EP0737371B1 - Planar antenna - Google Patents

Planar antenna Download PDF

Info

Publication number
EP0737371B1
EP0737371B1 EP95902093A EP95902093A EP0737371B1 EP 0737371 B1 EP0737371 B1 EP 0737371B1 EP 95902093 A EP95902093 A EP 95902093A EP 95902093 A EP95902093 A EP 95902093A EP 0737371 B1 EP0737371 B1 EP 0737371B1
Authority
EP
European Patent Office
Prior art keywords
planar antenna
conductor
antenna according
segment
feedpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95902093A
Other languages
German (de)
French (fr)
Other versions
EP0737371A1 (en
Inventor
Lutz Rothe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pates Technology Patentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh
Original Assignee
Pates Technology Patentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6503832&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0737371(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pates Technology Patentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh filed Critical Pates Technology Patentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh
Publication of EP0737371A1 publication Critical patent/EP0737371A1/en
Application granted granted Critical
Publication of EP0737371B1 publication Critical patent/EP0737371B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means

Definitions

  • the invention relates to a planar antenna according to the Preamble of claim 1.
  • the currently known antenna systems for the Reception of satellite signals, especially TV, Astra and DSR signals within the DBS band (Direct Broadcasting Satellite) from 11.70 Ghz to 12.50 Ghz for electronic means of communication are based on the electromagnetic excitation of dipole groups that are fed to each other in certain phases and thus linearly or circularly polarized Generate radiation fields.
  • Such planar antennas are mostly in triplate technology or microstrip technology realized.
  • the planar antenna is electronics in particular a converter downstream, which the Signals processed depending on the application.
  • planar antenna and electronics are connected mostly by means of a hollow waveguide with capacitive Coupling of the radiator sum signal.
  • planar antenna with downstream Electronics are the required dimensions of the individual assemblies disproportionately large by one sufficiently large reception or transmission power achieve so that the antenna is unnecessarily heavy in weight and becomes unwieldy, making use of such Spotlight systems for the handheld area is unsuitable.
  • manufacturing requirements are related on dimensions of the individual parts for the used Hollow waveguide very large, and the coupling of the Signals between planar antenna, waveguide and Electronics problematic, so that even at low Manufacturing deviations the signals from a component insufficiently coupled to the next. Also is a noise adaptation by means of such Hollow waveguide not possible.
  • JP-A-62-048103 a fastening part for a microstrip line antenna is known, by means of which the antenna can be connected to a coaxial conductor. It is based on a microstrip line antenna, which consists of a dielectric material, on one surface of which the microstrip line is attached and on the other surface of which the grounding conductor is attached. The grounding conductor has a much greater thickness than the dielectric material.
  • the generic microstrip line antenna of JP-A-62-048103 also has a fastening part which is fastened to the grounding conductor by means of screws. A central pin lies in the fastening part and is held in position by means of a cylindrical dielectric body.
  • the central pin has an area with a smaller diameter and an area with a larger diameter, the area with the smaller diameter penetrating the dielectric material and the microstrip line and being connected to the latter by means of solder.
  • Such a design of the center pin has advantages and disadvantages.
  • the advantage is that, on the one hand, the soldering of the free end of the part to the microstrip line and, on the other hand, the connection to the external circuits, not shown, is facilitated by the thicker area of the central pin.
  • JP-A-62-048103 now has the task of preventing these reflection and radiation losses.
  • JP-A-62-048103 proposes to extend the area of the center pin with a smaller outside diameter in the direction of the grounding conductor and to encase it in the area of the grounding conductor with a bushing made of a dielectric material, which creates an additional characteristic impedance arises and by means of which an impedance matching between the areas of different diameters of the central pin can be carried out.
  • JP-A-62-048103 proposes suitable diameters D 1 and D 2 .
  • a coaxial socket not disclosed by JP-A-62-048103 must be inserted into the fastening part. From JP-A-62-048103 an impedance matching in the fastening part is known.
  • the fastening part of JP-A-62-048103 is large in size relative to the dimensions of the planar antenna, as a result of which the connection of the planar antenna and the downstream electronics takes up a disproportionate amount of space.
  • the transmission losses of the fastening part are also large, as a result of which the efficiency of the antenna is adversely affected, since impedance-based adaptation of the planar antenna and the downstream electronics is not possible.
  • the object of the invention is therefore a radiator system with planar antenna, coupling element and downstream To miniaturize electronics that out parts are easy and inexpensive to manufacture and by means of an impedance matching between the planar antenna and the downstream electronics is possible.
  • the coupling element is advantageously only from a few parts that are easy to manufacture.
  • the electromagnetic system is the radiator system particularly robust against mechanical forces as well against pollution and is therefore excellent for suitable for portable applications.
  • Design of the surface resonators linear or receive or transmit circularly polarized waves, which advantageously signals from various satellites can be received and sent.
  • the Surface resonators are either square or rectangular.
  • the impedance matching of the components by means of the coupling element advantageously relatively easy due to the length and / or changes in diameter of sections A1, A2 and A3 from inner and outer conductors.
  • Advantageous dimensions can be determined with the help of suitable ones numerical approximation methods are determined, whereby the dimensional changes as well as material changes of a part to the dimensions to be selected or Material constants of the other parts.
  • a good impedance and noise matching is obtained with the values for the Coupling part. With the values described it is Radiator system for a frequency range of 11.70 - 12.50 GHz optimized.
  • An impedance matching can also be achieved in this way by the inner diameter of the outer conductor and the outer diameter of the inner conductor is chosen to be constant being, at the same time adjoining dielectric washers with different Dielectric constant between the base plates of Planar antenna and downstream electronics are arranged. The thickness of the respective washer and their material determines the wave resistance of the Section. Using a suitable numerical The optimal values can be calculated using the process.
  • the Planar antenna, as well as the downstream electronics are relatively inexpensive and easy to produce, which makes a big one, especially with large quantities Cost advantage results.
  • the mechanical carrier plate stabilizes this Spotlight system and advantageously seals that Coupling part as well as the basic levels compared to the Outside world.
  • Around circularly polarized electromagnetic waves to receive or send using the planar antenna can be rectangular or square Area resonators are used, with the square surface resonators additional parasitic Radiator elements in the form of strip conductors in parallel for two opposite edges of one Area resonator at a certain distance from it to be ordered. The distance to be selected depends on which frequencies or Vibration conditions of the surface resonator optimized or should be set.
  • the surface resonators and the parallel stripline can be advantageous be produced by means of a laser beam, wherein first by means of a lithographic process rectangular surface is worked out. Means the laser beam can then be an exact one Voting or targeted frequency shift of the Area resonators of a group made to each other will.
  • the parallel stripline which means a laser beam or the lithographic process can be produced
  • a frequency tuning by means of two same in particular capacitive dummy switching elements be made with their one pole with the Intersection of the area diagonals are connected and with its other pole with one edge of each Area resonators are connected, the two Edges must face each other for a Symmetry is achieved, the vibration conditions enough.
  • the blind switch elements e.g. Capacitors
  • Capacitors can be an inexpensive tuning can be achieved, which can be carried out easily by hand leaves.
  • the planar antenna (1) is by means of Microstrip technology made using a base plate (2) Made of RT / duroid 5880, which is on its flat sides each with a thin copper layer (3,4) Layer thickness 17.5 ⁇ m is coated.
  • the planar antenna (1) has several surface resonators (5), which by means of a feed network (6) in phase with one Feed point (7) are connected. Area resonators (5), dining network (6), and the feeding point (7) using a common photolithographic process produced.
  • the side facing away from the radiation room the planar antenna (1) forms the ground or ground plane (8) the flanar antenna (1).
  • the food network purpose (3) and The surface resonators are thin due to their impedance formed strip lines (9) adapted to each other and are at an angle of 45 degrees to the extended surface resonator edges (10) with the corners the surface resonators (5) connected.
  • the coupling of the feed point (7) of the planar antenna (1) and connection point (11) of a downstream Electronics (12) take place as in FIGS. 2 and 3 represented by means of a coupling element (13).
  • the downstream electronics (12) is also by means of the microstrip technology manufactured and has on the Planar antenna (1) side facing its ground plane (14) and on its side facing away from the Planaratenne the soldered electronics (15) and one Connection point (16).
  • the coupling element (13) is made from the three sections A1, A2 and A3 the Form wave resistors Z1, Z2 and Z3.
  • the outer conductor (17) is a socket that is used when installing the Spotlight system on their end faces (18) with the Ground planes (8,14) by means of a press connection in electrical connection is coming.
  • the inner conductor consists of the two rotationally symmetrical parts (20.21).
  • the outside diameter (D3) of one outside Inner conductor part (21) is equal to the inner diameter the bore (22) of the central section part (23).
  • the other outer inner conductor part (24) has one smaller diameter (D1) than the molded middle one Inner conductor part (23).
  • On the two outer ones Inner conductor parts (21, 24) are ring washers (26, 27) the inner diameter (RI1, RI2) of the respective outer diameter (D1, D3) of Inner conductor parts (21, 24) and their outer diameter (RA1, RA2) equal to the inner diameter of the outer conductor (17).
  • annular air gap (28) Between the middle inner conductor part (23) and the outer conductor (17) is an annular air gap (28) intended.
  • the sum of the lengths of sections A1, A2 and A3 corresponds to the distance between the two base plates (2.29).
  • the two outer inner conductor parts (21, 24) reach through the base plates (2,29) and are with the Feed point (7) or with the connection point (16) soldered.
  • the bore (22) of the central inner conductor part (23) is so deep that considering the Manufacturing tolerances always an air gap (L) between the end face of the outer inner conductor part (21) and the Bottom of the bore (22) is.
  • the Dielectric constant is chosen so that the Radiation space and planar antenna (1) impedance are adapted to each other. This is achieved when the Thickness of the dielectric layer about 0.6 to 0.9 mm and the dielectric constant is 2.05 to 4 is.
  • Figure 4 shows a square surface resonator (5) the one parallel to the Y axis Edges (30) arranged in parallel at a distance (A)
  • Stripline (31) has the parasitic Represent radiator elements. The stripline (31) are used for mode adjustment.
  • FIG. 5 shows a square area resonator (5), at its center (32) two capacitive Blind switching elements (33) (capacitors) connected are. With their other poles (34) they are Blind switching elements (33) on opposite Edges (30) of the surface resonator (5) connected.
  • FIG. 6 shows a square area resonator (5), at its edges (30) in the direction of the center (32) two slots (36) of length (SA) and width (SB) are incorporated.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

PCT No. PCT/EP94/03957 Sec. 371 Date May 31, 1996 Sec. 102(e) Date May 31, 1996 PCT Filed Nov. 29, 1994 PCT Pub. No. WO95/15591 PCT Pub. Date Jun. 8, 1995The invention relates to a planar antenna 1 having surface resonators 5, which are connected via a supply network 6 to a supply point 7, the supply point 7 of the planar antenna 1 being connected via a coupling element 13 to an electronic circuit 12, particularly a converter, the coupling element 13 being a coaxial conductor in which the ratio, between the outer diameter of the inner conductor and the inner diameter of the outer conductor 17, changes between the supply point 7 of the supply network 6 and the terminal 11 of the electronic circuit 12.

Description

Die Erfindung betrifft eine Planarantenne nach dem Oberbegriff des Anspruch 1.The invention relates to a planar antenna according to the Preamble of claim 1.

Die gegenwärtig bekannten Antennensysteme für den Empfang von Satellitensignalen, insbesondere TV-, Astra und DSR-Signalen innerhalb des DBS-Bandes (Direct Broadcasting Satellite) von 11.70 Ghz bis 12.50 Ghz für elektronische Kommunikationsmittel, basieren auf der elektromagnetischen Anregung von Dipolgruppen, die jeweils in bestimmten Phasen zueinander gespeist werden und damit linear- oder zirkularpolarisierte Strahlungsfelder erzeugen. Derartige Planarantennen werden meist in Triplatetechnik oder Mikrostriptechnik realisiert. Der Planarantenne ist eine Elektronik, insbesondere ein Konverter nachgeschaltet, die die Signale je nach Anwendungsfall verarbeitet.The currently known antenna systems for the Reception of satellite signals, especially TV, Astra and DSR signals within the DBS band (Direct Broadcasting Satellite) from 11.70 Ghz to 12.50 Ghz for electronic means of communication are based on the electromagnetic excitation of dipole groups that are fed to each other in certain phases and thus linearly or circularly polarized Generate radiation fields. Such planar antennas are mostly in triplate technology or microstrip technology realized. The planar antenna is electronics in particular a converter downstream, which the Signals processed depending on the application.

Die Ankopplung von Planarantenne und Elektronik erfolgt meist mittels eines Hohlwellenleiters mit kapazitiver Einkopplung des Strahlersummensignals. The planar antenna and electronics are connected mostly by means of a hollow waveguide with capacitive Coupling of the radiator sum signal.

Bei dieser Art von Planarantenne mit nachgeschalteter Elektronik sind die erforderlichen Abmessungen der einzelnen Baugruppen unverhältnismäßig groß um eine genügend große Empfangs- bzw. Sendeleistung zu erzielen, so daß die Antenne unnötig schwer von Gewicht und unhandlich wird, wodurch ein Einsatz derartiger Strahlersysteme für den Handheldbereich ungeeignet ist. Zum anderen sind die Fertigungsanforderungen in bezug auf Abmessungen der einzelnen Teile für den verwendeten Hohlwellenleiter sehr groß, und die Ankopplung der Signale zwischen Planarantenne, Hohlwellenleiter und Elektronik problematisch, so daß schon bei geringen Fertigungsabweichungen die Signale von einem Bauelement zum nächsten nur ungenügend eingekoppelt werden. Auch ist eine Rauschanpassung mittels eines derartigen Hohlwellenleiters nicht möglich.In this type of planar antenna with downstream Electronics are the required dimensions of the individual assemblies disproportionately large by one sufficiently large reception or transmission power achieve so that the antenna is unnecessarily heavy in weight and becomes unwieldy, making use of such Spotlight systems for the handheld area is unsuitable. On the other hand, the manufacturing requirements are related on dimensions of the individual parts for the used Hollow waveguide very large, and the coupling of the Signals between planar antenna, waveguide and Electronics problematic, so that even at low Manufacturing deviations the signals from a component insufficiently coupled to the next. Also is a noise adaptation by means of such Hollow waveguide not possible.

Aus der JP-A-62-048103 ist ein Befestigungsteil für eine Mikrostrip-Leitungs-Antenne bekannt, mittels dem die Antenne mit einem Koaxialleiter verbindbar ist. Sie geht aus von einer Mikrostrip-Leitungs-Antenne, die aus einem dielektrischen Material besteht, an dessen einer Oberfläche die Mikrostrip-Leitung und an deren anderen Oberfläche der Erdungsleiter befestigt ist. Der Erdungsleiter hat dabei gegenüber dem dielektrischen Material eine wesentlich größere Dicke. Die gattungbildende Mikrostrip-Leitungs-Antenne der JP-A-62-048103 hat ebenfalls ein Befestigungsteil, welches an dem Erdungsleiter mittels Schrauben befestigt ist. In dem Befestigungsteil liegt ein Mittelstift ein, der mittels eines zylinderförmigen dielektrischen Körpers in Position gehalten wird. Der Mittelstift hat einen Bereich mit einem kleineren Durchmesser und einen Bereich mit einem größeren Durchmesser, wobei der Bereich mit dem kleineren Durchmesser das dielektrische Material und die Mikrostrip-Leitung durchdringt und mit letzterer mittels Lot verbunden ist. Eine derartige Gestaltung des Mittelstifts hat Vor- und Nachteile. Der Vorteil besteht darin, daß zum einen die Lötung des freien Endes des Teils mit der Mikrostrip-Leitung und zum anderen durch den dickeren Bereich des Mittelstifts der Anschluß an die nicht dargestellten externen Schaltkreise erleichtert wird. Wie in der JP-A-62-048103 zum Stand der Technik dargelegt wird, führt jedoch die Gestaltung aus kleinem und großen Durchmesser des Mittelstifts zu Problemen, da der Sprung des Außendurchmessers des Mittelstifts in der Nähe des Grenzbereichs zwischen Erdungsleiter und dem dielektrischen Körper zu einer Fehlanpassung der Impedanz der Mikrostrip-Leitungs-Antenne führt. Eine Fehlanpassung der Impedanz hat jedoch zur Folge, daß Reflexions- und Strahlungs-verluste auftreten. Diese Reflexions- und Strahlungsverluste zu unterbinden macht sich nun die JP-A-62-048103 zur Aufgabe. Zur Lösung des oben geschilderten Problems schlägt die JP-A-62-048103 vor, den Bereich des Mittelstifts mit kleinerem Außendurchmesser in Richtung des Erdungsleiters zu verlängern und im Bereich des Erdungsleiters mit einer aus einem dielektrischen Material bestehende Buchse zu ummanteln, wodurch ein zusätzlicher Wellenwiderstand entsteht und mittels dem eine Impedanzanpassung zwischen den Bereichen unterschiedlichen Durchmessers des Mittelstifts vornehmbar ist. Die JP-A-62-048103 schlägt dazu geeignete Durchmesser D1 und D2 vor. Um eine Verbindung zur Elektronik herzustellen muß in das Befestigungsteil eine durch die JP-A-62-048103 nicht offenbarte Koaxialbuchse eingesteckt werden. Aus der JP-A-62-048103 ist somit eine Impedanzanpassung in dem Befestigungsteil bekannt. Das Befestigungsteil der JP-A-62-048103 ist jedoch in seinen Abmessungen relativ zu den Abmessungen der Planarantenne groß, wodurch die Verbindung von Planarantenne und nachgeschalteter Elektronik unverhältnismäßig viel Platz einnimmt. Auch sind die Übertragungsverluste des Befestigungsteils groß, wodurch der Wirkungsgrad der Antenne nachteilig beeinflußt wird, da eine impedanzmäßige Anpassung von Planarantenne und nachgeschalteter Elektronik nicht möglich ist.From JP-A-62-048103 a fastening part for a microstrip line antenna is known, by means of which the antenna can be connected to a coaxial conductor. It is based on a microstrip line antenna, which consists of a dielectric material, on one surface of which the microstrip line is attached and on the other surface of which the grounding conductor is attached. The grounding conductor has a much greater thickness than the dielectric material. The generic microstrip line antenna of JP-A-62-048103 also has a fastening part which is fastened to the grounding conductor by means of screws. A central pin lies in the fastening part and is held in position by means of a cylindrical dielectric body. The central pin has an area with a smaller diameter and an area with a larger diameter, the area with the smaller diameter penetrating the dielectric material and the microstrip line and being connected to the latter by means of solder. Such a design of the center pin has advantages and disadvantages. The advantage is that, on the one hand, the soldering of the free end of the part to the microstrip line and, on the other hand, the connection to the external circuits, not shown, is facilitated by the thicker area of the central pin. However, as stated in the prior art JP-A-62-048103, the design of the small and large diameter of the center pin causes problems because the jump in the outer diameter of the center pin near the boundary area between the grounding conductor and the dielectric body leads to a mismatch in the impedance of the microstrip line antenna. A mismatch in impedance, however, results in reflection and radiation losses. JP-A-62-048103 now has the task of preventing these reflection and radiation losses. To solve the problem described above, JP-A-62-048103 proposes to extend the area of the center pin with a smaller outside diameter in the direction of the grounding conductor and to encase it in the area of the grounding conductor with a bushing made of a dielectric material, which creates an additional characteristic impedance arises and by means of which an impedance matching between the areas of different diameters of the central pin can be carried out. JP-A-62-048103 proposes suitable diameters D 1 and D 2 . In order to establish a connection to the electronics, a coaxial socket not disclosed by JP-A-62-048103 must be inserted into the fastening part. From JP-A-62-048103 an impedance matching in the fastening part is known. The fastening part of JP-A-62-048103, however, is large in size relative to the dimensions of the planar antenna, as a result of which the connection of the planar antenna and the downstream electronics takes up a disproportionate amount of space. The transmission losses of the fastening part are also large, as a result of which the efficiency of the antenna is adversely affected, since impedance-based adaptation of the planar antenna and the downstream electronics is not possible.

Aufgabe der Erfindung ist es daher, ein Strahlersystem mit Planarantenne, Kopplungselement und nachgeschalteter Elektronik zu miniaturisieren, das aus einfach und kostengünstig zu fertigen Teilen besteht und mittels dem eine Impedanzmäßige Anpassung zwischen der Planarantenne und der nachgeschalteten Elektronik möglich ist.The object of the invention is therefore a radiator system with planar antenna, coupling element and downstream To miniaturize electronics that out parts are easy and inexpensive to manufacture and by means of an impedance matching between the planar antenna and the downstream electronics is possible.

Diese Aufgabe wird erfindungsgemäß mit den Merkmalen der Patentansprüche 1 oder 18 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben. Das Kopplungselement besteht dabei vorteilsmäßig nur aus wenigen Teilen, die einfach zu fertigen sind. Durch die feste galvanische Kopplung mittels einer derartigen elektromagnetischen Blende ist das Strahlersystem besonders robust gegen mechanische Kräfte sowie gegenüber Verschmutzung und ist daher hervorragend für portable Anwendungen geeignet. Mittels des erfindungsgemäßen Strahlersystems lassen sich je nach Gestaltung der Flächenresonatoren linear- oder zirkularpolarisierte Wellen empfangen bzw. senden, wodurch vorteilhaft Signale verschiedenster Satelliten empfangen und gesendet werden können. Die Flächenresonatoren sind dazu entweder quadratisch oder rechteckförmig. Die Impedanzanpassung der Komponenten mittels des Kopplungselements läßt sich vorteilhafterweise relativ leicht durch die Längen- und/oder Durchmesseränderungen der Abschnitte A1, A2 und A3 von Innen- und Außenleiter erzielen. Vorteilhafte Abmessungen können mit Hilfe geeigneter numerischer Annährungsverfahren ermittelt werden, wobei sich die Abmessungsänderungen sowie Materialänderungen eines Teils auf die zu wählenden Abmessungen oder Katerialkonstanten der anderen Teile auswirkt. Eine gute impedanz- und rauschmäßige Anpassung erhält man mit den in Unteranspruch 11 ermittelten Werten für das Kopplungsteil. Mit den beschriebenen Werten ist das Strahlersystem für eine Frequenzbereich von 11.70 - 12.50 GHz optimiert.This object is achieved with the features of claims 1 or 18 solved. Beneficial Refinements are specified in the subclaims. The coupling element is advantageously only from a few parts that are easy to manufacture. By the fixed galvanic coupling by means of such The electromagnetic system is the radiator system particularly robust against mechanical forces as well against pollution and is therefore excellent for suitable for portable applications. By means of the according to the invention Design of the surface resonators linear or receive or transmit circularly polarized waves, which advantageously signals from various satellites can be received and sent. The Surface resonators are either square or rectangular. The impedance matching of the components by means of the coupling element advantageously relatively easy due to the length and / or changes in diameter of sections A1, A2 and A3 from inner and outer conductors. Advantageous dimensions can be determined with the help of suitable ones numerical approximation methods are determined, whereby the dimensional changes as well as material changes of a part to the dimensions to be selected or Material constants of the other parts. A good impedance and noise matching is obtained with the values for the Coupling part. With the values described it is Radiator system for a frequency range of 11.70 - 12.50 GHz optimized.

Durch die sprunghafte Änderung des Außendurchmessers des Innenleiter und dessen Zweigeteiltheit, läßt sich das Strahlungssystem leicht und schnell montieren. Es werden keine zusätzlichen Teile benötigt, die die Innenleiterteile sowie Ringscheiben in Position halten müssen. Ferner vereinfacht sich das numerische Verfahren durch die Unterteilung des Kopplungselements in die drei Abschnitte A1, A2 und A3, da nur drei Kellenwiderstände bei der Berechnung berücksichtigt werden müssen.Due to the sudden change in the outside diameter of the inner conductor and its division into two parts, can be assemble the radiation system easily and quickly. It no additional parts are needed that the Hold inner conductor parts and washers in position have to. Furthermore, the numerical is simplified Method by dividing the coupling element in the three sections A1, A2 and A3, since only three Trowel resistances taken into account in the calculation Need to become.

Da die äußeren Enden des Innenleiters des Kopplungsteils mit dem Speisepunkt bzw. mit dem Anschlußpunkt verlötet werden, erhält man eine dauerhaft elektrische Verbindung zwischen den einzelnen Komponenten.Since the outer ends of the inner conductor of the Coupling part with the feed point or with the Are soldered, you get one permanent electrical connection between the individual Components.

Eine Impedanzanpassung kann auch dadurch erreicht werden, indem der Innendurchmesser des Außenleiters und der Außendurchmesser des Innenleiter konstant gewählt wird, wobei gleichzeitig aneinandergrenzende dielektrische Ringscheiben mit unterschiedlichen Dielektrizitätskonstanten zwischen den Basisplatten von Planarantenne und nachgeschalteter Elektronik angeordnet sind. Die Dicke der jeweiligen Ringscheibe und deren Material bestimmt den Wellenwiderstand des Abschnitts. Mittels eines geeigneten numerischen Verfahrens lassen sich die optimalen Werte berechnen.An impedance matching can also be achieved in this way by the inner diameter of the outer conductor and the outer diameter of the inner conductor is chosen to be constant being, at the same time adjoining dielectric washers with different Dielectric constant between the base plates of Planar antenna and downstream electronics are arranged. The thickness of the respective washer and their material determines the wave resistance of the Section. Using a suitable numerical The optimal values can be calculated using the process.

Durch die Bauweise in Mikrostreifentechnik kann die Planarantenne, sowie die nachgeschaltete Elektronik relativ kostengüngstig und einfach produziert werden, wodurch sich gerade bei hohen Stückzahlen ein großer Kostenvorteil ergibt.Due to the construction in microstrip technology, the Planar antenna, as well as the downstream electronics are relatively inexpensive and easy to produce, which makes a big one, especially with large quantities Cost advantage results.

Die mechanische Trägerplatte stabilisiert das Strahlersystem und dichtet vorteilsmäßig das Kopplungsteil sowie die Grundebenen gegenüber der Außenwelt ab.The mechanical carrier plate stabilizes this Spotlight system and advantageously seals that Coupling part as well as the basic levels compared to the Outside world.

Um zirkular polarisierte elektromagnetische Wellen mittels der Planarantenne zu empfangen bzw. senden, können rechteckförmige oder quadratische Flächenresonatoren verwendet werden, wobei bei den quadratischen Flächenresonatoren zusätzliche parasitäre Strahlerelemente in Form von Streifenleitern parallel zu je zwei sich gegenüberliegenden Kanten eines Flächenresonators in einem bestimmten Abstand dazu angeordnet werden. Der jeweils zu wählende Abstand hängt davon ab, für welche Frequenzen bzw. Schwingungsbedingungen der Flächenresonator optimiert oder eingestellt werden soll. Die Flächenresonatoren und die parallelen Streifenleiter können vorteilsmäßig mittels eines Laserstrahls hergestellt werden, wobei zuerst mittels eines lithographischen Verfahrens eine rechteckförmige Fläche herausgearbeitet wird. Mittels des Laserstrahls kann anschließend eine exakte Abstimmung oder gezielte frequenzmäßige Versetzung der Flächenresonatoren einer Gruppe zueinander vorgenommen werden.Around circularly polarized electromagnetic waves to receive or send using the planar antenna, can be rectangular or square Area resonators are used, with the square surface resonators additional parasitic Radiator elements in the form of strip conductors in parallel for two opposite edges of one Area resonator at a certain distance from it to be ordered. The distance to be selected depends on which frequencies or Vibration conditions of the surface resonator optimized or should be set. The surface resonators and the parallel stripline can be advantageous be produced by means of a laser beam, wherein first by means of a lithographic process rectangular surface is worked out. Means the laser beam can then be an exact one Voting or targeted frequency shift of the Area resonators of a group made to each other will.

Anstelle der parallelen Streifenleiter, die mittels eines Laserstrahls oder des lithographischen Verfahrens herstellbar sind, kann auch bei einem quadratischen Flächenresonator eine Frequenzabstimmung mittels zweier gleicher insbesondere kapazitiver Blindschaltelemente vorgenommen werden, die mit ihrem einen Pol mit dem Schnittpunkt der Flächendiagonalen verbunden sind und mit ihrem anderen Pol mit jeweils einer Kante des Flächenresonators in Verbindung sind, wobei die beiden Kanten sich gegenüberliegen müssen, damit eine Symmetrie erreicht wird, die den Schwingungsbedingungen genügt. Mittels der Blindschlatelemente (z.B. Kondensatoren) kann eine kostengünstige Abstimmung erzielt werden, die sich leicht per Hand durchführen läßt.Instead of the parallel stripline, which means a laser beam or the lithographic process can be produced, even with a square Area resonator a frequency tuning by means of two same in particular capacitive dummy switching elements be made with their one pole with the Intersection of the area diagonals are connected and with its other pole with one edge of each Area resonators are connected, the two Edges must face each other for a Symmetry is achieved, the vibration conditions enough. Using the blind switch elements (e.g. Capacitors) can be an inexpensive tuning can be achieved, which can be carried out easily by hand leaves.

Ferner lassen sich bei quadratischen Flächenresonatoren Schlitze in der Mitte zweier sich gegenüberliegenden Kanten mittels eines Lasers oder Ätzverfahrens herstellen, die es ermöglichen auch mit quadratischen Flächenresonatoren zirkular polarisierte Wellen zu senden bzw. empfangen. Dabei wird bei einer Schlitzbreite von 0.025 der Leitungswellenlänge eine Modenüberlagerung zur Erzielung einer zirkularen Polarisation mit einer Elliptizität kleiner als 1 dB über den frequenzbereich der Planarantenne erreicht. Die Abmessungen der Schlitze müssen dabei gleich sein. Die Länge der Schlitze in Richtung des Mittelpunktes des Flächenresonators bestimmt die Frequenz, die von dem Flächenresonator empfangen/gesendet wird.Furthermore, with square surface resonators Slots in the middle of two opposite one another Edges using a laser or etching process manufacture, which also make it possible with square Area resonators to circularly polarized waves send or receive. Here, one Slot width of 0.025 of the line wavelength one Mode overlay to achieve a circular Polarization with an ellipticity less than 1 dB reached over the frequency range of the planar antenna. The dimensions of the slots must be the same. The length of the slots towards the center of the area resonator determines the frequency of the area resonator is received / sent.

Durch die zusätzliche dielektrische Dünnschicht wird zusätzlich eine impedanzmäßige Anpassung zwischen Flächenresonatoren und Strahlungsraum erzielt, wodurch der Gewinn der Antenne vorteilsmäßig erhöht wird. Auch werden die Flächenresonatoren, das Speisenetzwerk, sowie das Kopplungsteil gegen äußere Einflüsse, wie Schmutz und Wasser vorteilsmäßig geschützt.Due to the additional dielectric thin layer additionally an impedance adjustment between Area resonators and radiation space achieved, whereby the gain of the antenna is advantageously increased. Also the surface resonators, the dining network, and the coupling part against external influences, such as Dirt and water advantageously protected.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher erläutert.The following are exemplary embodiments of the invention explained in more detail with reference to drawings.

Es zeigen:

Fig. 1
Eine Draufsicht auf eine Planarantenne mit einem Array aus Flächenresonatoren, die mittels eines Speisenetzwerks phasengleich mit einem Speisepunkt in Verbindung sind.
Fig. 2
Eine Seitenansicht des Kopplungselements.
Fig. 3
Eine Seitenansicht des Kopplungselements.
Fig. 4
Ein Flächenresonatorelement mit parallelen Streifenleitern.
Fig. 5
Ein Flächenresonatorelement mit Blindschaltelementen.
Fig. 6
Ein Flächenresonatorelement mit Schlitzleitungselement.
Show it:
Fig. 1
A plan view of a planar antenna with an array of surface resonators, which are connected in phase with a feed point by means of a feed network.
Fig. 2
A side view of the coupling element.
Fig. 3
A side view of the coupling element.
Fig. 4
A surface resonator element with parallel strip conductors.
Fig. 5
A surface resonator element with dummy switching elements.
Fig. 6
A surface resonator element with a slot line element.

Die Figur 1 zeigt eine Draufsicht auf eine Planarantenne (1). Die Planarantenne (1) ist mittels Mikrostriptechnik hergestellt, wobei eine Basisplatte (2) aus RT/duroid 5880 ist, die an ihren flachen Seiten jeweils mit einer dünnen Kupferschicht (3,4) der Schichtdicke 17.5 um beschichtet ist. Die Planarantenne (1) hat mehrere Flächenresonatoren (5), die mittels eines Speisenetzwerks (6) phasengleich mit einem Speisepunkt (7) in Verbindung sind. Flächenresonatoren (5), Speisenetzwerk (6), sowie der Speisepunkt (7) sind mittels eines gängigen fotolithographischen Verfahrens hergestellt. Die dem Strahlungsraum abgewandte Seite der Planarantenne (1) bildet die Masse- bzw. Grundebene (8) der Flanarantenne (1). Das Speisenetzweck (3) und die Flächenresonatoren sind impedanzmäßig durch dünn ausgebildete Streifenleitungen (9) aneinander angepaßt und sind unter einem Winkel von 45 Grad zu den verlängerten Flächenresonatorkanten (10) mit den Ecken der Flächenresonatoren (5) verbunden.1 shows a plan view of a Planar antenna (1). The planar antenna (1) is by means of Microstrip technology made using a base plate (2) Made of RT / duroid 5880, which is on its flat sides each with a thin copper layer (3,4) Layer thickness 17.5 µm is coated. The planar antenna (1) has several surface resonators (5), which by means of a feed network (6) in phase with one Feed point (7) are connected. Area resonators (5), dining network (6), and the feeding point (7) using a common photolithographic process produced. The side facing away from the radiation room the planar antenna (1) forms the ground or ground plane (8) the flanar antenna (1). The food network purpose (3) and The surface resonators are thin due to their impedance formed strip lines (9) adapted to each other and are at an angle of 45 degrees to the extended surface resonator edges (10) with the corners the surface resonators (5) connected.

Die Ankopplung von Speisepunkt (7) der Planarantenne (1) und Anschlußpunkt (11) einer nachgeschalteten Elektronik (12) erfolgt wie in den Figuren 2 und 3 dargestellt mittels eines Kopplungselements (13). Die nachgeschaltete Elektronik (12) ist ebenfalls mittels der Mikrostriptechnik hergestellt und hat an der der Planarantenne (1) zugewandten Seite ihre Masseebene (14) und an ihrer der Planaratenne abgewandten Seite die aufgelötete Elektronik (15), sowie einen Anschlußpunkt (16). Das Kopplungselement (13) besteht aus den drei Abschnitten A1, A2 und A3 die die Wellenwiderstände Z1, Z2 und Z3 bilden. Der Außenleiter (17) ist eine Buchse, die bei der Montage des Strahlersystems an ihren Stirnseiten (18) mit den Masseebenen (8,14) mittels einer Preßverbindung in elektrische Verbindung kommt. Zwischen den Masseebenen (8,14) liegt eine mechanische Trägerplatte (19) ein, die den Außenleiter (17) umschließt. Der Innenleiter besteht aus den zwei rotationssymmetrischen Teilen (20,21). Der Außendurchmesser (D3) des einen äußeren Innenleiterteils (21) ist gleich dem Innendurchmesser der Bohrung (22) des mittleren Abschnittsteils (23). Das andere äußere Innenleiterteil (24) hat einen kleineren Durchmesser (D1) als das angeformte mittlere Innenleiterteil (23). Auf den beiden äußeren Innenleiterteilen (21,24) sind Ringscheiben (26,27) aufgeschoben, deren innerer Durchmesser (RI1,RI2) dem jeweiligen Außendurchmesser (D1, D3) der Innenleiterteile (21,24) und deren äußerer Durchmesser (RA1,RA2) gleich dem Innendurchmesser des Außerleiters (17). Zwischen dem mittleren Innenleiterteil (23) und dem Außenleiter (17) ist ein Ringluftspalt (28) vorgesehen. Die Summe der Längen der Abschnitte A1, A2 und A3 entspricht dem Abstand der beiden Basisplatten (2,29). Die beiden äußeren Innenleiterteile (21,24) durchgreifen die Basisplatten (2,29) und sind mit dem Speisepunkt (7) bzw. mit den Anschlußpunkt (16) verlötet. The coupling of the feed point (7) of the planar antenna (1) and connection point (11) of a downstream Electronics (12) take place as in FIGS. 2 and 3 represented by means of a coupling element (13). The downstream electronics (12) is also by means of the microstrip technology manufactured and has on the Planar antenna (1) side facing its ground plane (14) and on its side facing away from the Planaratenne the soldered electronics (15) and one Connection point (16). The coupling element (13) is made from the three sections A1, A2 and A3 the Form wave resistors Z1, Z2 and Z3. The outer conductor (17) is a socket that is used when installing the Spotlight system on their end faces (18) with the Ground planes (8,14) by means of a press connection in electrical connection is coming. Between the ground planes (8,14) is a mechanical carrier plate (19), which surrounds the outer conductor (17). The inner conductor consists of the two rotationally symmetrical parts (20.21). The outside diameter (D3) of one outside Inner conductor part (21) is equal to the inner diameter the bore (22) of the central section part (23). The other outer inner conductor part (24) has one smaller diameter (D1) than the molded middle one Inner conductor part (23). On the two outer ones Inner conductor parts (21, 24) are ring washers (26, 27) the inner diameter (RI1, RI2) of the respective outer diameter (D1, D3) of Inner conductor parts (21, 24) and their outer diameter (RA1, RA2) equal to the inner diameter of the outer conductor (17). Between the middle inner conductor part (23) and the outer conductor (17) is an annular air gap (28) intended. The sum of the lengths of sections A1, A2 and A3 corresponds to the distance between the two base plates (2.29). The two outer inner conductor parts (21, 24) reach through the base plates (2,29) and are with the Feed point (7) or with the connection point (16) soldered.

Die Bohrung (22) des mittleren Innenleiterteils (23) ist so tief, daß unter Berücksichtigung der Fertigungstoleranzen stets ein Luftspalt (L) zwischen der Stirnseite des äußere Innenleiterteils (21) und dem Boden der Bohrung (22) ist.The bore (22) of the central inner conductor part (23) is so deep that considering the Manufacturing tolerances always an air gap (L) between the end face of the outer inner conductor part (21) and the Bottom of the bore (22) is.

Über den Flächenresonatoren (5) ist im Abstand einer halben Freiraumwellenlänge eine dielektrische Dünnschicht (35) parallel angeordnet, deren Dielektrizitätskonstante so gewählt ist, daß der Strahlungsraum und Planarantenne (1) impedanzmäßig aneinander angepaßt sind. Dies wird erreicht, wenn die Dicke der dielektrischen Schicht etwa 0.6 bis 0.9 mm ist und die Dielektrizitätskonstante gleich 2.05 bis 4 beträgt.Above the surface resonators (5) there is a distance half a free space wavelength is a dielectric Thin film (35) arranged in parallel, the Dielectric constant is chosen so that the Radiation space and planar antenna (1) impedance are adapted to each other. This is achieved when the Thickness of the dielectric layer about 0.6 to 0.9 mm and the dielectric constant is 2.05 to 4 is.

In den Figuren 4 und 5 sind besondere Ausführungsformen der Flächenresonatoren (5) dargestellt.4 and 5 are special embodiments the surface resonators (5) shown.

So zeigt Figur 4 einen quadratischen Flächenresonator (5) der an seinen parallel zur Y-Achse verlaufenden Kanten (30) in einem Abstand (A) parallel angeordnete Streifenleiter (31) hat, die parasitäre Strahlerelemente darstellen. Die Streifenleiter (31) dienen dabei der Modenanpassung.Figure 4 shows a square surface resonator (5) the one parallel to the Y axis Edges (30) arranged in parallel at a distance (A) Stripline (31) has the parasitic Represent radiator elements. The stripline (31) are used for mode adjustment.

Figur 5 zeigt einen quadratischen Flächenresonator (5), an dessen Mittelpunkt (32) zwei kapazitive Blindschaltelemente (33) (Kondensatoren) angeschlossen sind. Mit ihren anderen Polen (34) sind die Blindschaltelemente (33) an sich gegenüberliegenden Kanten (30) des Flächenresonators (5) angeschlossen.FIG. 5 shows a square area resonator (5), at its center (32) two capacitive Blind switching elements (33) (capacitors) connected are. With their other poles (34) they are Blind switching elements (33) on opposite Edges (30) of the surface resonator (5) connected.

Figur 6 zeigt einen quadratischen Flächenresonator (5), an dessen Kanten (30) in Richtung des Mittelpunkts (32) zwei Schlitze (36) mit der Länge (SA) und der Breite (SB) eingearbeitet sind.FIG. 6 shows a square area resonator (5), at its edges (30) in the direction of the center (32) two slots (36) of length (SA) and width (SB) are incorporated.

Claims (18)

  1. A planar antenna (1) having surface resonators (5) which are connected to a feedpoint (7) by means of a supply network (6), the feedpoint (7) of the planar antenna (1) being connected to the terminal (11) of the connected electronics (12), more particularly a converter, by means of a coupling element (13), the coupling element (13) being a coaxial conductor in which the ratio between the external diameter of the inner conductor (20, 21) and the internal diameter of the outer conductor (17) changes between the feedpoint (7) of the supply network (6) and the terminal (11) of the connected electronics (12),
    characterised in that:
    the inner conductor (20, 21) of the coaxial conductor has three segments (A1, A2, A3) each having different diameters (D1, D2, D3), the outer end of one outer segment (A1) being electrically connected to the feedpoint (7) of the planar antenna (1), and the outer end of the other outer segment (A3) being electrically connected to the terminal (11) of the connected electronics (12), and
    the diameter (D2) of the central segment (A2) is larger than the diameter (D1, D3) of the two outer segments (A1, A3), and
    the outer segments (A1, A3) are each at least partially enclosed by a dialectric annular disc (R1, R2) and each segment (A1, A2, A3) forms a wave impedance (Z1, Z2, Z3) whose value is determined by the diameters (D1, D2, D3, DA), the materials used forming the inner and outer conductors (20, 21, 17), and the height of the ring discs (R1, R2) of the particular segment (A1, A3).
  2. A planar antenna according to claim 1,
    characterised in that the inner conductor is electrically connected to one end to the feedpoint (7) of the planar antenna (1) and by its other end to the connection point (11) of the connected electronics (12), and the outer conductor (7) is in electrically connected to the ground planes (8, 14) of the planar antenna (1) and also the connected electronics (12).
  3. A planar antenna according to claims 1 or 2,
    characterised in that the inner conductor (20, 21) its multipart, the individual part (20, 21) being electrically connected to one another, while more particularly the segments A1 and A2 are constructed as one part and the segment A3 is at least partially inserted in a blind bore (22) in the end face of the central segment A2 remote from the segment Al.
  4. A planar antenna according to one of the preceding claims,
    characterised in that the planar antenna (1) and the connected electronics (12) are adapted to one another with respect to impedance and/or noise by means of the wave resistors (Z1, Z2, Z3) formed by the individual segments (A1, A2, A3) of the coaxial conductor.
  5. A planar antenna according to one of the preceding claims,
    characterised in that the planar antenna (1) and/or the connected electronics (12) is or are produced by microstrip technology, each comprising a dialectric carrier plate (2, 29) one of whose sides, remote from the coupling element (13), bearing the strip-shaped metal conductors, the supply network (6) with feedpoint (7), the surface resonators (5) and/or the electronics (12), while the other side bears a metal ground plate (2, 29) which is electrically connected to the outer conductor (17), and the outer segment (A1, A3) of the inner conductor adjacent the planar antenna (1) or the connected electronics (12) extends through/pierces the diametric carrier plate (2, 29) in the zone of the feedpoint (7) or the connection point (11) and is electrically connected to the feedpoint (7) or the connecting point (11).
  6. A planar antenna according to one of the preceding claims,
    characterised in that at least one annular disc (R1, R2) is slid on to the outer segments (A1, A3) of the inner conductor, each annular disc bearing via one end face against the central segment (23) of the inner conductor and bearing via its other end face against the carrier plate (2) of the planar antenna (1) or the carrier plate (29) of the connected electronics (12).
  7. A planar antenna according to one of the preceding claims,
    characterised in that disposed between the metal ground planes (8, 14) of the planar antenna (1) and the connected electronics (12) is at least one mechanical carrier plate (19) whose thickness or total thickness corresponds substantially to the length of the outer conductor (17) of the coaxial and which encloses the outer conductor (17)
  8. A planar antenna according to one of the preceding claims,
    characterised in that the planar antenna (1) receives by means of the surface resonators (5) electromagnetic waves in the frequency range 11.70 GHz to 12.50 GHz, which it feeds by means of the supply network (6) to the feedpoint (7), the following dimensions and material properties being suitable for the coupling element (13):
    a) Outer conductor: material Al, Cu, Ag, m.p'ly Cu conductivity 35.4 *106 - 63.5 *106 S/m; internal diameter (DA) 4.2 - 5.0 mm,
    m.p'ly 4.8 - 5.0 mm,
    m.p'ly 4.8 mm;
    b) Inner conductor: outer segment (A1): length (LA1) 1.2 - 2.3 mm;
    m.p'ly 1.31 - 1.59 mm,
    m.p'ly 1.59 mm;
    external diameter (D1) 0.8 - 2.0 mm,
    m.p'ly 1.0 - 1.3 mm,
    m.p'ly 1.3 mm;
    material Al, Cu, Ag conductivity 10.64 *106 - 63.5 *106 S/m,
    m.p'ly 35.4 *106 - 63.5 *106 S/m;
    Central segment (A2): length (LA2) 9 - 14.5 mm,
    m.p'ly 12.5 - 14 mm,
    m.p'ly 13.5 mm,
    external diameter (D2) 1.8 - 2.4 mm,
    m.p'ly 1.8 - 2.2 mm,
    m.p'ly 2 mm;
    material Al, Cu, Ag conductivity 35.4 *106 - 63.5 *106 S/m;
    Outer segment (A3): length (LA3) 4.6 - 8.5 mm,
    m.p'ly 5.5 - 7.0 mm,
    m.p'ly 6.79 mm;
    external diameter (D3) 1.1 - 1.4 mm,
    m.p'ly 1.2 - 1.35 mm,
    m.p'ly 1.3 mm,
    material Al, Cu, Ag conductivity 10.64 *106 - 63.5 *106 S/m,
    m.p'ly 35.4 *106 - 63.5 *6 S/m;
    c) Annular disc (R1): material teflon, quartz dialectric constant 2.05 - 3.75,
    m.p'ly 2.05 - 2.2;
    internal diameter 0.6 - 2.2 mm,
    m.p'ly 1.1 - 1.5 mm,
    m.p'ly 1.305 mm;
    external diameter 3.5 - 4.8 mm,
    m.p'ly 4.2 - 4.8 mm,
    m.p'ly 4.8 mm;
    d) Annular disc (R2): material teflon, quartz dialetric constant 2.05 - 3.75,
    m.p'ly 2.05 - 2.2;
    internal diameter 0.8 - 2.2 mm,
    m.p'ly 1.3 - 1.4 mm,
    m.p'ly 1.31 mm;
    external diameter 3.5 - 4.8 mm,
    m.p'ly 4.2 - 4.8 mm,
    m.p'ly 4.8 mm.
  9. A planar antenna according to one of the preceding claims,
    characterised in that the surface resonators (5) are rectangular and more particularly have a side ratio y/x of 0.935 and are supplied in phase with one another by means of the supply network (6), at least one conductor of the supply network (6) so adjoining at least one corner of a surface resonator (5), more particularly at an angle of 45° in relation to the extended resonator edge lines (30), that a circularly polarised electro-magnetic wave of the antenna (1) is received or radiated by means of the surface resonator (5).
  10. A planar antenna according to one of the preceding claims,
    characterised in that a strip conductor (31) is disposed in parallel on each of two opposite sides (30), more particularly the sides of a square surface resonator (5) extending in parallel with the Y axis, the strip conductors (31) each being disposed more particularly at a distance of 0.02 times the conduction wave length of the received signals from the surface resonator (5).
  11. A planar antenna according to one of the preceding claims,
    characterised in that concentrated capacative of/or adjustable mimetic control elements (33) are connected between the intersection point of the surface diagonals of the surface resonator (4) and two opposite edges (30) of the surface resonator (5), the surface resonator (5) being more particularly square.
  12. A planar antenna according to one of the preceding claims,
    characterised in that the surface resonators (5) are square, while at each of two opposite edges a slot conduction element is provided parallel with the X axis and also in the plane of symmetry.
  13. A planar antenna according to one of the preceding claims,
    characterised in that the surface resonators (5) are square, and short circuit pins are provided between the resonator surface and the conductive ground plane (8) in the Y plane of symmetry at a distance from the edges extending parallel with the X axis.
  14. A planar antenna according to one of the preceding claims,
    characterised in that the centre points of the surface resonators (5) forming corners of the planar antenna (1) are electrically connected to the ground plane (8) by means of a coupling element.
  15. A planar antenna according to one of the preceding claims,
    characterised in that a thin dialetric layer (35) more particularly having a dialetric constant of 2.05 to 4 is disposed parallel with the plane of the surface resonators (5).
  16. A planar antenna according to one of the preceding claims,
    characterised in that the thin dialetric layer (35) is disposed at a distance of half the free space wave length from the surfaces of the surface resonator (5).
  17. A planar antenna according to one of the preceding claims,
    characterised in that the thin dialetric layer (35) has a thickness of 0.6 mm to 0.9 mm.
  18. A planar antenna according to claim 1,
    characterised in that the coupling element (13) is a coaxial conductor in which the outer conductor and the inner conductor have a constant diameter between the points (7, 11), and annular discs (R) of a different material and more particularly of different dialectric number are provided between the outer and inner conductors.
EP95902093A 1993-12-01 1994-11-29 Planar antenna Revoked EP0737371B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4340825A DE4340825A1 (en) 1993-12-01 1993-12-01 Planar radiator arrangement for direct reception of the TV signals of the direct-radiating satellite system TDF 1/2
DE4340825 1993-12-01
PCT/EP1994/003957 WO1995015591A1 (en) 1993-12-01 1994-11-29 Planar antenna

Publications (2)

Publication Number Publication Date
EP0737371A1 EP0737371A1 (en) 1996-10-16
EP0737371B1 true EP0737371B1 (en) 1998-07-22

Family

ID=6503832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95902093A Revoked EP0737371B1 (en) 1993-12-01 1994-11-29 Planar antenna

Country Status (25)

Country Link
US (1) US5777584A (en)
EP (1) EP0737371B1 (en)
JP (1) JPH09509796A (en)
KR (1) KR960706699A (en)
CN (1) CN1051408C (en)
AT (1) ATE168824T1 (en)
AU (1) AU690942B2 (en)
BG (1) BG100628A (en)
CA (1) CA2177954C (en)
CZ (1) CZ285794B6 (en)
DE (2) DE4340825A1 (en)
DK (1) DK0737371T3 (en)
ES (1) ES2122517T3 (en)
FI (1) FI962308L (en)
GE (1) GEP19991669B (en)
HR (1) HRP940969A2 (en)
HU (1) HU216219B (en)
IL (1) IL111827A0 (en)
NO (1) NO962222L (en)
PL (1) PL175450B1 (en)
SK (1) SK70096A3 (en)
TR (1) TR28051A (en)
TW (1) TW293188B (en)
WO (1) WO1995015591A1 (en)
ZA (1) ZA949494B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442894A1 (en) * 1994-12-02 1996-06-13 Dettling & Oberhaeusser Ing Receiver module for the reception of high-frequency electromagnetic directional radiation fields
DE19615497A1 (en) * 1996-03-16 1997-09-18 Pates Tech Patentverwertung Planar radiator
FR2757315B1 (en) * 1996-12-17 1999-03-05 Thomson Csf BROADBAND PRINTED NETWORK ANTENNA
DE19712510A1 (en) * 1997-03-25 1999-01-07 Pates Tech Patentverwertung Two-layer broadband planar source
IL121978A (en) * 1997-10-14 2004-05-12 Mti Wireless Edge Ltd Flat plate antenna arrays
US6285323B1 (en) 1997-10-14 2001-09-04 Mti Technology & Engineering (1993) Ltd. Flat plate antenna arrays
FR2811142B1 (en) * 2000-06-29 2002-09-20 Thomson Multimedia Sa DEVICE FOR TRANSMITTING AND / OR RECEIVING ELECTROMAGNETIC WAVES POWERED BY A NETWORK PRODUCED IN MICRO-TAPE TECHNOLOGY
DE102004037986A1 (en) * 2004-08-05 2006-03-16 Gerhard Schüle Cards bow
CN101877428B (en) * 2009-12-16 2013-03-13 北京星正通信技术有限责任公司 Ka panel antenna
US11482795B2 (en) * 2020-01-16 2022-10-25 Raytheon Company Segmented patch phased array radiator

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921177A (en) * 1973-04-17 1975-11-18 Ball Brothers Res Corp Microstrip antenna structures and arrays
US4386357A (en) * 1981-05-21 1983-05-31 Martin Marietta Corporation Patch antenna having tuning means for improved performance
US4686535A (en) * 1984-09-05 1987-08-11 Ball Corporation Microstrip antenna system with fixed beam steering for rotating projectile radar system
EP0200819A3 (en) * 1985-04-25 1987-12-09 Robert Bosch Gmbh Antenna array
JPS6248103A (en) * 1985-08-27 1987-03-02 Matsushita Electric Works Ltd Microstrip line antenna
US4835540A (en) * 1985-09-18 1989-05-30 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
US5087920A (en) * 1987-07-30 1992-02-11 Sony Corporation Microwave antenna
US4973972A (en) * 1989-09-07 1990-11-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Stripline feed for a microstrip array of patch elements with teardrop shaped probes
US5376942A (en) * 1991-08-20 1994-12-27 Sumitomo Electric Industries, Ltd. Receiving device with separate substrate surface
DE4130477A1 (en) * 1991-09-13 1993-03-18 Rbm Elektronik Automation Gmbh Signal detection of high frequency electromagnetic fields, esp. radio and TV signals passed via satellite - using planar radiators consisting of coupled system of planar waveguide resonators based on thin film microstrip or microslot technique
DE4138424A1 (en) * 1991-11-22 1993-05-27 Lutz Dr Ing Habil Rothe Receiver for directional HF and UHF radiation fields - has high conductivity quasi-surface element for specified reception and transmission frequency
DE4239597C2 (en) * 1991-11-26 1999-11-04 Hitachi Chemical Co Ltd Flat antenna with dual polarization
JP2840493B2 (en) * 1991-12-27 1998-12-24 株式会社日立製作所 Integrated microwave circuit
SG47560A1 (en) * 1992-04-13 1998-04-17 Andrew Corp Patch-type microwave antenna having wide bandwidth and low cross-pol
US5309164A (en) * 1992-04-13 1994-05-03 Andrew Corporation Patch-type microwave antenna having wide bandwidth and low cross-pol

Also Published As

Publication number Publication date
HU9601501D0 (en) 1996-07-29
JPH09509796A (en) 1997-09-30
GEP19991669B (en) 1999-06-14
EP0737371A1 (en) 1996-10-16
NO962222L (en) 1996-07-12
FI962308A7 (en) 1996-07-24
KR960706699A (en) 1996-12-09
ES2122517T3 (en) 1998-12-16
DE59406523D1 (en) 1998-08-27
ZA949494B (en) 1996-02-05
DE4340825A1 (en) 1995-06-08
NO962222D0 (en) 1996-05-30
SK70096A3 (en) 1996-12-04
BG100628A (en) 1997-01-31
IL111827A0 (en) 1995-01-24
HUT74633A (en) 1997-01-28
PL175450B1 (en) 1998-12-31
FI962308L (en) 1996-07-24
CZ285794B6 (en) 1999-11-17
CN1051408C (en) 2000-04-12
TR28051A (en) 1995-12-11
CZ158896A3 (en) 1996-09-11
CN1136864A (en) 1996-11-27
CA2177954C (en) 2000-10-24
HRP940969A2 (en) 1996-12-31
FI962308A0 (en) 1996-05-31
AU690942B2 (en) 1998-05-07
WO1995015591A1 (en) 1995-06-08
CA2177954A1 (en) 1995-06-08
PL314798A1 (en) 1996-09-30
US5777584A (en) 1998-07-07
AU1108495A (en) 1995-06-19
HU216219B (en) 1999-05-28
ATE168824T1 (en) 1998-08-15
DK0737371T3 (en) 1999-04-26
TW293188B (en) 1996-12-11

Similar Documents

Publication Publication Date Title
DE69121352T2 (en) Device for feeding a radiation element for two orthogonal polarizations
DE69222464T2 (en) Microstrip antenna
DE69107491T2 (en) Stripline antenna with guaranteed uniformity of polarization.
DE69527020T2 (en) Microstrip line antenna, especially for watch applications
DE102017103161B4 (en) Antenna device and antenna array
DE3789161T2 (en) Antenna for wireless communication device.
EP1104587B1 (en) Wide band planar radiator
DE60009874T2 (en) V-slot antenna for circular polarization
DE69604583T2 (en) PRINTED MULTI-BAND MONOPOLAR ANTENNA
DE3784569T2 (en) Microwave antenna.
DE69230365T2 (en) Microstrip antenna, in particular for satellite telephone transmissions
DE69218045T2 (en) Plane antenna
DE69804023T2 (en) ANTENNA
DE102016207434B4 (en) antenna device
DE69202160T2 (en) Radiator structure of a flat antenna.
DE3931752A1 (en) COAXIAL SLOT ANTENNA
EP0952625A2 (en) Antenna for several radio communications services
DE69116671T2 (en) Layered microwave stripline antenna
WO1994018719A1 (en) Directional antenna, in particular a dipole antenna
DE19533105A1 (en) High sensitivity non-directional loop antenna arrangement e.g for high frequency
DE69420886T2 (en) Antenna structure
EP0737371B1 (en) Planar antenna
DE3889061T2 (en) Microwave antenna.
DE19603803C2 (en) Quad antenna, on an insulating material and process for its manufacture
DE69108155T2 (en) Directional network with neighboring radiator elements for radio transmission system and unit with such a directional network.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19970502

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 168824

Country of ref document: AT

Date of ref document: 19980815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59406523

Country of ref document: DE

Date of ref document: 19980827

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981020

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2122517

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990219

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SAAB AB PATENT DEPT

Effective date: 19990422

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19991222

Year of fee payment: 6

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20000531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001211

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001215

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20001221

Year of fee payment: 7

Ref country code: DK

Payment date: 20001221

Year of fee payment: 7

Ref country code: CH

Payment date: 20001221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001222

Year of fee payment: 7

Ref country code: NL

Payment date: 20001222

Year of fee payment: 7

Ref country code: LU

Payment date: 20001222

Year of fee payment: 7

Ref country code: BE

Payment date: 20001222

Year of fee payment: 7

Ref country code: AT

Payment date: 20001222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20001226

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20001229

Year of fee payment: 7

REG Reference to a national code

Ref country code: PT

Ref legal event code: NF4A

Free format text: 'RESTITUTIO IN INTEGRUM'

Effective date: 20001229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20010715

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20010715

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: PT

Ref legal event code: MF4A

Effective date: 20011130