EP0886887B1 - Planar emitter - Google Patents
Planar emitter Download PDFInfo
- Publication number
- EP0886887B1 EP0886887B1 EP97914238A EP97914238A EP0886887B1 EP 0886887 B1 EP0886887 B1 EP 0886887B1 EP 97914238 A EP97914238 A EP 97914238A EP 97914238 A EP97914238 A EP 97914238A EP 0886887 B1 EP0886887 B1 EP 0886887B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- ply
- electrically conductive
- dielectric
- radiator according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008878 coupling Effects 0.000 claims abstract description 40
- 238000010168 coupling process Methods 0.000 claims abstract description 40
- 238000005859 coupling reaction Methods 0.000 claims abstract description 40
- 239000003989 dielectric material Substances 0.000 claims abstract 4
- 239000000463 material Substances 0.000 claims description 12
- 230000001939 inductive effect Effects 0.000 claims description 8
- -1 polyethylene terephthalate Polymers 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000004809 Teflon Substances 0.000 claims description 2
- 229920006362 Teflon® Polymers 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims 1
- 230000002035 prolonged effect Effects 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 1
- 230000001419 dependent effect Effects 0.000 abstract 1
- 239000004020 conductor Substances 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 241000209035 Ilex Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002044 microwave spectrum Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0075—Stripline fed arrays
Definitions
- the invention relates to a planar radiator with a Radiator level having surface resonators and a Coupling network having network level, the Area resonators with each other via the coupling network are coupled galvanically and in phase.
- the reception or the Radiation of directed electromagnetic radiation fields linear polarization in the microwave spectrum will be required today reflector antenna or planar antennas or radiators used.
- the radiation properties of the reflector antennas is based on the generation of a corresponding amplitude and Phase assignment of the electromagnetic Radiation field components on the reflector surface by means of suitable pathogen.
- the reflectors used are here either in the form of closed surfaces of defined curvature and border are designed or are latticed Arrangements of discrete conductive linear elements defined Length and spacing carried out.
- Known planar solutions are based on the arrangement of galvanically and parallel fed Area resonators of defined group size and spacing to each other.
- EP 0 200 819 describes a planar array antenna in Stripline technology known.
- the mechanical structure is there from a first substrate plate as a carrier for Antenna elements under the second substrate plate as a carrier for the couplers and the signal processing. Both substrate plates are connected by a thick metal plate, where the thickness of the metal plate is half Operating wavelength corresponds.
- a planar antenna is known from EP 0 383 292, in which Antenna elements on the ground surface of a two-sided coated circuit board are glued on which the Coupling network and additional electronics is located.
- the Antenna element consists of a surface resonator plate, which is applied to a dielectric substrate layer is.
- the substrate layer of the antenna element is made of "glass epoxy ".
- a planar antenna is known from WO 95/09455, which is also sandwich-like, and where the die Layer carrying antenna elements for manufacturing reasons two layers of the same material because the Antenna elements are capacitively coupled.
- a disadvantage of the known planar antennas is that mostly high system quality only in a small spectral range and therefore only with restrictions for use Suitable for multipoint multichannel communication services are, because of the small bandwidth, only relatively few Frequency bands can be transmitted with a single antenna.
- the planar emitter according to the invention advantageously only needs a common ground area for the emitter and network level, which significantly reduces the overall height of the emitter compared to known planar emitters and reduces the manufacturing material costs.
- the bandwidth of the radiation field to be transmitted and received by the radiator can also be varied without influencing the characteristic impedance of the coupling network by suitable choice of the thickness of the first dielectric layer, a high system quality being achieved in the entire spectral range at the same time. It is necessary for a planar radiator that the first layer is made of a material with the smallest possible dielectric constant ( ⁇ r ⁇ 1).
- the thin layer supporting the resonator surfaces can be manufactured from a heat-resistant material such as polyethylene terephthalate, on which the resonator surfaces can be applied permanently.
- the first layer can be made from an inexpensive foamed material. So that the planar radiator becomes flexible or pliable, the thickness of the first layer is greater than the thickness of the second layer.
- the first layer forms the actual base material of the planar emitter and essentially determines the properties of the emitter plane with its ⁇ r and loss angle tan ⁇ ⁇ .
- the material of the first layer is advantageously the cheap material polystyrene, which is flexible in its foamed form and in particular has a specific volume weight of 20kg / m 3 .
- the second layer is advantageously formed by a polyethylene terephthalate film which is glued to the first layer.
- the advantage of this polyethylene terephthalate film is that it forms a firm and permanent connection with copper, which means that the resonator surfaces have firm adhesion.
- Each surface resonator is electrical by means of an conductive connecting pin with the coupling network in electrically conductive connection, the electrically conductive Connecting pin in a perpendicular to the radiator and Through hole located at the network level.
- the connecting pins are relatively long, as a result of which the pins themselves have an electrically transforming effect.
- the inductive reactive component represented by the pen can therefore no longer be neglected and must be compensated for.
- This can be done on the one hand by means of a sleeve which at least in sections envelops the pin and is made of a material, in particular Teflon, which has a higher dielectric constant than the materials forming the dielectric layers, which serve as the base material for the radiator and network level.
- Teflon Teflon
- the electrically conductive thin Layer in the areas where the electrically conductive pins pass through the layer especially circular has window-like recesses, such that the pins with the electrically conductive layer not in electrical connection are.
- Form these circular window-like recesses Apertures, by means of the diameter of the recesses Coupling factor is adjustable.
- the coupling factor determines the portion of the signal intensity, which of the Radiator level is led to the network level.
- the optimal one Diameter of the orifices can be obtained by simulation or experimental tests.
- the surface resonators can be shaped and arranged as desired become. To generate the necessary impedance profile along the line of symmetry of the Area resonators, as well as to generate the necessary radiation-related individual characteristic of Area resonators it is recommended that Surface resonators to be rectangular, the Broadside is identical to the radiant edge.
- the Surface resonators are advantageously matrix-shaped arranged to each other. It has been shown that it is for most areas of application is sufficient, only eight Area resonators in particular in two lines and four Arrange columns. Also for the sake of simple Predictability and minimizing the dimensions of the planar emitter, it is advantageous if line and Column spacing of the matrix Area resonators are equal to each other.
- the planar has to enable components and plug-in systems Spotlights an extension that carries a wave path that a coupling point of the coupling network with a Connector connects.
- the connector is one commercially available N socket, which is modified in this way is that the inner conductor of the socket with the Microstrip line on the extension of the dielectric carrier of the coupling network is applied, is connected, and that the ground plane of the extension, the at the same time the extension of the electrically conductive layer is, with the outer surface of the socket by means of of a dielectric press block generated press pressure is.
- the wave path is through a microstrip line, the second dielectric layer and the ground surface, connected to the coaxial connector accordingly is.
- the first dielectric layer 5 one material.
- On top of layer 5 are made of a thin layer of copper Resonator surfaces 4 applied.
- Between the first dielectric layer 5 and the second dielectric Layer 7 is the conductive ground plane 6.
- the ground plane 6 is an approx. 17-18 ⁇ m thick copper layer.
- On the The flat side of layer 7 facing away from the ground surface is the Microstrip lines 8 or the coupling network 3 arranged.
- the coupling points 12 and 13 are by means of a electrically conductive pin 9 in connection.
- the pin 9 has a small diameter so that by the location of the Coupling point 12 determined input impedance of the Surface resonator 4 is not due to large-area contact of pin 9 with the resonator surface is undetermined.
- the diameter of the pin 9 should therefore be chosen so small that the strip width of the coupling network 3 is not is exceeded.
- the thickness of the pin 9 should therefore be 1 mm do not exceed.
- the pen is used for fixing purposes and better permanent contact with the copper layers the network and the radiator level are soldered and is one Surround sleeve 11, which stiffens the radiator.
- the thickness D2 of the layer 5 essentially determines that Total height of the planar emitter.
- the ground surface 6 has in the areas in which the pin 9th a circular one passes through the ground surface 6 Recess 10, the diameter of which is larger than that Outside diameter of the pin 9. Is the length of the sleeve 11 equal to the lengths D2 plus D3, the diameter is the Recess 10 at least as large as the outer diameter of the To choose sleeve 11.
- Layer 5 is made of polysterol, which is foamed in State is flexible, which makes the planar emitter in certain Is flexible. This bendability is only marginal through the thin copper layers 4, 6 and 8 and the layer 7 impaired.
- the coupling point 12 not be arranged centrally to the resonator surfaces 4. With the help of known simulation methods, it can be used for frequency and bandwidth required Calculate the input impedance of the surface resonators, from which the Location of the coupling point 12 can be derived.
- Figure 3 is the coupling network 3 with which the signals Coupling or decoupling wave path 16 shown.
- the Network 3 consists of striplines 3a-3f and 16. Die Stripline sections have different lengths and Widths to the inductive portion, which is determined by the length of the Pen 9 was caused to compensate as well impedance-matched merging of the to Allow surface resonators to guide waveguide paths.
- Figure 5 shows a cross-sectional view of the Wave path 16 and the connector 18 carrying projection 24.
- the projection 24 lies between the connector 18 and the pressure block 22.
- the connector 18 and the pressure block 22 are by means of the projection 24 and the provided holes 23 cross fastening screws screwed together so that the connector 18 with the Projection 24 is in firm connection.
- planar emitter in Frequency spectrum from 2,500 GHz to 2,686 GHz a high System quality.
- the resonator surfaces have a length of 47 mm, a width of 53 mm and a row and column spacing of 87 mm.
- the feed or coupling point 12 is located approximately 2 mm from the center of the broad side within the surface.
- the thicknesses D1, D3 and D5 of the copper layers are approximately 18 ⁇ m thick.
- the layer 5 has two layers, the first layer 14 having a thickness L1 equal to 10.5 mm and consisting of foamed polystyrene, the spec. Volume weight is 20kg / m 3 .
- the second layer 15 has a thickness L2 of 100 ⁇ m and consists of polyethylene terephthalate.
- the second dielectric layer 7 consists of glass fiber reinforced polytetrafluoroethylene with a thickness of 381 ⁇ m.
- the Layer 14 is glued to the layer 15 and the adhesive connection has a thickness of 7 ⁇ m.
- the pin 9 has a diameter of 1.2 mm and lies with its one end in the bore of layer 7, whose Diameter is also 1.2 mm and passes through Coupling point 13.
- the layers 5 and 6 have in the area of Pins 9 also on holes, the diameter of Recording of the pin 9 and the sleeve 11 is 4.2 mm.
- the coupling network 3 is constructed symmetrically, such that all resonator surfaces are in phase from coupling point 17 be fed.
- the coupling points 13 have one Inner diameter of 1.2 mm and an outer diameter of 2.1 mm.
- each coupling point 13 goes in the direction of the line adjacent feed point 13 a conductor 3a of Width 0.49 mm for a length of 27 mm.
- This head 3a then jumps into a conductor 3b with a width of 1.15 mm over which is 31 mm long.
- the head 3b again in a width of 0.49 mm across to the neighboring one To reach feeding point 13 after a length of 27 mm.
- the dining points are outside in every row lying resonator surfaces 4 with the feed points 13 of the in each case in the row adjacent and below Resonator surfaces 4 connected.
- the conductor 3e opens a width of 1.15 mm for a length of 129.4 mm over (Head 3f).
- the width of the conductor 3f changes to 1.88 mm for a length of 22.3 mm.
- To the middle of the 3f includes a waveguide 1.88 mm wide as well the length of 22.3 mm to then jump in width to 1.15 mm and to the decoupling point 21 of the Network 3 to be managed.
- the inductive dummy components of the pins 9 by the Dimensions of the elongated pins 9, which in turn from the Thickness D2 of the first dielectric layer 5 are conditional, compensated.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Bipolar Transistors (AREA)
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Polarising Elements (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
Die Erfindung betrifft einen planaren Strahler mit einer Flächenresonatoren aufweisenden Strahlerebene und einer ein Kopplungsnetzwerk aufweisenden Netzwerkebene, wobei die Flächenresonatoren über das Kopplungsnetzwerk miteinander galvanisch und phasengleich gekoppelt sind.The invention relates to a planar radiator with a Radiator level having surface resonators and a Coupling network having network level, the Area resonators with each other via the coupling network are coupled galvanically and in phase.
Für Kommunikationsdienste insbesondere Multipoint-Multichannel-Kommunikationsdienste, die den Empfang bzw. die Abstrahlung gerichteter elektromagnetischer Strahlungsfelder linearer Polarisation im Mikrowellenspektrum erfordern, werden heute Reflektorantenne oder planare Antennen bzw. Strahler eingesetzt. Die Strahlungseigenschaften der Reflektorantennen beruht auf der Erzeugung einer entsprechenden Amplituden- und Phasenbelegung der elektromagnetischen Strahlungsfeldkomponenten auf der Reflektorfläche mittels geeigneter Erreger. Die verwendeten Reflektoren sind hierbei entweder in Form geschlossener Flächen definierter Krümmung und Berandung ausgelegt oder werden durch gitterartige Anordnungen diskreter leitfähiger Linearelemente definierter Länge und Distanzierung ausgeführt. Bekannte planare Lösungen beruhen auf der Anordnung galvanisch und parallel gespeister Flächenresonatoren definierter Gruppengröße und Distanzierung zueinander.For communication services, in particular multipoint multichannel communication services, the reception or the Radiation of directed electromagnetic radiation fields linear polarization in the microwave spectrum will be required today reflector antenna or planar antennas or radiators used. The radiation properties of the reflector antennas is based on the generation of a corresponding amplitude and Phase assignment of the electromagnetic Radiation field components on the reflector surface by means of suitable pathogen. The reflectors used are here either in the form of closed surfaces of defined curvature and border are designed or are latticed Arrangements of discrete conductive linear elements defined Length and spacing carried out. Known planar solutions are based on the arrangement of galvanically and parallel fed Area resonators of defined group size and spacing to each other.
Aus der EP 0 200 819 ist eine planare Array-Antennen in Streifenleitertechnik bekannt. Der mechanische Aufbau besteht aus einer ersten Substratplatte als Träger für Antennenelemente under zweiten Substratplatte als Träger für die Koppler und die Signalverarbeitung. Beide Substratplatten sind durch eine dicke Metallplatte miteinander verbunden, wobei die Dicke der Metallplatte der halben Betriebswellenlänge entspricht. Die elektrische Verbindung zwischen den Antennenelementen auf der Antennenvorderseite und den Kopplern auf der Antennenrückseite stellen koaciale Leiterstücke her, die isoliert durch Bohrungen in der Metallplatte geführt werden.EP 0 200 819 describes a planar array antenna in Stripline technology known. The mechanical structure is there from a first substrate plate as a carrier for Antenna elements under the second substrate plate as a carrier for the couplers and the signal processing. Both substrate plates are connected by a thick metal plate, where the thickness of the metal plate is half Operating wavelength corresponds. The electrical connection between the antenna elements on the front of the antenna and put the couplers on the back of the antenna Conductor pieces, which are isolated by holes in the Metal plate.
Aus der EP 0 383 292 ist eine planare Antenne bekannt, bei der Antennenelemente auf der Massefläche einer zweiseitig beschichteten Leiterplatte aufgeklebt werden, auf der sich das Kopplungsnetzwerk und zusätzliche Elektronik befindet. Das Antennenelement besteht aus einem Flächenresonatorplättchen, welches auf einer dielektrischen Substratschicht aufgebracht ist. Die Substratschicht des Antennenelements ist aus "glas epoxy".A planar antenna is known from EP 0 383 292, in which Antenna elements on the ground surface of a two-sided coated circuit board are glued on which the Coupling network and additional electronics is located. The Antenna element consists of a surface resonator plate, which is applied to a dielectric substrate layer is. The substrate layer of the antenna element is made of "glass epoxy ".
Aus der WO 95/09455 ist eine planare Antenne bekannt, welche ebenfalls sandwich-artig aufgebaut ist, und bei der die die Antennenelemente tragende Schicht aus Fertigungsgründen aus zwei Lagen des selben Materials besteht, da die Antennenelemente kapazitiv gekoppelt sind.A planar antenna is known from WO 95/09455, which is also sandwich-like, and where the die Layer carrying antenna elements for manufacturing reasons two layers of the same material because the Antenna elements are capacitively coupled.
Nachteilig bei den bekannten planaren Antennen ist, daß sie meist nur in einem kleinen Spektralbereich hohe Systemgüten aufweisen und somit nur mit Einschränkungen für den Einsatz für Multipoint-Multichannel-Kommunikationsdienste geeignet sind, da durch die kleine Bandbreite nur relativ wenige Frequenzbänder mit einer einzigen Antenne übertragbar sind. A disadvantage of the known planar antennas is that mostly high system quality only in a small spectral range and therefore only with restrictions for use Suitable for multipoint multichannel communication services are, because of the small bandwidth, only relatively few Frequency bands can be transmitted with a single antenna.
Es ist daher Aufgabe der Erfindung, einen planaren Strahler mit Flächenresonatoren bereitzustellen, der einfach und klein in seinem Aufbau ist und aus wenigen leicht zu fertigenden und kostengünstigen Teilen besteht und zugleich in einem möglichst breiten Spektralbereich eine hohe frequenzunabhängige Systemgüte hat, derart, daß er für eine mehrkanalige Punkt-zu-Punkt-Übertragung insbesondere im Frequenzbereich zwischen 2.500 GHz bis 2.686 GHz geeignet ist.It is therefore an object of the invention to provide a planar radiator to provide with surface resonators that are simple and small is in its structure and from a few easy to manufacture and there are inexpensive parts and at the same time in one if possible wide spectral range a high frequency independent System quality is such that it is for multi-channel point-to-point transmission especially in the frequency range between 2,500 GHz to 2,686 GHz is suitable.
Diese Aufgabe wird erfindungsgemäß durch einen planaren Strahler gemäß Anspruch 1 gelöst.This object is achieved by a planar Radiator according to claim 1 solved.
Der erfindungsgemäße planare Strahler benötigt vorteilhaft nur noch eine gemeinsame Masse fläche für die Strahler- und Netzwerkebene, wodurch sich die Gesamthöhe des Strahlers gegenüber bekannten planaren Strahlern deutlich verringert und die Fertigungs- Materialkosten verringert werden. Auch kann ohne Beeinflussung des Wellenwiderstandes des Kopplungsnetzwerks durch geeignete Wahl der Dicke der ersten dielektrischen Schicht die Bandbreite des vom Strahler zu sendenden und empfangenen Strahlungsfeldes variiert werden, wobei gleichzeitig eine hohe Systemgüte im gesamten Spektralbereich erzielt wird. Es ist für einen planaren Strahler erforderlich, daß die erste Schicht aus einem Material mit einer möglichst kleinen Dielektrizitätskonstanten (εr → 1) ist. Durch den zweilagigen Aufbau der ersten Schicht, ist es möglich, die dünne die Resonatorflächen tragende Lage aus einem hitzebeständigen Material wie z.B. Polyethylenterephtalat herzustellen, auf dem die Resonatorflächen dauerhaft aufgebracht werden können. Die erste Lage kann aus einem preiswerten geschäumten Material hergestellt werden. Damit der planare Strahler flexibel bzw. biegsam wird, ist die Dicke der ersten Lage größer als die Dicke der zweiten Lage. Die erste Lage bildet dabei das eigentliche Basismaterial des planaren Strahlers und bestimmt mit seinem εr sowie Verlustwinkel tan δε im wesentlichen die Eigenschaften der Strahlerebene. Das Material der ersten Lage ist vorteilhaft der billige Werkstoff Polystyrol, welcher in seiner ausgeschäumten Form flexibel ist, und insbesondere ein spezifisches Volumengewicht von 20kg/m3 hat. Die zweite Lage ist vorteilhaft durch eine Polyethylenterephtalat-Folie gebildet, die mit der ersten Lage verklebt ist. Der Vorteil dieser Polyethylenterephtalat-Folie ist, daß sie mit Kupfer eine feste und dauerhafte Verbindung eingeht, wodurch die Resonatorflächen eine feste Haftung haben.The planar emitter according to the invention advantageously only needs a common ground area for the emitter and network level, which significantly reduces the overall height of the emitter compared to known planar emitters and reduces the manufacturing material costs. The bandwidth of the radiation field to be transmitted and received by the radiator can also be varied without influencing the characteristic impedance of the coupling network by suitable choice of the thickness of the first dielectric layer, a high system quality being achieved in the entire spectral range at the same time. It is necessary for a planar radiator that the first layer is made of a material with the smallest possible dielectric constant (ε r → 1). Due to the two-layer structure of the first layer, it is possible to manufacture the thin layer supporting the resonator surfaces from a heat-resistant material such as polyethylene terephthalate, on which the resonator surfaces can be applied permanently. The first layer can be made from an inexpensive foamed material. So that the planar radiator becomes flexible or pliable, the thickness of the first layer is greater than the thickness of the second layer. The first layer forms the actual base material of the planar emitter and essentially determines the properties of the emitter plane with its ε r and loss angle tan δ ε . The material of the first layer is advantageously the cheap material polystyrene, which is flexible in its foamed form and in particular has a specific volume weight of 20kg / m 3 . The second layer is advantageously formed by a polyethylene terephthalate film which is glued to the first layer. The advantage of this polyethylene terephthalate film is that it forms a firm and permanent connection with copper, which means that the resonator surfaces have firm adhesion.
Jeder Flächenresonator ist dabei mittels eines elektrisch leitenden Verbindungsstiftes mit dem Kopplungsnetzwerk in elektrisch leitender Verbindung, wobei der elektrisch leitende Verbindungsstift in einer senkrecht zur Strahler- und Netzwerkebene befindlichen Durchgangsbohrung einliegt.Each surface resonator is electrical by means of an conductive connecting pin with the coupling network in electrically conductive connection, the electrically conductive Connecting pin in a perpendicular to the radiator and Through hole located at the network level.
Durch die unverhältnismäßig große Dicke der ersten dielektrischen Schicht, sind die Verbindungsstifte relativ lang, wodurch die Stifte selbst elektrisch transformierend wirken. Die vom Stift repräsentierte induktive Blindkomponente kann daher nicht mehr vernachlässigt werden und muß ausgeglichen werden. Dies kann zum einen mittels einer Hülse geschehen, die den Stift zumindest abschnittsweise umhüllt und aus einem Material insbesondere Teflon ist, das eine höhere Dielektrizitätszahl hat, als die die dielektrischen Schichten bildenden Materialien, die als Basismaterial für die Strahler- und Netzwerkebene dienen. Mittels der Einstellung der Wandstärke, der Höhe und des εr der Hülse kann der Kapazitätsbelag der Stift-Hülse-Kombination eingestellt werden, wodurch die induktive Blindkomponente des Stiftes kompensiert wird.Due to the disproportionate thickness of the first dielectric layer, the connecting pins are relatively long, as a result of which the pins themselves have an electrically transforming effect. The inductive reactive component represented by the pen can therefore no longer be neglected and must be compensated for. This can be done on the one hand by means of a sleeve which at least in sections envelops the pin and is made of a material, in particular Teflon, which has a higher dielectric constant than the materials forming the dielectric layers, which serve as the base material for the radiator and network level. By adjusting the wall thickness, the height and the ε r of the sleeve, the capacitance of the pin-sleeve combination can be adjusted, whereby the inductive blind component of the pin is compensated.
Zum anderen kann jedoch auch vorteilhaft die Kompensation der induktiven Blindkomponente des Stiftes mittels des Kopplungsnetzwerks erfolgen, indem die transformierende Wirkung der Längen- und Breitenverhältnisse der verwendeten Mikrostreifenleitungen ausgenutzt werden. Derartige Transformationen mittels Mikrostreifenleitern sind hinlänglich aus der einschlägigen Literatur bekannt. Auf eine Hülse kann in diesem Fall gegebenenfalls verzichtet werden.On the other hand, however, the compensation of the inductive blind component of the pin by means of the Coupling network done by the transforming Effect of the length and width ratios of the used Microstrip lines are used. Such Transformations using microstrip lines are sufficient known from the relevant literature. Can on a sleeve in this case, if necessary, be waived.
Es ist ferner erforderlich, daß die elektrisch leitende dünne Schicht in den Bereichen, wo die elektrisch leitenden Stifte die Schicht durchtreten, insbesondere kreisförmig fensterartige Aussparungen hat, derart, daß die Stifte mit der elektrisch leitenden Schicht nicht in elektrischer Verbindung sind. Diese kreisförmig fensterartigen Aussparungen bilden Blenden, wobei mittels des Durchmessers der Aussparungen der Kopplungsfaktor einstellbar ist. Der Kopplungsfaktor bestimmt dabei den Anteil der Signalintensität, welcher von der Strahlerebene zur Netzwerkebene geführt wird. Den optimalen Durchmesser der Blenden erhält man durch Simulation oder experimentelle Tests.It is also required that the electrically conductive thin Layer in the areas where the electrically conductive pins pass through the layer, especially circular has window-like recesses, such that the pins with the electrically conductive layer not in electrical connection are. Form these circular window-like recesses Apertures, by means of the diameter of the recesses Coupling factor is adjustable. The coupling factor determines the portion of the signal intensity, which of the Radiator level is led to the network level. The optimal one Diameter of the orifices can be obtained by simulation or experimental tests.
Ein weiterer Vorteil durch den Einsatz der oben beschriebenen Hülsen ergibt sich dadurch, daß durch die steif ausgeführten Hülsen der Abstand zwischen der Strahler- und der Netzwerkebene zumindest in den Bereichen der Stifte auch unter Einwirkung äußerer Kräfte sowie bei der Antennenmontage konstant bleibt. Die Systemgüte verändert sich somit auch beim Verbiegen und Zusammendrücken des planaren Strahlers nicht.Another advantage of using the above described Sleeves result from the fact that the stiffly executed Sleeves the distance between the emitter and the Network level at least in the areas of the pens also below Influence of external forces as well as during antenna assembly remains constant. The system quality also changes with Do not bend and compress the planar radiator.
Die Flächenresonatoren können beliebig geformt und angeordnet werden. Zur Erzeugung des notwendigen Impedanzprofils entlang der quer zur strahlenden Kante liegenden Symmetrielinie der Flächenresonatoren, sowie zur Erzeugung der erforderlichen strahlungsbezogenen Einzelcharakteristik der Flächenresonatoren ist es empfehlenswert, die Flächenresonatoren rechteckig zu gestalten, wobei die Breitseite identisch der strahlenden Kante ist. Die Flächenresonatoren werden dabei vorteilsmäßig matrixförmig zueinander angeordnet. Es hat sich hierbei gezeigt, daß es für die meisten Einsatzgebiete ausreicht, lediglich acht Flächenresonatoren insbesondere in zwei Zeilen und vier Spalten anzuordnen. Ebenfalls aus Gründen der einfachen Berechenbarkeit und der Minimierung der Abmessungen des planaren Strahlers ist es von Vorteil, wenn Zeilen- und Spaltenabstände der matrixförmig angeordneten Flächenresonatoren zueinander gleich sind.The surface resonators can be shaped and arranged as desired become. To generate the necessary impedance profile along the line of symmetry of the Area resonators, as well as to generate the necessary radiation-related individual characteristic of Area resonators it is recommended that Surface resonators to be rectangular, the Broadside is identical to the radiant edge. The Surface resonators are advantageously matrix-shaped arranged to each other. It has been shown that it is for most areas of application is sufficient, only eight Area resonators in particular in two lines and four Arrange columns. Also for the sake of simple Predictability and minimizing the dimensions of the planar emitter, it is advantageous if line and Column spacing of the matrix Area resonators are equal to each other.
Um eine gute Auskopplung bzw. Einkopplung des empfangenen bzw. zu sendenden Signals mit möglichst schon bestehenden Komponenten und Stecksystemen zu ermöglichen, hat der planare Strahler eine Verlängerung, die einen Wellenpfad trägt, die einen Kopplungspunkt des Kopplungsnetzwerks mit einem Anschlußstück verbindet. An das Anschlußstück ist eine handelsübliche N-Buchse anschließbar, die derart modifiziert ist, daß der Innenleiter der Buchse mit dem Mikrostreifenleiter, der auf der Verlängerung des dielektrischen Trägers des Kopplungsnetzwerks aufgebracht ist, verbunden ist, und daß die Massefläche der Verlängerung, die gleichzeitig die Verlängerung der elektrisch leitenden Schicht ist, mit dem Außenmantel der Buchse flächig durch den mittels eines dielektrischen Preßblocks erzeugten Preßdrucks verbunden ist. Der Wellenpfad wird durch eine Mikrostreifenleitung, der zweiten dielektrischen Schicht und der Massefläche gebildet, der mit dem koaxialen Anschlußstück entsprechend verbunden ist.To ensure good decoupling or coupling of the received or signals to be sent with existing ones if possible The planar has to enable components and plug-in systems Spotlights an extension that carries a wave path that a coupling point of the coupling network with a Connector connects. At the connector is one commercially available N socket, which is modified in this way is that the inner conductor of the socket with the Microstrip line on the extension of the dielectric carrier of the coupling network is applied, is connected, and that the ground plane of the extension, the at the same time the extension of the electrically conductive layer is, with the outer surface of the socket by means of of a dielectric press block generated press pressure is. The wave path is through a microstrip line, the second dielectric layer and the ground surface, connected to the coaxial connector accordingly is.
Nachfolgend werden einige Ausführungsformen der Erfindung anhand von Zeichnungen näher erläutert.Below are some embodiments of the invention explained in more detail with reference to drawings.
Es zeigen:
- Figur 1:
- Eine Querschnittsdarstellung des planaren Strahlers;
- Figur 2:
- eine Draufsicht auf die Strahlerebene;
- Figur 3:
- eine Draufsicht auf die Netzwerkebene;
- Figur 4:
- eine Draufsicht auf die elektrisch leitende Massefläche;
- Figur 5:
- eine Querschnittsdarstellung des Wellenpfades und des Anschlußstücks;
- Figur 6:
- eine Querschnittsdarstellung des erfindungsgemäßen Strahlers, mit zwei die erste dielektrische Schicht bildenden Lagen;
- Figur 7:
- eine Darstellung gemäß
Figur 6, wobei die Länge der Hülse verkürzt und ihre Wandstärke vergrößert ist.
- Figure 1:
- A cross-sectional view of the planar radiator;
- Figure 2:
- a plan view of the radiator level;
- Figure 3:
- a top view of the network level;
- Figure 4:
- a plan view of the electrically conductive ground plane;
- Figure 5:
- a cross-sectional view of the wave path and the connector;
- Figure 6:
- a cross-sectional view of the radiator according to the invention, with two layers forming the first dielectric layer;
- Figure 7:
- a representation according to Figure 6, wherein the length of the sleeve is shortened and its wall thickness is increased.
Die Figur 1 stellt eine Ausführungsform des erfindungsgemäßen.
Strahlers dar, bei dem die erste dielektrische Schicht 5 aus
einem einzigen Material ist. Auf der Oberseite der Schicht 5
sind die aus einer dünnen Kupferschicht bestehenden
Resonatorflächen 4 aufgebracht. Zwischen der ersten
dielektrischen Schicht 5 und der zweiten dielektrischen
Schicht 7 liegt die leitende Massefläche 6. Die Massefläche 6
ist eine ca. 17-18µm starke Kupferschicht. Auf der der
Massefläche abgewandten flachen Seite der Schicht 7 sind die
Mikrostreifenleitungen 8 bzw. das Kopplungsnetzwerk 3
angeordnet. Die Kopplungspunkte 12 und 13 sind mittels eines
elektrisch leitenden Stifts 9 in Verbindung. Der Stift 9 hat
einen kleinen Durchmesser, damit die durch die Lage des
Kopplungspunktes 12 bestimmte Eingangsimpedanz des
Flächenresonators 4 nicht durch einen großflächigen Kontakt
des Stiftes 9 mit der Resonatorfläche unbestimmt wird. Der
Durchmesser des Stiftes 9 ist daher so klein zu wählen, daß
die Streifenbreite des Kopplungsnetzwerks 3 nicht
überschritten wird. Die Dicke des Stiftes 9 sollte daher 1 mm
nicht überschreiten. Der Stift wird zu Zwecken des Festsetzens
und des besseren dauerhaften Kontakts mit den Kupferschichten
der Netzwerk- und der Strahlerebene verlötet und ist von einer
Hülse 11 umgeben, die eine Versteifung des Strahlers bewirkt.1 shows an embodiment of the invention.
Radiator, in which the first
Die Dicke D2 der Schicht 5 bestimmt im wesentlichen die
Gesamthöhe des planaren Strahlers.The thickness D2 of the
Die Massefläche 6 hat in den Bereichen, in denen der Stift 9
durch die Massefläche 6 hindurchtritt eine kreisförmige
Aussparung 10, deren Durchmesser größer ist, als der
Außendurchmesser des Stifts 9. Ist die Länge der Hülse 11
gleich den Längen D2 plus D3, so ist der Durchmesser der
Aussparung 10 mindestens so groß wie der Außendurchmesser der
Hülse 11 zu wählen.The
Die Schicht 5 ist aus Polysterol, welches im ausgeschäumten
Zustand flexibel ist, wodurch der planare Strahler in gewissen
Grenzen biegbar ist. Diese Verbiegbarkeit wird nur geringfügig
durch die dünnen Kupferschichten 4, 6 und 8 sowie die Schicht
7 beeinträchtigt.
Wie aus Figur 2 ersichtlich ist, muß der Kopplungspunkt 12
nicht zentrisch zu den Resonatorflächen 4 angeordnet sein. Mit
Hilfe bekannter Simmulationsmethoden, läßt sich die für die
jeweilige Frequenz und Bandbreite erforderliche
Eingangsimpedanz der Flächenresonatoren berechnen, woraus die
Lage des Kopplungspunktes 12 ableitbar ist.As can be seen from FIG. 2, the
In Figur 3 ist das Kopplungsnetzwerk 3 mit dem die Signale
ein- bzw. auskoppelnden Wellenpfad 16 dargestellt. Das
Netzwerk 3 besteht aus Streifenleitungen 3a-3f sowie 16. Die
Streifenleitungsabschnitte haben unterschiedliche Längen und
Breiten, um den induktiven Anteil, welcher durch die Länge des
Stifts 9 verursacht wurde, auszugleichen, sowie die
impedanzangepaßte Zusammenführung der zu den
Flächenresonatoren führenden Wellenleiterpfade zu ermöglichen. In Figure 3 is the coupling network 3 with which the signals
Coupling or
In Figur 4 ist die leitende Kupferschicht der Massefläche 6
dargestellt. Die schwarzen Punkte 10, 19 und 20 repräsentieren
dabei Stellen, an denen das Kupfer ausgespart wurde. Durch
diese Stellen sind zudem Bohrungen entsprechenden Durchmessers
vorgesehen, damit die Stifte 9 und 21, Hülsen 11, sowie
Befestigungsschrauben für das Anschlußstück 18 durch die
Massefläche 6 durchgreifen können.In Figure 4, the conductive copper layer of the ground surface 6th
shown. The black dots represent 10, 19 and 20
places where the copper was cut out. By
these points are also holes of the appropriate diameter
provided so that the
Die Figur 5 zeigt eine Querschnittsdarstellung des den
Wellenpfad 16 sowie das Anschlußstück 18 tragenden Vorsprungs
24. Der Vorsprung 24 liegt zwischen dem Anschlußstück 18 und
dem Anpreßblock 22. Das Anschlußstück 18 und der Anpreßblock
22 werden mittels durch den Vorsprung 24 und den dafür
vorgesehenen Bohrungen 23 greifenden Befestigungsschrauben
miteinander verschraubt, so daß das Anschlußstück 18 mit dem
Vorsprung 24 in fester Verbindung ist.Figure 5 shows a cross-sectional view of the
Nachfolgend werden beispielhafte geometrische Daten aufgeführt, mittels der der planare Strahler im Frequenzspektrum von 2.500 GHz bis 2.686 GHz eine hohe Systemgüte aufweist.The following are exemplary geometric data listed, by means of which the planar emitter in Frequency spectrum from 2,500 GHz to 2,686 GHz a high System quality.
Die Resonatorflächen haben dazu die Länge 47 mm, die Breite 53
mm sowie einen Zeilen- und Spaltenabstand von 87 mm. Der
Speise- bzw. Kopplungspunkt 12 befindet sich von der Mitte der
breiten Seite ca. 2 mm entfernt innerhalb der Fläche. Die
Dicken D1, D3 und D5 der Kupferschichten sind ca. 18µm stark.
Die Schicht 5 ist wie in Figur 6 dargestellt zweilagig, wobei
die erste Lage 14 eine Dicke L1 gleich 10.5 mm hat und aus
verschäumten Polystyrol besteht, dessen spez. Volumengewicht
20kg/m3beträgt. Die zweite Lage 15 hat eine Dicke L2 von 100µm
und besteht aus Polyethylenterephtalat. Die zweite
dielektrische Schicht 7 besteht aus glasfaserverstärktem
Polytetraflourethylen der Stärke 381 µm. The resonator surfaces have a length of 47 mm, a width of 53 mm and a row and column spacing of 87 mm. The feed or
Sämtliche Schichten sind miteinander fest verfügt, wobei die
Lage 14 mit der Lage 15 verklebt ist und die Klebeverbindung
eine Stärke von 7µm hat.All layers are fixed together, the
Der Stift 9 hat einen Durchmesser von 1.2 mm und liegt mit
seinem einem Ende in der Bohrung der Schicht 7, deren
Durchmesser ebenfalls 1.2 mm beträgt ein und durchtritt den
Kopplungspunkt 13. Die Schicht 5 und 6 weist im Bereich des
Stifts 9 ebenfalls Bohrungen auf, deren Durchmesser zur
Aufnahme des Stifts 9 und der Hülse 11 4.2 mm beträgt.The
Das Kopplungsnetzwerk 3 ist symmetrisch aufgebaut, derart, daß
alle Resonatorflächen gleichphasig vom Kopplungspunkt 17
gespeist werden. Die Kopplungspunkte 13 haben einen
Innendurchmesser von 1.2 mm und einen Außendurchmesser von 2.1
mm.The coupling network 3 is constructed symmetrically, such that
all resonator surfaces are in phase from
Ausgehend von jedem Kopplungspunkt 13 geht in Richtung des in
der Zeile benachbarten Speisepunktes 13 ein Leiter 3a der
Breite 0.49 mm für eine Länge von 27 mm ab. Dieser Leiter 3a
geht dann sprungartig in einen Leiter 3b der Breite 1.15 mm
über, welcher 31 mm lang ist. Anschließend geht der Leiter 3b
wieder in eine Breite von 0.49 mm über, um den benachbarten
Speisepunkt 13 nach einer Länge von 27 mm zu erreichen. Auf
diese Weise werden die Speisepunkte der in jeder Zeile außen
liegenden Resonatorflächen 4 mit den Speisepunkten 13 der
jeweils in der Zeile benachbarten und unten liegenden
Resonatorflächen 4 verbunden. Von der Mitte des Leiters 3b
schließt sich in Richtung des in der Spalte gegenüberliegenden
Leiters 3b ein Leiter 3c der Breite 1.88 mm und der Länge 22.3
mm an, der danach sprungartig auf eine Breite von 1.15 mm für
eine Strecke von 42.45 mm (Leiter 3d) übergeht. Der Leiter
erweitert sich anschließend wieder auf eine Breite von 1.88
mm, um nach einer Länge von 22.3 mm mit der Mitte des in der
Spalte gegenüberliegenden Leiters 3b zusammen zu treffen. An
die Mitte des Leiters 3d schließt sich in Richtung des
gegenüberliegenden Leiters 3d eine Leitung 3e der Breite 1.88
mm sowie der Länge 22.3 mm an. Danach geht der Leiter 3e auf
eine Breite von 1.15 mm für eine Länge von 129.4 mm über
(Leiter 3f). Die Breite des Leiters 3f ändert sich auf 1.88 mm
für eine Länge von 22.3 mm. Damit ist die Mitte des
gegenüberliegenden Leiters 3d erreicht. An die Mitte des
Leiters 3f schließt ein Wellenleiter der Breite 1.88 mm sowie
der Länge 22.3 mm an, um sich danach sprunghaft in der Breite
auf 1.15 mm zu reduzieren und zum Auskopplungspunkt 21 des
Netzwerkes 3 geführt zu werden.Starting from each
Mittels des oben beschriebenen Kopplungsnetzwerks 3 werden die
induktiven Blindkomponenten der Stifte 9, die durch die
Abmessungen der länglichen Stifte 9, welche ihrerseits von der
Dicke D2 der ersten dielektrischen Schicht 5 bedingt sind,
kompensiert.By means of the coupling network 3 described above, the
inductive dummy components of the
In Figur 7 ist dargestellt, daß die Hülse 11 sich nicht über
die gesamte Höhe der Schichten 5 und 6 erstrecken muß. Durch
die Wahl der Wandstärke WS und der Länge LS der Hülse 11 kann
deren kapazitiver Belag beeinflußt werden, wodurch die
induktive Blindleistungskomponente des langen Stifts 9
aufgehoben wird und ein die Blindkomponenten kompensierendes
Netzwerk 3 nicht mehr benötigt wird. In Figure 7 it is shown that the
- 11
- StrahlerebeneSpotlight level
- 22nd
- NetzwerkebeneNetwork level
- 33rd
- KopplungsnetzwerkCoupling network
- 3a-3f3a-3f
- StreifenleitungsabschnitteStripline sections
- 44th
- FlächenresonatorenArea resonators
- 55
- Erste dielektrische SchichtFirst dielectric layer
- 66
- Elektrisch leitende dünne Schicht; MasseflächeElectrically conductive thin layer; Ground plane
- 77
- Zweite dielektrische SchichtSecond dielectric layer
- 88th
- MikrostreifenleitungenMicrostrip lines
- 99
- VerbindungsstiftConnecting pin
- 1010th
- Fensterartige AussparungenWindow-like recesses
- 1111
- HülseSleeve
- 1212th
- Speisepunkt des FlächenresonatorsFeed point of the surface resonator
- 1313
- KopplungspunktCoupling point
- 1414
- erste Lagefirst layer
- 1515
- zweite Lagesecond layer
- 1616
- WellenpfadWave path
- 1717th
- Gemeinsamer KopplungspunktCommon coupling point
- 1818th
- Anschlußstück; N-BuchseConnector; N socket
- 1919th
- Aussparung für DurchgangsstiftCut-out for through pin
- 2020th
- Aussparung für BefestigungsschraubeCut-out for fastening screw
- 2121
- DurchgangsstiftThrough pin
- 2222
- AnpreßblockContact block
- 2323
- Bohrung für BefestigungsschraubenHole for fastening screws
- 2424th
- Verlängerung für WellenpfadExtension for wave path
Claims (15)
- Planar radiator with a radiator plane (1) comprising large-area resonators (4) and with a network plane (2) comprising a coupling network (3), in which the large-area resonators (4) are coupled to one another galvanically and in phase via the coupling network (3), characterised in thatthe planar radiator is constructed in a sandwich manner of plies (4, 5, 6, 7, 8) plane-parallel to one another, andthat a first dielectric ply (5) is separated from a second dielectric ply (7) by means of an electrically conductive thin ply (6), which forms the common earthing surface for the radiator plane (1) and the network plane (2), andthat the first dielectric ply (5) bears on its side facing away from the electrically conductive ply (6) the large-area resonators (4), whereinthe first dielectric ply (5) is composed of two dielectric materials which form a layer (14, 15) for one another, wherein the thickness (L1) of the first layer is greater than the thickness (L2) of the second layer, and the second layer (15) bears on its side facing away from the first layer (14) the large-area resonators (4), andthat the second dielectric ply (7) bears on its side facing away from the electrically conductive ply (6) the coupling network (3), which is formed from microstrip lines (8).
- Planar radiator according to claim 1, characterised in that the first layer (14) is formed from polystyrene, which is flexible in its expanded form, and in particular has a specific weight by unit volume of 20 kg/m3, wherein the first layer (14) has in particular a thickness (L1) of 10.5 mm.
- Planar radiator according to one of claims 1 or 2, characterised in that the second layer (15) is formed by a polyethylene terephthalate film in particular of thickness (L2) equal to 100 µm, which is bonded to the first layer (14).
- Planar radiator according to one of the preceding claims, characterised in that the electrically conductive thin ply (6) has a thickness of approx. 18 µm.
- Planar radiator according to one of the preceding claims, characterised in that each large-area resonator (4) is in electrically conductive connection with the coupling network (3) by means of an electrically conductive connecting pin (9), wherein the electrically conductive connecting pin (9) lies in a continuous bore situated at right angles to the radiator plane (1) and the network plane (2).
- Planar radiator according to claim 5, characterised in that the electrically conductive thin ply (6) has in the areas where the electrically conductive pins (9) pass through the ply (6) in particular circular window-type recesses (10), such that the pins (9) are not in electrical connection with the electrically conductive ply (6).
- Planar radiator according to claim 6, characterised in that the circular window-type recesses (10) form masks, and by means of the diameter of the recesses (10) the reflection and transmission factor between the coupling network and the respective large-area resonators is adjustable.
- Planar radiator according to one of claims 5, 6 or 7, characterised in that each electrically conductive pin (9) is in the area between the conductive ply (6) of the large-area resonators (4) and the conductive ply (6) of the microstrip lines (8) surrounded at least in certain sections by a sleeve (11).
- Planar radiator according to claim 8, characterised in that the sleeve (11) is of a dielectric material, in particular Teflon, whose dielectric constant εr is in particular greater than the dielectric constant εr of the material of the dielectric plies (5, 7) which surrounds the sleeve (11).
- Planar radiator according to one of the preceding claims, characterised in that by means of suitable selection of the wall thickness (WS), the height (LS) and the dielectric constant εr of the sleeve (11) the inductive reactive component occasioned by the thickness (D2) of the first dielectric ply (5) is compensatable by means of the sleeve (11).
- Planar radiator according to claim 9 or 10, characterised in that the length (LS) of the sleeves (11) holds the distance between the radiator plane (1) and the network plane (2) constant at least in the areas of the continuous bores (10) or pins (9) even under the effect of external forces, and in particular forms defined support points for the assembly.
- Planar radiator according to one of the preceding claims, characterised in that by means of the coupling network (3) the inductive reactive component of the pin (9), occasioned by the thickness (D2) of the first dielectric ply (5), and the capacitive covering of the sleeve (11) are compensatable.
- Planar radiator according to one of the preceding claims, characterised in that the large-area resonators (4) are arranged rectangular and matrix-shaped in particular in two lines and four columns.
- Planar radiator according to claim 13, characterised in that the line and column distances of the large-area resonators (4) arranged in a matrix shape are identical.
- Planar radiator according to one of the preceding claims, characterised in that the network plane (3), consisting of the microstrip lines (8), the second dielectric ply (7) and the earthing surface (6), is prolonged in the form of a wave path (16) between the common coupling point (17) and a terminal fitting (18) in such a way that the coupling on the waveguide side takes place directly onto the terminal fitting (18) in coaxial layout without separation of the waveguide plane.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19615497A DE19615497A1 (en) | 1996-03-16 | 1996-03-16 | Planar radiator |
DE19615497 | 1996-03-16 | ||
PCT/EP1997/001275 WO1997035355A1 (en) | 1996-03-16 | 1997-03-13 | Planar emitter |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0886887A1 EP0886887A1 (en) | 1998-12-30 |
EP0886887B1 true EP0886887B1 (en) | 1999-09-22 |
Family
ID=7791749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97914238A Expired - Lifetime EP0886887B1 (en) | 1996-03-16 | 1997-03-13 | Planar emitter |
Country Status (12)
Country | Link |
---|---|
US (1) | US6204814B1 (en) |
EP (1) | EP0886887B1 (en) |
JP (1) | JP2000507055A (en) |
KR (1) | KR20000064587A (en) |
CN (1) | CN1214152A (en) |
AT (1) | ATE185023T1 (en) |
CA (1) | CA2250928C (en) |
DE (2) | DE19615497A1 (en) |
GR (1) | GR3031727T3 (en) |
IL (1) | IL126131A (en) |
TW (1) | TW355854B (en) |
WO (1) | WO1997035355A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1239539A3 (en) * | 2001-03-02 | 2003-11-05 | Nokia Corporation | Antenna |
GB0105251D0 (en) | 2001-03-02 | 2001-04-18 | Nokia Mobile Phones Ltd | Antenna |
US6759984B2 (en) * | 2001-06-01 | 2004-07-06 | Agere Systems Inc. | Low-loss printed circuit board antenna structure and method of manufacture thereof |
WO2019212542A1 (en) * | 2018-05-01 | 2019-11-07 | Wafer Llc | Low cost dielectric for electrical transmission and antenna using same |
RU2738759C1 (en) * | 2020-06-04 | 2020-12-16 | Акционерное общество "Научно-производственная фирма "Микран" | Ultra-wideband planar emitter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0383292A2 (en) * | 1989-02-14 | 1990-08-22 | Fujitsu Limited | Electronic circuit device |
WO1995009455A1 (en) * | 1993-09-29 | 1995-04-06 | Hollandse Signaalapparaten B.V. | Multipatch antenna |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2442519A1 (en) * | 1978-11-24 | 1980-06-20 | Thomson Csf | PRINTED MONOPULSE PRIMER SOURCE FOR AIRPORT RADAR ANTENNA AND ANTENNA COMPRISING SUCH A SOURCE |
DE3514880A1 (en) * | 1984-05-22 | 1985-11-28 | Robert Bosch Gmbh, 7000 Stuttgart | Antenna array |
EP0200819A3 (en) | 1985-04-25 | 1987-12-09 | Robert Bosch Gmbh | Antenna array |
US4899164A (en) * | 1988-09-16 | 1990-02-06 | The United States Of America As Represented By The Secretary Of The Air Force | Slot coupled microstrip constrained lens |
US5001493A (en) * | 1989-05-16 | 1991-03-19 | Hughes Aircraft Company | Multiband gridded focal plane array antenna |
FR2647599B1 (en) * | 1989-05-24 | 1991-11-29 | Alcatel Espace | CIRCUIT REALIZATION STRUCTURE AND COMPONENTS APPLIED TO MICROWAVE |
US4973972A (en) * | 1989-09-07 | 1990-11-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Stripline feed for a microstrip array of patch elements with teardrop shaped probes |
US5245745A (en) * | 1990-07-11 | 1993-09-21 | Ball Corporation | Method of making a thick-film patch antenna structure |
US5231406A (en) * | 1991-04-05 | 1993-07-27 | Ball Corporation | Broadband circular polarization satellite antenna |
KR920022585A (en) * | 1991-05-14 | 1992-12-19 | 오오가 노리오 | Planar antenna |
US5153600A (en) * | 1991-07-01 | 1992-10-06 | Ball Corporation | Multiple-frequency stacked microstrip antenna |
JP2604947B2 (en) * | 1991-09-16 | 1997-04-30 | エルジー電子株式会社 | Planar antenna |
DE4239597C2 (en) * | 1991-11-26 | 1999-11-04 | Hitachi Chemical Co Ltd | Flat antenna with dual polarization |
JP2606521Y2 (en) * | 1992-02-27 | 2000-11-27 | 株式会社村田製作所 | Antenna device |
US5309164A (en) * | 1992-04-13 | 1994-05-03 | Andrew Corporation | Patch-type microwave antenna having wide bandwidth and low cross-pol |
JPH0812973B2 (en) * | 1993-04-02 | 1996-02-07 | 防衛庁技術研究本部長 | Array antenna device |
DE4340825A1 (en) * | 1993-12-01 | 1995-06-08 | Rothe Lutz | Planar radiator arrangement for direct reception of the TV signals of the direct-radiating satellite system TDF 1/2 |
US5859614A (en) * | 1996-05-15 | 1999-01-12 | The United States Of America As Represented By The Secretary Of The Army | Low-loss aperture-coupled planar antenna for microwave applications |
-
1996
- 1996-03-16 DE DE19615497A patent/DE19615497A1/en not_active Withdrawn
-
1997
- 1997-03-13 WO PCT/EP1997/001275 patent/WO1997035355A1/en active IP Right Grant
- 1997-03-13 US US09/142,679 patent/US6204814B1/en not_active Expired - Fee Related
- 1997-03-13 KR KR1019980707236A patent/KR20000064587A/en active IP Right Grant
- 1997-03-13 CA CA002250928A patent/CA2250928C/en not_active Expired - Fee Related
- 1997-03-13 EP EP97914238A patent/EP0886887B1/en not_active Expired - Lifetime
- 1997-03-13 DE DE59700474T patent/DE59700474D1/en not_active Expired - Fee Related
- 1997-03-13 JP JP9533125A patent/JP2000507055A/en not_active Ceased
- 1997-03-13 AT AT97914238T patent/ATE185023T1/en not_active IP Right Cessation
- 1997-03-13 IL IL12613197A patent/IL126131A/en not_active IP Right Cessation
- 1997-03-13 CN CN97193108A patent/CN1214152A/en active Pending
- 1997-03-15 TW TW086103233A patent/TW355854B/en active
-
1999
- 1999-11-03 GR GR990402821T patent/GR3031727T3/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0383292A2 (en) * | 1989-02-14 | 1990-08-22 | Fujitsu Limited | Electronic circuit device |
WO1995009455A1 (en) * | 1993-09-29 | 1995-04-06 | Hollandse Signaalapparaten B.V. | Multipatch antenna |
Also Published As
Publication number | Publication date |
---|---|
KR20000064587A (en) | 2000-11-06 |
CN1214152A (en) | 1999-04-14 |
TW355854B (en) | 1999-04-11 |
CA2250928C (en) | 2003-12-23 |
WO1997035355A1 (en) | 1997-09-25 |
CA2250928A1 (en) | 1997-09-25 |
IL126131A (en) | 2002-02-10 |
US6204814B1 (en) | 2001-03-20 |
IL126131A0 (en) | 1999-05-09 |
JP2000507055A (en) | 2000-06-06 |
DE19615497A1 (en) | 1997-09-18 |
DE59700474D1 (en) | 1999-10-28 |
EP0886887A1 (en) | 1998-12-30 |
GR3031727T3 (en) | 2000-02-29 |
ATE185023T1 (en) | 1999-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102017103161B4 (en) | Antenna device and antenna array | |
DE102019200893B4 (en) | Method of creating a waveguide, circuit device and radar system | |
DE69821327T2 (en) | Shorted stripline antenna and device with it | |
DE10030402B4 (en) | Surface mounting antenna and communication device using the same | |
DE69121352T2 (en) | Device for feeding a radiation element for two orthogonal polarizations | |
DE4244136C2 (en) | Integrated microwave circuit and method for its production | |
DE69624300T2 (en) | antenna | |
DE69823591T2 (en) | Layered aperture antenna and multilayer printed circuit board with it | |
DE69605501T2 (en) | Chip antenna | |
DE3784569T2 (en) | Microwave antenna. | |
EP1759438B1 (en) | Antenna | |
DE69613565T2 (en) | PHASE CONTROLLED GROUP ANTENNA WITH A CALIBRATION NETWORK | |
EP0766099A2 (en) | Doppler radar module | |
DE60128843T2 (en) | Microstrip conductor and microwave device provided therewith | |
DE60000346T2 (en) | Metal panel antenna | |
WO2001003238A1 (en) | Integrable dual-band antenna | |
EP2991159A1 (en) | Feed network for antenna systems | |
DE69936648T2 (en) | SUBSTRATANT WITH AN ELEMENT TO PREVENT ENERGY COUPLING BETWEEN ANTENNA AND LADDER | |
DE69906468T2 (en) | Multilayer stripline antenna | |
EP1410062A2 (en) | Radar device | |
DE3426565A1 (en) | Contact-free connection for planar leads | |
DE19629277C2 (en) | Arrangement for decoupling two orthogonally linearly polarized waves from a waveguide for an antenna for receiving satellite broadcasting signals | |
EP0886887B1 (en) | Planar emitter | |
EP0737371B1 (en) | Planar antenna | |
EP1370886B1 (en) | Antenna with coplanar waveguide feed for the transmission and/or reception of radar beams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19981016 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19990210 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990922 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990922 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990922 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990922 |
|
REF | Corresponds to: |
Ref document number: 185023 Country of ref document: AT Date of ref document: 19991015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59700474 Country of ref document: DE Date of ref document: 19991028 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991222 |
|
ET | Fr: translation filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: PATES TECHNOLOGY PATENTVERWERTUNGSGESELLSCHAFT FUE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000313 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000313 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19990922 |
|
K2C1 | Correction of patent specification (title page) published |
Effective date: 19990922 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: PATES TECHNOLOGY PATENTVERWERTUNGSGESELLSCHAFT FUE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020318 Year of fee payment: 6 Ref country code: NL Payment date: 20020318 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20020322 Year of fee payment: 6 Ref country code: IE Payment date: 20020322 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020325 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20020329 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 |
|
BERE | Be: lapsed |
Owner name: *PATES TECHNOLOGY PATENTVERWERTUNG.- FUR SATELLITE Effective date: 20030331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031002 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031127 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20031001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040305 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051001 |