EP1104587B1 - Wide band planar radiator - Google Patents

Wide band planar radiator Download PDF

Info

Publication number
EP1104587B1
EP1104587B1 EP98917080A EP98917080A EP1104587B1 EP 1104587 B1 EP1104587 B1 EP 1104587B1 EP 98917080 A EP98917080 A EP 98917080A EP 98917080 A EP98917080 A EP 98917080A EP 1104587 B1 EP1104587 B1 EP 1104587B1
Authority
EP
European Patent Office
Prior art keywords
planar antenna
antenna according
stripline
radiator
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98917080A
Other languages
German (de)
French (fr)
Other versions
EP1104587A2 (en
Inventor
Lutz Rothe
Walter Gerhard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pates Technology Pantentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh
Original Assignee
Pates Technology Pantentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pates Technology Pantentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh filed Critical Pates Technology Pantentverwertungsgesellschaft fur Satelliten- und Moderne Informationstechnologien Mbh
Publication of EP1104587A2 publication Critical patent/EP1104587A2/en
Application granted granted Critical
Publication of EP1104587B1 publication Critical patent/EP1104587B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • H01Q21/0081Stripline fed arrays using suspended striplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to a planar antenna for receiving and Send linearly polarized waves, with two radiator planes arranged parallel to one another several each arranged in rows and columns Radiator elements, the radiator elements each Phase and radiator level each via a coupling network equal in amplitude to a central point are coupled, and the two radiator planes to each other receive or radiate orthogonally polarized waves.
  • the planar antenna is a radiator system for the directional receiving high frequency electromagnetic Radiation fields based on a planar Solution concept designed by means of the directed Information transmission routes, preferably for the Range of satellite-based data, audio and Video transmission, are operable.
  • the Invention ostensibly on the conception of Single radiators and their network-side coupling.
  • the scope of the invention also includes stationary and mobile telephone or Information transfer based on the satellite-based communication and the Sector of terrestrial information transmission on the Basis of defined point-to-point connections.
  • this connection are in particular the area of satellite-based analog and digital signal transmission, preferably within the spectral range between 10.70 GHz and 12.75 GHz, as well as the area of terrestrial point-to-point transmission, preferably within the Spectral range between 10.00 GHz and 10.40 GHz, targeted application focus.
  • planar spotlight solutions for the Reception of high-frequency electromagnetic radiation fields are based on the electromagnetic excitation of Aperture fields with rectangular, square, circular or Romanesque bezel, whose electromagnetic supply by means of geometry strip conductor of defined dimensions.
  • the mutual arrangement of the stimulating stripline or excited apertures and the respective interpretation of the The combination of aperture contours determines the character Statistics of the electromagnetic radiation field that can be generated.
  • the known arrangements are based on the Generation of circularly polarized electromagnetic radiation fields by means of diaphragm groups excited in phase, the individual panels each using a pair Stripline with dimensioned dimensions on the geometry side a mutual spatial and temporal displacement of 90 ° can be excited or linear on the generation polarized electromagnetic radiation fields by means of in-phase excited aperture groups, the individual Apertures each defined by means of a geometry dimensioned stripline, its geometric arrangement the direction of vibration of the electric field vector determined, done.
  • any additional solutions used are based on the Configuration of surface resonators in microstrip or Coplanar technology with square, rectangular or circular area boundary.
  • Other known solutions are based on microstrip configurations in ring or Frame design with a resonant geometric ring or Frame length.
  • the well-known solutions of the excitation networks in the case of group arrangement are based on the Parallel feeding of the radiator elements or on the Parallel feeding of series-fed spotlight subassemblies.
  • the execution of the coupling networks Microstrip, slot line, triplate or Coplanar techniques used.
  • the generation of two orthogonal polarizations is based according to the known state on the along the surface normal of the diaphragms or surface resonators of the radiator elements.
  • Known planar directional emitter arrangements with high directivity are exclusively as narrowband or in the case of satellite-based Information transfer configured as single-band systems.
  • the signal coupling or decoupling is known Way over a waveguide with a capacitive probe, where the waveguide geometry the propagation condition of the Maps field types of the highest cutoff wavelength.
  • EP 0 542 447 discloses a planar antenna in which two radiator elements arranged next to each other in phase opposition, i.e. are coupled out of phase by 180 °.
  • the Making the phase difference is different by long leads to the radiator elements are generated, whereby the feed lines are designed as strip lines and are arranged around the radiator elements.
  • the necessary length of the Supply lines are disproportionately long, which is disadvantageous large losses due to the coupling network used as well electromagnetic coupling phenomena result.
  • a planar antenna is also from EP 0 123 350 known for the radiator elements in one plane in rows and columns are arranged to each other, the Radiator elements via a common coupling network are connected, the directions of vibration of the Radiator elements are in phase. This results in inevitably a relatively large distance between the Radiator elements to each other, which means the profit per Area unit of the antenna is disadvantageously reduced.
  • the aim of the invention is the configuration planar transmitter and receiver modules, by means of which directed both direct and transponder based Information transmission routes primarily within the framework of the mobile terrestrial telephone or
  • the object of the present invention is therefore a To provide planar antenna, its geometric dimensions are as small as possible, the antenna being as possible spectral broadband with high area efficiency and is high directivity.
  • this task is accomplished by a planar antenna solved with the features of claim 1. Further advantageous features result from the features of subclaims.
  • the planar antenna according to the invention advantageously has a square one Fades open, one compared to round fades much higher broadband as well as a larger one Have polarization purity.
  • the optimum between electrical Broadband and necessary geometric space requirements is therefore a square aperture with rounded Corners used. Square or rectangular panels with other conceivable corner or side deformations also conceivable.
  • the excitation of the single radiator takes place via a Cover protruding ladder section.
  • the ladder shape, the shape the edges of the bezels and the position of the conductor to the aperture determine the base impedance of the Radiator element "aperture line".
  • the radiator elements are correct for impedance as well as amplitude and phase through a likewise planar feed or coupling network connected and to a common summation point (Coupling point). Usually this is a parallel supply between the individual radiators used. However, this is the case with single radiators with a square one Panel shape not due to the lack of space reasonably possible.
  • the diaphragms are supplied by line sections, which alternate in the level of electrical Polarization (E plane) are arranged. That’s all Radiator elements always aligned 180 ° in opposite directions and polarized. For in-phase feeding of all elements to ensure is by phase redirection between two adjacent apertures have a 180 ° phase difference generated.
  • This feed also has the advantage that excited propagating parasitic waves caused by Asymmetries in the excitation of the aperture by the Triplate feed lines arise through the serial Power to be largely wiped out and its negative Influencing the electrical functioning is significantly reduced.
  • the advantageous combination of square aperture with rounded corners and serial supply "leads to very good electrical Characteristic values with regard to the polarization purity, Isolation, the forward / reverse ratio as well as area efficiency.
  • the stimulating strip conductors serve to excite one determined both by the aperture geometry or contour, as well as the geometrical position and geometry of the stimulating stripline specified field or Vibration type within the aperture. This means that the formation of the resulting field or radiation type the aperture by the superimposition of the by the Arrangement and geometry of the stripline specified source or excitation conditions as well as by defined the aperture contour and geometry Propagation or existence condition is determined. about the targeted generation of a defined impedance profile within the aperture space by means of the arrangement and Dimensioning of the exciting strip conductor on the geometry side the polarization state of the Aperture field set so that in the case of the same Aperture contour both the orthogonal linear Polarizations as well as the orthogonal circular ones Polarizations are generated.
  • the Planar antenna according to the invention has one for this adapted, low-reflection and frequency broadband Transition from a coaxial line to a triplate line.
  • the difficulty with this type of coupling consists in the realization of a high frequency Earth connection between the coaxial outer conductor (earth) and the two ground lines of a triplate line rear coupling. This problem was solved by the Solved using a hollow profile segment. Here is the good earth connection between the hollow profile segment, the aperture masks and the coaxial coupling in and out crucial.
  • the trained "hollow profile” or “tunnel” is chosen so that the least possible reflection Decoupling the antenna signal power is possible.
  • the outer shape of the hollow segment is for the electrical properties insignificant and is off Manufacturing aspects determined. So are arbitrary many mechanical hollow profile segment shapes possible.
  • FIG. 1 shows a perspective detail drawing from the planar antenna according to the invention, in which the three conductive layers parallel to each other (Aperture masks) 3, 4 and 5 to the coupling networks 1 and 2 and the base plate 12 are arranged.
  • the panels 6 of the conductive layers 3, 4, 5 are one above the other arranged and together form the aperture spaces, which of those shown in Figures 2 and 3 Coupling networks and in particular through the strip-shaped stimulating strip conductors 16a and 16b be stimulated.
  • the base plate 12 is in one Distance of approximately ⁇ / 4 to the conductive layer 4 and serves for shielding in the direction of the base plate 12 radiated radiation and for reflection of this.
  • the spaces between the conductive layers 3, 4 and 5 and the base plate 12 and the coupling networks 1 and 2 are by means of dielectric layers 7, 8, 9, 10 and 11 filled in, the dielectric layers of Films or mats are made and between the individual layers are placed and positioned.
  • the Conductive layers 3 and 4 form with their diaphragms 6 together with the coupling network 1 n x m radiator elements.
  • the conductive layers 4 and 5 with their apertures 6 form together with the coupling network 2 also n x m radiator elements.
  • all stimulating strip conductors 16a are shown and 16b via the coupling networks phase and amplitude-homogeneous to a central one Coupling point 17 or 22 within the network level coupled.
  • Each coupling network consists of parent branches 13a 'or 13b', to the further branches 13a, 13b, 14a, 14b are connected.
  • the last branch of the network before the stimulating stripline will be reached in hereinafter referred to as a branch.
  • 31 is as can be seen from FIG. 5 via a short connecting line 36 the first exciting strip line 16 is connected.
  • 31 is also a U-shaped connecting line 32, 33, 34 connected with one leg 32, wherein on the other leg 34 at right angles over one another short lead 35 the second stimulating Strip line 16 is connected.
  • the two on the branch 15, 31 form connected stimulating stripline 16 together a group of two.
  • the one Stripline 16 'forming a group of two is not on one Line, but are arranged axially parallel to each other. As a result, the excitation or impedance of the planar antenna certainly.
  • the U-shaped connecting conductor 32, 33, 34 is in his geometric length and coupling profile side Arranged in such a way that in each case between the first and second, third and fourth, fifth and sixth etc. line aperture taking into account the mutual aperture coupling in the plane of electrical field vector of the state of phase opposition is produced.
  • the connecting cable used for the 180 ° phase shift 32, 33, 34 need not be U-shaped, but can have any other shape and form.
  • the stimulating strip conductors 16a, 16b are each center symmetrical (Fig. 5) or center asymmetrical (Fig.6), preferably center symmetrical to each of the an edge 6b of the panels 6 arranged.
  • the stripline 16a, 16b are perpendicular to each other. This gives the possibility of generating decoupled orthogonal linear polarization or the possibility of Generation of coupled and phase-shifted orthogonal polarization or circular polarization opposite direction of rotation of the field vector.
  • the individual are stimulating Strip lines 16a, 16b of the coupling networks 1 and 2 to one another arranged orthogonally so that by means of planar antenna according to the invention two mutually orthogonal polarized waves can be sent or received.
  • FIG. 8 shows a square diaphragm 6 straight edges 6b, which by means of circular arc segments 6c are connected.
  • Figure 9 shows one also square aperture 6 ', the corners 6c' are beveled.
  • edges 6b '' are not straight, but circular, elliptical or hyperbolic inward.
  • the diaphragms 6 of the individual conductive layers 3, 4 and 5 are each arranged in such a way that the Intersections of their lines of symmetry lie one above the other. As can be seen from FIG. 4, the diaphragms 6 are one Level arranged at the same distance from each other. It is however, it is also possible not to fade in a layer arrange even distances from each other. Can too the diaphragms against each other in columns or rows be shifted.
  • the dielectric layers 7, 8, 9, 10 and 11 can same or different susceptibility profiles exhibit.
  • the individual layers can either be homogeneous or from more than one sub-layer with the same or unequal, preferably the same, layer height as well the same or different, preferably the same, dielectric susceptibility profiles can be configured.
  • the coupling network is either strapless or by means of a low dielectric layer, preferably one low dielectric film with minimal dielectric Loss angle mechanically guided or stabilized.
  • the Configuration of the coupling networks including stimulating Stripline is done using additive techniques or subtractive method, preferably subtractive Process, preferably using PTFE or PET compositions, Polyethylene compositions, poly-4-methylpentene or poly-4-methylhexene can be used as structural supports.
  • each of which is one half of the Connect the coupling network to the coupling point.
  • a straight line Stripline section 50 arranged, which is centered with the inner conductor 42 of a coaxial waveguide, which to connect the planar antenna with the downstream one low-noise converter (LNC), not shown, galvanically connected.
  • the inner conductor 42 which passes through the conductor track 50 with this galvanically connected by means of a solder connection.
  • the strip-shaped conductor section 50 is made of two Projections 43a of a spacer ring 43 in the same in each case Distance bordered.
  • This Hollow profile segment is preferably rectangular, but can also be circular or elliptical.
  • the length of the Stripline 50 is determined in each case from the required impedance and line conditions.
  • FIG 11 is shown on the base plate 12 Arranged outer conductor part 40, which with its one Projection 40a through the base plate in the direction of the low-noise converter be upheld.
  • this can Outer conductor part 40 may be screwed to the base plate 12.
  • the outer conductor 40 lies with its collar 40b on the Base plate 12 on.
  • This collar 40b has a four or Hexagon shape so that it can be held using a wrench can work together.
  • the collar 40b closes in Direction of the conductive layers 3, 4, 5 in particular cylindrical part 40c, which with its end face forms the bearing surface for the spacer ring 43.
  • the outer conductor part 40 forms together with the inner conductor 42 and that of non-conductive material existing socket 41 a coaxial waveguide Connection of the downstream low-noise converter.
  • the The base plate 12 has a projection 40a External thread for attaching the low-noise converter.
  • the Thickness of the base plate 43b of the spacer ring 43 together with the length of the cylindrical part 40c and the length of the Collar 40b together corresponds to the distance between the Base plate and the conductive layer 5.
  • Additional Spacers 45 hold the base plate 12 and conductive layer 5 at a distance. Using screws 47 the conductive layers 4 and 5 are pressed together or held. For this purpose, the conductive layers 4 and 5 corresponding bores or recesses 46, 30 available.
  • Network level 2 also has a corresponding one Hole 24.
  • Figure 12 shows the coupling between coaxial Waveguide and the triplate waveguide of the network 1.
  • the existing of conductive material connects Spacer ring 43 'the two conductive layers 3, 4 and also penetrates network level 1.
  • spacers 45 'and associated screws 47' are the conductive layers 3 and 4 against each other pressurized.
  • the conductive outer conductor part 40 ' connects the base plate 12 conductively with the spacer ring 43 ', so that the base plate 12 together with the conductive Layers 3, 4 are at the same potential. All Parts of Figure 12 correspond in function to those of Figure 11. Functionally identical parts are therefore with the same but deleted reference numerals.
  • planar antenna Relevant dimensions of the planar antenna are shown below for the reception of waves in the frequency range between 10 GHz and 13 GHz listed.
  • the distance between the base plate 12 and the conductive layer 5 is 4 mm and is set by the spacer bushes 45 and the guide bushes 54 according to FIG. 15 and the outer conductor 40 together with the spacer ring 43.
  • the space between the base plate 12 and the conductive layer 5 is filled with a foam mat, the ⁇ r of which is approximately equal to 1.
  • a polyethylene foam film with a thickness of 1 mm is located between a conductive layer 3, 4, 5 and the respective adjacent coupling network 1 or 2.
  • the conductive layers consist of aluminum sheets with a thickness of 0.5 mm. Between the conductive layers 3, 4, 5 there is a coupling network 1 or 2, which is arranged on an optional glass fiber reinforced PTFE film (TLY) or PET film, the relative dielectric constant of 2.2 and the thickness of 127 ⁇ m ,
  • the spacer ring 43 has an outer diameter of 12 mm.
  • the inner diameter of the axial bore 43c has one Diameter of 5 mm.
  • the groove 43d has a width of 6 mm.
  • the width of the trunk branches 51 according to FIG. 13 is 2.1 mm, the width of the stripline 50 is 1.2 mm. in the Area of galvanic solder connection between inner conductor 42 and stripline 50, the stripline 50 is thickened executed, in particular by means of circular segment sections, whose radius is 0.85 mm.
  • the height of the base plate 43b the spacer ring 43 is 2 mm.
  • the height of the protrusions 43a is 2.625 mm.
  • the panels have a width and a length of 16 mm each. The corners are rounded the rounding being a segment of a circle with a radius of 5 mm corresponds. The centers of the panels 6 are each 21.5 mm apart.
  • the exciting strip conductors 16a for the horizontal plane have a length of 6 mm and a width of 1.5 mm.
  • the Distance between the two legs of the U-shaped connecting conductor 33 is 2.3 mm.
  • the radius of the circular section is 1.15 mm.
  • the distance from the edge 6b of an aperture to Center line of the nearest leg 32, 34 is 1.6 mm.
  • the length of the branch 31a is 5 mm.
  • the geometry distinguishes the radiation elements for the vertical plane differ only slightly from that of the radiator elements of the Horizontal plane.
  • the aperture shape is the same. Also amounts to the length of the stimulating strip line 16b 6 mm.
  • the width of the stimulating stripline 16b is 1 mm.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present radiator pertains to a planar array antenna for sending or receiving linear polarized waves, with two radiator levels each comprising radiator elements mounted in lines and columns, while the elements of each radiator level are coupled on a central point so as to be equal in phase and amplitude. Both radiator levels receive and transmit mutually perpendicular polarized waves, and each radiator element has shades (6) and a linear excitrated stripline (16, 161, 16a, 16b). Said striplines (16, 161, 16a 16b) are linked in pairs to the branch ends (15, 31) of the coupling networks (1, 2), and the striplines (16, 161, 16a 16b) of each pair are mounted on the axis or arranged in an axially parallel configuration; the free ends of both striplines (15, 161, 16a, 16b) are connected through at least one connection line (32, 33, 34, 36) to a brunch end (15, 31), and a 180° phase difference between both radiator elements (6,16) is obtained by using at least one connection line (32, 33, 34) of a stripline (16, 161, 16a, 16b).

Description

Die Erfindung betrifft eine Planarantenne zum Empfang und Senden von linear polarisierten Wellen, mit zwei flächenparallel zueinander angeordneten Strahlerebenen mit jeweils mehreren in Zeilen und Spalten angeordneten Strahlerelementen, wobei die Strahlerelemente jeder Strahlerebene über jeweils ein Kopplungsnetzwerk phasenund amplitudengleich auf jeweils einen zentralen Punkt gekoppelt sind, und die beiden Strahlerebenen zueinander orthogonal polarisierte Wellen empfangen oder abstrahlen.The invention relates to a planar antenna for receiving and Send linearly polarized waves, with two radiator planes arranged parallel to one another several each arranged in rows and columns Radiator elements, the radiator elements each Phase and radiator level each via a coupling network equal in amplitude to a central point are coupled, and the two radiator planes to each other receive or radiate orthogonally polarized waves.

Die Planarantenne ist als Strahlersystem für den Richt empfang höchstfrequenter elektromagnetischer Strahlungsfelder auf Grundlage einer planaren Lösungskonzeption ausgelegt, mittels der gerichtete Informationsübertragungsstrecken, vorzugsweise für den Bereich der satellitengestützten Daten-, Audio- und Videoübertragung, betreibbar sind. Hierbei bezieht sich die Erfindung vordergründig auf die Konzeption der Einzelstrahler sowie deren netzwerkseitige Kopplung.The planar antenna is a radiator system for the directional receiving high frequency electromagnetic Radiation fields based on a planar Solution concept designed by means of the directed Information transmission routes, preferably for the Range of satellite-based data, audio and Video transmission, are operable. Here the Invention ostensibly on the conception of Single radiators and their network-side coupling.

Das Anwendungsgebiet der Erfindung umfaßt ferner die stationäre sowie mobile Fernsprech- bzw. Informationsübertragung auf der Basis der satellitengestützten Nachrichtenübertragung sowie den Sektor der terrestrischen Informationsübertragung auf der Grundlage definierter Punkt-Zu-Punkt-Verbindungen. Hierbei sind insbesondere der Bereich der satellitengestützten analogen und digitalen Signalübertragung, vorzugsweise innerhalb des Spektralbereiches zwischen 10,70 GHz und 12,75 GHz, sowie der Bereich der terrestrischen Punkt-Zu-Punkt-Übertragung, vorzugsweise innerhalb des Spektralbereiches zwischen 10,00 GHz und 10,40 GHz, zielgemäße Applikationsschwerpunkte.The scope of the invention also includes stationary and mobile telephone or Information transfer based on the satellite-based communication and the Sector of terrestrial information transmission on the Basis of defined point-to-point connections. in this connection are in particular the area of satellite-based analog and digital signal transmission, preferably within the spectral range between 10.70 GHz and 12.75 GHz, as well as the area of terrestrial point-to-point transmission, preferably within the Spectral range between 10.00 GHz and 10.40 GHz, targeted application focus.

Gegenwärtig bekannte planare Strahlerlösungen für den Empfang hochfrequenter elektromagnetischer Strahlungsfelder basieren auf der elektromagnetischen Anregung von Blendenfeldern mit rechteckiger, quadratischer, kreisförmiger oder rombischer Blendenberandung, deren elektromagnetische Speisung mittels geometrieseitig definiert bemessener Streifenleiter erfolgt.Currently known planar spotlight solutions for the Reception of high-frequency electromagnetic radiation fields are based on the electromagnetic excitation of Aperture fields with rectangular, square, circular or Romanesque bezel, whose electromagnetic supply by means of geometry strip conductor of defined dimensions.

Die wechselseitige Anordnung der anregenden Streifenleiter bzw. angeregten Blenden sowie die jeweilige Auslegung der Blendenkontur bestimmen in ihrer Kombination die Charakte ristik des erzeugbaren elektromagnetischen Strahlungsfeldes. Hierbei beruhen die bekannten Anordnungen auf der Erzeugung zirkular polarisierter elektromagnetischer Strahlungsfelder mittels gleichphasig erregter Blendengruppen, wobei die einzelnen Blenden jeweils mittels eines Paares geometrieseitigen definiert bemessener Streifenleiter mit einer gegenseitig räumlichen und zeitlichen Versetzung von 90° angeregt werden oder aber auf der Erzeugung linear polarisierter elektromagnetischer Strahlungsfelder mittels gleichphasig erregter Blendengruppen, wobei die einzelnen Blenden jeweils mittels eines geometrieseitig definiert bemessenen Streifenleiters, dessen geometrische Anordnung die Schwingungsrichtung des elektrischen Feldvektors bestimmt, erfolgt. Bekannte Lösungen zur Gestaltung der Strahlerelemente basieren ferner auf der Verwendung geometrieseitig definiert bemessener, aus einem oder mehreren gleichen oder ungleichen Flächenelementen bestehender und galvanisch oder feldgestützt gekoppelter Leiterflächen mit quadratischer, rechteckiger, kreisförmiger oder trapezförmiger Flächenberandung, die zur Anregung der Blendenfelder führen, wobei die Polarisation über den Ort der Signaleinkopplung be- stimmt wird.The mutual arrangement of the stimulating stripline or excited apertures and the respective interpretation of the The combination of aperture contours determines the character Statistics of the electromagnetic radiation field that can be generated. The known arrangements are based on the Generation of circularly polarized electromagnetic radiation fields by means of diaphragm groups excited in phase, the individual panels each using a pair Stripline with dimensioned dimensions on the geometry side a mutual spatial and temporal displacement of 90 ° can be excited or linear on the generation polarized electromagnetic radiation fields by means of in-phase excited aperture groups, the individual Apertures each defined by means of a geometry dimensioned stripline, its geometric arrangement the direction of vibration of the electric field vector determined, done. Known solutions for the design of the Radiator elements are also based on use Geometrically defined dimensioned from one or several identical or different surface elements existing and galvanically or field-supported coupled Conductor surfaces with square, rectangular, circular or trapezoidal surface boundary, which for Excitation of the aperture fields result in the polarization is determined via the location of the signal coupling.

Darüber hinausgehende verwendete Lösungen beruhen auf der Konfiguration von Flächenresonatoren in Microstrip- oder Koplanartechnik mit quadratischer, rechteckiger oder kreisförmiger Flächenberandung. Hierbei sind sowohl galvanische als auch feldgestützte Ausführungen der Signaleinkopplung bekannt. Weitere bekannte Lösungen beruhen auf Microstripkonfigurationen in Ring- oder Rahmenausführung mit resonanter geometrischer Ring- bzw. Rahmenlänge. Die bekannten Lösungen der Anregungsnetzwerke für den Fall der Gruppenanordnung beruhen auf der Parallelspeisung der Strahlerelemente oder auf der Parallelspeisung seriengespeister Strahleruntergruppen. Hierbei werden für die Ausführung der Kopplungsnetzwerke Microstrip-, Schlitzleitungs-, Triplate- oder Koplanartechniken verwendet.Any additional solutions used are based on the Configuration of surface resonators in microstrip or Coplanar technology with square, rectangular or circular area boundary. Here are both galvanic as well as field-supported versions of the Signal coupling known. Other known solutions are based on microstrip configurations in ring or Frame design with a resonant geometric ring or Frame length. The well-known solutions of the excitation networks in the case of group arrangement are based on the Parallel feeding of the radiator elements or on the Parallel feeding of series-fed spotlight subassemblies. Here, the execution of the coupling networks Microstrip, slot line, triplate or Coplanar techniques used.

Die Erzeugung zweier orthogonaler Polarisationen beruht nach bekanntem Stand auf der entlang der Flächennormalen der Blenden bzw. Flächenresonatoren gestockten Anordnungsweise der Strahlerelemente. Bekannte planare Richtstrahleranordnungen mit hoher Richtwirkung sind ausschließlich als schmalbandige bzw. für den Fall der satellitengestützten Informationsübertragung als Single-Band-Systeme konfiguriert. Die Signalein- bzw. -auskopplung erfolgt bekannter Weise über einen Hohlleiter mit kapazitiver Sonde, wobei die Hohlleitergeometrie die Ausbreitungsbedingung des Feldtyps der höchsten Grenzwellenlänge abbildet.The generation of two orthogonal polarizations is based according to the known state on the along the surface normal of the diaphragms or surface resonators of the radiator elements. Known planar directional emitter arrangements with high directivity are exclusively as narrowband or in the case of satellite-based Information transfer configured as single-band systems. The signal coupling or decoupling is known Way over a waveguide with a capacitive probe, where the waveguide geometry the propagation condition of the Maps field types of the highest cutoff wavelength.

Die EP 0 542 447 offenbart eine Planarantenne, bei der zwei nebeneinander angeordnete Strahlerelemente gegenphasig, d.h. um 180° phasenverschoben gekoppelt sind. Die Herstellung der Phasendifferenz wird durch unterschiedlich lange Zuleitungen zu den Strahlerelementen erzeugt, wobei die Zuleitungen als Streifenleitungen ausgebildet sind und um die Strahlerelemente herum angeordnet sind. Durch diese spezielle Anordnung ist die notwendige Länge der Zuleitungen unverhältnismäßig lang, wodurch sich nachteilig große Verluste durch das verwendete Kopplungsnetzwerk sowie elektromagnetische Verkopplungserscheinungen ergeben.EP 0 542 447 discloses a planar antenna in which two radiator elements arranged next to each other in phase opposition, i.e. are coupled out of phase by 180 °. The Making the phase difference is different by long leads to the radiator elements are generated, whereby the feed lines are designed as strip lines and are arranged around the radiator elements. Through this special arrangement is the necessary length of the Supply lines are disproportionately long, which is disadvantageous large losses due to the coupling network used as well electromagnetic coupling phenomena result.

Aus der EP 0 123 350 ist ebenfalls eine Planarantenne bekannt, bei der Strahlerelemente in einer Ebene in Zeilen und Spalten zueinander angeordnet sind, wobei die Strahlerelemente über ein gemeinsames Kopplungsnetzwerk verbunden sind, wobei die Schwingungsrichtungen der Strahlerelemente gleichphasig sind. Hierdurch ergibt sich zwangsläufig ein relativ großer Abstand der Strahlerelemente zueinander, wodurch der Gewinn pro Flächeneinheit der Antenne nachteilig reduziert ist.A planar antenna is also from EP 0 123 350 known for the radiator elements in one plane in rows and columns are arranged to each other, the Radiator elements via a common coupling network are connected, the directions of vibration of the Radiator elements are in phase. This results in inevitably a relatively large distance between the Radiator elements to each other, which means the profit per Area unit of the antenna is disadvantageously reduced.

Das Ziel der Erfindung besteht in der Konfigurierung planarer Sende- und Empfangsmodule, mittels derer gerichtete sowohl direkte als auch transpondergestützte Informationsübertragungsstrecken vorrangig im Rahmen des mobilen terrestrischen Fernsprech- bzw. The aim of the invention is the configuration planar transmitter and receiver modules, by means of which directed both direct and transponder based Information transmission routes primarily within the framework of the mobile terrestrial telephone or

Informationsübertragungssektors sowie satellitengestützter Kommunikationslinien konzipierbar sind.Information transmission sector as well as satellite-based Communication lines are conceivable.

Aufgabe der vorliegenden Erfindung ist es daher, eine Planarantenne bereit zu stellen, deren geometrische Abmessungen möglichst klein sind, wobei die Antenne möglichst spektralbreitbandig mit hohem Flächenwirkungsgrad sowie hoher Richtwirkung ist.The object of the present invention is therefore a To provide planar antenna, its geometric dimensions are as small as possible, the antenna being as possible spectral broadband with high area efficiency and is high directivity.

Diese Aufgabe wird erfi-ndungsgemäß durch eine Planarantenne mit den Merkmalen des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Unteransprüche.According to the invention, this task is accomplished by a planar antenna solved with the features of claim 1. Further advantageous features result from the features of subclaims.

Die erfindungsgemäße Planarantenne weist vorteilhaft quadratische Blenden auf, die gegenüber runden Blenden eine viel höhere Breitbandigkeit sowie eine größere Polarisationsreinheit aufweisen. Quadratische Blenden haben jedoch den Nachteil der erhöhten elektromagnetischen Verkopplung und der gegenseitigen Beeinflussung benachbarter Strahlerelemente. Zudem benötigen quadratische Blenden einen höheren Platzbedarf, welcher sich nachteilig auf die Realisierung des Speisenetzwerks bemerkbar macht. Dies ist dadurch bedingt, daß lediglich die die Blenden anregenden Streifenleiter des Kopplungsnetzwerkes in den Blendenraum hineinragen dürfen und nicht das Kopplungsnetzwerk, welches die anregenden Streifenleiter mit dem Kopplungspunkt verbindet. Als Optimum zwischen elektrischer Breitbandigkeit und notwendigem geometrischen Platzbedarf wird deshalb eine quadratische Blende mit abgerundeten Ecken verwendet. Quadratische oder rechteckige Blenden mit anderen vorstellbaren Ecken- oder Seitendeformationen sind ebenfalls denkbar. The planar antenna according to the invention advantageously has a square one Fades open, one compared to round fades much higher broadband as well as a larger one Have polarization purity. Have square apertures however, the disadvantage of increased electromagnetic Coupling and mutual influence adjacent radiator elements. They also need square ones Dazzle a higher space requirement, which is disadvantageous to the realization of the dining network. This is due to the fact that only the aperture stimulating stripline of the coupling network in the Aperture space and not the coupling network, which the stimulating stripline with the Coupling point connects. As the optimum between electrical Broadband and necessary geometric space requirements is therefore a square aperture with rounded Corners used. Square or rectangular panels with other conceivable corner or side deformations also conceivable.

Die Anregung des Einzelstrahlers erfolgt über ein in die Blende hineinragendes Leiterstück. Die Leiterform, die Form der Berandung der Blenden, sowie die Position des Leiters zur Blende bestimmen die Fußpunktimpedanz des Strahlerelementes "Blende-Leitung". Die Strahlerelemente werden impedanzrichtig sowie amplituden- und phasengleich durch ein ebenfalls planares Speise- bzw. Kopplungsnetzwerk verbunden und zu einem gemeinsamen Summationspunkt (Kopplungspunkt) geführt. Üblicherweise wird hierbei eine parallele Speisung zwischen den Einzelstrahlern verwendet. Allerdings ist dies bei Einzelstrahlern mit quadratischer Blendenform aufgrund des fehlenden Platzbedarfs nicht sinnvoll möglich. Durch die Notwendigkeit einer impedanzrichtigen reflexionsarmen Einzelstrahlerankopplung sowie von notwendigen Impedanztransformationen ergeben sich entsprechende Leiterbreiten, die die praktischen Realisierungsmöglichkeiten weitgehend ausschließen. Beim Stand der Technik müssen daher mindestens zwei Speiseleitungen zwischen zwei Blenden ausgeführt werden, was zur erheblichen mechanischen und elektrischen Schwierigkeiten führt und eine praktische Realisierung so gut wie unmöglich machen wird.The excitation of the single radiator takes place via a Cover protruding ladder section. The ladder shape, the shape the edges of the bezels and the position of the conductor to the aperture determine the base impedance of the Radiator element "aperture line". The radiator elements are correct for impedance as well as amplitude and phase through a likewise planar feed or coupling network connected and to a common summation point (Coupling point). Usually this is a parallel supply between the individual radiators used. However, this is the case with single radiators with a square one Panel shape not due to the lack of space reasonably possible. Due to the need for one low-impedance single-reflector coupling with low impedance as well as necessary impedance transformations appropriate conductor widths, the practical implementation options largely exclude. At the state of the Technology must therefore have at least two feed lines between two bezels are running, which is significant leads to mechanical and electrical difficulties and make practical implementation practically impossible becomes.

Dieses prinzipielle Problem wird in der vorliegenden Erfindung mit einer neuen seriellen Speisetechnik zwischen zwei benachbarten Strahlerelementen gelöst. Durch die serielle Speisetechnik ist es möglich, das gesamte Speisenetzwerk mechanisch vereinfacht auszulegen und zugleich das Platzproblem bei der Speisung von quadratischen Blenden zu lösen. Außerdem werden die elektrischen Eigenschaften der Speiseleitung erheblich verbessert, weil keine zwischen den Blenden parallel verlaufenden Speiseleitungen auftreten und demzufolge keine elektromagnetischen Verkopplungserscheinungen, die die gesamte Funktionsfähigkeit nachteilig be einflußen, auftreten können.This principal problem is discussed in the present Invention with a new serial feeding technology between solved two adjacent radiator elements. Through the serial feeding technology it is possible to the whole Mechanically simplified design of the feed network and at the same time the space problem when feeding square shutters. In addition, the electrical properties of the feed line considerably improved because none parallel between the panels running feed lines occur and therefore none electromagnetic coupling phenomena that the adversely affect overall functionality, may occur.

Die Speisung der Blenden erfolgt durch Leitungsstücke, welche alternierend in der Ebene der elektrischen Polarisation (E-Ebene) angeordnet sind. Damit sind alle Strahlerelemente immer um 180° gegensinnig ausgerichtet und polarisiert. Um eine phasengleiche Speisung aller Elemente zu gewährleisten, wird durch eine Phasenumleitung zwischen zwei benachbarten Blenden eine 180° Phasendifferenz erzeugt. Diese Speisung hat ebenfalls den Vorteil, daß angeregte ausbreitungsfähige parasitäre Wellen, die durch Unsymmetrien bei der Anregung der Blende durch die Triplate-Speiseleitung entstehen, durch die serielle Speisung weitgehend ausgelöscht werden und ihre negative Beeinflussung auf die elektrische Funktionsweise beträchtlich reduziert wird. Die vorteilhafte Kombination von quadratischer Blende mit abgerundeten Ecken und serieller Speisung" führt zu sehr guten elektrischen Kennwerten hinsichtlich der Polarisationsreinheit, Isolation, des Vor/Rückverhältnisses sowie Flächenwirkungsgrades.The diaphragms are supplied by line sections, which alternate in the level of electrical Polarization (E plane) are arranged. That’s all Radiator elements always aligned 180 ° in opposite directions and polarized. For in-phase feeding of all elements to ensure is by phase redirection between two adjacent apertures have a 180 ° phase difference generated. This feed also has the advantage that excited propagating parasitic waves caused by Asymmetries in the excitation of the aperture by the Triplate feed lines arise through the serial Power to be largely wiped out and its negative Influencing the electrical functioning is significantly reduced. The advantageous combination of square aperture with rounded corners and serial supply "leads to very good electrical Characteristic values with regard to the polarization purity, Isolation, the forward / reverse ratio as well as area efficiency.

Die anregenden Streifenleiter dienen zur Anregung eines sowohl durch die Blendengeometrie bzw. -kontur bestimmten, als auch durch die geometrische Lage und Geometrie des anregenden Streifenleiters festgelegten Feld- bzw. Schwingungstyps innerhalb der Blende. Dies bedeutet, daß die Ausbildung des resultierenden Feld- bzw. Strahlungstyps der Blende durch die Überlagerung der durch die Anordnungsweise und Geometrie des Streifenleiters festgelegten Quell- bzw. Anregungsbedingung sowie der durch die Blendenkontur und -geometrie festgelegten Ausbreitungs- bzw. Existenzbedingung bestimmt wird. Über die gezielte Erzeugung eines definierten Impedanzprofils innerhalb des Blendenraums mittels der anordnungs- sowie geometrieseitigen Bemessung des anregenden Streifenleiters wird mit der Feldtypgeneration der Polarisationszustand des Blendenfeldes festgelegt, so daß für den Fall gleicher Blendenkontur sowohl die orthogonalen linearen Polarisationen als auch die orthogonalen zirkularen Polarisationen generiert werden. Komplementär werden für den Fall der gleichen Anregungselemente, das heißt, der gleichen anregenden Streifenleiter über die gezielte Erzeugung definierter Blindelemente innerhalb des Blendenraums mittels der kontur- sowie geometrieseitigen Bemessung der Blende die Ausbildung- bzw. Existenzbedin gungen sowohl der orthogonalen linearen Polarisation als auch der orthogonalen zirkularen Polarisation erzeugt. Mittels eines zusätzlichen Polarisieres kann die lineare Polarisation in eine zirkuläre Polarisation umgewandelt werden.The stimulating strip conductors serve to excite one determined both by the aperture geometry or contour, as well as the geometrical position and geometry of the stimulating stripline specified field or Vibration type within the aperture. This means that the formation of the resulting field or radiation type the aperture by the superimposition of the by the Arrangement and geometry of the stripline specified source or excitation conditions as well as by defined the aperture contour and geometry Propagation or existence condition is determined. about the targeted generation of a defined impedance profile within the aperture space by means of the arrangement and Dimensioning of the exciting strip conductor on the geometry side the polarization state of the Aperture field set so that in the case of the same Aperture contour both the orthogonal linear Polarizations as well as the orthogonal circular ones Polarizations are generated. Become complementary for the case of the same excitation elements, that is, the same stimulating stripline over the targeted Generation of defined dummy elements within the Aperture space by means of the contour and geometry side Dimensioning the aperture the training or existence conditions the orthogonal linear polarization as well also generated the orthogonal circular polarization. Using an additional polarizer, the linear Polarization converted to circular polarization become.

Um die Breitbandigkeit des Einzelstrahlers und des Speisenetzwerks zu erhalten, ist eine frequenzbreitbandige Kopplung zwischen dem gemeinsamen Speisepunkt der Antenne und der nachfolgenden Elektronik (LNC) notwendig. Die erfindungsgemäße Planarantenne hat hierfür einen angepaßten, reflektionsarmen und frequenzbreitbandigen Übergang von einer koaxialen Leitung zu einer Triplate-Leitung. Die Schwierigkeit bei dieser Art von Kopplung besteht in der Realisierung einer höchstfrequenten Masseverbindung zwischen dem koaxialen Außenleiter (Masse) und den zwei Masseleitungen einer Triplate-Leitung bei rückwärtiger Ankopplung. Dieses Problem wurde durch die Verwendung eines Hohlprofilsegmentes gelöst. Hierbei ist die gute Masseverbindung zwischen dem Hohlprofilsegment, den Blendenmasken und der koaxialen Ein- bzw. Auskopplung entscheidend. Das ausgebildete "Hohlprofil" oder "Tunnel" ist so gewählt, daß eine möglichst reflektionsarme Auskopplung der Antennensignalleistung möglich ist. Die äußere Form des hohlprofilen Segmentes ist für die elektrischen Eigenschaften unbedeutend und ist aus Fertigungsgesichtspunkten bestimmt. Somit sind beliebig viele mechanische Hohlprofilsegmentformen denkbar.To the broadband of the single radiator and Maintaining the feed network is a broadband frequency Coupling between the common feed point of the antenna and the subsequent electronics (LNC) necessary. The Planar antenna according to the invention has one for this adapted, low-reflection and frequency broadband Transition from a coaxial line to a triplate line. The difficulty with this type of coupling consists in the realization of a high frequency Earth connection between the coaxial outer conductor (earth) and the two ground lines of a triplate line rear coupling. This problem was solved by the Solved using a hollow profile segment. Here is the good earth connection between the hollow profile segment, the aperture masks and the coaxial coupling in and out crucial. The trained "hollow profile" or "tunnel" is chosen so that the least possible reflection Decoupling the antenna signal power is possible. The outer shape of the hollow segment is for the electrical properties insignificant and is off Manufacturing aspects determined. So are arbitrary many mechanical hollow profile segment shapes possible.

Nachfolgend wird der Erfindungsgegenstand und zusätzliche Ausführungsformen davon anhand von Figuren näher erläutert.Below is the subject of the invention and additional Embodiments thereof explained in more detail with reference to figures.

Es zeigen:

Figur 1:
eine perspektivische Schnittzeichnung durch die erfindungsgemäße Planarantenne;
Figur 2 und 3:
die Kopplungsnetzwerke der Planarantenne;
Figur 4:
eine leitfähige Schicht mit matrixförmig angeordneten Blenden;
Figur 5:
zwei benachbarte Blenden mit den sie anregenden Streifenleitern, welche mittensymmetrisch in den Blendenraum hineinragen;
Figur 6:
zwei benachbarte Blenden mit nicht mittensymmetrisch in den Blendenraum eingreifenden anregenden Streifenleitern;
Figur 7:
Überlagerung der beiden Kopplungsnetzwerke samt Darstellung der Blendenräume;
Figur 8 bis 10:
beispielhafte Blendenformen;
Figur 11 und 12:
Querschnittsdarstellung durch die Kopplungspunkte zwischen koaxialem Wellenleiter und Triplate-Netzwerk;
Figur 13: Figur 14:
Draufsicht auf einen Kopplungspunkt; einen Distanzring zur Bildung des Hohlprofilsegmentes;
Figur 15:
Führungsbuchse.
Show it:
Figure 1:
a perspective sectional drawing through the planar antenna according to the invention;
Figure 2 and 3:
the coupling networks of the planar antenna;
Figure 4:
a conductive layer with screens arranged in a matrix;
Figure 5:
two adjacent panels with the strip conductors that excite them, which protrude symmetrically into the aperture space;
Figure 6:
two adjacent diaphragms with stimulating strip conductors which do not engage in the center-symmetrically in the diaphragm space;
Figure 7:
Superimposition of the two coupling networks including representation of the aperture spaces;
Figure 8 to 10:
exemplary aperture shapes;
Figure 11 and 12:
Cross-sectional representation through the coupling points between coaxial waveguide and triplate network;
Figure 13: Figure 14:
Top view of a coupling point; a spacer ring to form the hollow profile segment;
Figure 15:
Guide bush.

Die Figur 1 zeigt eine perspektivische Ausschnittszeichnung aus der erfindungsgemäßen Planarantenne, bei der flächenparallel zueinander die drei leitfähigen Schichten (Blendenmasken) 3, 4 und 5 zu den Kopplungsnetzwerken 1 und 2 sowie der Grundplatte 12 angeordnet sind. Die Blenden 6 der leitfähigen Schichten 3, 4, 5 sind jeweils übereinander angeordnet und bilden zusammen die Blendenräume, welche von den in den Figuren 2 und 3 dargestellten Kopplungsnetzwerken und insbesondere durch die streifenförmigen anregenden Streifenleiter 16a und 16b angeregt werden. Die Grundplatte 12 befindet sich in einem Abstand von ca. λ/4 zu der leitfähigen Schicht 4 und dient zur Abschirmung der in die Richtung der Grundplatte 12 abgestrahlten Strahlung sowie zur Reflexion eben dieser. Die Zwischenräume zwischen den leitfähigen Schichten 3, 4 und 5 sowie der Grundplatte 12 und den Kopplungsnetzwerken 1 und 2 sind mittels dielektrischer Schichten 7, 8, 9, 10 und 11 ausgefüllt, wobei die dielektrischen Schichten aus Folien bzw. Matten hergestellt sind und zwischen die einzelnen Schichten gelegt und positioniert werden. Die leitfähigen Schichten 3 und 4 bilden mit ihren Blenden 6 zusammen mit dem Kopplungsnetzwerk 1 n x m-Strahlerelemente. Die leitfähigen Schichten 4 und 5 mit ihren Blenden 6 bilden zusammen mit dem Kopplungsnetzwerk 2 ebenfalls n x m-Strahlerelemente. Wie aus den Figuren 2 und 3 ersichtlich, sind sämtliche anregenden Streifenleiter 16a und 16b über die Kopplungsnetzwerke phasen- und amplitudenhomogen auf jeweils einen zentralen Kopplungspunkt 17 bzw. 22 innerhalb der Netzwerkebene gekoppelt. Jedes Kopplungsnetzwerk besteht aus Stammzweigen 13a' bzw. 13b', an die weitere Zweige 13a, 13b, 14a, 14b angeschlossen sind. Der letzte Zweig des Netzwerkes, bevor die anregenden Streifenleiter erreicht werden, wird im nachfolgenden als Ast bezeichnet. An diesen Ast 15, 31 ist wie aus Figur 5 ersichtlich über eine kurze Anschlußleitung 36 die erste anregende Streifenleitung 16 angeschlossen. An dem Ast 15, 31 ist ebenfalls eine U-förmige Anschlußleitung 32, 33, 34 mit ihrem einen Schenkel 32 angeschlossen, wobei an dem anderen Schenkel 34 rechtwinkelig über einen weiteren kurzen Anschlußleiter 35 die zweite anregende Streifenleitung 16 angeschlossen ist. Die beiden an den Ast 15, 31 angeschlossenen anregenden Streifenleiter 16 bilden zusammen eine Zweiergruppe. Die Streifenleiter 16a des Kopplungsnetzwerks 1, sowie die Streifenleiter 16b des Kopplungsnetzwerks 2, welche jeweils auf einer Linie liegen, bilden zusammen jeweils eine Zeile eines Kopplungsnetzwerks. Die Streifenleiter, welche parallel zueinander angeordnet sind, bilden jeweils eine Spalte. Wie in Figur 6 dargestellt, ist es auch möglich, daß die eine Zweiergruppe bildenden Streifenleiter 16' nicht auf einer Linie, sondern zueinander achsparallel angeordnet sind. Hierdurch wird die Anregung bzw. Impedanz der Planarantenne bestimmt.FIG. 1 shows a perspective detail drawing from the planar antenna according to the invention, in which the three conductive layers parallel to each other (Aperture masks) 3, 4 and 5 to the coupling networks 1 and 2 and the base plate 12 are arranged. The panels 6 of the conductive layers 3, 4, 5 are one above the other arranged and together form the aperture spaces, which of those shown in Figures 2 and 3 Coupling networks and in particular through the strip-shaped stimulating strip conductors 16a and 16b be stimulated. The base plate 12 is in one Distance of approximately λ / 4 to the conductive layer 4 and serves for shielding in the direction of the base plate 12 radiated radiation and for reflection of this. The spaces between the conductive layers 3, 4 and 5 and the base plate 12 and the coupling networks 1 and 2 are by means of dielectric layers 7, 8, 9, 10 and 11 filled in, the dielectric layers of Films or mats are made and between the individual layers are placed and positioned. The Conductive layers 3 and 4 form with their diaphragms 6 together with the coupling network 1 n x m radiator elements. The conductive layers 4 and 5 with their apertures 6 form together with the coupling network 2 also n x m radiator elements. As from Figures 2 and 3, all stimulating strip conductors 16a are shown and 16b via the coupling networks phase and amplitude-homogeneous to a central one Coupling point 17 or 22 within the network level coupled. Each coupling network consists of parent branches 13a 'or 13b', to the further branches 13a, 13b, 14a, 14b are connected. The last branch of the network before the stimulating stripline will be reached in hereinafter referred to as a branch. At this branch 15, 31 is as can be seen from FIG. 5 via a short connecting line 36 the first exciting strip line 16 is connected. On the branch 15, 31 is also a U-shaped connecting line 32, 33, 34 connected with one leg 32, wherein on the other leg 34 at right angles over one another short lead 35 the second stimulating Strip line 16 is connected. The two on the branch 15, 31 form connected stimulating stripline 16 together a group of two. The stripline 16a of the Coupling network 1, and the stripline 16b of the Coupling network 2, each on a line lie together form one line each Coupling network. The stripline, which is parallel are arranged to each other, each form a column. How shown in Figure 6, it is also possible that the one Stripline 16 'forming a group of two is not on one Line, but are arranged axially parallel to each other. As a result, the excitation or impedance of the planar antenna certainly.

Der U-förmige Anschlußleiter 32, 33, 34 ist in seiner geometrischen Länge sowie kopplungsprofilseitigen Anordnungsweise derart bemessen, daß jeweils zwischen der ersten und zweiten, dritten und vierten, fünften und sechsten usw. Zeilenblende unter Berücksichtigung der wechselseitigen Blendenkopplung jeweils in der Ebene des elektrischen Feldvektors der Zustand der Gegenphasigkeit erzeugt wird.The U-shaped connecting conductor 32, 33, 34 is in his geometric length and coupling profile side Arranged in such a way that in each case between the first and second, third and fourth, fifth and sixth etc. line aperture taking into account the mutual aperture coupling in the plane of electrical field vector of the state of phase opposition is produced.

Die zur 180° Phasenverschiebung dienende Anschlußleitung 32, 33, 34 muß nicht U-förmig ausgebildet sein, sondern kann jede beliebige andere Form und Gestalt aufweisen. Die U-form hat jedoch hinsichtlich des benötigten Platzes große Vorteile.The connecting cable used for the 180 ° phase shift 32, 33, 34 need not be U-shaped, but can have any other shape and form. The However, U-form has a lot of space Benefits.

Die anregenden Streifenleiter 16a, 16b sind jeweils mittensymmetrisch (Fig. 5) oder mittenunsymmetrisch (Fig.6), vorzugsweise mittensymmetrisch zur jeweils der einen Kante 6b der Blenden 6 angeordnet. Die Streifenleiter 16a, 16b verlaufen zueinander senkrecht. Hierdurch ergibt sich die Möglichkeit der Erzeugung entkoppelter orthogonaler linearer Polarisation oder die Möglichkeit der Erzeugung gekoppelter und phasenmäßig versetzter orthogonaler Polarisation bzw. zirkularer Polarisation gegensinnigen Drehsinnes des Feldvektors.The stimulating strip conductors 16a, 16b are each center symmetrical (Fig. 5) or center asymmetrical (Fig.6), preferably center symmetrical to each of the an edge 6b of the panels 6 arranged. The stripline 16a, 16b are perpendicular to each other. This gives the possibility of generating decoupled orthogonal linear polarization or the possibility of Generation of coupled and phase-shifted orthogonal polarization or circular polarization opposite direction of rotation of the field vector.

Wie aus Figur 7 ersichtlich, sind die einzelnen anregenden Streifenleiter 16a, 16b der Kopplungsnetzwerke 1 und 2 zueinander orthogonal angeordnet, so daß mittels der erfindungsgemäßen Planarantenne zwei zueinander orthogonal polarisierte Wellen sendbar bzw. empfangbar sind.As can be seen from Figure 7, the individual are stimulating Strip lines 16a, 16b of the coupling networks 1 and 2 to one another arranged orthogonally so that by means of planar antenna according to the invention two mutually orthogonal polarized waves can be sent or received.

Die Figuren 8 bis 10 zeigen unterschiedliche Blendenberandungen. Die Figur 8 zeigt eine quadratische Blende 6 mit geraden Kanten 6b, welche mittels Kreisbogensegmenten 6c miteinander in Verbindung sind. Die Figur 9 zeigt eine ebenfalls quadratische Blende 6', wobei die Ecken 6c' abgeschrägt sind.Figures 8 to 10 show different diaphragm borders. FIG. 8 shows a square diaphragm 6 straight edges 6b, which by means of circular arc segments 6c are connected. Figure 9 shows one also square aperture 6 ', the corners 6c' are beveled.

Eine weitere Möglichkeit mittels der Blendenberandung unter anderem die Breitbandigkeit der Planarantenne zu variieren bzw. einzustellen, ist in Figur 10 dargestellt. Hier sind die Kanten 6b'' nicht gerade, sondern kreis-, ellipsenoder hyperbelförmig nach innen gedrückt.Another option using the bezel border below to vary the broadband nature of the planar antenna is shown in Figure 10. Here are the edges 6b '' are not straight, but circular, elliptical or hyperbolic inward.

Die Blenden 6 der einzelnen leitenden Schichten 3, 4 und 5 werden jeweils derartig zueinander angeordnet, daß die Schnittpunkte ihrer Symmetrielinien übereinander liegen. Wie aus der Figur 4 ersichtlich, sind die Blenden 6 einer Ebene im gleichem Abstand zueinander angeordnet. Es ist jedoch auch möglich, die Blenden einer Ebene in nicht gleichmäßigen Abständen zueinander anzuordnen. Auch können die Blenden spalten- bzw. zeilenweise gegeneinander verschoben angeordnet sein. The diaphragms 6 of the individual conductive layers 3, 4 and 5 are each arranged in such a way that the Intersections of their lines of symmetry lie one above the other. As can be seen from FIG. 4, the diaphragms 6 are one Level arranged at the same distance from each other. It is however, it is also possible not to fade in a layer arrange even distances from each other. Can too the diaphragms against each other in columns or rows be shifted.

Die dielektrischen Schichten 7, 8, 9, 10 und 11 können die gleichen oder unterschiedliche Suszeptibilitätsprofile aufweisen. Die einzelnen Schichten können entweder homogen oder aus mehr als einer Teilschicht mit gleicher oder ungleicher, vorzugsweise gleicher, Schichthöhe sowie gleicher oder ungleicher, vorzugsweise gleicher, dielektrischer Suszeptibilitätsprofile konfiguriert sein. Das Kopplungsnetzwerk ist entweder trägerlos oder mittels einer niederdielektrischen Lage, vorzugsweise einer niederdielektrischen Folie mit minimalem dielektrischen Verlustwinkel mechanisch geführt bzw. stabilisiert. Die Konfiguration der Kopplungsnetzwerke samt anregender Streifenleiter erfolgt mittels additiver Techniken oder subtraktiver Verfahren, vorzugsweise subtraktiver Verfahren, wobei vorzugsweise PTFE- oder PET-Kompositionen, Polyethylen-Kompositionen, Poly-4-Methylpenten oder Poly-4-Methylhexen als Strukturträger verwendet werden.The dielectric layers 7, 8, 9, 10 and 11 can same or different susceptibility profiles exhibit. The individual layers can either be homogeneous or from more than one sub-layer with the same or unequal, preferably the same, layer height as well the same or different, preferably the same, dielectric susceptibility profiles can be configured. The coupling network is either strapless or by means of a low dielectric layer, preferably one low dielectric film with minimal dielectric Loss angle mechanically guided or stabilized. The Configuration of the coupling networks including stimulating Stripline is done using additive techniques or subtractive method, preferably subtractive Process, preferably using PTFE or PET compositions, Polyethylene compositions, poly-4-methylpentene or poly-4-methylhexene can be used as structural supports.

Wie aus den Figuren hervorgeht, besitzt jedes Kopplungsnetzwerk 1 und 2 Stammzweige 13a, 13b (Figuren 2 und 3) und 51 (Fig. 13), welche jeweils die eine Hälfte des Kopplungsnetzwerkes mit dem Kopplungspunkt verbinden. Zwischen den Stammzweigen 51 ist ein gradlinig ausgebildeter Streifenleiterabschnitt 50 angeordnet, welcher mittig mit dem Innenleiter 42 eines koaxialen Wellenleiters, welcher zur Verbindung der Planarantenne mit dem nachgeschalteten nicht dargestellten Low-Noise-Converter (LNC) dient, galvanisch verbunden. Vorzugsweise wird der Innenleiter 42, welcher durch die Leiterbahn 50 durchgreift mit diesem mittels einer Lötverbindung galvanisch verbunden. Der streifenförmige Leiterabschnitt 50 wird von zwei Vorsprüngen 43a eines Distanzringes 43 in jeweils gleichem Abstand berandet. Die Vorsprünge 43a bzw. 43a' verbinden die leitfähigen Schichten 3 und 4 bzw. 4 und 5 miteinander, so daß ein Hohlprofilsegment entsteht. Dieses Hohlprofilsegment ist vorzugsweise rechteckig, kann jedoch auch kreisförmig oder elliptisch sein. Die Länge des Streifenleiters 50 bestimmt sich jeweils aus der geforderten Impedanz sowie den Leitungsbedingungen. Wie in Figur 11 dargestellt, ist auf der Grundplatte 12 ein Außenleiterteil 40 angeordnet, welches mit seinem einen Vorsprung 40a durch die Grundplatte in Richtung des Low-Noise-Converters durchgreift. Wahlweise kann dieses Außenleiterteil 40 mit der Grundplatte 12 verschraubt sein. Hierzu ist ein Außengewinde an dem Außenleiterteil 40a im Bereich der Grundplatte 12 notwendig, welche ihrerseits ein korrespondierendes Innengewinde aufweisen muß. Der Außenleiter 40 liegt mit seinem Kragen 40b an der Grundplatte 12 an. Dieser Kragen 40b hat eine Vier- oder Sechskantform, so daß er mittels eines Schraubenschlüssels zusammenwirken kann. An den Kragen 40b schließt sich in Richtung der leitfähigen Schichten 3, 4, 5 ein insbesondere zylinderförmiger Teil 40c an, welcher mit seiner Stirnseite die Auflagefläche für den Distanzring 43 bildet. Ein weiterer zylindrischer Vorsprung 40d mit kleinerem Durchmesser schließt sich verjüngend an den den Kragen bildenden Vorsprung 40c an. Dieser Vorsprung 40d wird von dem Distanzring 43 umgriffen und durchgreift weiterhin die leitende Schicht 5 und schließt mit deren Oberfläche fluchtend ab. Das Außenleiterteil 40 bildet zusammen mit dem Innenleiter 42 und der aus nicht leitfähigem Material bestehenden Buchse 41 einen koaxialen Wellenleiter zum Anschluß des nachgeschalteten Low-Noise-Converters. Der die Grundplatte 12 durchgreifende Vorsprung 40a hat ein Außengewinde zur Befestigung des Low-Noise-Converters. Die Dicke der Grundplatte 43b des Distanzringes 43 zusammen mit der Länge des zylindrischen Teils 40c und der Länge des Kragens 40b entspricht zusammen dem Abstand zwischen der Grundplatte und der leitfähigen Schicht 5. Zusätzliche Distanzhülsen 45 halten die Grundplatte 12 und die leitfähige Schicht 5 auf Abstand. Mittels Schrauben 47 werden die leitfähigen Schichten 4 und 5 zusammengedrückt bzw. -gehalten. Hierzu sind in den leitfähigen Schichten 4 und 5 entsprechende Bohrungen bzw. Aussparungen 46, 30 vorhanden. Auch die Netzwerkebene 2 hat eine entsprechende Bohrung 24.As can be seen from the figures, everyone has Coupling network 1 and 2 trunk branches 13a, 13b (FIGS. 2 and 3) and 51 (Fig. 13), each of which is one half of the Connect the coupling network to the coupling point. Between the trunk branches 51 is a straight line Stripline section 50 arranged, which is centered with the inner conductor 42 of a coaxial waveguide, which to connect the planar antenna with the downstream one low-noise converter (LNC), not shown, galvanically connected. The inner conductor 42, which passes through the conductor track 50 with this galvanically connected by means of a solder connection. The strip-shaped conductor section 50 is made of two Projections 43a of a spacer ring 43 in the same in each case Distance bordered. Connect the projections 43a and 43a ' the conductive layers 3 and 4 or 4 and 5 with one another, so that a hollow profile segment is created. This Hollow profile segment is preferably rectangular, but can also be circular or elliptical. The length of the Stripline 50 is determined in each case from the required impedance and line conditions. As in Figure 11 is shown on the base plate 12 Arranged outer conductor part 40, which with its one Projection 40a through the base plate in the direction of the low-noise converter be upheld. Optionally, this can Outer conductor part 40 may be screwed to the base plate 12. For this purpose, an external thread on the outer conductor part 40a Area of the base plate 12 necessary, which in turn a must have a corresponding internal thread. The The outer conductor 40 lies with its collar 40b on the Base plate 12 on. This collar 40b has a four or Hexagon shape so that it can be held using a wrench can work together. The collar 40b closes in Direction of the conductive layers 3, 4, 5 in particular cylindrical part 40c, which with its end face forms the bearing surface for the spacer ring 43. On another cylindrical projection 40d with a smaller one Diameter tapers to the collar forming projection 40c. This projection 40d is made by gripped the spacer ring 43 and continues to reach through the conductive layer 5 and closes with its surface cursed. The outer conductor part 40 forms together with the inner conductor 42 and that of non-conductive material existing socket 41 a coaxial waveguide Connection of the downstream low-noise converter. The the The base plate 12 has a projection 40a External thread for attaching the low-noise converter. The Thickness of the base plate 43b of the spacer ring 43 together with the length of the cylindrical part 40c and the length of the Collar 40b together corresponds to the distance between the Base plate and the conductive layer 5. Additional Spacers 45 hold the base plate 12 and conductive layer 5 at a distance. Using screws 47 the conductive layers 4 and 5 are pressed together or held. For this purpose, the conductive layers 4 and 5 corresponding bores or recesses 46, 30 available. Network level 2 also has a corresponding one Hole 24.

Die Figur 12 zeigt die Kopplung zwischen koaxialem Wellenleiter und der Triplate-Wellenleitung des Netzwerkes 1. Hierzu verbindet der aus leitfähigem Material bestehende Distanzring 43' die beiden leitfähigen Schichten 3, 4 und durchgreift ebenfalls die Netzwerkebene 1. Mittels Distanzbuchsen 45' und zugehöriger Schrauben 47' werden die leitfähigen Schichten 3 und 4 gegeneinander druckbeaufschlagt. Das leitfähige Außenleiterteil 40' verbindet die Grundplatte 12 leitfähig mit dem Distanzring 43', so daß die Grundplatte 12 zusammen mit den leitfähigen Schichten 3, 4 auf dem gleichen Potential liegen. Sämtliche Teile der Figur 12 entsprechen in ihrer Funktion denen der Figur 11. Funktionsgleiche Teile sind daher mit dem gleichen , jedoch gestrichenen Bezugszeichen benannt.Figure 12 shows the coupling between coaxial Waveguide and the triplate waveguide of the network 1. For this purpose, the existing of conductive material connects Spacer ring 43 'the two conductive layers 3, 4 and also penetrates network level 1. Using spacers 45 'and associated screws 47' are the conductive layers 3 and 4 against each other pressurized. The conductive outer conductor part 40 ' connects the base plate 12 conductively with the spacer ring 43 ', so that the base plate 12 together with the conductive Layers 3, 4 are at the same potential. All Parts of Figure 12 correspond in function to those of Figure 11. Functionally identical parts are therefore with the same but deleted reference numerals.

Nachfolgend werden relevante Abmessungen der Planarantenne für den Empfang von Wellen des Frequenzbereichs zwischen ca. 10 GHz und 13 GHz aufgeführt.Relevant dimensions of the planar antenna are shown below for the reception of waves in the frequency range between 10 GHz and 13 GHz listed.

Der Abstand zwischen der Grundplatte 12 und der leitfähigen Schicht 5 beträgt 4 mm und wird durch die Distanzbuchsen 45 sowie den Führungsbuchsen 54 gemäß der Figur 15 und dem Außenleiter 40 zusammen mit dem Distanzring 43 eingestellt. Der Zwischenraum zwischen der Grundplatte 12 und der leitfähigen Schicht 5 ist mit einer Schaummatte, deren εr ungefähr gleich 1 ist, ausgefüllt. Zwischen einer leitfähigen Schicht 3, 4, 5 und dem jeweils angrenzenden Kopplungsnetzwerk 1 oder 2 befindet sich eine Polyethylenschaumfolie der Dicke 1 mm. Die leitfähigen Schichten bestehen aus Aluminiumblechen der Dicke 0,5 mm. Zwischen den leitfähigen Schichten 3, 4, 5 befindet sich mittensymmetrisch jeweils ein Kopplungsnetzwerk 1 oder 2, welches auf einer wahlweise glasfaserverstärkten PTFE-Folie (TLY) oder PET-Folie, der relativen Dielektrizitätszahl von 2,2 sowie der Dicke von 127 µm angeordnet ist.The distance between the base plate 12 and the conductive layer 5 is 4 mm and is set by the spacer bushes 45 and the guide bushes 54 according to FIG. 15 and the outer conductor 40 together with the spacer ring 43. The space between the base plate 12 and the conductive layer 5 is filled with a foam mat, the ε r of which is approximately equal to 1. A polyethylene foam film with a thickness of 1 mm is located between a conductive layer 3, 4, 5 and the respective adjacent coupling network 1 or 2. The conductive layers consist of aluminum sheets with a thickness of 0.5 mm. Between the conductive layers 3, 4, 5 there is a coupling network 1 or 2, which is arranged on an optional glass fiber reinforced PTFE film (TLY) or PET film, the relative dielectric constant of 2.2 and the thickness of 127 µm ,

Der Distanzring 43 hat einen Außendurchmesser von 12 mm. Der Innendurchmesser der axialen Bohrung 43c hat einen Durchmesser von 5 mm. Die Nut 43d hat eine Breite von 6 mm. Die Breite der Stammzweige 51 gemäß der Figur 13 beträgt 2,1 mm, die Breite der Streifenleiter 50 beträgt 1,2 mm. Im Bereich der galvanischen Lötverbindung zwischen Innenleiter 42 und Streifenleiter 50 ist der Streifenleiter 50 verdickt ausgeführt, insbesondere mittels Kreissegmentabschnitte, deren Radius 0,85 mm beträgt. Die Höhe der Grundplatte 43b des Distanzrings 43 beträgt 2 mm. Die Höhe der Vorsprünge 43a beträgt 2,625 mm. Die Blenden haben eine Breite und eine Länge von jeweils 16 mm. Die Ecken sind abgerundet, wobei die Rundung einem Kreissegment mit einem Radius von 5 mm entspricht. Die Mittelpunkte der Blenden 6 sind jeweils 21,5 mm voneinander entfernt.The spacer ring 43 has an outer diameter of 12 mm. The inner diameter of the axial bore 43c has one Diameter of 5 mm. The groove 43d has a width of 6 mm. The width of the trunk branches 51 according to FIG. 13 is 2.1 mm, the width of the stripline 50 is 1.2 mm. in the Area of galvanic solder connection between inner conductor 42 and stripline 50, the stripline 50 is thickened executed, in particular by means of circular segment sections, whose radius is 0.85 mm. The height of the base plate 43b the spacer ring 43 is 2 mm. The height of the protrusions 43a is 2.625 mm. The panels have a width and a length of 16 mm each. The corners are rounded the rounding being a segment of a circle with a radius of 5 mm corresponds. The centers of the panels 6 are each 21.5 mm apart.

Die anregenden Streifenleiter 16a für die Horizontalebene haben eine Länge von 6 mm und eine Breite von 1,5 mm. Der Abstand der beiden Schenkel des U-förmigen Anschlußleiters 33 beträgt 2,3 mm. Der Radius des Kreisabschnitts beträgt 1,15 mm. Der Abstand von der Kante 6b einer Blende zur Mittellinie des nächstliegenden Schenkels 32, 34 beträgt 1,6 mm. Die Länge des Astes 31a beträgt 5 mm. Die Geometrie der Strahlungselemente für die Vertikalebene unterscheidet sich nur unwesentlich von der der Strahlerelemente der Horizontalebene. Die Blendenform ist gleich. Auch beträgt die Länge der anregenden Streifenleiter 16b 6 mm. Die Breite der anregenden Streifenleiter 16b beträgt jedoch 1 mm.The exciting strip conductors 16a for the horizontal plane have a length of 6 mm and a width of 1.5 mm. The Distance between the two legs of the U-shaped connecting conductor 33 is 2.3 mm. The radius of the circular section is 1.15 mm. The distance from the edge 6b of an aperture to Center line of the nearest leg 32, 34 is 1.6 mm. The length of the branch 31a is 5 mm. The geometry distinguishes the radiation elements for the vertical plane differ only slightly from that of the radiator elements of the Horizontal plane. The aperture shape is the same. Also amounts to the length of the stimulating strip line 16b 6 mm. The However, the width of the stimulating stripline 16b is 1 mm.

Es versteht sich von selbst, daß die genannten Größenangaben nur für ein bestimmtes Frequenzband und für entsprechend gewählte Materialien ihre Gültigkeit haben. Je nach gefordertem Frequenzspektrum der Planarantenne müssen die Geometrien jeweils anders gewählt werden. It goes without saying that the above Size information only for a specific frequency band and for appropriately selected materials are valid. ever according to the required frequency spectrum of the planar antenna the geometries are chosen differently.

Bezugszeichen:Reference numerals:

1,21.2
Kopplungsnetzwerke mit anregenden StreifenleiternCoupling networks with stimulating striplines
3,4,53,4,5
leitfähige Schichten mit matrixförmig angeordneten Blenden 6conductive layers with a matrix arranged panels 6
6,6',6''6,6 ', 6' '
Blendendazzle
6a6a
Zwischenraum zwischen den BlendenSpace between the panels
6b,6b',6b''6b, 6b ', 6b' '
Kanten der BlendeEdges of the bezel
6c,6c'6c, 6c '
abgerundete bzw. abgeschrägte Ecken der Blenderounded or beveled corners of the cover
7,8,9,10,117,8,9,10,11
Dielektrische SchichtenDielectric layers
1212
Grundplattebaseplate
13a,14a, 13b,14b13a, 14a, 13b, 14b
Zweige des KopplungsnetzwerksBranches of the coupling network
13a',13b',5013a ', 13b', 50
Stammzweig, mit Innenleiter galvanisch verbundenTrunk branch, galvanic with inner conductor connected
15,15a,15b, 31,31a,31b15,15a, 15b, 31,31a, 31b
Ast an dem die anregenden Streifenleiter 16,16',16a,16b anschließenBranch on which the stimulating stripline 16, 16 ', 16a, 16b
16,16', 16a,16b16.16 ' 16a, 16b
anregende Streifenleiterstimulating stripline
17,2217.22
Kopplungspunkt; galvanischer Verbindungspunkt zwischen Innenleiter und StammzweigCoupling point; galvanic connection point between inner conductor and trunk branch
18,2418.24
Bohrungen/Aussparung für Schrauben 47,47'Bores / recess for screws 47.47 '
19a,19b,2519a, 19b, 25
Bohrungen für Führungsbuchse 54 Bores for guide bush 54
20,2320,23
Aussparungen für die das Kopplungsnetzwerk durchgreifenden Vorsprünge 43a,43a' des Distanzrings 43,43'Cutouts for the coupling network through projections 43a, 43a 'of the spacer ring 43.43 '
2121
Aussparung für das Außenleiterteil 40'Recess for the outer conductor part 40 '
2626
Bohrung für den zylindrischen Teil 40c' des Außenleiterteils 40'Bore for the cylindrical part 40c 'of Outer conductor part 40 '
2727
Bohrungen für die Distanzbuchsen 45'Bores for the spacers 45 '
2828
Bohrung für den zylindrischen Teil 40d des Außenleiterteils 40Bore for the cylindrical part 40d of the Outer conductor part 40
2929
Bohrung für die das Kopplungsnetzwerk 2 durchgreifenden Vorsprünge 43a des Distanzrings 43Hole for the coupling network 2 penetrating projections 43a of the Spacer rings 43
3030
Bohrungendrilling
32,3432.34
Schenkel der U-förmigen AnschlußleitungLeg of the U-shaped connecting line
33,33a,33b33,33a, 33b
U-förmige AnschlußleitungU-shaped connection line
35,3635.36
kurze Anschlußleitungen zu den anregenden Streifenleiternshort connection lines to the stimulating striplines
40,40'40.40 '
AußenleiterteilOuter conductor part
40a,40a'40a, 40a '
die Grundplatte 12 durchgreifender Teilpart through the base plate 12
40b,40b'40b, 40b '
Plan an der Grundplatte 12 anliegender Teil des AußenleiterteilsPlan part against the base plate 12 of the outer conductor part
40c,40c'40c, 40c '
Den Kragen bildenden Teil, an dem der Distanzring 43,43' anliegtThe collar forming part on which the spacer ring 43.43 'is present
40d,40d'40d, 40d '
Weiterer Kragen des Außenleiters, der durch die leitende Schicht greift und mit dieser plan abschließtAnother collar of the outer conductor, which by the conductive layer engages and with this plan completes
40e,40e'40e, 40e '
Außengewinde zur Befestigung von koaxialen Wellenleitern oder eines Low-Noise-ConvertersExternal thread for fastening coaxial Waveguides or a low-noise converter
41,41'41.41 '
Isolationsbuchse zwischen Innenleiter 42,42' und Außenleiter 40,40'Insulation bushing between inner conductor 42.42 ' and outer conductor 40.40 '
42,42'42.42 '
Innenleiter inner conductor
43,43'43.43 '
Distanzringspacer
43a,43a'43a, 43a '
Die leitfähige Schicht und das Kopplungsnetzwerk durchgreifende Vorsprünge; Bilden die Seitenwände der Nut 43dThe conductive layer and that Coupling network through projections; Form the side walls of the groove 43d
43b43b
Grundplatte des Distanzrings 43Base plate of the spacer ring 43
43c43c
Axiale BohrungAxial bore
43d43d
Das Hohlprofilsegment bildende NutGroove forming the hollow profile segment
44,44'44.44 '
Lötverbindung zwischen Innenleiter 42,42' und Stammzweig des KopplungsnetzwerksSolder connection between inner conductor 42, 42 'and Root branch of the coupling network
45,45'45.45 '
Distanzstück, insbesondere Nietbuchse, aus leitfähigem oder nicht leitfähigem MaterialSpacer, especially rivet bushing conductive or non-conductive material
45a,45a'45a, 45a '
In die Grundplatte eingetriebener Abschnitt des Distanzstücks 45,45'Section driven into the base plate of the spacer 45.45 '
45b,45b'45b, 45b '
Innengewinde des Distanzstücks 45,45'Inner thread of the spacer 45.45 '
46,46'46.46 '
Bohrung bzw. Aussparung für die Durchgreifende leitfähige Schraube 47,47'Hole or recess for the Penetrating conductive screw 47.47 '
47,47'47.47 '
Schraube, aus leitfähigem oder nicht leitfähigem MaterialScrew, made of conductive or non-conductive material
47a,47a'47a, 47a '
Außengewinde der Schraube 47External thread of screw 47
47b,47b'47b, 47b '
Kopf der Schraube 47Head of the screw 47
48,48'48.48 '
Distanzelementspacer
5050
gerader streifenförmiger Leiter; mittensymmetrisch zu den Kanten der durch die Vorsprünge 43a gebildeten Nut 43d des Distanzrings 43straight strip-shaped conductor; center symmetrical to the edges of the through the Projections 43a formed groove 43d of the Spacer rings 43
5151
Stammzweige des KopplungsnetzwerkesRoot branches of the coupling network
5454
Führungsbuchseguide bush
5555
Abschnitt der Führungsbuchse mit vergrößertem Durchmesser zur Einstellung des Abstands zwischen Grundplatte und leitfähiger Schicht 5Section of the guide bush with enlarged Diameter for setting the distance between base plate and conductive layer 5
5656
Sackbohrung mit InnengewindeBlind hole with internal thread
5858
Anlagefläche an Grundplatte 12Contact surface on base plate 12
5959
Anlagefläche an leitfähige Schicht 5Contact surface on conductive layer 5

Claims (26)

  1. A planar antenna for receiving and transmitting linearly polarised waves, comprising at least one radiator plane having a plurality of radiator elements arranged in rows and columns, the radiator elements of each radiator plane being coupled in-phase and at the same amplitude to a central point via a coupling network in each case, each radiator element having slots (6) and a rectilinear exciting stripline (16, 16', 16a, 16b) and the exciting striplines (16, 16', 16a, 16b) being connected in groups of two to the ends of the stems (15, 31) of the coupling networks (1, 2), the striplines (16, 16', 16a, 16b) of each group of two being arranged on one axis or axially parallel to one another, the facing ends of the two striplines (16, 16', 16a, 16b) being connected via at least one connecting line (32, 33, 34, 35, 36) to one end of a stem (15, 31) and a phase difference of 180 degrees being generated between the two radiator elements (6, 16) by means of at least one connecting line (32, 33, 34) of a stripline (16, 16', 16a, 16b), characterised in that the longer of the two connecting lines is U-shaped with two parallel legs (32, 34), the end of one leg (32) being connected to the stem (15, 31) of the coupling network (1, 2) and a short stripline (35) being connected at right angles to the end of the other leg (34), to which short stripline (35) the exciting stripline (16, 16', 16a, 16b) is connected, the U-shaped connecting line being arranged between the two radiator elements (6, 16).
  2. Planar antenna according to Claim 1, characterised in that the connecting lines have a difference in length corresponding to half a wavelength.
  3. Planar antenna according to either of claims 1 or 2, characterised in that a conductive layer (3, 4, 5) with slots (6) is arranged plane-parallel to and at a particular distance from each coupling network (1, 2), the slots (6) each being arranged over a stripline (16, 16', 16a, 16b).
  4. Planar antenna according to Claim 3, characterised in that at least one dielectric layer (7, 8, 9, 10) is arranged in each case between the conductive layers (3, 4, 5) and the coupling networks (1, 2), the thickness of which dielectric layer (7, 8, 9, 10) determines the distance between the respective conductive layer (3, 4, 5) and the respective coupling network (1, 2).
  5. Planar antenna according to any one of the preceding claims, characterised in that the coupling network (1, 2) and the exciting striplines (16, 16', 16a, 16b) are applied to an, in particular glass-fibre-reinforced, PTFE or PET film.
  6. Planar antenna according to any one of the preceding claims, characterised in that the exciting striplines (16, 16', 16a, 16b) of a row are arranged on a line or axially parallel to one another, said striplines (16, 16', 16a, 16b) being connected alternately by their first and their second narrow end face to the coupling network (1, 2).
  7. Planar antenna according to any one of the preceding claims, characterised in that the waveguides of the planar antenna are configured in triplate technology.
  8. Planar antenna according to any one of the preceding claims, characterised in that each coupling network (1, 2) has an input point and an output point (17, 22), the coupling points (17, 22) taking the form of waveguide junctions between the triplate technology and the coaxial input and output.
  9. Planar antenna according to any one of the preceding claims, characterised in that the slots (6) are rectangular, in particular square, with or without rounded or chamfered corners (6c, 6c'), the radius of the rounded corners or the degree of chamfer determining, among other characteristics, the frequency bandwidth and the input impedance.
  10. Planar antenna according to any one of the preceding claims, characterised in that the contour of the slots (6) has a number n of straight sides (6b, 6b', 6b'') connected together by arcs.
  11. Planar antenna according to any one of the preceding claims, characterised in that the boundaries of the slots (6) are composed of a number n of circular, elliptical or hyperbolic segments.
  12. Planar antenna according to any one of the preceding claims, characterised in that an exciting stripline (16, 16', 16a, 16b) projects in each case into the slot space, the stripline (16, 16', 16a, 16b) being arranged perpendicularly to the boundary side beyond which it projects into the slot space.
  13. Planar antenna according to any one of the preceding claims, characterised in that the exciting striplines (16, 16', 16a, 16b) of two slots (6) arranged adjacently in a row are arranged to lead into the slot space, starting alternately from the respective opposite edges (6b, 6b', 6b'').
  14. Planar antenna according to Claim 12 or 13, characterised in that the rectilinear stripline (16, 16', 16a, 16b) inside the slot space is formed from a plurality of rectilinear stripline sections having the same or different lengths and having the same or different widths.
  15. Planar antenna according to any one of claims 12 to 14, characterised in that the stripline composed of sections is formed by conductor sections coupled galvanically or by means of a gap having a defined width.
  16. Planar antenna according to any one of the preceding claims 12 to 15, characterised in that the exciting stripline (16, 16', 16a, 16b) is arranged to have central symmetry or to be offset with respect to the boundary side of the associated slot space.
  17. Planar antenna according to any one of the preceding claims, characterised in that the central coupling point (17, 22) is so configured that the inner conductor (42, 42') of a coaxial waveguide by means of which the signals are input and output from the planar antenna to the low-noise converter (LNC) is galvanically connected to the stripline section of the coupling network (1, 2) which forms the trunk branch (51), the stripline section (51) in the area of the galvanic connection to the inner conductor (42, 42') leading rectilinearly and centre-symmetrically through a conductively bordered, profiled hollow profile segment.
  18. Planar antenna according to Claim 17, characterised in that the hollow profile segment is formed by a conductive connection between the conductive layers having the slots (6) enclosing the coupling network (1, 2) and these conductive layers themselves with.
  19. Planar antenna according to Claim 18, characterised in that a spacer ring (43, 43') forming the hollow profile segment conductively connects together the two conductive layers (3, 4; 4, 5) by means of projections (43a, 43a') of defined length formed on its first flat side, and the spacer ring (43, 43') is supported with its second flat side on a collar (40c, 40c') of the part (40, 40') forming the outer conductor of the coaxial waveguide, the projections (43a, 43a') passing through one conductive layer (4, 5) and the coupling network (1, 2) and abutting the other conductive layer (3, 4).
  20. Planar antenna according to Claim 19, characterised in that the spacer ring (43, 43') surrounds a cylindrical projection (40d, 40d') adjoining the collar (40c, 40c') of the outer conductor (40, 40') and the cylindrical projection (40d, 40d') passes through a conductive layer (4, 5) and ends flush with the surface thereof.
  21. Planar antenna according to either of claims 19 or 20, characterised in that the spacer ring (43, 43) is a disc with an axial bore (43c), in the one flat face of which is located centre-symmetrically a groove (43d) the depth of which corresponds to the length addition of the thickness of the one conductive layer (4, 5) and the distance between the two conductive layers (3, 4; 4, 5).
  22. Planar antenna according to any one of claims 19 to 21, characterised in that the part (40, 40') forming the outer conductor has a further collar (40b, 40b') which abuts a conductive baseplate (12).
  23. Planar antenna according to any one of claims 19 to 22, characterised in that the part (40, 40') forming the outer conductor has an axial bore in which is inserted a nonconductive sleeve (41, 41') of, in particular, PTFE in which the inner conductor (42, 42') is arranged, the end face of the sleeve abutting the underside of the coupling network (1, 2).
  24. Planar antenna according to any one of the preceding claims, characterised in that the baseplate (12) and the conductive layers (3, 4, 5) having the slots (6) are held at a distance apart by means of, in particular, conductive spacers, in particular rivet bushes, driven into the baseplate (12), the spacers (45, 45') having an internal thread (45b, 45b') in which engage screws (47, 47'), a conductive layer (3, 4) being pressure-loaded against the spacer ring (43, 43') by means of the heads of the screws (47, 47').
  25. Planar antenna according to any one of the preceding claims, characterised in that the planar antenna has two radiator planes arranged to be plane-parallel to one another, and the two radiator planes receive or radiate waves polarised orthogonally to one another.
  26. Planar antenna according to any one of the preceding claims, characterised in that circular polarisation can be received or transmitted by means of a polariser arranged above the planar antenna in the radiation space.
EP98917080A 1997-03-25 1998-03-25 Wide band planar radiator Expired - Lifetime EP1104587B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19712510 1997-03-25
DE19712510A DE19712510A1 (en) 1997-03-25 1997-03-25 Two-layer broadband planar source
PCT/EP1998/001757 WO1998026642A2 (en) 1997-03-25 1998-03-25 Wide band planar radiator

Publications (2)

Publication Number Publication Date
EP1104587A2 EP1104587A2 (en) 2001-06-06
EP1104587B1 true EP1104587B1 (en) 2003-08-20

Family

ID=7824570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98917080A Expired - Lifetime EP1104587B1 (en) 1997-03-25 1998-03-25 Wide band planar radiator

Country Status (11)

Country Link
US (1) US6456241B1 (en)
EP (1) EP1104587B1 (en)
JP (1) JP2001524276A (en)
KR (1) KR20010005719A (en)
AT (1) ATE247870T1 (en)
AU (1) AU7041498A (en)
CA (1) CA2284643A1 (en)
DE (2) DE19712510A1 (en)
ES (1) ES2209128T3 (en)
IL (1) IL131994A (en)
WO (1) WO1998026642A2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845868A1 (en) 1998-10-05 2000-04-06 Pates Tech Patentverwertung Dual focus planar antenna
DE19850895A1 (en) * 1998-11-05 2000-05-11 Pates Tech Patentverwertung Microwave antenna with optimized coupling network
US6624787B2 (en) 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
DE60227998D1 (en) * 2002-03-06 2008-09-11 Atrax As ANTENNA
BG107973A (en) * 2003-07-07 2005-01-31 Raysat Cyprus Limited Flat microwave antenna
US7064714B2 (en) * 2003-12-29 2006-06-20 Transcore Link Logistics Corporation Miniature circularly polarized patch antenna
US7030825B1 (en) * 2004-09-29 2006-04-18 Lucent Technologies Inc. Aperture antenna element
DE602004031016D1 (en) * 2004-09-29 2011-02-24 Lucent Technologies Network Systems Gmbh Antenna element with aperture
US7190301B2 (en) * 2004-12-22 2007-03-13 Motorola, Inc. Radio frequency anechoic chamber with nonperturbing wireless signalling means
US7202830B1 (en) * 2005-02-09 2007-04-10 Pinyon Technologies, Inc. High gain steerable phased-array antenna
US7522114B2 (en) * 2005-02-09 2009-04-21 Pinyon Technologies, Inc. High gain steerable phased-array antenna
US20060220962A1 (en) * 2005-02-28 2006-10-05 D Hont Loek J Circularly polorized square patch antenna
WO2006098054A1 (en) * 2005-03-16 2006-09-21 Hitachi Chemical Co., Ltd. Planar antenna module, triplate planar array antenna, and triplate line-waveguide converter
US7545333B2 (en) * 2006-03-16 2009-06-09 Agc Automotive Americas R&D Multiple-layer patch antenna
US7671696B1 (en) 2006-09-21 2010-03-02 Raytheon Company Radio frequency interconnect circuits and techniques
US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
US20090231186A1 (en) * 2008-02-06 2009-09-17 Raysat Broadcasting Corp. Compact electronically-steerable mobile satellite antenna system
US7746266B2 (en) * 2008-03-20 2010-06-29 The Curators Of The University Of Missouri Microwave and millimeter wave imaging system
US20100328142A1 (en) * 2008-03-20 2010-12-30 The Curators Of The University Of Missouri Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system
US8115696B2 (en) * 2008-04-25 2012-02-14 Spx Corporation Phased-array antenna panel for a super economical broadcast system
BRPI0911586A2 (en) * 2008-05-02 2016-01-05 Spx Corp super economical broadcast system and method
US20090273533A1 (en) * 2008-05-05 2009-11-05 Pinyon Technologies, Inc. High Gain Steerable Phased-Array Antenna with Selectable Characteristics
EP2359434B1 (en) * 2008-12-18 2015-03-04 NBB Holding AG Planar antenna
US7859835B2 (en) 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
DE102011007782A1 (en) * 2011-04-20 2012-10-25 Robert Bosch Gmbh antenna device
US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
RU2515700C2 (en) * 2012-08-31 2014-05-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Planar dielectric radiator
US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
US9490532B2 (en) * 2013-02-07 2016-11-08 Mitsubishi Electric Corporation Antenna device and array antenna device
JP6003811B2 (en) * 2013-06-05 2016-10-05 日立金属株式会社 Antenna device
RU2578660C1 (en) * 2014-12-29 2016-03-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Planar dielectric radiator
US10389034B2 (en) 2015-01-16 2019-08-20 Kabushiki Kaisha Toshiba Antenna
EP3309897A1 (en) * 2016-10-12 2018-04-18 VEGA Grieshaber KG Waveguide coupling for radar antenna
GB2563834A (en) * 2017-06-23 2019-01-02 Decawave Ltd Wideband antenna array

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263598A (en) * 1978-11-22 1981-04-21 Motorola, Inc. Dual polarized image antenna
FR2544920B1 (en) * 1983-04-22 1985-06-14 Labo Electronique Physique MICROWAVE PLANAR ANTENNA WITH A FULLY SUSPENDED SUBSTRATE LINE ARRAY
NL8301460A (en) 1983-04-26 1984-11-16 Philips Nv ELECTROACOUSTIC CONVERTER UNIT WITH REDUCED RESONANCE FREQUENCY.
EP0252779B1 (en) * 1986-06-05 1993-10-06 Emmanuel Rammos Aerial element with a suspended stripeline between two self-supporting ground planes provided with superimposed radiating slots, and processes for its manufacture
US4829309A (en) * 1986-08-14 1989-05-09 Matsushita Electric Works, Ltd. Planar antenna
US4913150A (en) 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
JPS6365703A (en) * 1986-09-05 1988-03-24 Matsushita Electric Works Ltd Planar antenna
US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
JPH01157603A (en) 1987-12-15 1989-06-20 Matsushita Electric Works Ltd Plane antenna
US4929959A (en) * 1988-03-08 1990-05-29 Communications Satellite Corporation Dual-polarized printed circuit antenna having its elements capacitively coupled to feedlines
US4926189A (en) * 1988-05-10 1990-05-15 Communications Satellite Corporation High-gain single- and dual-polarized antennas employing gridded printed-circuit elements
JPH01297905A (en) * 1988-05-26 1989-12-01 Matsushita Electric Works Ltd Plane antenna
US5270721A (en) * 1989-05-15 1993-12-14 Matsushita Electric Works, Ltd. Planar antenna
CA2030963C (en) * 1989-12-14 1995-08-15 Robert Michael Sorbello Orthogonally polarized dual-band printed circuit antenna employing radiating elements capacitively coupled to feedlines
US5321411A (en) * 1990-01-26 1994-06-14 Matsushita Electric Works, Ltd. Planar antenna for linearly polarized waves
GB2256530B (en) * 1991-04-24 1995-08-09 Matsushita Electric Works Ltd Planar antenna
JPH0567912A (en) * 1991-04-24 1993-03-19 Matsushita Electric Works Ltd Flat antenna
JPH06500909A (en) 1991-06-28 1994-01-27 アルカテル・エスパース linear array antenna
GB2261554B (en) 1991-11-15 1995-05-24 Northern Telecom Ltd Flat plate antenna
DE4239597C2 (en) * 1991-11-26 1999-11-04 Hitachi Chemical Co Ltd Flat antenna with dual polarization
GB2279813B (en) * 1993-07-02 1997-05-14 Northern Telecom Ltd Polarisation diversity antenna
DE4340825A1 (en) * 1993-12-01 1995-06-08 Rothe Lutz Planar radiator arrangement for direct reception of the TV signals of the direct-radiating satellite system TDF 1/2
US5563613A (en) * 1994-04-08 1996-10-08 Schroeder Development Planar, phased array antenna
US5661494A (en) * 1995-03-24 1997-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High performance circularly polarized microstrip antenna
GB2299898B (en) * 1995-04-13 1999-05-19 Northern Telecom Ltd A layered antenna

Also Published As

Publication number Publication date
JP2001524276A (en) 2001-11-27
ES2209128T3 (en) 2004-06-16
AU7041498A (en) 1998-07-15
IL131994A0 (en) 2001-03-19
IL131994A (en) 2002-04-21
US6456241B1 (en) 2002-09-24
DE19712510A1 (en) 1999-01-07
EP1104587A2 (en) 2001-06-06
DE59809361D1 (en) 2003-09-25
ATE247870T1 (en) 2003-09-15
WO1998026642A3 (en) 1998-09-17
KR20010005719A (en) 2001-01-15
WO1998026642A2 (en) 1998-06-25
CA2284643A1 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
EP1104587B1 (en) Wide band planar radiator
DE3729750C2 (en)
DE60009874T2 (en) V-slot antenna for circular polarization
DE69821884T2 (en) Multifrequency stripline antenna and device with such an antenna
DE69821327T2 (en) Shorted stripline antenna and device with it
DE69826223T2 (en) Microstrip line antenna and antenna containing device
DE69936903T2 (en) Antenna for two frequencies for radio communication in the form of a microstrip antenna
DE602004010517T2 (en) PLANAR MICROWAVE ANTENNA
DE19523805B4 (en) Microstrip antenna
DE102017103161A1 (en) Antenna device and antenna array
DE69832592T2 (en) DEVICE FOR RECEIVING AND SENDING RADIO SIGNALS
DE3931752A1 (en) COAXIAL SLOT ANTENNA
DE19627015A1 (en) Antenna array
DE1002828B (en) Directional coupler in the microwave range for asymmetrical ribbon cables
DE69828848T2 (en) Directional antenna system with crossed polarization
DE19821223A1 (en) Electromagnetic signal reception antenna
DE112018007422B4 (en) WAVEGUIDE SLOT GROUP ANTENNA
DE3042456A1 (en) ANTENNA WITH A DEVICE FOR ROTATING THE POLARIZATION LEVEL
DE10226111A1 (en) Circularly-polarized wave antenna device for wireless device mounted in motor vehicle, has auxiliary electrode provided along width direction of main electrode provided on base surface
DE69833070T2 (en) Group antennas with a large bandwidth
DE102020102791A1 (en) Slot array antenna
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
EP0737371B1 (en) Planar antenna
DE102005011128B4 (en) Calibration of an electronically controllable planar antenna and electronically controllable antenna with a probe in the reactive near field
DE3409460A1 (en) ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990925

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 19990925;LT PAYMENT 19990925;LV PAYMENT 19990925;RO PAYMENT 19990925;SI PAYMENT 19990925

17Q First examination report despatched

Effective date: 20020321

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59809361

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040120

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030820

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040305

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040311

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040318

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040324

Year of fee payment: 7

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2209128

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

BERE Be: lapsed

Owner name: *PATES TECHNOLOGY PATENTVERWERTUNGSG.- FUR SATELLI

Effective date: 20040331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050325

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050326