EP0886055B1 - Method and apparatus for controlling a spark ignited internal combustion engine - Google Patents

Method and apparatus for controlling a spark ignited internal combustion engine Download PDF

Info

Publication number
EP0886055B1
EP0886055B1 EP19980401507 EP98401507A EP0886055B1 EP 0886055 B1 EP0886055 B1 EP 0886055B1 EP 19980401507 EP19980401507 EP 19980401507 EP 98401507 A EP98401507 A EP 98401507A EP 0886055 B1 EP0886055 B1 EP 0886055B1
Authority
EP
European Patent Office
Prior art keywords
torque
engine
richness
air
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980401507
Other languages
German (de)
French (fr)
Other versions
EP0886055A1 (en
Inventor
Vincent Rauch
Jean-Marie Taupin
Luis Rodrigues
Edouard Valenciennes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP0886055A1 publication Critical patent/EP0886055A1/en
Application granted granted Critical
Publication of EP0886055B1 publication Critical patent/EP0886055B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration

Definitions

  • the invention relates to a method for controlling an engine. internal combustion, positive ignition and injection electronically controlled, with at least three actuators, acting on the ignition advance, the engine air flow control and richness of the air-fuel mixture, and several sensors to determine the operating point of the engine.
  • This control process essentially consists by regulating the torque supplied by the motor. She also relates to a device for implementing this process.
  • Today's motor vehicles are increasingly equipped more electronic equipment and services news, in addition to electronic engine control, such as the electronic control of the gearbox speed, anti-lock braking system when braking or electronic regulation of air conditioning by example. All this equipment induces variations of the torque consumed, so that the correct operation of the engine and associated equipment driver comfort and comfort passengers, requires control at all times and precisely the torque delivered by the engine.
  • electronic engine control such as the electronic control of the gearbox speed, anti-lock braking system when braking or electronic regulation of air conditioning by example. All this equipment induces variations of the torque consumed, so that the correct operation of the engine and associated equipment driver comfort and comfort passengers, requires control at all times and precisely the torque delivered by the engine.
  • This torque delivered by the motor can be modulated by variation of command values applied to actuators, such as the amount of air admitted to the manifold, the amount of fuel mixed with air, or the instant of ignition of the air / fuel mixture.
  • actuators such as the amount of air admitted to the manifold, the amount of fuel mixed with air, or the instant of ignition of the air / fuel mixture.
  • These actuators have different effects on the torque, in terms of speed of action due to pure delay or a rise time, and in terms of authority by the magnitude of the effects. They also have effects on other quantities whose regulation must be otherwise assured, such as wealth in fuel of the fuel mixture, for reasons of consumption and pollution. That's why it is desirable to limit the impact of the regulation of engine torque on these other quantities, while advantageously using several of these actuators.
  • Another disadvantage of this example of regulation is its high cost due to the addition of a sensor chamber pressure to measure the torque supplied by the engine.
  • the invention aims to solve these drawbacks by proposing a method of controlling the engine by a motor torque regulation, multivariable type integral quadratic linear based on a non-model linear of the motor, using as variables of controls the ignition advance and the amount of air allowed in the collector, and the quantity of gasoline injected in a particular case, and receiving two torque setpoints calculated simultaneously according to the engine operating model.
  • a second object of the invention is a device for implementation of the torque regulation process engine, consisting of the electronic computer of motor control including a linear regulator integral quadratic.
  • the first step in the torque regulation process engine consists in performing dynamic modeling of the production of the engine torque reflecting the physical operation of the engine. This modeling is performed during the engine development phase, on bench test.
  • the richness yield ⁇ Ri is a mapped function of the function R i for example, and the advance yield ⁇ AV is a mapped function of the advance, the speed, the manifold pressure and possibly the richness.
  • logCP (K) logC AIRMOT (k) + log ⁇ Avcons (k) + log ⁇ Ricons (k)
  • the feed rate and the richness are equal to their set values, so that the projected torque CP is equal to the torque CMI + .
  • Two torque setpoints are sent to the torque regulator and are calculated simultaneously, one CMI + cons from the CMI + torque supplied by the engine and which the regulator must follow as quickly as possible, and the other CP cons , which is in the longer term, from the projected pair CP.
  • the modeling of the engine according to the invention also consists in describing the engine air intake manifold by a first order model, from the mass of air M AIRPAP entering the manifold by the throttle body, at each top dead center, whether this case is constituted by a single butterfly or that it includes other actuators.
  • M AIRMOT (k) M AIRMOT (k-1) + F collar * [M AIRPAP (k) - M AIRMOT (k-1) ] in which the term F col is a filtering factor translating the dynamics of the collector and expressed according to the following equation (E 7 ), from the total displacement V word of the engine, the number of cylinders n cyl , the volume V col of the manifold and of the average filling rate Remp of the engine with air, related to the conditions of the manifold.
  • F collar ⁇ V word * Remp ⁇ / ⁇ n cyl * V collar ⁇
  • the collector model is linked to the C AIRMOT torque supplied by the engine and expressed by equation (E 1 ).
  • E 1 the collector model is linked to the C AIRMOT torque supplied by the engine and expressed by equation (E 1 ).
  • vs AIRPAP (k) R (N k P k ) * M AIRPAP (k) .
  • Different air actuators can be used in an engine, such as an RCO valve, a motorized throttle valve or a stepper.
  • the dynamics of the air actuator used is described as a first-order model, as part of the theoretical modeling of the production of engine torque, from the air flow Q AIRPAP entering the manifold and the flow d air Q AIRCMD actuator control.
  • VS AIRCMD (k) R (N k P k ) * ⁇ 120 * Q AIRCMP (k) ⁇ / ⁇ not cyl * NOT k ⁇ .
  • Equation (E 10 ) of the air flow entering the manifold, modeling the behavior of the air actuator, is brought back in the form of a torque which is written, neglecting the variations of the regime N and the yield R (N k , P k ):
  • VS AIRPAP (k + 1) C AIRPAP (k) + F act * [VS AIRCMD (k) - VS AIRPAP (k) ].
  • logC AIRPAP (k + 1) logC AIRPAP (k) + F act * [LogC AIRCMD (k) -logC AIRPAP (k) ].
  • Figure 1 is the block diagram of the modeling of the production of the engine torque receiving an air flow control C AIRCMD applied to the throttle body 1 which delivers a mass of air entering the manifold 2 and providing a torque, in the form logCMI + logarithm and logCP logarithm, to torque regulator 3.
  • Figure 2 is the block diagram modeling the torque production of a single-wealth engine.
  • control process is carried out during engine operation and consists of regulation of the engine torque developed from the linear model of the engine which has just been described, and of linear type integral quadratic.
  • the matrix of state variables X k contains on the one hand the logarithm logC AIRPAP of the quantity C AIRPAP proportional to the mass of air entering the manifold through the throttle body, and that log CAIRMOT of the quantity C AIRMOT proportional to the mass of air leaving the manifold, on the other hand the error of the logarithm of the torque supplied by the engine elogCMI + k-1 , the error of the logarithm of the projected torque elogCP k-1 , the error of the logarithm of the wealth yield for two consecutive high dead points elog ⁇ Ri (k-1 ) and elog ⁇ Ri (k-2 ), and finally the three previously defined integral variables ⁇ logCMI + (k) , ⁇ logCP (k) and ⁇ log ⁇ Ri (k) .
  • the disturbance matrix Xs k contains the logarithm of the torque setpoint supplied by the logCMI + cons engine and of the projected torque setpoint logCP cons , and the logarithm of the advance setpoint returns log ⁇ Avcons and the wealth setpoint log ⁇ Ricons .
  • the matrix U k of the commands comprises the logarithm logC AIRCMD of the quantity proportional to the actuator control air flow, the logarithms log ⁇ Av and log ⁇ Ri of the ignition advance and of the richness.
  • the state return matrix K is calculated from these matrices.
  • the representation matrices of the state variables X k , U k and Xs k do not have of variable relating to wealth. They are shown in table 3 in the appendix, while the matrices A, B, F and As which are also simplified are shown in table 4.
  • FIG 3 is the block diagram of the device implementing the method of regulating the engine torque according to the invention, in the case of an engine 4 whose throttle body 5 comprises a mechanical throttle 6, including the opening control S p is determined by depressing the accelerator pedal, associated with an additional air valve 7, the opening of which is electronically controlled, in other words section S v .
  • FIG. 4 is the same diagram in the case of a motorized throttle valve 8 whose opening S pm is completely controlled.
  • the engine 4 receives a command to open the throttle valve S p as well as an electronic command for ignition advance Av, for opening the valve S v and possibly for injection time Ti, and in FIG. 4, the engine receives an opening command S pm from its motorized throttle valve 8.
  • the speed value N k and that of the manifold pressure P k or of any other quantity representative of the mass of air actually absorbed by the engine such as the air flow rate, entering the manifold for example.
  • the air flow is measured by a flow meter and the manifold pressure is measured by a pressure sensor.
  • the electronic engine control computer 9 calculates the mass of air Q AIRMOT leaving the manifold, in means 10, then the richness Ri and the richness yield ⁇ Ri of the mixture from this air mass and the time d injection Ti, in means 11 and 12. From the sections of the butterfly S p and of the valve S v , in the case of FIG.
  • the modules 13 of the computer determine the torque values defined above, ie the supplied torque CMI + , the projected torque CP, the torque defined from the mass of air entering the AIRPAP collector C and that leaving the AIRMOT C collector , the instructions for the couples supplied CMI + cons and projected CP cons , the instructions for the wealth returns ⁇ Ricons and in advance ⁇ Avcons and the wealth returns ⁇ Ri .
  • Means 14 compute the logarithm of these values which enter into an integral quadratic linear regulator 15, the role of which is to reconstruct the state vector of the torque model and the matrix product to deliver the logarithm of the feed efficiency commands log ⁇ Av , the air flow of the logC actuator AIRCMD and possibly the log ⁇ Ri richness efficiency.
  • Means 16 calculate the exponential of these values, which is then clipped in means 17, to take account of the limitations linked to the operation of the actuators and of the motor, which deliver the advance efficiency ⁇ Av , the air control C AIRCMD and the wealth yield ⁇ Ri .
  • Means 18 calculate the value of the ignition advance Av from the yield ⁇ Av , the speed N, the manifold pressure P and possibly the richness Ri.
  • Means 19 calculate the final control of the air actuator 5, either the section of the valve S v or the opening S pm of the motorized throttle valve.
  • Means 20 calculate the richness Ri from the richness yield control ⁇ Ri as well as from a richness yield table as a function of the richness.
  • Means 21 then calculate the injection time Ti on the basis of this richness objective and the operating conditions of the engine, such as the pressure in the manifold, the speed, etc. From this injection time, means 22 estimate the richness in each cylinder and the associated richness yield.
  • FIGS. 5 and 6 are the same functional diagrams of the regulation device as FIGS. 3 and 4, respectively with a throttle associated with an air valve and with a motorized throttle, but in the case of an engine operating with single richness .
  • the wealth yield ⁇ Ri and the wealth yield setpoint ⁇ Ricons are equal to 1.
  • a first advantage of the engine control method according to the invention comes from the use of torque control from a non-linear model of the engine, which allows the regulator of the electronic computer to know precisely the effects of controls the behavior of the engine and determine the values of the controls to cause the expected effect.
  • the interest of formulating the model of the motor torque, described by multiplicative equations, by a logarithmic function is to obtain a single linear model, which describes in all points the non-linear operation of the motor. This results in a gain in performance for the regulation proposed by the invention compared to the regulations currently existing.
  • the regulation of the motor torque is multivariable, that is to say that it acts simultaneously on several control variables to simultaneously regulate several state operating variables.
  • each of the state variables is thus regulated taking account of the couplings between the different state and control variables, and it is then possible to exploit the complementarity of the different commands in terms of authority and speed of action.
  • Another advantage comes from the definition of the projected engine torque, which makes it possible, in certain operating modes, to position the different commands in advance in a coordinated manner to better respect the engine torque setpoint, by anticipating the dynamics or the delays in the operation of controls.
  • this regulation of the engine torque makes it possible, by the addition of simple methods, to take charge of the regulation of other quantities, such as the idling speed, without the development of a complete regulation method acting directly on the actuators.
  • This advantage results in a reduction in the complexity and in the size of the processes to be implemented in the electronic engine computer, as well as in a simplification of the procedures for calibration and development of the processes.

Description

L'invention concerne un procédé de contrôle d'un moteur à combustion interne, à allumage commandé et injection pilotée électroniquement, disposant d'au moins trois actionneurs, agissant sur l'avance à l'allumage, la commande de débit d'air du moteur et la richesse du mélange air-essence, et de plusieurs capteurs permettant de déterminer le point de fonctionnement du moteur. Ce procédé de contrôle consiste essentiellement en une régulation du couple fourni par le moteur. Elle concerne également un dispositif de mise en oeuvre de ce procédé.The invention relates to a method for controlling an engine. internal combustion, positive ignition and injection electronically controlled, with at least three actuators, acting on the ignition advance, the engine air flow control and richness of the air-fuel mixture, and several sensors to determine the operating point of the engine. This control process essentially consists by regulating the torque supplied by the motor. She also relates to a device for implementing this process.

Les véhicules automobiles actuels sont dotés de plus en plus d'équipements électroniques et de prestations nouvelles, en plus du contrôle électronique du moteur, telles que la commande électronique de la boíte de vitesse, l'antiblocage de roues lors du freinage ou la régulation électronique de l'air conditionné par exemple. Tous ces équipements induisent des variations importantes du couple consommé, de sorte que le bon fonctionnement du moteur et de ces équipements, associé à l'agrément de conduite du conducteur et au confort des passagers, nécessite de maítriser à tout instant et avec précision le couple délivré par le moteur.Today's motor vehicles are increasingly equipped more electronic equipment and services news, in addition to electronic engine control, such as the electronic control of the gearbox speed, anti-lock braking system when braking or electronic regulation of air conditioning by example. All this equipment induces variations of the torque consumed, so that the correct operation of the engine and associated equipment driver comfort and comfort passengers, requires control at all times and precisely the torque delivered by the engine.

Ce couple délivré par le moteur peut être modulé par variation des valeurs des commandes appliquées aux actionneurs, comme la quantité d'air admis dans le collecteur, la quantité de carburant mélangé à l'air, ou l'instant d'allumage du mélange air/carburant. Ces actionneurs ont des effets différents sur le couple, en termes de rapidité d'action en raison d'un retard pur ou d'un temps de montée, et en termes d'autorité par l'amplitude des effets. Ils ont également des effets sur d'autres grandeurs dont la régulation doit être assurée par ailleurs, telles que la richesse en carburant du mélange combustible, pour des raisons de consommation et de pollution. C'est pourquoi il est souhaitable de limiter l'impact de la régulation du couple moteur sur ces autres grandeurs, tout en utilisant avantageusement plusieurs de ces actionneurs.This torque delivered by the motor can be modulated by variation of command values applied to actuators, such as the amount of air admitted to the manifold, the amount of fuel mixed with air, or the instant of ignition of the air / fuel mixture. These actuators have different effects on the torque, in terms of speed of action due to pure delay or a rise time, and in terms of authority by the magnitude of the effects. They also have effects on other quantities whose regulation must be otherwise assured, such as wealth in fuel of the fuel mixture, for reasons of consumption and pollution. That's why it is desirable to limit the impact of the regulation of engine torque on these other quantities, while advantageously using several of these actuators.

Des solutions actuelles au problème de la régulation du couple moteur utilisent la technologie de régulation dite proportionnelle intégrale dérivée, sans modélisation du moteur, ce qui a pour inconvénient de ne connaítre les effets des commandes appliquées par cette régulation que par l'observation de ses effets sur les grandeurs régulées, entraínant un retard néfaste pour la qualité de la régulation.Current solutions to the problem of regulating engine torque use regulation technology so-called proportional integral derivative, without engine modeling, which has the disadvantage of do not know the effects of commands applied by this regulation only by observing its effects on regulated quantities, causing a delay detrimental to the quality of regulation.

Certaines solutions ont par contre été développées avec un modèle du moteur à partir duquel la régulation peut déterminer les commandes à appliquer, afin d'obtenir un effet désiré sur les grandeurs à réguler.Some solutions have however been developed with an engine model from which regulation can determine the commands to be applied, in order to obtain a desired effect on the quantities to be regulated.

Un exemple de réalisation actuelle de régulation du couple moteur est décrit dans le brevet européen EP 0 185 552, au nom de NIPPONDENSO. Le mode de régulation utilise plusieurs modèles linéaires identifiés tangents à plusieurs points de fonctionnement du moteur, destinés à une régulation multivariable de type linéaire quadratique intégrale pour réguler le couple moteur en minimisant la consommation d'essence, à partir des commandes d'air admis dans le collecteur et d'essence injectée.An example of current implementation of regulation of engine torque is described in the European patent EP 0 185 552, on behalf of NIPPONDENSO. The mode of regulation uses several linear models identified tangent to several points of engine operation, intended for regulation integral quadratic linear multivariable to regulate the engine torque while minimizing the fuel consumption, from air controls admitted to the manifold and injected gasoline.

Le principal inconvénient de cette solution est dû aux approximations liées à l'utilisation de modèles linéarisés tangents alors que le fonctionnement du moteur n'est pas linéaire, entraínant une dégradation des performances de la régulation du couple.The main disadvantage of this solution is due to approximations related to the use of models linearized tangents while the operation of the motor is not linear, causing degradation torque regulation performance.

De plus, ces modèles n'exploitent pas les connaissances que l'on a des équations physiques décrivant les phénomènes qui interviennent dans le fonctionnement réel du moteur.In addition, these models do not exploit knowledge that we have physical equations describing the phenomena which intervene in the functioning real engine.

Un autre inconvénient de cet exemple de régulation est son coût élevé en raison de l'adjonction d'un capteur de pression de chambre pour mesurer le couple fourni par le moteur.Another disadvantage of this example of regulation is its high cost due to the addition of a sensor chamber pressure to measure the torque supplied by the engine.

L'invention vise à résoudre ces inconvénients en proposant un procédé de contrôle du moteur par une régulation du couple moteur, multivariable de type linéaire quadratique intégrale basée sur un modèle non linéaire du moteur, utilisant comme variables de commandes l'avance à l'allumage et la quantité d'air admis dans le collecteur, et la quantité d'essence injectée dans un cas particulier, et recevant deux consignes de couple calculées simultanément selon le modèle de fonctionnement du moteur.The invention aims to solve these drawbacks by proposing a method of controlling the engine by a motor torque regulation, multivariable type integral quadratic linear based on a non-model linear of the motor, using as variables of controls the ignition advance and the amount of air allowed in the collector, and the quantity of gasoline injected in a particular case, and receiving two torque setpoints calculated simultaneously according to the engine operating model.

Pour cela, un premier objet de l'invention est un procédé de contrôle d'un moteur thermique, à allumage commandé, à injection pilotée par un calculateur électronique, disposant d'au moins trois actionneurs auxquels sont appliqués respectivement une commande d'air, une commande d'allumage et une commande de richesse du mélange combustible, consistant, à partir d'un modèle de la production du couple moteur, en une régulation de type linéaire quadratique intégrale de variables d'état de fonctionnement du moteur par action sur des variables de commande en fonction de variables de consignes et des variables d'état, caractérisé en ce qu'il comporte les étapes suivantes :

  • en phase de développement du moteur :
    • modélisation dynamique linéaire de la production du couple moteur au moyen d'une fonction logarithme et de sa fonction inverse ;
    • définition du gain optimal minimisant l'indice de performance quadratique de la régulation linéaire quadratique intégrale, à partir duquel les variables de commande Uk seront calculées en fonction des variables d'état Xk et de consigne Xsk, et sa mémorisation dans le calculateur ;
  • en cours de fonctionnement du moteur, à chaque point mort haut d'ordre k, calcul des variables d'état Xk et des consignes Xsk, par le calculateur électronique, à partir :
    • de la mesure du régime Nk et d'une grandeur représentative de la masse d'air absorbée réellement par le moteur, comme la pression collecteur Pk ;
    • du calcul de la masse d'air MAIRMOT sortant du collecteur en fonction du régime et de ladite grandeur ;
    • du calcul de la richesse et du rendement de richesse à partir du temps d'injection et de la masse d'air MAIRMOT ;
    • du calcul de la masse d'air MAIRPAP entrant dans le collecteur en fonction de la masse d'air de commande MAIRCMD de l'actionneur d'air;
    • du calcul du couple réel CMI+ et du couple projeté CP fournis par le moteur;
puis calcul des variables des commandes Uk selon la régulation linéaire quadratique intégrale.For this, a first object of the invention is a method of controlling a combustion engine, with spark ignition, with injection controlled by an electronic computer, having at least three actuators to which an air control are respectively applied, an ignition control and a fuel mixture richness control, consisting, from a model of the production of the engine torque, in an integral quadratic linear type regulation of engine operating state variables by action on control variables as a function of setpoint variables and state variables, characterized in that it comprises the following steps:
  • in engine development phase:
    • linear dynamic modeling of the production of the engine torque by means of a logarithmic function and its inverse function;
    • definition of the optimal gain minimizing the quadratic performance index of the integral quadratic linear regulation, from which the control variables U k will be calculated as a function of the state variables X k and setpoint Xs k , and its storage in the computer ;
  • during engine operation, at each top dead center of order k, calculation of state variables X k and setpoints Xs k , by the electronic computer, from:
    • measuring the speed N k and a quantity representative of the mass of air actually absorbed by the engine, such as the manifold pressure P k ;
    • calculating the mass of air M AIRMOT leaving the manifold as a function of the speed and of said quantity;
    • calculation of the richness and the richness yield from the injection time and the air mass M AIRMOT ;
    • calculating the mass of air M AIRPAP entering the manifold as a function of the mass of control air M AIRC® of the air actuator;
    • calculating the actual torque CMI + and the projected torque CP supplied by the engine;
then calculation of the variables of the commands U k according to the integral quadratic linear regulation.

Un second objet de l'invention est un dispositif de mise en oeuvre du procédé de régulation du couple moteur, constitué par le calculateur électronique de contrôle du moteur comprenant un régulateur linéaire quadratique intégral.A second object of the invention is a device for implementation of the torque regulation process engine, consisting of the electronic computer of motor control including a linear regulator integral quadratic.

D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description du procédé et d'un mode dé réalisation du dispositif de mise en oeuvre du procédé, illustrée par les figures suivantes qui sont :

  • figure 1 : le schéma fonctionnel de la modélisation d'un moteur thermique, recevant une commande de débit d'air et fournissant un couple;
  • figure 2 : le schéma fonctionnel de la modélisation d'un moteur thermique, qui fonctionne à richesse unique;
  • figures 3 et 5 : le schéma fonctionnel du dispositif mettant en oeuvre le procédé de régulation du couple moteur selon l'invention, respectivement avec commande de richesse et richesse constante, dans le cas d'un papillon avec vanne additionnelle d'air ;
  • figure 4 et 6 : le schéma fonctionnel mettant en oeuvre le procédé de régulation du couple moteur selon l'invention, respectivement avec commande de richesse et richesse constante, dans le cas d'un papillon motorisé.
Other characteristics and advantages of the invention will appear on reading the description of the process and an embodiment of the device for implementing the process, illustrated by the following figures which are:
  • Figure 1: the block diagram of the modeling of a heat engine, receiving an air flow command and providing a torque;
  • FIG. 2: the functional diagram of the modeling of a heat engine, which operates at single richness;
  • Figures 3 and 5: the block diagram of the device implementing the method of regulating the engine torque according to the invention, respectively with richness control and constant richness, in the case of a butterfly valve with additional air valve;
  • FIGS. 4 and 6: the functional diagram implementing the method of regulating the engine torque according to the invention, respectively with richness control and constant richness, in the case of a motorized throttle valve.

La première étape du procédé de régulation du couple moteur consiste à réaliser une modélisation dynamique de la production du couple moteur rendant compte du fonctionnement physique du moteur. cette modélisation est réalisée en phase de développement du moteur, sur banc d'essais.The first step in the torque regulation process engine consists in performing dynamic modeling of the production of the engine torque reflecting the physical operation of the engine. this modeling is performed during the engine development phase, on bench test.

Tout d'abord, le couple fourni par le moteur, à avance d'allumage optimale et richesse du mélange air-essence égale à 1, est défini à partir de la masse d'air MAIRMOT(k) sortant du collecteur d'admission et entrant dans un cylindre du moteur, à chaque point mort haut d'ordre k, et du rendement de combustion du moteur R(Nk,Pk) qui est fonction de la valeur Nk du régime et de la valeur Pk de la pression dans le collecteur.
Ce couple moteur CAIRMOT(k) est exprimé en Newton.mètre, selon l'équation suivante (E1) : CAIRMOT(k) = R(Nk,Pk) * MAIRMOT(k) avec

R(Nk,Pk)
en N.m/kg,
N
en tour/min,
P
en mbar.
First of all, the torque supplied by the engine, with optimal ignition advance and richness of the air-fuel mixture equal to 1, is defined from the mass of air M AIRMOT (k) leaving the intake manifold and entering a cylinder of the engine, at each top dead center of order k, and of the combustion efficiency of the engine R (N k , P k ) which is a function of the value N k of the speed and the value P k of pressure in the manifold.
This engine torque C AIRMOT (k) is expressed in Newton meters, according to the following equation (E 1 ): VS AIRMOT (k) = R (N k P k ) * M AIRMOT (k) with
R (N k , P k )
in Nm / kg,
NOT
in rev / min,
P
in mbar.

Cette valeur doit être corrigée en fonction de l'avance à l'allumage Av et de la richesse Ri du mélange, par des rendements d'avance µAv(k) et de richesse µRi(k) définis à chaque point mort haut d'ordre k, selon l'équation suivante (E2), de façon à obtenir la valeur réelle CMI+ du couple fourni par le moteur : CMI+(k) = CAIRMOT(k) * µAv(k) * µRi(k - 2) = R(Nk,Pk) * MAIRMOT(k) * µAv(k) * µRi(k - 2) This value must be corrected as a function of the ignition advance Av and of the richness Ri of the mixture, by feed efficiencies µ Av (k) and richness µ Ri (k) defined at each top dead center d 'order k, according to the following equation (E 2 ), so as to obtain the real value CMI + of the torque supplied by the motor: CMI + (K) = C AIRMOT (k) * µ V (k) * µ Ri (k - 2) = R (N k P k ) * M AIRMOT (k) * µ V (k) * µ Ri (k - 2)

Le rendement de richesse µRi est une fonction cartographiée de la fonction Ri par exemple, et le rendement d'avance µAV est une fonction cartographiée de l'avance, du régime, de la pression collecteur et éventuellement de la richesse.The richness yield µ Ri is a mapped function of the function R i for example, and the advance yield µ AV is a mapped function of the advance, the speed, the manifold pressure and possibly the richness.

Cette expression du couple étant multiplicative, elle est non-linéaire. Selon l'invention, le procédé en calcule le logarithme et effectue un changement de variable. Cela permet, à partir d'équations multiplicatives, d'utiliser un modèle du couple qui soit additif sans qu'aucune approximation ne soit faite. La nouvelle variable est donc le logarithme logCMI+ du couple, exprimé par l'équation suivante (E3) : logCMI+(k) = logCAIRMOT(k) + logµAv(k) + logµRi(k-2) This expression of the couple being multiplicative, it is non-linear. According to the invention, the method calculates the logarithm thereof and performs a variable change. This allows, from multiplicative equations, to use a couple model which is additive without any approximation being made. The new variable is therefore the logarithm logCMI + of the couple, expressed by the following equation (E 3 ): logCMI + (K) = logC AIRMOT (k) + logµ V (k) + logµ Ri (k-2)

Selon l'invention est également défini un autre terme correspondant à une projection du couple précédent CMI+, quelques points morts hauts plus tard, dans le but notamment d'anticiper les commandes des actionneurs lorsque cela est possible. Ce couple projeté CP est donc défini comme le couple fourni par le moteur, selon une consigne de rendement d'avance µAvcons et une consigne de rendement de richesse µRicons, par l'équation suivante (E4) : CP(k) = R(Nk,Pk) * MAIRMOT(k) * µAvcons(k) * µRicons(k) = CAIRMOT(k) * µAvcons(k) * µRicons(k). According to the invention, another term is also defined corresponding to a projection of the previous torque CMI + , a few dead centers later, with the aim in particular of anticipating the commands of the actuators when possible. This projected torque CP is therefore defined as the torque supplied by the engine, according to an advance yield setpoint µ Avcons and a wealth yield setpoint µ Ricons , by the following equation (E 4 ): CP (K) = R (N k P k ) * M AIRMOT (k) * µAv cons (k) * µ Ricons (k) = C AIRMOT (k) * µ Avcons (k) * µ Ricons (k) .

Cette expression du couple étant non linéaire, on en calcule le logarithme selon l'équation suivante (E5) : logCP(k) = logCAIRMOT(k) + logµAvcons(k) + logµRicons(k) This expression of the couple being nonlinear, we calculate its logarithm according to the following equation (E 5 ): logCP (K) = logC AIRMOT (k) + logµ Avcons (k) + logµ Ricons (k)

En fonctionnement stabilisé, l'avance et la richesse sont égales à leurs valeurs de consigne, de sorte que le couple projeté CP est égal au couple CMI+.In stabilized operation, the feed rate and the richness are equal to their set values, so that the projected torque CP is equal to the torque CMI + .

Deux consignes de couple sont envoyées au régulateur de couple et sont calculées simultanément, l'une CMI+ cons à partir du couple CMI+ fourni par le moteur et que le régulateur devra suivre le plus rapidement possible, et l'autre CPcons, qui est à plus long terme, à partir du couple projeté CP.Two torque setpoints are sent to the torque regulator and are calculated simultaneously, one CMI + cons from the CMI + torque supplied by the engine and which the regulator must follow as quickly as possible, and the other CP cons , which is in the longer term, from the projected pair CP.

La modélisation du moteur selon l'invention consiste également à décrire le collecteur d'admission d'air du moteur par un modèle du premier ordre, à partir de la masse d'air MAIRPAP entrant dans le collecteur par le boítier papillon, à chaque point mort haut, que ce boítier soit constitué par un unique papillon ou bien qu'il comprenne d'autres actionneurs. Le terme décrivant le collecteur exprime la masse d'air MAIRMOT sortant du collecteur pour entrer dans un cylindre, selon l'équation suivante (E6) : MAIRMOT(k) = MAIRMOT(k-1) + Fcol*[MAIRPAP(k) - MAIRMOT(k-1)] dans laquelle le terme Fcol est un facteur de filtrage traduisant la dynamique du collecteur et exprimé selon l'équation suivante (E7), à partir de la cylindrée totale Vmot du moteur, du nombre de cylindres ncyl, du volume Vcol du collecteur et du taux de remplissage moyen Remp du moteur par de l'air, rapporté aux conditions du collecteur. (E7) : Fcol = {Vmot * Remp} / {ncyl * Vcol} The modeling of the engine according to the invention also consists in describing the engine air intake manifold by a first order model, from the mass of air M AIRPAP entering the manifold by the throttle body, at each top dead center, whether this case is constituted by a single butterfly or that it includes other actuators. The term describing the manifold expresses the mass of air M AIRMOT leaving the manifold to enter a cylinder, according to the following equation (E 6 ): M AIRMOT (k) = M AIRMOT (k-1) + F collar * [M AIRPAP (k) - M AIRMOT (k-1) ] in which the term F col is a filtering factor translating the dynamics of the collector and expressed according to the following equation (E 7 ), from the total displacement V word of the engine, the number of cylinders n cyl , the volume V col of the manifold and of the average filling rate Remp of the engine with air, related to the conditions of the manifold. (E 7 ): F collar = {V word * Remp} / {n cyl * V collar }

Pour assurer la compatibilité avec l'écriture du couple, le modèle du collecteur est relié au couple CAIRMOT fourni par le moteur et exprimé par l'équation (E1). Par analogie, il faut définir à partir de la masse d'air MAIRPAP entrant dans le collecteur, exprimée en kilogramme, une grandeur homogène à un couple, selon l'équation suivante (E8) : cAIRPAP(k) = R(Nk,Pk) * MAIRPAP(k). To ensure compatibility with the writing of the torque, the collector model is linked to the C AIRMOT torque supplied by the engine and expressed by equation (E 1 ). By analogy, it is necessary to define from the mass of air M AIRPAP entering the collector, expressed in kilograms, a quantity homogeneous to a couple, according to the following equation (E 8 ): vs AIRPAP (k) = R (N k P k ) * M AIRPAP (k) .

En négligeant les variations du rendement de combustion R(Nk,Pk) du moteur, entre deux points morts hauts d'indices k et k+1, l'équation (E6) précédente devient: CAIRMOT(k+1) = CAIRMOT(k) + FCol*[cAIRPAP(k+1) - CAIRMOT(k)]. By neglecting the variations in the combustion efficiency R (N k , P k ) of the engine, between two top dead centers of indices k and k + 1, the above equation (E 6 ) becomes: VS AIRMOT (k + 1) = C AIRMOT (k) + F Collar *[vs AIRPAP (k + 1) - VS AIRMOT (k) ].

On admettra que la différence entre les valeurs des couples CAIRMOT et CAIRPAP, soit CAIRPAP - CAIRMOT, est petite devant CAIRMOT et que l'on peut utiliser l'approximation log(1+x) ≈ x, de sorte que le modèle du collecteur s'écrit selon l'équation suivante (E9) : logCAIRMOT(k+1)=logCAIRMOT(k)+FCol*[logCAIRPAP(k+1)-logCAIRMOT(k)] We will admit that the difference between the values of the pairs C AIRMOT and C AIRPAP , ie C AIRPAP - C AIRMOT , is small compared to C AIRMOT and that we can use the approximation log (1 + x) ≈ x, so that the collector model is written according to the following equation (E 9 ): logC AIRMOT (k + 1) = logC AIRMOT (k) + F Collar * [LogC AIRPAP (k + 1) -logC AIRMOT (k) ]

Différents actionneurs d'air peuvent être utilisés dans un moteur, comme une vanne RCO, un papillon motorisé ou un stepper. La dynamique de l'actionneur d'air utilisé est décrite comme un modèle du premier ordre, dans le cadre de la modélisation théorique de la production du couple moteur, à partir du débit d'air QAIRPAP entrant dans le collecteur et du débit d'air QAIRCMD de commande de l'actionneur.Different air actuators can be used in an engine, such as an RCO valve, a motorized throttle valve or a stepper. The dynamics of the air actuator used is described as a first-order model, as part of the theoretical modeling of the production of engine torque, from the air flow Q AIRPAP entering the manifold and the flow d air Q AIRCMD actuator control.

L'équation (E10) suivante exprimant le débit d'air QAIRPAP(k+1) qui entre au point mort haut d'ordre k+1 : QAIRPAP(k+1)= QAIRPAP(k) + Fact*[QAIRCMD(k) - QAIRPAP(k)], avec le facteur de filtrage Fact qui traduit la dynamique de l'actionneur d'air, doit être ramenée sous forme de couple, dont il faut ensuite calculer le logarithme avant un changement de variable.The following equation (E 10 ) expressing the air flow Q AIRPAP (k + 1) which enters top dead center of order k + 1: Q AIRPAP (k + 1) = Q AIRPAP (k) + F act * [Q AIRCMD (k) - Q AIRPAP (k) ] with the filtering factor F act which translates the dynamics of the air actuator, must be brought back in the form of torque, whose logarithm must then be calculated before a variable change.

Or, le débit d'air QAIRPAP(k) est relié à la masse d'air MAIRPAP(k) entrant dans le collecteur par l'expression (E11) suivante, en fonction de la valeur Nk du régime moteur et du nombre de cylindres ncyl : (E11) : MAIRPAP(k) = {120 * QAIRPAP(k)} / {ncyl * Nk} de sorte que l'équation (E8) précédente devient : cAIRPAP(k) = R(Nk,Pk) * MAIRPAP(k) = R(Nk,Pk) * {120 * QAIRPAP(k)} / {ncyl * Nk}. However, the air flow rate Q AIRPAP (k) is connected to the mass of air M AIRPAP (k) entering the manifold by the following expression (E 11 ), as a function of the value N k of the engine speed and the number of cylinders n cyl : (E 11 ): M AIRPAP (k) = {120 * Q AIRPAP (k) } / {not cyl * NOT k } so that the above equation (E 8 ) becomes: vs AIRPAP (k) = R (N k P k ) * M AIRPAP (k) = R (N k P k ) * {120 * Q AIRPAP (k) } / {not cyl * NOT k }.

Par analogie, le débit d'air QAIRCMD de commande de l'actionneur donne lieu à une valeur de couple CAIRCMD défini selon l'équation suivante (E12) : CAIRCMD(k) = R(Nk,Pk) * {120 * QAIRCMP(k)} / {ncyl * Nk}. By analogy, the air flow Q AIRCMD for actuator control gives rise to a torque value C AIRCMD defined according to the following equation (E 12 ): VS AIRCMD (k) = R (N k P k ) * {120 * Q AIRCMP (k) } / {not cyl * NOT k }.

Ainsi, l'équation (E10) du débit d'air entrant dans le collecteur, modélisant le comportement de l'actionneur d'air, est ramenée sous la forme d'un couple qui s'écrit, en négligeant les variations du régime N et du rendement R(Nk,Pk) : CAIRPAP(k+1) = CAIRPAP(k) + Fact * [CAIRCMD(k) - CAIRPAP(k)]. Thus, the equation (E 10 ) of the air flow entering the manifold, modeling the behavior of the air actuator, is brought back in the form of a torque which is written, neglecting the variations of the regime N and the yield R (N k , P k ): VS AIRPAP (k + 1) = C AIRPAP (k) + F act * [VS AIRCMD (k) - VS AIRPAP (k) ].

On admettra que la différence entre CAIRPAP et CAIRCMD reste faible devant CAIRPAP, de sorte que le calcul du logarithme de CAIRPAP aboutit à l'équation suivante (E13) : logCAIRPAP(k+1)=logCAIRPAP(k)+Fact*[logCAIRCMD(k)-logCAIRPAP(k)]. We will admit that the difference between C AIRPAP and C AIRCMD remains small compared to C AIRPAP , so that the calculation of the logarithm of C AIRPAP results in the following equation (E13): logC AIRPAP (k + 1) = logC AIRPAP (k) + F act * [LogC AIRCMD (k) -logC AIRPAP (k) ].

La production du couple moteur ainsi modélisée selon l'invention est représentée par les quatre équations suivantes, représentant respectivement, (E3) le couple moteur, (E5) le couple projeté, (E9) le fonctionnement du collecteur et (E13) le fonctionnement de l'actionneur d'air :

  • (E3) : logCMI+(k) = logCAIRMOT(k) + logµAv(k) + logµRi(k-2)
  • (E5) : logCP(k) = logCAIRMOT(k) + logµAvcons(k) + logµRicons(k)
  • (E9) : logCAIRMOT(k+1)=logCAIRMOT(k) + Fcol*[logCAIRPAP(k+1)-logCAIRMOT(k)]
  • (E13) : logCAIRPAP(k+1)=logCAIRPAP(k)+Fact*[logCAIRCMD(k)-logCAIRPAP(k)].
  • The production of the engine torque thus modeled according to the invention is represented by the following four equations, representing respectively, (E 3 ) the engine torque, (E 5 ) the projected torque, (E 9 ) the operation of the collector and (E 13 ) the operation of the air actuator:
  • (E 3 ): logCMI + (K) = logC AIRMOT (k) + logµ V (k) + logµ Ri (k-2)
  • (E 5 ): logCP (K) = logC AIRMOT (k) + logµ Avcons (k) + logµ Ricons (k)
  • (E 9 ): logC AIRMOT (k + 1) = logC AIRMOT (k) + F collar * [LogC AIRPAP (k + 1) -logC AIRMOT (k) ]
  • (E 13 ): logC AIRPAP (k + 1) = logC AIRPAP (k) + F act * [LogC AIRCMD (k) -logC AIRPAP (k) ].
  • La figure 1 est le schéma fonctionnel de la modélisation de la production du couple moteur recevant une commande de débit d'air CAIRCMD appliquée au boítier papillon 1 qui délivre une masse d'air entrant dans le collecteur 2 et fournissant un couple, sous forme du logarithme logCMI+ et du logarithme logCP, au régulateur de couple 3.Figure 1 is the block diagram of the modeling of the production of the engine torque receiving an air flow control C AIRCMD applied to the throttle body 1 which delivers a mass of air entering the manifold 2 and providing a torque, in the form logCMI + logarithm and logCP logarithm, to torque regulator 3.

    Afin d'assurer le retour des logarithmes du couple moteur logCMI+, du couple projeté logCP et du rendement de richesse logµRi vers leurs valeurs de consigne respectives, l'invention définit trois nouvelles variables qui sont les intégrales en temps discret de ces trois grandeurs : ΣlogCMI+(k+1) = ΣlogCMI+(k) +elogCMI+(k) ΣlogCP(k+1)= ΣlogCP(k) + elogCP(k) ΣlogµRi(k+1)= ΣlogµRi(k) + elogµRi(k) avec les termes d'erreur suivants : elogCMI+ = logCMI+ - log CMI+cons elogCP = logCP - logCPcons elogµRi = logµRi - logµRicons ces erreurs étant égales à la différence entre le logarithme des grandeurs mesurées et le logarithme de leurs valeurs de consigne respectives.In order to ensure the return of the logarithms of the motor torque logCMI + , of the projected torque logCP and of the richness yield logµ Ri towards their respective reference values, the invention defines three new variables which are the discrete time integrals of these three quantities : ΣlogCMI + (K + 1) = ΣlogCMI + (K) + elogCMI + (K) ΣlogCP (k + 1) = ΣlogCP (k) + elogCP (k) Σlogμ Ri (k + 1) = Σlogµ Ri (k) + elogµ Ri (k) with the following error terms: elogCMI + = logCMI + - CMI log + cons elogCP = logCP - logCP cons elogμ Ri = logµ Ri - logµ Ricons these errors being equal to the difference between the logarithm of the quantities measured and the logarithm of their respective set values.

    Une variante de réalisation du procédé selon l'invention concerne un fonctionnement du moteur à richesse unique. La figure 2 est le schéma fonctionnel de la modélisation de la production du couple d'un moteur qui fonctionne à richesse unique.An alternative embodiment of the method according to the invention relates to an operation of the engine unique wealth. Figure 2 is the block diagram modeling the torque production of a single-wealth engine.

    Selon l'invention, après la phase de développement, le procédé de contrôle est réalisé en cours de fonctionnement du moteur et consiste en une régulation du couple moteur développée à partir du modèle linéaire du moteur qui vient d'être décrit, et de type linéaire quadratique intégrale.According to the invention, after the development phase, the control process is carried out during engine operation and consists of regulation of the engine torque developed from the linear model of the engine which has just been described, and of linear type integral quadratic.

    Le modèle linéaire du moteur peut être décrit par sa représentation d'état : Xk+1 = A*Xk + B*Uk + F*Xsk Xsk+1 = As * Xsk, dans laquelle Xk représente le vecteur d'état du modèle, constitué par des variables décrivant l'état dans lequel se trouve le moteur ;
    Uk représente les commandes sur lesquelles pourra agir le régulateur de couple pour assurer le fonctionnement du moteur, et
    Xsk représente les grandeurs variables qui ont un effet sur l'état de fonctionnement du moteur, d'après les équations du modèle du moteur, mais qui ne sont pas commandées par le régulateur, c'est-à-dire les perturbations.
    The linear model of the motor can be described by its state representation: X k + 1 = A * X k + B * U k + F * Xs k xs k + 1 = As * Xs k , in which X k represents the state vector of the model, constituted by variables describing the state in which the engine is located;
    U k represents the commands on which the torque regulator can act to ensure the operation of the engine, and
    Xs k represents the variable quantities which have an effect on the operating state of the engine, according to the equations of the engine model, but which are not controlled by the regulator, that is to say the disturbances.

    Ainsi, comme le montre le tableau 1 en annexe, la matrice des variables d'état Xk contient d'une part le logarithme logCAIRPAP de la grandeur CAIRPAP proportionnelle à la masse d'air entrant dans le collecteur par le boítier papillon, et celui logCAIRMOT de la grandeur CAIRMOT proportionnelle à la masse d'air sortant du collecteur, d'autre part l'erreur du logarithme du couple fourni par le moteur elogCMI+ k-1, l'erreur du logarithme du couple projeté elogCPk-1, l'erreur du logarithme du rendement de richesse pour deux points morts hauts consécutifs elogµRi(k-1) et elogµRi(k-2), et enfin les trois variables intégrales précédemment définies ΣlogCMI+ (k), ΣlogCP(k) et ΣlogµRi(k).Thus, as shown in table 1 in the appendix, the matrix of state variables X k contains on the one hand the logarithm logC AIRPAP of the quantity C AIRPAP proportional to the mass of air entering the manifold through the throttle body, and that log CAIRMOT of the quantity C AIRMOT proportional to the mass of air leaving the manifold, on the other hand the error of the logarithm of the torque supplied by the engine elogCMI + k-1 , the error of the logarithm of the projected torque elogCP k-1 , the error of the logarithm of the wealth yield for two consecutive high dead points elogµ Ri (k-1 ) and elogµ Ri (k-2 ), and finally the three previously defined integral variables ΣlogCMI + (k) , ΣlogCP (k) and Σlogµ Ri (k) .

    La matrice Xsk des perturbations contient le logarithme de la consigne du couple fourni par le moteur logCMI+ cons et de la consigne du couple projeté logCPcons, et le logarithme des rendements de consigne d'avance logµAvcons et de consigne de richesse logµRicons.The disturbance matrix Xs k contains the logarithm of the torque setpoint supplied by the logCMI + cons engine and of the projected torque setpoint logCP cons , and the logarithm of the advance setpoint returns logµ Avcons and the wealth setpoint logµ Ricons .

    La matrice Uk des commandes comprend le logarithme logCAIRCMD de la grandeur proportionnelle au débit d'air de commande de l'actionneur, les logarithmes logµAv et logµRi de l'avance à l'allumage et de la richesse.The matrix U k of the commands comprises the logarithm logC AIRCMD of the quantity proportional to the actuator control air flow, the logarithms logµ Av and logµ Ri of the ignition advance and of the richness.

    La régulation linéaire quadratique intégrale est une régulation à retour d'état, de sorte qu'à chaque itération, la commande Uk est obtenue à partir d'une matrice de gain K calculée une fois pour toutes pendant la phase de développement du régulateur : K = [K KS]

    Figure 00140001
    Integral quadratic linear regulation is state feedback regulation, so that at each iteration, the command U k is obtained from a gain matrix K calculated once and for all during the development phase of the regulator: K = [KK S ]
    Figure 00140001

    La théorie de la régulation linéaire quadratique intégrale donne la matrice K comme le gain optimal minimisant l'indice de performance quadratique :

    Figure 00140002
    où les matrices Q et R sont des matrices de pondération définissant les caractéristiques de la régulation. La résolution de ce problème conduit au calcul suivant de la matrice de gain K, K = [K KS] : P = Q + AT.P.A - AT.P.B. (R + BT.P.B)-1.BT.P.A K = (R + BT.P.B)-1.BT.P.A Ps = (A - B.K)T.(P.F + Ps.As) KS = (R + BT.P.B)-1.BT.(P.F + Ps.As) P étant l'inconnue de l'équation matricielle.The theory of integral quadratic linear regulation gives the matrix K as the optimal gain minimizing the quadratic performance index:
    Figure 00140002
    where the matrices Q and R are weighting matrices defining the characteristics of the regulation. The resolution of this problem leads to the following calculation of the gain matrix K , K = [KK S ]: P = Q + A T .PA - A T .PB (R + B T .PB) -1 .B T .PA K = (R + B T .PB) -1 .B T .PA P s = (A - BK) T . (PF + Ps.As) K S = (R + B T .PB) -1 .B T . (PF + Ps.As) P being the unknown of the matrix equation.

    Il est possible d'utiliser plusieurs matrices de gain en fonction du mode de fonctionnement utilisé pour le moteur, privilégiant soit l'avance à l'allumage, la richesse ou l'anti-pollution par exemple.It is possible to use several gain matrices depending on the operating mode used for the engine, favoring either the ignition advance, the wealth or anti-pollution for example.

    Quant aux matrices A, B, F et As provenant de la modélisation du moteur pour décrire l'évolution des variables d'état Xk en fonction du temps, elles sont obtenues à partir des quatre équations E3, E5, E9 et E13 précédentes et figurent sur le tableau 2 en annexe. La matrice de retour d'état K est calculée à partir de ces matrices.As for the matrices A, B, F and As coming from the modeling of the engine to describe the evolution of the state variables X k as a function of time, they are obtained from the four equations E 3 , E 5 , E 9 and E 13 above and appear in table 2 in the appendix. The state return matrix K is calculated from these matrices.

    Dans le cas particulier d'une commande simplifiée du moteur par l'avance à l'allumage et le débit d'air, à richesse unique, les matrices de représentation des variables d'état Xk, Uk et Xsk ne présentent pas de variable se rapportant à la richesse. Elles figurent sur le tableau 3 en annexe, tandis que les matrices A, B, F et As qui sont également simplifiées figurent sur le tableau 4.In the particular case of a simplified control of the engine by the ignition advance and the air flow, with single richness, the representation matrices of the state variables X k , U k and Xs k do not have of variable relating to wealth. They are shown in table 3 in the appendix, while the matrices A, B, F and As which are also simplified are shown in table 4.

    La figure 3 est le schéma fonctionnel du dispositif mettant en oeuvre le procédé de régulation du couple moteur selon l'invention, dans le cas d'un moteur 4 dont le boítier papillon 5 comprend un papillon mécanique 6, dont la commande d'ouverture Sp est déterminée par l'enfoncement de la pédale d'accélérateur, associé à une vanne 7 d'air additionnel, dont on commande électroniquement l'ouverture, autrement dit la section Sv.Figure 3 is the block diagram of the device implementing the method of regulating the engine torque according to the invention, in the case of an engine 4 whose throttle body 5 comprises a mechanical throttle 6, including the opening control S p is determined by depressing the accelerator pedal, associated with an additional air valve 7, the opening of which is electronically controlled, in other words section S v .

    La figure 4 est le même schéma dans le cas d'un papillon motorisé 8 dont on commande totalement l'ouverture Spm.FIG. 4 is the same diagram in the case of a motorized throttle valve 8 whose opening S pm is completely controlled.

    Sur la figure 3, le moteur 4 reçoit une commande d'ouverture du papillon Sp ainsi qu'une commande électronique d'avance à l'allumage Av, d'ouverture de la vanne Sv et éventuellement de temps d'injection Ti, et sur la figure 4, le moteur reçoit une commande d'ouverture Spm de son papillon motorisé 8. On mesure à chaque point mort haut d'ordre k, la valeur de régime Nk et celle de la pression collecteur Pk ou de toute autre grandeur représentative de la masse d'air absorbée réellement par le moteur, comme le débit d'air, entrant dans le collecteur par exemple. Le débit d'air est mesuré par un débitmètre et la pression collecteur est mesurée par un capteur de pression. Le calculateur électronique de contrôle moteur 9 calcule la masse d'air QAIRMOT sortant du collecteur, dans des moyens 10, puis la richesse Ri et le rendement de richesse µRi du mélange à partir de cette masse d'air et du temps d'injection Ti, dans des moyens 11 et 12. A partir des sections du papillon Sp et de la vanne Sv, dans le cas de la figure 3, et à partir de la section Spm du papillon motorisé dans le cas de la figure 4, de l'avance Av et du temps d'injection Ti, les modules 13 du calculateur déterminent les valeurs de couple définis précédemment, soit le couple fourni CMI+, le couple projeté CP, le couple défini à partir de la masse d'air entrant dans le collecteur CAIRPAP et celle sortant du collecteur CAIRMOT, les consignes des couples fourni CMI+ cons et projeté CPcons, les consignes des rendements de richesse µRicons et d'avance µAvcons et le rendement de richesse µRi. Des moyens 14 calculent le logarithme de ces valeurs qui entrent dans un régulateur linéaire quadratique intégral 15, dont le rôle est de reconstituer le vecteur d'état du modèle de couple et le produit matriciel pour délivrer le logarithme des commandes de rendement d'avance logµAv, du débit d'air de l'actionneur logCAIRCMD et éventuellement de rendement de richesse logµRi. Des moyens 16 calculent l'exponentielle de ces valeurs, qui est ensuite écrêtée dans des moyens 17, pour tenir compte des limitations liées au fonctionnement des actionneurs et du moteur, qui délivrent le rendement d'avance µAv, la commande d'air CAIRCMD et le rendement de richesse µRi.
    Des moyens 18 calculent la valeur de l'avance à l'allumage Av à partir du rendement µAv, du régime N, de la pression collecteur P et éventuellement de la richesse Ri.
    Des moyens 19 calculent la commande finale de l'actuateur d'air 5, soit la section de la vanne Sv ou l'ouverture Spm du papillon motorisé.
    Des moyens 20 calculent la richesse Ri à partir de la commande de rendement de richesse µRi ainsi que d'une table de rendement de richesse en fonction de la richesse. Des moyens 21 calculent ensuite le temps d'injection Ti à partir de cet objectif de richesse et des conditions de fonctionnement du moteur, telles que la pression dans le collecteur, le régime, etc ... . A partir de ce temps d'injection, des moyens 22 estiment la richesse dans chaque cylindre et le rendement de richesse associé.
    In FIG. 3, the engine 4 receives a command to open the throttle valve S p as well as an electronic command for ignition advance Av, for opening the valve S v and possibly for injection time Ti, and in FIG. 4, the engine receives an opening command S pm from its motorized throttle valve 8. At each top dead center of order k, the speed value N k and that of the manifold pressure P k or of any other quantity representative of the mass of air actually absorbed by the engine, such as the air flow rate, entering the manifold for example. The air flow is measured by a flow meter and the manifold pressure is measured by a pressure sensor. The electronic engine control computer 9 calculates the mass of air Q AIRMOT leaving the manifold, in means 10, then the richness Ri and the richness yield µ Ri of the mixture from this air mass and the time d injection Ti, in means 11 and 12. From the sections of the butterfly S p and of the valve S v , in the case of FIG. 3, and from the section S pm of the motorized butterfly in the case of the figure 4, of the advance Av and of the injection time Ti, the modules 13 of the computer determine the torque values defined above, ie the supplied torque CMI + , the projected torque CP, the torque defined from the mass of air entering the AIRPAP collector C and that leaving the AIRMOT C collector , the instructions for the couples supplied CMI + cons and projected CP cons , the instructions for the wealth returns µ Ricons and in advance µ Avcons and the wealth returns µ Ri . Means 14 compute the logarithm of these values which enter into an integral quadratic linear regulator 15, the role of which is to reconstruct the state vector of the torque model and the matrix product to deliver the logarithm of the feed efficiency commands logµ Av , the air flow of the logC actuator AIRCMD and possibly the logµ Ri richness efficiency. Means 16 calculate the exponential of these values, which is then clipped in means 17, to take account of the limitations linked to the operation of the actuators and of the motor, which deliver the advance efficiency μ Av , the air control C AIRCMD and the wealth yield µ Ri .
    Means 18 calculate the value of the ignition advance Av from the yield µ Av , the speed N, the manifold pressure P and possibly the richness Ri.
    Means 19 calculate the final control of the air actuator 5, either the section of the valve S v or the opening S pm of the motorized throttle valve.
    Means 20 calculate the richness Ri from the richness yield control μ Ri as well as from a richness yield table as a function of the richness. Means 21 then calculate the injection time Ti on the basis of this richness objective and the operating conditions of the engine, such as the pressure in the manifold, the speed, etc. From this injection time, means 22 estimate the richness in each cylinder and the associated richness yield.

    Les figures 5 et 6 sont les mêmes schémas fonctionnels du dispositif de régulation que les figures 3 et 4, respectivement avec un papillon associé à une vanne d'air et avec un papillon motorisé, mais dans le cas d'un moteur fonctionnant à richesse unique. Le rendement de richesse µRi et la consigne de rendement de richesse µRicons sont égaux à 1.FIGS. 5 and 6 are the same functional diagrams of the regulation device as FIGS. 3 and 4, respectively with a throttle associated with an air valve and with a motorized throttle, but in the case of an engine operating with single richness . The wealth yield µ Ri and the wealth yield setpoint µ Ricons are equal to 1.

    Un premier avantage du procédé de contrôle du moteur selon l'invention vient de l'utilisation d'une régulation du couple à partir d'un modèle non linéaire du moteur, ce qui permet au régulateur du calculateur électronique de connaítre avec précision les effets des commandes sur le comportement du moteur et de déterminer les valeurs des commandes afin de provoquer l'effet attendu.
    De plus, l'intérêt de formuler le modèle du couple moteur, décrit par des équations multiplicatives, par une fonction logarithme est d'obtenir un modèle linéaire unique, qui décrit en tous points le fonctionnement non linéaire du moteur. Ceci se traduit par un gain en performance pour la régulation proposée par l'invention par rapport aux régulations existant actuellement.
    D'autre part, la régulation du couple moteur est multivariable, c'est-à-dire qu'elle agit simultanément sur plusieurs variables de commande pour réguler simultanément plusieurs variables d'état du fonctionnement du moteur. Ceci est particulièrement avantageux puisque chacune des variables d'état est ainsi régulée en tenant compte des couplages entre les différentes variables d'état et de commande, et qu'il est alors possible d'exploiter la complémentarité des différentes commandes en termes d'autorité et de rapidité d'action.
    Un autre intérêt provient de la définition du couple moteur projeté, qui permet dans certains modes de fonctionnement, de positionner à l'avance les différentes commandes de façon coordonnée pour mieux respecter la consigne de couple moteur, en anticipant la dynamique ou les retards dans le fonctionnement des commandes.
    Enfin, cette régulation du couple moteur permet, par l'adjonction de procédés simples, de prendre en charge la régulation d'autres grandeurs, telle que le régime de ralenti, sans développement d'un procédé complet de régulation agissant directement sur les actionneurs. Cet avantage se traduit par une diminution de la complexité et de la taille des procédés à mettre en oeuvre dans le calculateur électronique du moteur, ainsi que par une simplification des procédures de calibration et de mise au point des procédés.

    Figure 00200001
    Figure 00210001
    Figure 00220001
    Figure 00230001
    A first advantage of the engine control method according to the invention comes from the use of torque control from a non-linear model of the engine, which allows the regulator of the electronic computer to know precisely the effects of controls the behavior of the engine and determine the values of the controls to cause the expected effect.
    In addition, the interest of formulating the model of the motor torque, described by multiplicative equations, by a logarithmic function is to obtain a single linear model, which describes in all points the non-linear operation of the motor. This results in a gain in performance for the regulation proposed by the invention compared to the regulations currently existing.
    On the other hand, the regulation of the motor torque is multivariable, that is to say that it acts simultaneously on several control variables to simultaneously regulate several state operating variables. This is particularly advantageous since each of the state variables is thus regulated taking account of the couplings between the different state and control variables, and it is then possible to exploit the complementarity of the different commands in terms of authority and speed of action.
    Another advantage comes from the definition of the projected engine torque, which makes it possible, in certain operating modes, to position the different commands in advance in a coordinated manner to better respect the engine torque setpoint, by anticipating the dynamics or the delays in the operation of controls.
    Finally, this regulation of the engine torque makes it possible, by the addition of simple methods, to take charge of the regulation of other quantities, such as the idling speed, without the development of a complete regulation method acting directly on the actuators. This advantage results in a reduction in the complexity and in the size of the processes to be implemented in the electronic engine computer, as well as in a simplification of the procedures for calibration and development of the processes.
    Figure 00200001
    Figure 00210001
    Figure 00220001
    Figure 00230001

    Claims (8)

    1. Method for control of the torque of an internal combustion engine with spark ignition, with injection controlled by an electronic computer, having at least three actuators to which air control, ignition control and fuel mixture richness control are respectively applied, consisting, from a model of the engine torque, of producing regulation, of the integral quadratic linear type, of variables of the state of operation of the engine by acting upon control variables according to reference variables and state variables, characterised in that it comprises the following steps:
      in the engine development phase:
      linear dynamic modelling of the engine torque production by means of a logarithmic function and its inverse function;
      definition of the optimum gain minimising the quadratic performance index of integral quadratic linear regulation, from which the control variables (UK) will be calculated according to state variables (XK) and reference variables (XsK), and storage thereof in the computer;
      during operation of the engine, at each top dead centre of the order k, calculation of state variables (XK) and reference variables (XsK) by the electronic computer, from:
      measurement of the engine speed (NK) and a representative value of the air mass actually absorbed by the engine;
      calculation of the air mass (MAIRMOT) exiting the manifold according to the engine speed and to said value;
      calculation of the richness (Ri) and richness efficiency (µRi) from the injection timing and the air mass (MAIRMOT);
      calculation of the air mass (MAIRPAP) entering into the manifold according to the controlling air mass (MAIRCMD) for the actuator;
      calculation of the actual torque (CMI+) and the projected torque (CP) supplied by the engine;
      then calculation of the variables of the controls (UK) according to integral quadratic linear regulation.
    2. Method for control of torque according to claim 1, characterised in that the value representative of the air mass actually absorbed by the engine is the pressure (PK) in the manifold, or the rate of air entering into the manifold.
    3. Method for control of torque according to claim 2, characterised in that the modelling of the torque production is defined by four linear equations obtained from the effects produced during the operation of the engine, by:
      the rate of controlling air (QAIRCMD) for the air actuator over the rate of air (QAIRPAP) entering into manifold according to the following first order equation: QAIRPAP(k+1) = QAIRPAP(k) + Fact*[QAIRCMD(k) - QAIRPAP(k)] where Fact : a filtering factor translating the dynamics of the air actuator;
      the air mass (MAIRPAP) entering into the manifold via the throttle valve over the air mass (MAIRMOT) exiting the manifold and entering into a cylinder according to the first order equation: MAIRMOT(k) = MAIRMOT(k-1) + Fcol * [MAIRPAP(k) - MAIRMOT(k-1)] where Fcol : a filtering factor translating the dynamics of the manifold;
      the air mass (MAIRMOT) exiting the manifold on the one hand over the torque (CMI+) supplied by the engine according to the advance efficiencies (µAV) and richness (µRi) and the engine combustion efficiency R(NK, PK): CMI+(k) = R(NK, PK) * MAIRMOT(K) * µAv(K) * µRi(K-2) and on the other hand, on the projected torque (CP) supplied by the engine according to the reference efficiency of the advance (µAvcons) and the richness (µRicons) and the engine combustion efficiency R(NK, PK): CP(K) = R(NK, PK) * MAIRMOT(K) * µAvcons(K) * µRicons(K),
      these equations being subsequently linearised by calculation of their logarithm after a change in the variable.
    4. Method for control of torque according to claim 3, characterised in that:
      a) the state variables (XK) of engine operation are:
      the logarithms of two values homogeneous to a torque, one (CAIRPAP) proportional to the air mass (MAIRPAP) entering into the manifold via the throttle valve and the other (CAIRMOT) proportional to the air mass (MAIRMOT) exiting the manifold;
      the errors in the torque logarithms supplied by the engine (elogCMI+), in the projected torque (elongCP) and in the richness efficiency (elogµRi) for two consecutive top dead centres, which errors are equal to the difference between the logarithm of the values measured and the logarithm of their respective reference values: elogCMI+ = logCMI+ - log CMI+cons elogCP = logCP - logCPcons elogµRi = logµRi - logµRicons ;
      three variables defined as the integrals in discrete time of the torque supplied (ΣlogCMI+), of the projected torque (ΣlogCP) and the richness efficiency (ΣlogµRi): ΣlogCMI+(k+1) = ΣlogCMI+(k) + elogCMI+(k) ΣlogCP(k+1) = ΣlogCP(k) + elogCP(k) ΣlogµRi(k-1) = ΣlogµRi(k) + elogµRi(k)
      b) the reference variables are the logarithms of the reference of torque supplied (logCMI+ cons), of the projected torque (logCPcons), and the efficiencies of ignition advance (logµRicons); and
      c) the control variables (UK) for the engine actuators are the logarithms (logCAIRCMD) of the value homogenous to a torque and proportional to the rate of air for controlling the actuator, and the efficiencies of ignition advance (logµAv) and richness (logµRi).
    5. Method for control of the torque according to one of claims I to 4, characterised in that the engine operates at a single richness, with a richness efficiency equalling 1.
    6. Device for controlling the torque of an internal combustion engine, with spark ignition, with injection controlled by an electronic computer, having at least three actuators to which air control, ignition control and mixture richness control are respectively applied, implementing the method according to one of claims 1 to 5, characterised in that the electronic computer (9) comprises:
      means (10) for calculating the air mass (MAIRMOT) exiting the manifold;
      means (11) for calculating the richness (Ri) and means (12) for calculating the efficiency of the richness (µRi) of the mixture from said air mass (MAIRMOT) and the injection timing (Ti);
      modules (13) determining from the engine speed, the manifold pressure, the opening of the air actuator, the advance (Av) and the injection timing (Ti), values for the torque supplied (CMI+), the projected torque (CAIRPAP) defined from the air mass entering into the manifold, and the torque (CAIRMOT) defined from the air mass exiting the manifold, the references for the torque supplied (CMI+ cons) and the projected torque (CPcons), the references for richness efficiency (µRicons) and the advance efficiency (µAvcons);
      means (14) for calculating the logarithm of the values calculated by the means (13);
      an integral quadratic linear regulator (15) receiving at its input the logarithms of the torques calculated by the means (14) and delivering the logarithm of the controls for the advance efficiency (logµAv), the air rate of the actuator (logCAIRCMD) and the richness efficiency (logµRi);
      means (16) for calculating the exponential of the values delivered by the regulator (15);
      means (17) for limiting the values delivered by the means (15) in order to take into account the limitations connected with the operation of the actuators and the engine, delivering the advance efficiency (µAv), the air control (CAIRCMD) and the richness efficiency (µRi);
      means (18) for calculating the value of the ignition advance (Av) from the advance efficiency (µAv), the engine speed (N), the manifold pressure (P) and possibly the richness (Ri);
      means (19) for calculating the final control (CAIRCMD) of the air actuator (5);
      means (20) for calculating the richness (Ri) from the control of the richness efficiency (µRi) and from a table of the torque efficiency according to the richness;
      means (21) for calculating the injection timing (Ti) from said target richness and engine operating conditions such as the pressure in the manifold or the engine speed;
      means (22) for estimation from the injection timing (Ti), the richness (Ri) in each cylinder, and the associated richness efficiency.
    7. Device for controlling torque according to claim 6, characterised in that the air actuator is a throttle valve comprising a mechanical throttle (6), the opening (Sp) of which is directly controlled by the accelerator pedal of the vehicle and an additional air valve (7), the opening of which (Sv) is controlled by the electronic computer (9).
    8. Device for controlling torque according to claim 6, characterised in that the air actuator is a throttle valve comprising a motorised throttle (8) the opening of which (Spm) is controlled by the electronic computer (9).
    EP19980401507 1997-06-19 1998-06-19 Method and apparatus for controlling a spark ignited internal combustion engine Expired - Lifetime EP0886055B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9707664 1997-06-19
    FR9707664A FR2764941B1 (en) 1997-06-19 1997-06-19 METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION

    Publications (2)

    Publication Number Publication Date
    EP0886055A1 EP0886055A1 (en) 1998-12-23
    EP0886055B1 true EP0886055B1 (en) 2003-01-22

    Family

    ID=9508192

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19980401507 Expired - Lifetime EP0886055B1 (en) 1997-06-19 1998-06-19 Method and apparatus for controlling a spark ignited internal combustion engine

    Country Status (4)

    Country Link
    EP (1) EP0886055B1 (en)
    DE (1) DE69810849T2 (en)
    ES (1) ES2190571T3 (en)
    FR (1) FR2764941B1 (en)

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FI115203B (en) 2000-10-02 2005-03-31 Metso Paper Inc Apparatus for cutting in particular a paper web with water jet
    FR2944317A3 (en) * 2009-04-10 2010-10-15 Renault Sas Gas intake and exhaust system for internal combustion engine of motor vehicle, has control unit controlling valve relative to sensors measurements, where valve is arranged in outlet of exhaust of motor vehicle
    US9989001B2 (en) 2012-12-21 2018-06-05 Toyota Motor Engineering & Manufacturing North America, Inc. Discrete time rate-based model predictive control method for internal combustion engine air path control
    US9581080B2 (en) * 2012-12-21 2017-02-28 Toyota Motor Engineering & Manufacturing North America, Inc. Rate-based model predictive control method for internal combustion engine air path control

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH0697003B2 (en) * 1984-12-19 1994-11-30 日本電装株式会社 Internal combustion engine operating condition control device
    JP2674077B2 (en) * 1988-04-12 1997-11-05 トヨタ自動車株式会社 Non-linear feedback control method for internal combustion engine

    Also Published As

    Publication number Publication date
    EP0886055A1 (en) 1998-12-23
    DE69810849D1 (en) 2003-02-27
    FR2764941A1 (en) 1998-12-24
    FR2764941B1 (en) 1999-08-27
    ES2190571T3 (en) 2003-08-01
    DE69810849T2 (en) 2003-11-13

    Similar Documents

    Publication Publication Date Title
    EP1866537B1 (en) Method for assisting in srarting a motor vehicle and corresponding device
    WO2005008050A1 (en) Method for real-time determination of fuel injector flow characteristic
    FR2659114A1 (en) METHOD AND DEVICE FOR CONTROLLING THE WEIGHT OF THE AIR / FUEL SUPPLY MIXTURE OF AN INTERNAL COMBUSTION ENGINE.
    FR2787511A1 (en) METHOD AND DEVICE FOR EQUALIZING THE TORQUES OF EACH CYLINDER OF AN ENGINE
    EP2148979B1 (en) Method of controlling the combustion of a diesel engine
    EP0886055B1 (en) Method and apparatus for controlling a spark ignited internal combustion engine
    EP0954689B1 (en) Device for controlling an internal combustion engine with controlled ignition and direct injection
    EP1936156B1 (en) Method of controlling an internal combustion engine
    EP1090219B1 (en) Method for correcting ignition advance of an internal combustion engine
    EP2157301B1 (en) Method for controlling combustion in a diesel engine by means of combustion phasing control
    EP1671023B1 (en) Engine air supply control method which is intended, for example, for the control of a turbocharged engine
    FR2902467A1 (en) Boost pressure regulation system for e.g. heat engine, has unit storing learnt correction values of regulator control signal for considering particle loading variation of filter, and arbitration units triggering reading value
    FR2894626A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
    EP1760295B1 (en) Control system for a diesel engine equipped with exhaust recriculation means
    EP1597468B1 (en) Method for calculating fuel injector gain
    EP0736680B1 (en) Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine
    FR2871195A1 (en) Internal combustion engine monitoring process for motor vehicle, involves adjusting controlled variable on value from requests on engine`s output variable if request different from pedal actuation request exists, or on actuation based value
    FR2851298A1 (en) Thermal engine control process, involves defining mass charging that should be applied to combustion chamber, from bunch of curve characteristics, desired torque, and size explaining desired air/fuel ratio
    EP0639704A1 (en) Method for calculating the mass of air admitted to an internal combustion engine
    FR2875271A1 (en) Drive unit e.g. gasoline engine, controlling method for motor vehicle, involves determining real value of output variable and/or another variable based on valve position, and modeling another value without considering intervention
    WO2010125265A1 (en) Method for controlling the operation of an engine
    WO2006064149A1 (en) Method for controlling a supercharged engine
    WO2024047080A1 (en) Method and system for controlling the engine torque of an internal combustion engine
    FR2747429A1 (en) Control of motor vehicle engine in slowing phase by neural net
    EP3805544A1 (en) Control of a supercharged spark ignition engine with low-pressure exhaust gas recirculation

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990527

    AKX Designation fees paid

    Free format text: DE ES GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20020409

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: RENAULT S.A.S.

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB IT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20030122

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030122

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69810849

    Country of ref document: DE

    Date of ref document: 20030227

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030620

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20030122

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2190571

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040101

    26N No opposition filed

    Effective date: 20031023

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030620