumengewicht 20kg/m3beträgt. Die zweite Lage 15 hat eine Dicke L2 von 100µm und besteht aus Polyethylenterephtalat. Die zweite dielektrische Schicht 7 besteht aus glasfaserverstärktem Polytetraflourethylen der Stärke 381 µm. The resonator surfaces have a length of 47 mm, a width of 53 mm and a row and column spacing of 87 mm. The feed or coupling point 12 is located approximately 2 mm from the center of the broad side within the surface. The thicknesses D1, D3 and D5 of the copper layers are approximately 18 µm thick. As shown in FIG. 6, the layer 5 has two layers, the first layer 14 having a thickness L1 equal to 10.5 mm and consisting of foamed polystyrene, the spec. Volume weight is 20kg / m 3 . The second layer 15 has a thickness L2 of 100 μm and consists of polyethylene terephthalate. The second dielectric layer 7 consists of glass fiber reinforced polytetrafluoroethylene with a thickness of 381 μm.

Sämtliche Schichten sind miteinander fest verfügt, wobei die Lage 14 mit der Lage 15 verklebt ist und die Klebeverbindung eine Stärke von 7µm hat.All layers are fixed together, the Layer 14 is glued to the layer 15 and the adhesive connection has a thickness of 7 µm.

Der Stift 9 hat einen Durchmesser von 1.2 mm und liegt mit seinem einem Ende in der Bohrung der Schicht 7, deren Durchmesser ebenfalls 1.2 mm beträgt ein und durchtritt den Kopplungspunkt 13. Die Schicht 5 und 6 weist im Bereich des Stifts 9 ebenfalls Bohrungen auf, deren Durchmesser zur Aufnahme des Stifts 9 und der Hülse 11 4.2 mm beträgt.The pin 9 has a diameter of 1.2 mm and lies with its one end in the bore of layer 7, whose Diameter is also 1.2 mm and passes through Coupling point 13. The layers 5 and 6 have in the area of Pins 9 also on holes, the diameter of Recording of the pin 9 and the sleeve 11 is 4.2 mm.

Das Kopplungsnetzwerk 3 ist symmetrisch aufgebaut, derart, daß alle Resonatorflächen gleichphasig vom Kopplungspunkt 17 gespeist werden. Die Kopplungspunkte 13 haben einen Innendurchmesser von 1.2 mm und einen Außendurchmesser von 2.1 mm.The coupling network 3 is constructed symmetrically, such that all resonator surfaces are in phase from coupling point 17 be fed. The coupling points 13 have one Inner diameter of 1.2 mm and an outer diameter of 2.1 mm.

Ausgehend von jedem Kopplungspunkt 13 geht in Richtung des in der Zeile benachbarten Speisepunktes 13 ein Leiter 3a der Breite 0.49 mm für eine Länge von 27 mm ab. Dieser Leiter 3a geht dann sprungartig in einen Leiter 3b der Breite 1.15 mm über, welcher 31 mm lang ist. Anschließend geht der Leiter 3b wieder in eine Breite von 0.49 mm über, um den benachbarten Speisepunkt 13 nach einer Länge von 27 mm zu erreichen. Auf diese Weise werden die Speisepunkte der in jeder Zeile außen liegenden Resonatorflächen 4 mit den Speisepunkten 13 der jeweils in der Zeile benachbarten und unten liegenden Resonatorflächen 4 verbunden. Von der Mitte des Leiters 3b schließt sich in Richtung des in der Spalte gegenüberliegenden Leiters 3b ein Leiter 3c der Breite 1.88 mm und der Länge 22.3 mm an, der danach sprungartig auf eine Breite von 1.15 mm für eine Strecke von 42.45 mm (Leiter 3d) übergeht. Der Leiter erweitert sich anschließend wieder auf eine Breite von 1.88 mm, um nach einer Länge von 22.3 mm mit der Mitte des in der Spalte gegenüberliegenden Leiters 3b zusammen zu treffen. An die Mitte des Leiters 3d schließt sich in Richtung des gegenüberliegenden Leiters 3d eine Leitung 3e der Breite 1.88 mm sowie der Länge 22.3 mm an. Danach geht der Leiter 3e auf eine Breite von 1.15 mm für eine Länge von 129.4 mm über (Leiter 3f). Die Breite des Leiters 3f ändert sich auf 1.88 mm für eine Länge von 22.3 mm. Damit ist die Mitte des gegenüberliegenden Leiters 3d erreicht. An die Mitte des Leiters 3f schließt ein Wellenleiter der Breite 1.88 mm sowie der Länge 22.3 mm an, um sich danach sprunghaft in der Breite auf 1.15 mm zu reduzieren und zum Auskopplungspunkt 21 des Netzwerkes 3 geführt zu werden.Starting from each coupling point 13 goes in the direction of the line adjacent feed point 13 a conductor 3a of Width 0.49 mm for a length of 27 mm. This head 3a then jumps into a conductor 3b with a width of 1.15 mm over which is 31 mm long. Then the head 3b again in a width of 0.49 mm across to the neighboring one To reach feeding point 13 after a length of 27 mm. On This way, the dining points are outside in every row lying resonator surfaces 4 with the feed points 13 of the in each case in the row adjacent and below Resonator surfaces 4 connected. From the center of the conductor 3b closes in the direction of the opposite one in the column Conductor 3b a conductor 3c of 1.88 mm in width and 22.3 in length mm, which then jumps to a width of 1.15 mm for a distance of 42.45 mm (3d conductor) passes. The leader then expands again to a width of 1.88 mm to after a length of 22.3 mm with the center of the in the Column opposite conductor 3b to meet together. On the center of the 3d conductor closes in the direction of the opposite conductor 3d a line 3e of width 1.88 mm and the length 22.3 mm. Then the conductor 3e opens a width of 1.15 mm for a length of 129.4 mm over (Head 3f). The width of the conductor 3f changes to 1.88 mm for a length of 22.3 mm. This is the middle of the opposite conductor 3d reached. To the middle of the 3f includes a waveguide 1.88 mm wide as well the length of 22.3 mm to then jump in width to 1.15 mm and to the decoupling point 21 of the Network 3 to be managed.

Mittels des oben beschriebenen Kopplungsnetzwerks 3 werden die induktiven Blindkomponenten der Stifte 9, die durch die Abmessungen der länglichen Stifte 9, welche ihrerseits von der Dicke D2 der ersten dielektrischen Schicht 5 bedingt sind, kompensiert.By means of the coupling network 3 described above, the inductive dummy components of the pins 9 by the Dimensions of the elongated pins 9, which in turn from the Thickness D2 of the first dielectric layer 5 are conditional, compensated.

In Figur 7 ist dargestellt, daß die Hülse 11 sich nicht über die gesamte Höhe der Schichten 5 und 6 erstrecken muß. Durch die Wahl der Wandstärke WS und der Länge LS der Hülse 11 kann deren kapazitiver Belag beeinflußt werden, wodurch die induktive Blindleistungskomponente des langen Stifts 9 aufgehoben wird und ein die Blindkomponenten kompensierendes Netzwerk 3 nicht mehr benötigt wird. In Figure 7 it is shown that the sleeve 11 does not overlap the entire height of layers 5 and 6 must extend. By the choice of the wall thickness WS and the length LS of the sleeve 11 can whose capacitive coating are influenced, whereby the long pin 9 inductive reactive power component is canceled and a component that compensates for the blind components Network 3 is no longer required.

Bezugszeichenliste:Reference symbol list:

11
StrahlerebeneSpotlight level
22nd
NetzwerkebeneNetwork level
33rd
KopplungsnetzwerkCoupling network
3a-3f3a-3f
StreifenleitungsabschnitteStripline sections
44th
FlächenresonatorenArea resonators
55
Erste dielektrische SchichtFirst dielectric layer
66
Elektrisch leitende dünne Schicht; MasseflächeElectrically conductive thin layer; Ground plane
77
Zweite dielektrische SchichtSecond dielectric layer
88th
MikrostreifenleitungenMicrostrip lines
99
VerbindungsstiftConnecting pin
1010th
Fensterartige AussparungenWindow-like recesses
1111
HülseSleeve
1212th
Speisepunkt des FlächenresonatorsFeed point of the surface resonator
1313
KopplungspunktCoupling point
1414
erste Lagefirst layer
1515
zweite Lagesecond layer
1616
WellenpfadWave path
1717th
Gemeinsamer KopplungspunktCommon coupling point
1818th
Anschlußstück; N-BuchseConnector; N socket
1919th
Aussparung für DurchgangsstiftCut-out for through pin
2020th
Aussparung für BefestigungsschraubeCut-out for fastening screw
2121
DurchgangsstiftThrough pin
2222
AnpreßblockContact block
2323
Bohrung für BefestigungsschraubenHole for fastening screws
2424th
Verlängerung für WellenpfadExtension for wave path

Claims (15)

  1. Planar radiator with a radiator plane (1) comprising large-area resonators (4) and with a network plane (2) comprising a coupling network (3), in which the large-area resonators (4) are coupled to one another galvanically and in phase via the coupling network (3), characterised in that
    the planar radiator is constructed in a sandwich manner of plies (4, 5, 6, 7, 8) plane-parallel to one another, and
    that a first dielectric ply (5) is separated from a second dielectric ply (7) by means of an electrically conductive thin ply (6), which forms the common earthing surface for the radiator plane (1) and the network plane (2), and
    that the first dielectric ply (5) bears on its side facing away from the electrically conductive ply (6) the large-area resonators (4), wherein
    the first dielectric ply (5) is composed of two dielectric materials which form a layer (14, 15) for one another, wherein the thickness (L1) of the first layer is greater than the thickness (L2) of the second layer, and the second layer (15) bears on its side facing away from the first layer (14) the large-area resonators (4), and
    that the second dielectric ply (7) bears on its side facing away from the electrically conductive ply (6) the coupling network (3), which is formed from microstrip lines (8).
  2. Planar radiator according to claim 1, characterised in that the first layer (14) is formed from polystyrene, which is flexible in its expanded form, and in particular has a specific weight by unit volume of 20 kg/m3, wherein the first layer (14) has in particular a thickness (L1) of 10.5 mm.
  3. Planar radiator according to one of claims 1 or 2, characterised in that the second layer (15) is formed by a polyethylene terephthalate film in particular of thickness (L2) equal to 100 µm, which is bonded to the first layer (14).
  4. Planar radiator according to one of the preceding claims, characterised in that the electrically conductive thin ply (6) has a thickness of approx. 18 µm.
  5. Planar radiator according to one of the preceding claims, characterised in that each large-area resonator (4) is in electrically conductive connection with the coupling network (3) by means of an electrically conductive connecting pin (9), wherein the electrically conductive connecting pin (9) lies in a continuous bore situated at right angles to the radiator plane (1) and the network plane (2).
  6. Planar radiator according to claim 5, characterised in that the electrically conductive thin ply (6) has in the areas where the electrically conductive pins (9) pass through the ply (6) in particular circular window-type recesses (10), such that the pins (9) are not in electrical connection with the electrically conductive ply (6).
  7. Planar radiator according to claim 6, characterised in that the circular window-type recesses (10) form masks, and by means of the diameter of the recesses (10) the reflection and transmission factor between the coupling network and the respective large-area resonators is adjustable.
  8. Planar radiator according to one of claims 5, 6 or 7, characterised in that each electrically conductive pin (9) is in the area between the conductive ply (6) of the large-area resonators (4) and the conductive ply (6) of the microstrip lines (8) surrounded at least in certain sections by a sleeve (11).
  9. Planar radiator according to claim 8, characterised in that the sleeve (11) is of a dielectric material, in particular Teflon, whose dielectric constant εr is in particular greater than the dielectric constant εr of the material of the dielectric plies (5, 7) which surrounds the sleeve (11).
  10. Planar radiator according to one of the preceding claims, characterised in that by means of suitable selection of the wall thickness (WS), the height (LS) and the dielectric constant εr of the sleeve (11) the inductive reactive component occasioned by the thickness (D2) of the first dielectric ply (5) is compensatable by means of the sleeve (11).
  11. Planar radiator according to claim 9 or 10, characterised in that the length (LS) of the sleeves (11) holds the distance between the radiator plane (1) and the network plane (2) constant at least in the areas of the continuous bores (10) or pins (9) even under the effect of external forces, and in particular forms defined support points for the assembly.
  12. Planar radiator according to one of the preceding claims, characterised in that by means of the coupling network (3) the inductive reactive component of the pin (9), occasioned by the thickness (D2) of the first dielectric ply (5), and the capacitive covering of the sleeve (11) are compensatable.
  13. Planar radiator according to one of the preceding claims, characterised in that the large-area resonators (4) are arranged rectangular and matrix-shaped in particular in two lines and four columns.
  14. Planar radiator according to claim 13, characterised in that the line and column distances of the large-area resonators (4) arranged in a matrix shape are identical.
  15. Planar radiator according to one of the preceding claims, characterised in that the network plane (3), consisting of the microstrip lines (8), the second dielectric ply (7) and the earthing surface (6), is prolonged in the form of a wave path (16) between the common coupling point (17) and a terminal fitting (18) in such a way that the coupling on the waveguide side takes place directly onto the terminal fitting (18) in coaxial layout without separation of the waveguide plane.
EP97914238A 1996-03-16 1997-03-13 Planar emitter Expired - Lifetime EP0886887B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19615497A DE19615497A1 (en) 1996-03-16 1996-03-16 Planar radiator
DE19615497 1996-03-16
PCT/EP1997/001275 WO1997035355A1 (en) 1996-03-16 1997-03-13 Planar emitter

Publications (2)

Publication Number Publication Date
EP0886887A1 EP0886887A1 (en) 1998-12-30
EP0886887B1 true EP0886887B1 (en) 1999-09-22

Family

ID=7791749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97914238A Expired - Lifetime EP0886887B1 (en) 1996-03-16 1997-03-13 Planar emitter

Country Status (12)

Country Link
US (1) US6204814B1 (en)
EP (1) EP0886887B1 (en)
JP (1) JP2000507055A (en)
KR (1) KR20000064587A (en)
CN (1) CN1214152A (en)
AT (1) ATE185023T1 (en)
CA (1) CA2250928C (en)
DE (2) DE19615497A1 (en)
GR (1) GR3031727T3 (en)
IL (1) IL126131A (en)
TW (1) TW355854B (en)
WO (1) WO1997035355A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239539A3 (en) * 2001-03-02 2003-11-05 Nokia Corporation Antenna
GB0105251D0 (en) 2001-03-02 2001-04-18 Nokia Mobile Phones Ltd Antenna
US6759984B2 (en) * 2001-06-01 2004-07-06 Agere Systems Inc. Low-loss printed circuit board antenna structure and method of manufacture thereof
WO2019212542A1 (en) * 2018-05-01 2019-11-07 Wafer Llc Low cost dielectric for electrical transmission and antenna using same
RU2738759C1 (en) * 2020-06-04 2020-12-16 Акционерное общество "Научно-производственная фирма "Микран" Ultra-wideband planar emitter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0383292A2 (en) * 1989-02-14 1990-08-22 Fujitsu Limited Electronic circuit device
WO1995009455A1 (en) * 1993-09-29 1995-04-06 Hollandse Signaalapparaten B.V. Multipatch antenna

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2442519A1 (en) * 1978-11-24 1980-06-20 Thomson Csf PRINTED MONOPULSE PRIMER SOURCE FOR AIRPORT RADAR ANTENNA AND ANTENNA COMPRISING SUCH A SOURCE
DE3514880A1 (en) * 1984-05-22 1985-11-28 Robert Bosch Gmbh, 7000 Stuttgart Antenna array
EP0200819A3 (en) 1985-04-25 1987-12-09 Robert Bosch Gmbh Antenna array
US4899164A (en) * 1988-09-16 1990-02-06 The United States Of America As Represented By The Secretary Of The Air Force Slot coupled microstrip constrained lens
US5001493A (en) * 1989-05-16 1991-03-19 Hughes Aircraft Company Multiband gridded focal plane array antenna
FR2647599B1 (en) * 1989-05-24 1991-11-29 Alcatel Espace CIRCUIT REALIZATION STRUCTURE AND COMPONENTS APPLIED TO MICROWAVE
US4973972A (en) * 1989-09-07 1990-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Stripline feed for a microstrip array of patch elements with teardrop shaped probes
US5245745A (en) * 1990-07-11 1993-09-21 Ball Corporation Method of making a thick-film patch antenna structure
US5231406A (en) * 1991-04-05 1993-07-27 Ball Corporation Broadband circular polarization satellite antenna
KR920022585A (en) * 1991-05-14 1992-12-19 오오가 노리오 Planar antenna
US5153600A (en) * 1991-07-01 1992-10-06 Ball Corporation Multiple-frequency stacked microstrip antenna
JP2604947B2 (en) * 1991-09-16 1997-04-30 エルジー電子株式会社 Planar antenna
DE4239597C2 (en) * 1991-11-26 1999-11-04 Hitachi Chemical Co Ltd Flat antenna with dual polarization
JP2606521Y2 (en) * 1992-02-27 2000-11-27 株式会社村田製作所 Antenna device
US5309164A (en) * 1992-04-13 1994-05-03 Andrew Corporation Patch-type microwave antenna having wide bandwidth and low cross-pol
JPH0812973B2 (en) * 1993-04-02 1996-02-07 防衛庁技術研究本部長 Array antenna device
DE4340825A1 (en) * 1993-12-01 1995-06-08 Rothe Lutz Planar radiator arrangement for direct reception of the TV signals of the direct-radiating satellite system TDF 1/2
US5859614A (en) * 1996-05-15 1999-01-12 The United States Of America As Represented By The Secretary Of The Army Low-loss aperture-coupled planar antenna for microwave applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0383292A2 (en) * 1989-02-14 1990-08-22 Fujitsu Limited Electronic circuit device
WO1995009455A1 (en) * 1993-09-29 1995-04-06 Hollandse Signaalapparaten B.V. Multipatch antenna

Also Published As

Publication number Publication date
KR20000064587A (en) 2000-11-06
CN1214152A (en) 1999-04-14
TW355854B (en) 1999-04-11
CA2250928C (en) 2003-12-23
WO1997035355A1 (en) 1997-09-25
CA2250928A1 (en) 1997-09-25
IL126131A (en) 2002-02-10
US6204814B1 (en) 2001-03-20
IL126131A0 (en) 1999-05-09
JP2000507055A (en) 2000-06-06
DE19615497A1 (en) 1997-09-18
DE59700474D1 (en) 1999-10-28
EP0886887A1 (en) 1998-12-30
GR3031727T3 (en) 2000-02-29
ATE185023T1 (en) 1999-10-15

Similar Documents

Publication Publication Date Title
DE102017103161B4 (en) Antenna device and antenna array
DE102019200893B4 (en) Method of creating a waveguide, circuit device and radar system
DE69821327T2 (en) Shorted stripline antenna and device with it
DE10030402B4 (en) Surface mounting antenna and communication device using the same
DE69121352T2 (en) Device for feeding a radiation element for two orthogonal polarizations
DE4244136C2 (en) Integrated microwave circuit and method for its production
DE69624300T2 (en) antenna
DE69823591T2 (en) Layered aperture antenna and multilayer printed circuit board with it
DE69605501T2 (en) Chip antenna
DE3784569T2 (en) Microwave antenna.
EP1759438B1 (en) Antenna
DE69613565T2 (en) PHASE CONTROLLED GROUP ANTENNA WITH A CALIBRATION NETWORK
EP0766099A2 (en) Doppler radar module
DE60128843T2 (en) Microstrip conductor and microwave device provided therewith
DE60000346T2 (en) Metal panel antenna
WO2001003238A1 (en) Integrable dual-band antenna
EP2991159A1 (en) Feed network for antenna systems
DE69936648T2 (en) SUBSTRATANT WITH AN ELEMENT TO PREVENT ENERGY COUPLING BETWEEN ANTENNA AND LADDER
DE69906468T2 (en) Multilayer stripline antenna
EP1410062A2 (en) Radar device
DE3426565A1 (en) Contact-free connection for planar leads
DE19629277C2 (en) Arrangement for decoupling two orthogonally linearly polarized waves from a waveguide for an antenna for receiving satellite broadcasting signals
EP0886887B1 (en) Planar emitter
EP0737371B1 (en) Planar antenna
EP1370886B1 (en) Antenna with coplanar waveguide feed for the transmission and/or reception of radar beams

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990210

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990922

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990922

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990922

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990922

REF Corresponds to:

Ref document number: 185023

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59700474

Country of ref document: DE

Date of ref document: 19991028

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991222

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PATES TECHNOLOGY PATENTVERWERTUNGSGESELLSCHAFT FUE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000313

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000313

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990922

K2C1 Correction of patent specification (title page) published

Effective date: 19990922

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: PATES TECHNOLOGY PATENTVERWERTUNGSGESELLSCHAFT FUE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020318

Year of fee payment: 6

Ref country code: NL

Payment date: 20020318

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20020322

Year of fee payment: 6

Ref country code: IE

Payment date: 20020322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020325

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20020329

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

BERE Be: lapsed

Owner name: *PATES TECHNOLOGY PATENTVERWERTUNG.- FUR SATELLITE

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031002

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040305

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001