EP1597468B1 - Method for calculating fuel injector gain - Google Patents

Method for calculating fuel injector gain Download PDF

Info

Publication number
EP1597468B1
EP1597468B1 EP04711386A EP04711386A EP1597468B1 EP 1597468 B1 EP1597468 B1 EP 1597468B1 EP 04711386 A EP04711386 A EP 04711386A EP 04711386 A EP04711386 A EP 04711386A EP 1597468 B1 EP1597468 B1 EP 1597468B1
Authority
EP
European Patent Office
Prior art keywords
engine
injector
fuel
injection
injectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04711386A
Other languages
German (de)
French (fr)
Other versions
EP1597468A1 (en
Inventor
Henri Mazet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Argentan France SAS
Original Assignee
Magneti Marelli Motopropulsion France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli Motopropulsion France SAS filed Critical Magneti Marelli Motopropulsion France SAS
Publication of EP1597468A1 publication Critical patent/EP1597468A1/en
Application granted granted Critical
Publication of EP1597468B1 publication Critical patent/EP1597468B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount

Definitions

  • the invention relates to a method for real-time determination of the gain, or static flow, of at least one fuel injector, of the electrically controlled type, supplying an internal combustion engine, and mounted in a fuel supply circuit. of the engine, this circuit comprising at least one pump, fed from a fuel tank, and connected to a common fuel supply rail of each injector of the engine.
  • each injector the gain of which is to be determined by the method according to the invention, is mounted in a fixed-volume type supply circuit and without permanent return of fuel from the downstream upstream of said pump. which is controlled in flow, each injector and said pump being controlled by at least one computer, generally belonging to an electronic control unit and motor control, so that each cycle of the engine the pump delivers in the circuit a mass of fuel known from the computer, and that each injector delivers to said engine a fuel mass injected determined by an injector flow rate, expressing the injected mass according to an increasing function of the injection duration of said injector, controlled by said computer, and for which corresponds to each value of the injection duration, a local gain defined by a ratio of a variation of mass injected, consecutive there is a variation in injection duration, in said variation of injection duration (the local gain thus corresponding to the local slope at any point on the curve representing the flow characteristic of the injector).
  • Injectors of this type are generally qualified by their manufacturer by a theoretical injector flow rate characteristic, a substantially linear portion of which is determined by a theoretical injector gain as well as an offset at the theoretical origin, or theoretical offset, corresponding to a minimum order duration for a zero injected mass, obtained at the intersection of the extrapolation, to the origin of the durations of control, of the linear part of the characteristic with the abscissa axis, expressing the control times, on a plane diagram on which the injected masses are indicated along the y-axis, while a non-linear part of the characteristic , at the low values of the injection duration, can be stored in the computer in the form of mapping or theoretical table.
  • Electrically operated fuel injectors of this type can be fitted to diesel or spark ignition engines, and can be mounted in direct or indirect injection fuel systems.
  • the injectors used to perform the injection of a predetermined amount of fuel by an engine control computer have dispersions and evolutions in time of their characteristics, which has the consequence that the injection of a mass fuel data requires a different injection time control depending on the injector ordered and the age of the latter.
  • the dispersions of the characteristics of the injectors result from the manufacturing tolerances of the physical components of the injectors, and therefore from their dimensional dispersions and physical characteristics, in particular the number and diameter (s) of the injection orifices of the injectors, their orientations, the elastic characteristic of their springs, etc ..., and the evolution over time of the flow characteristics of the injectors results in particular from the aging of the physical components of the injectors.
  • the components involved are those that calculate the intake air flow to the engine and control the flow of fuel injected into the engine, so that these components include the injectors. But, unless specific strategies, closed loop wealth controls do not identify the characteristics of each of the components involved, either globally or individually.
  • the metering of the air-fuel mixture consists in controlling a flow of intake air to the engine and a corresponding fuel flow, and the closed-loop richness checks make it possible to compensate for the ratio of the air flow rate to the flow rate. of fuel, without identifying the part of correction to be made to the air flow or the fuel flow, and, in addition, these richness checks do not allow to calculate an individualized correction for each cylinder, and therefore each injector.
  • the problem underlying the invention therefore consists, from the knowledge of a theoretical injector flow rate characteristic, of determining in real time the gain of at least one fuel injector of an engine, in order to learn the relationship between the mass of fuel injected and the control time of at least one injector considered, during learning phases that occur regularly, during operation of the engine, on points operating conditions that are not necessarily steady state, and during learning periods short enough that the driver of the vehicle does not feel any change in engine operation that would be due to these learning phases.
  • the object of the invention is therefore to allow a better knowledge of the flow characteristic of at least one injector of a running engine by a real-time determination of the gain of the injector in question, in order to have a follow-up. the evolution of the individual flow characteristic of each injector.
  • EP-0 488 362-A a method for determining a parameter (K pni ) of at least one fuel injector mounted in a fuel supply circuit of an internal combustion engine of the type shown above, the method comprising at least one step of determining this parameter according to the variation (Q di ) of the mass of fuel injected into the engine by the set of injectors resulting from the application on said at least one injector considered a duration command of injection different from that applied to the other injector or injectors.
  • This K pni parameter does not represent the local gain, but is directly related to the inverse of the gain.
  • the implementation of this method provides the advantage of allowing, without having to make the injectors, and therefore their components, with very tight tolerances, and thus without increasing the cost of the injection system, to guarantee greater accuracy. of the mass of fuel injected into each cylinder of the engine, and, consequently, to ensure the accuracy of the air-fuel dosage and the torque developed by the engine. This results in a good control of emissions in the exhaust, and a better driving pleasure of the motor vehicle. It is thus possible to simply equip the engine with less efficient injectors, since the implementation of the method according to the invention makes it possible to compensate for the dispersions at the level of the physical components of the injectors.
  • this embodiment is preferred, as appropriate to the actual operating conditions of the engine, in which the fuel requirement of the engine is not strictly stable during substantially successive phases of operation of the engine.
  • the method according to the invention is furthermore to repeat the steps a) to g) presented above for different points of operation of the engine and / or for a plurality of values different from the injection times corresponding to different parts of the injector flow characteristic, so as to determine the individual gain of said at least one injector considered.
  • the behavior model of the circuit may be a model that takes into account the flow rate or mass entering the common rail, imposed by the high pressure pump and determined by the calculator, the flow or mass leaving the common rail and injected into the engine, and also determined by the computer, as well as the rigidity of the circuit.
  • the method of the invention can thus consist in determining the individual gain of a single injector of the engine at a time, by applying to this single injector commands of injection times different from those applied to the other injectors of the engine, during said second phase of the process.
  • the method consists in determining, in succession, the individual gain of each of the injectors of the same engine in operation, in order to optimize the contribution of each injector to the supply of the corresponding cylinder of the engine.
  • an internal combustion engine 1 for a motor vehicle On the figure 1 is schematically shown an internal combustion engine 1 for a motor vehicle.
  • the engine considered 1 is an in-line four-cylinder engine, four-stroke spark ignition and four-stroke engine fuel supplied by direct injection fuel, although the method of the invention is applicable to an injection engine indirect and / or diesel type.
  • Fuel injection is provided in each cylinder of the engine by one respectively of the four injectors 2.
  • injectors 2 are supplied with fuel at high pressure by a common fuel rail 3, in which the fuel pressure is measured, at least at certain times of the engine cycle, by a pressure sensor 4 transmitting the pressure signal measured at a maximum speed. motor control unit 5.
  • the engine control unit 5 is an electronic unit controlling the injection of the fuel into the engine 1, by controlling the instants and injector injection timing times of the injectors 2 with the control electrical conductor beam 6, as well as the ignition in the cylinders of the engine 1, in the example of a spark ignition engine, and possibly other functions, such as the control of air intake to the engine, via a motorized throttle body, in particular according to the depressing of the accelerator pedal, and other safety functions, such as anti-slip, traction control and / or anti-lock braking of the vehicle wheels.
  • This electronic unit 5 comprises, in a well known manner, at least one computer with calculation means, memory means and comparison means in particular, and in its injection control function, the control and control unit 5 the quantity of fuel injected by each of the injectors 2 into the corresponding cylinder of the engine 1, as a function of the engine times in each of the cylinders, of the parameters and operating conditions of the engine, in particular of its speed, its load or its temperature, and the fuel demand, depending in particular on the air intake flow rate in the engine 1 and the torque that the engine must develop, these parameters being entered at 7 in the engine control unit 5.
  • the common rail 3 is supplied with high pressure fuel by a high pressure pump 8, controlled in flow and connected to the ramp 3 by a pipe 9, in which the fuel flows in the direction of the arrow F1, and the engine control unit 5 controls the high pressure pump 8 by the logic link 10 and thus determines the mass of fuel sent by the high pressure pump 8 in the ramp 3, at each cycle of the engine 1.
  • the high pressure pump 8 is rotated by the motor 1 via a mechanical connection schematized at 11, in a manner known per se.
  • the high-pressure pump 8 is itself fed with fuel by a feeding circuit comprising, from upstream to downstream, a fuel tank 12, a booster pump or low-pressure pump 13, immersed in the tank 12 and fed through a filter (not shown), and a fuel pressure regulator 14, an output of which returns excess fuel in the tank 12, and another output is connected to the intake of the high pump pressure 8, at which is implanted a solenoid valve (not shown) controlled in all or nothing from the unit 5 by the logic link 10, so that the fuel flow of the high pressure pump 8 is known to the unit control 5, which can control the inlet solenoid valve so as to impose the high pressure pump 8 a zero flow.
  • the fuel supply circuit 1 of the engine by direct injection is thus a high pressure circuit, comprising the high pressure pump 8 and the downstream members thereof, namely the pipe 9 and the common rail 3, and this high circuit pressure, which is a fixed volume circuit and without permanent return of fuel or without fuel recirculation from the downstream to the upstream of the high pressure pump 8, is fed by a low pressure feeding circuit, upstream of the high pressure pump 8, and comprising the reservoir 12, the pump 13 and the regulator 14.
  • the mass of fuel present in the high-pressure circuit results only from filling actions by the high-pressure pump 8 and injection of fuel into the engine 1 by the injectors 2, these actions being controlled by the unit 5.
  • the flow characteristic of an injector 2, expressing the injected fuel mass M as a function of the injection control time Tinj, determined by the unit 5, corresponds to an increasing function whose curve, represented in FIG. figure 2 , has a slope equal to the local gain G of the injector, which is associated with any value of the injection duration and defined by the ratio between a mass variation injected following a small variation of injection duration , and this same variation in injection duration.
  • This curve comprises a substantially linear part 15, in which the gain is constant, and a non-linear part 16 with small values of the injection duration (values less than the injection control duration corresponding to the lower limit of linearity TinfL ), and in which the local gain is rapidly variable.
  • the linear part 15 of the characteristic is determined not only by its slope or constant gain of the injector in this part, but also by an offset at the origin or offset Ot, at the intersection of the extrapolation or extension of the linear part 15 of the curve to the origin with the abscissa axis indicating the injection times Tinj.
  • the mass MinfL which is injected for an injection control duration equal to the lower limit TinfL of the linear part 15 is equal to the sum of the masses injected during the transitional phases corresponding to the phases of establishment and cutting respectively.
  • instantaneous flow of an injector 2 caused respectively by the opening and closing of the injector resulting from displacements of a shutter respectively at the establishment and the breaking of an excitation current in a coil of the electromagnetically controlled injector, and respectively following the beginning and the end of a logical order of injection control developed in the unit 5 and transmitted by the latter to the injector 2 considered by the corresponding conductor of the beam 6.
  • the injectors 2 of the same type are qualified by a theoretical injector flow rate characteristic determined, on the one hand, by a theoretical gain Gt and a theoretical offset Ot, to define the theoretical linear part 15 of the curve, and, on the other hand, by a theoretical nonlinear part 16, stored in the unit 5 in the form of tables or mappings indicating the injected mass M for an injection control duration Tinj between the lower linearity limit TinfL and the theoretical offset Ot and in the injection duration range corresponds to the nonlinear part 16.
  • the method of the invention aims to determine in real time (engine 1 in operation) the local gain G, as defined above, in order to have a better knowledge of the injected masses in function. controlled injection times, and taking into account the dispersions of characteristics from one injector to another, and / or variations in the characteristic of an injector as a function of time, particularly because of the aging of this injector.
  • the method makes it possible to learn the individual characteristic of an injector 2 under consideration, then by changing the injector considered, to learn the individual characteristics of all injectors equipping the same engine.
  • the method of the invention comprises two main phases. These phases lead to determining the variation ⁇ M of the mass M of fuel that is injected into the engine 1 by all the injectors 2, and which results from the application to the injector 2 whose gain G, an injection time control which is different from that applied to the other injectors 2 of the engine 1, with respect to the mass of fuel injected into the engine 1 by the set of injectors 2 on which the same control of injection duration, preferably a normal injection time, taking into account the operating point of the engine 1.
  • This mass variation therefore corresponds to the contribution of the injector 2 whose injection control time has been modified relative to that of the other injectors 2.
  • the variation ⁇ M of the mass of fuel injected is determined, according to the method of the invention, by taking into account a variation of a pressure drop in the supply circuit, in which the pressure drop results from a control of a disturbance of the operation of the pump 8, whereas the variation of the pressure drop results from the control of the different injection duration, applied on the injector 2, which we want to know the gain G, during the duration of the disturbance.
  • This disturbance of the operation of the pump 8 preferably consists of stopping the operation of this pump, whose flow is thus canceled, so that the pressure drop in the common rail 3 results from the continued application of commands of injection times to the injectors 2, the correspondence between the pressure drop in the ramp 3 and the mass of fuel injected into the engine 1 being ensured in the unit 5 by a module 18 of the behavior of the high pressure supply circuit , this module comprising a memory in which is stored, in the form of tables or maps, a law giving the variation of fuel mass in the high pressure circuit as a function of the pressure drop determined in this circuit during the stop of the pump 8, and can be constituted as described in the French patent FR 2 803 875 , which will be referred to for further details on this subject.
  • the method consists, from of a working point of the engine 1 in steady state and in a first learning phase, to command by the unit 5 the cancellation of the flow rate of the high pressure pump 8, and to maintain this command for a predetermined number of engine cycles, this number being sufficient to obtain a first pressure variation, determinable with sufficient accuracy, in the common rail 3, while a number N of injections is applied during this time to all the injectors 2 of the engine 1, with the same injection control time Tinj, for example normally established by the unit 5 according to the operating point of the engine 1.
  • the behavior model of the circuit stored in the module 18 of the unit 5 and based for example on the mass entering the ramp 3 and imposed by the high pressure pump 8 being determined by the computer 17, and on the mass leaving the ramp 3 being injected into the engine 1, and also determined by the unit 5, as well as the rigidity of the high pressure circuit, it corresponds to the pressure difference DP1 thus determined, a first mass M1 of fuel injected into engine 1 by all injectors 2.
  • a second phase of the process for learning the real gain of the injector 2 under consideration is initiated, and consists in reintroducing the same perturbation as above on the operation of the high pressure pump 8, namely to cut its flow rate during a time interval corresponding to the same predetermined number of motor cycles as in the previous phase, and by controlling the application of the same number N of injections on all the injectors 2 as during the previous phase, but with a modification of a known value of the injection times applied to the particular injector 2, which is to be determined the gain G, while we continue to apply to the other injectors 2 of the engine the same injection times that during the previous phase, it is that is to say for the same number N of injections occurring during the same predetermined number of motor cycles, the latter number and the known value of the modification of the injection times being chosen to be equally sufficient to obtain a second pressure variation, determinable with sufficient accuracy, in the common rail
  • DP2 is greater than DP1
  • the module 18 of the unit 5, in which is recorded and stored the behavior model of the circuit of high pressure supply corresponds to the pressure drop DP2 a second M2 mass fuel left this high pressure circuit, and therefore having been injected by the injectors 2 in the engine 1.
  • the two phases can be reversed, the injected mass M2 with specific injection duration being determined before the mass M1 with normal or reference injection duration, or the non-adjacent succession of the two phases can be repeated. a certain number of times by alternating the order of the phases, but in order to obtain a good learning of the individual gain G of the injector 2 under consideration, this learning procedure must be renewed for a sufficient number of values of the duration of the control, and for different stabilized operating points of the engine.
  • the method according to the invention remains substantially as described above, except that the number of injections N applied during the first and second phases is not necessarily identical, each phase being interrupted when the corresponding pressure drop has reaches a value sufficient to be measurable with a sufficient degree of accuracy.
  • the processing of the measurements consists in finding out by calculation what the mass M1 would have been if, during the first phase, the integral of the fuel requirement of the engine had been the same one as during the second phase of learning.
  • an operating condition of the motor 1 which is relatively stable i.e., for example, a time interval during which the difference between the values maximum and minimum of the injection duration (Tinj.max - Tinj.min) remains below a threshold, and the average injection time Tinj.moy applied in this condition is equal to the value of the injection duration Tinj for which the local gain G of the injector 2 considered must be defined.
  • the procedure is as follows: the first phase is carried out as in the ideal example described above, namely that a pump 8 is introduced into the pump.
  • injection duration ⁇ Tinj is not necessarily constant.
  • ⁇ Tinj is not constant, since, typically, this variation can be relative, and fixed at some percents, for example 10%, of the injection time Tinj, which is precisely strictly constant during the second learning phase.
  • the second phase takes place by applying injection times whose sum is equal to ( ⁇ Tinj) 2 increased da ⁇ Tinj, where ⁇ Tinj is the sum of all the injection duration variations applied to the injector 2 considered during the injection.
  • ⁇ Tinj is the sum of all the injection duration variations applied to the injector 2 considered during the injection.
  • ( ⁇ Tinj) 2 is the sum of all injection times Tinj applied to all injectors 2 during this same second phase.
  • the second mass of fuel M2 injected by all the injectors 2 of the engine 1, during the second phase, which corresponds to the second pressure variation DP2, is determined.
  • the sum ( ⁇ Tinj) 2 has a value close to the sum ( ⁇ Tinj) 1, but differs from it, however, since the operating conditions of the motor have probably changed during the course of the two phases and between them.
  • the different values of M determined and ⁇ Tinj, ⁇ Tinj, ( ⁇ Tinj) 1, ( ⁇ Tinj) 2 and Gmoy, commanded or calculated are stored and updated cyclically to follow in real time the G gain variations.
  • This learning method is in fact applicable on any point of the injector flow characteristic, ie not only on any point of its linear part 15 (see figure 2 ) but also at any point of its non-linear part 16, for small values of the injection control time, when the engine 1 is operating at idle or in areas of low load operation.
  • the parameters determining the characteristic depend on the pressure, in particular the fuel pressure
  • the repetition of the learning process for different operating points makes it possible to ensure a pressure sweep, for a better determination of the local individual gain of its injectors. 2, and a better knowledge of the individual flow characteristics of the injectors 2 is thus obtained, by adopting the gain determined in real time and keeping the theoretical offset ⁇ T, which can also advantageously be replaced by a real offset, of which learning is achieved by an appropriate strategy.

Abstract

A method for real time determination of the gain of a fuel injector (2) of an engine (1), fed by a circuit having a fixed volume devoid of a permanent return upstream from a pump (8) connected to a common feed ramp (3) for the injectors (2) controlled like the pump (8) by at least one computer (5), wherein the local gain of at least one injector (2) is determined according to the variation of the mass of fuel injected into the engine (1) by the set of injectors (2) and resulting from the application on said injector (2) which is considered from a command for a duration of injection which is different from that applied on the injector or other injectors (2). The invention can be used to determine the flow characteristics of injectors of internal combustion engines.

Description

L'invention concerne un procédé de détermination en temps réel du gain, ou débit statique, d'au moins un injecteur de carburant, du type à commande électrique, alimentant un moteur à combustion interne, et monté dans un circuit d'alimentation en carburant du moteur, ce circuit comprenant au moins une pompe, alimentée depuis un réservoir de carburant, et reliée à une rampe commune d'alimentation en carburant de chaque injecteur du moteur.The invention relates to a method for real-time determination of the gain, or static flow, of at least one fuel injector, of the electrically controlled type, supplying an internal combustion engine, and mounted in a fuel supply circuit. of the engine, this circuit comprising at least one pump, fed from a fuel tank, and connected to a common fuel supply rail of each injector of the engine.

Plus précisément, chaque injecteur, dont le gain est à déterminer par le procédé selon l'invention, est monté dans un circuit d'alimentation du type à volume fixé et sans retour permanent de carburant depuis l'aval vers l'amont de ladite pompe qui est pilotée en débit, chaque injecteur et ladite pompe étant commandés par au moins un calculateur, appartenant généralement à une unité électronique de commande et contrôle moteur, de sorte qu'à chaque cycle du moteur la pompe délivre dans le circuit une masse de carburant connue du calculateur, et que chaque injecteur délivre audit moteur une masse de carburant injectée déterminée par une caractéristique de débit d'injecteur, exprimant la masse injectée selon une fonction croissante de la durée d'injection dudit injecteur, commandée par ledit calculateur, et pour laquelle il correspond, à chaque valeur de la durée d'injection, un gain local défini par un rapport d'une variation de masse injectée, consécutive à une variation de durée d'injection, à ladite variation de durée d'injection (le gain local correspondant ainsi à la pente locale en tout point de la courbe représentant la caractéristique de débit de l'injecteur).More specifically, each injector, the gain of which is to be determined by the method according to the invention, is mounted in a fixed-volume type supply circuit and without permanent return of fuel from the downstream upstream of said pump. which is controlled in flow, each injector and said pump being controlled by at least one computer, generally belonging to an electronic control unit and motor control, so that each cycle of the engine the pump delivers in the circuit a mass of fuel known from the computer, and that each injector delivers to said engine a fuel mass injected determined by an injector flow rate, expressing the injected mass according to an increasing function of the injection duration of said injector, controlled by said computer, and for which corresponds to each value of the injection duration, a local gain defined by a ratio of a variation of mass injected, consecutive there is a variation in injection duration, in said variation of injection duration (the local gain thus corresponding to the local slope at any point on the curve representing the flow characteristic of the injector).

Les injecteurs de ce type sont généralement qualifiés par leur constructeur par une caractéristique théorique de débit d'injecteur, dont une partie sensiblement linéaire est déterminée par un gain théorique d'injecteur ainsi que par un décalage à l'origine théorique, ou offset théorique, correspondant à une durée de commande minimale pour une masse injectée nulle, et obtenue à l'intersection de l'extrapolation, vers l'origine des durées de commande, de la partie linéaire de la caractéristique avec l'axe des abscisses, exprimant les durées de commande, sur un diagramme plan sur lequel les masses injectées sont indiquées selon l'axe des ordonnées, tandis qu'une partie non linéaire de la caractéristique, aux faibles valeurs de la durée d'injection, peut être mémorisée dans le calculateur sous la forme de cartographie ou table théorique.Injectors of this type are generally qualified by their manufacturer by a theoretical injector flow rate characteristic, a substantially linear portion of which is determined by a theoretical injector gain as well as an offset at the theoretical origin, or theoretical offset, corresponding to a minimum order duration for a zero injected mass, obtained at the intersection of the extrapolation, to the origin of the durations of control, of the linear part of the characteristic with the abscissa axis, expressing the control times, on a plane diagram on which the injected masses are indicated along the y-axis, while a non-linear part of the characteristic , at the low values of the injection duration, can be stored in the computer in the form of mapping or theoretical table.

Des injecteurs de carburant à commande électrique de ce type peuvent équiper des moteurs diesel ou à allumage commandé, et être montés dans des circuits d'alimentation à injection directe ou indirecte.Electrically operated fuel injectors of this type can be fitted to diesel or spark ignition engines, and can be mounted in direct or indirect injection fuel systems.

On sait que les injecteurs utilisés pour réaliser l'injection d'une quantité de carburant prédéterminée par un calculateur de contrôle moteur présentent des dispersions et des évolutions dans le temps de leurs caractéristiques, ce qui a pour conséquence que l'injection d'une masse donnée de carburant nécessite une commande de durée d'injection différente suivant l'injecteur commandé et l'âge de ce dernier. En effet, les dispersions des caractéristiques des injecteurs résultent des tolérances de fabrication des composants physiques des injecteurs, et donc de leurs dispersions dimensionnelles et de caractéristiques physiques, notamment les nombre et diamètre(s) des orifices d'injection des injecteurs, leurs orientations, la caractéristique élastique de leurs ressorts, etc ..., et l'évolution dans le temps des caractéristiques de débit des injecteurs résulte notamment du vieillissement des composants physiques des injecteurs.It is known that the injectors used to perform the injection of a predetermined amount of fuel by an engine control computer have dispersions and evolutions in time of their characteristics, which has the consequence that the injection of a mass fuel data requires a different injection time control depending on the injector ordered and the age of the latter. In fact, the dispersions of the characteristics of the injectors result from the manufacturing tolerances of the physical components of the injectors, and therefore from their dimensional dispersions and physical characteristics, in particular the number and diameter (s) of the injection orifices of the injectors, their orientations, the elastic characteristic of their springs, etc ..., and the evolution over time of the flow characteristics of the injectors results in particular from the aging of the physical components of the injectors.

Par ailleurs, la grande majorité des systèmes de commande et contrôle de l'injection, directe ou indirecte, équipant des moteurs à combustion interne de véhicules automobiles assure un contrôle de richesse en boucle fermée, et en continu pendant le fonctionnement du moteur, à l'aide d'une sonde détectant la teneur en oxygène des gaz d'échappement du moteur, et reliée au calculateur, de façon à garantir le dosage du mélange air-carburant avec la grande précision qui est requise pour l'utilisation de catalyseurs trifonctionnels. Ce contrôle de richesse en boucle fermée permet de compenser de façon satisfaisante les dispersions de tous les composants qui interviennent dans la détermination du dosage air-carburant, et qui auraient un impact sur la performance en terme de contrôle des émissions dans les gaz d'échappement du moteur, si les dispersions précitées n'étaient pas compensées. Les composants concernés sont ceux qui permettent de calculer le débit d'air d'admission au moteur et de piloter le débit de carburant injecté dans le moteur, de sorte que ces composants comprennent les injecteurs. Mais, à moins de stratégies particulières, les contrôles de richesse en boucle fermée ne permettent pas d'identifier les caractéristiques de chacun des composants concernés, que ce soit de façon globale ou individuelle. Autrement dit, le dosage du mélange air-carburant consiste à piloter un débit d'air d'admission au moteur et un débit de carburant correspondant, et les contrôles de richesse en boucle fermée permettent de compenser le rapport du débit d'air au débit de carburant, sans identifier la part de correction à apporter au débit d'air ou au débit de carburant, et, en outre, ces contrôles de richesse ne permettent pas de calculer une correction individualisée pour chaque cylindre, et donc chaque injecteur.Moreover, the vast majority of direct and indirect injection control and control systems fitted to internal combustion engines of motor vehicles provide a closed loop, and continuously during the operation of the engine, control of the fuel. using a sensor detecting the oxygen content of the engine exhaust gas, and connected to the computer, so as to ensure the dosing of the air-fuel mixture with the high accuracy that is required for the use of trifunctional catalysts. This closed-loop richness control satisfactorily compensates for the dispersions of all the components involved in determining the air-fuel ratio, which would have an impact on the performance in terms of emission control in the engine exhaust if the above-mentioned dispersions were not compensated. The components involved are those that calculate the intake air flow to the engine and control the flow of fuel injected into the engine, so that these components include the injectors. But, unless specific strategies, closed loop wealth controls do not identify the characteristics of each of the components involved, either globally or individually. In other words, the metering of the air-fuel mixture consists in controlling a flow of intake air to the engine and a corresponding fuel flow, and the closed-loop richness checks make it possible to compensate for the ratio of the air flow rate to the flow rate. of fuel, without identifying the part of correction to be made to the air flow or the fuel flow, and, in addition, these richness checks do not allow to calculate an individualized correction for each cylinder, and therefore each injector.

Le problème à la base de l'invention consiste donc, à partir de la connaissance d'une caractéristique théorique de débit d'injecteur, de déterminer en temps réel le gain d'au moins un injecteur de carburant d'un moteur, afin de faire l'apprentissage de la relation qui existe entre la masse de carburant injectée et la durée de commande d'au moins un injecteur considéré, au cours de phases d'apprentissage qui se déroulent régulièrement, au cours du fonctionnement du moteur, sur des points de fonctionnement qui ne sont pas nécessairement en régime stabilisé, et pendant des périodes d'apprentissage suffisamment courtes pour que le conducteur du véhicule ne ressente pas de modification du fonctionnement du moteur qui serait due à ces phases d'apprentissage.The problem underlying the invention therefore consists, from the knowledge of a theoretical injector flow rate characteristic, of determining in real time the gain of at least one fuel injector of an engine, in order to learn the relationship between the mass of fuel injected and the control time of at least one injector considered, during learning phases that occur regularly, during operation of the engine, on points operating conditions that are not necessarily steady state, and during learning periods short enough that the driver of the vehicle does not feel any change in engine operation that would be due to these learning phases.

Le but de l'invention est donc de permettre une meilleure connaissance de la caractéristique de débit d'au moins un injecteur d'un moteur en fonctionnement par une détermination en temps réel du gain de l'injecteur considéré, afin d'avoir un suivi de l'évolution de la caractéristique individuelle de débit de chaque injecteur.The object of the invention is therefore to allow a better knowledge of the flow characteristic of at least one injector of a running engine by a real-time determination of the gain of the injector in question, in order to have a follow-up. the evolution of the individual flow characteristic of each injector.

Il est particulièrement intéressant de faire l'apprentissage du gain en temps réel pour une meilleure connaissance de la caractéristique de débit d'injecteur sur les moteurs équipés de systèmes d'injection directe fonctionnant en mélange pauvre, car, par rapport aux systèmes d'injection indirecte, d'une part les injecteurs peuvent être sollicités dans des zones à faible durée d'injection commandée, où la loi de débit est fortement dispersée (zone non linéaire de la caractéristique de débit d'injecteur), et, d'autre part, les erreurs sur la masse de carburant injectée sont ressenties proportionnellement sur le couple interne développé par le moteur, ce qui est source d'inconfort pour les passagers du véhicule.It is particularly interesting to learn the gain in real time for a better knowledge of the injector flow characteristic on engines equipped with direct injection systems operating in lean mixture, because, compared to injection systems indirectly, on the one hand the injectors can be solicited in areas with a short controlled injection time, where the flow law is highly dispersed (nonlinear zone of the injector flow characteristic), and on the other hand , the errors on the fuel mass injected are felt proportionally on the internal torque developed by the engine, which is a source of discomfort for the passengers of the vehicle.

Par ailleurs, il est connu par EP-0 488 362-A un procédé de détermination d'un paramètre (Kpni) d'au moins un injecteur de carburant, monté dans un circuit d'alimentation en carburant d'un moteur à combustion interne du type présenté ci-dessus, le procédé comprenant au moins une étape consistant à déterminer ce paramètre d'après la variation (Qdi) de la masse de carburant injectée dans le moteur par l'ensemble des injecteurs résultant de l'application sur ledit au moins un injecteur considéré d'une commande de durée d'injection différente de celle appliquée sur le ou les autres injecteurs.Moreover, he is known by EP-0 488 362-A a method for determining a parameter (K pni ) of at least one fuel injector mounted in a fuel supply circuit of an internal combustion engine of the type shown above, the method comprising at least one step of determining this parameter according to the variation (Q di ) of the mass of fuel injected into the engine by the set of injectors resulting from the application on said at least one injector considered a duration command of injection different from that applied to the other injector or injectors.

Ce paramètre Kpni ne représente pas le gain local, mais il est en rapport direct avec l'inverse du gain.This K pni parameter does not represent the local gain, but is directly related to the inverse of the gain.

A l'effet de remédier aux inconvénients précités, le procédé selon l'invention de détermination en temps réel du gain d'au moins un injecteur de carburant à commande électrique, alimentant un moteur à combustion interne et monté dans un circuit d'alimentation en carburant du type présenté ci- dessus, se caractérise en ce qu'il consiste à déterminer le gain local dudit au moins un injecteur considéré d'après la variation de la masse de carburant injectée dans ledit moteur par l'ensemble des injecteurs résultant de l'application sur ledit au moins un injecteur considéré d'une commande de durée d'injection différente de celle appliquée sur le ou les autres injecteurs, ledit procédé comprenant :

  • au moins les étapes consistant, pendant le fonctionnement du moteur, à :
    1. a) identifier une condition de fonctionnement du moteur relativement stable, dans laquelle la durée d'injection moyenne appliquée (Tinj.moy) est égale à la valeur d'une durée d'injection (Tinj) pour laquelle on souhaite définir le gain local (G), et, tant que la condition de stabilité est observée,
    2. b) introduire, dans la commande de ladite pompe, une perturbation de nature à provoquer une chute de pression dans ladite rampe commune, et maintenir ladite perturbation pendant une première phase, à la fin de laquelle est obtenue une première variation de pression (DP1),
    3. c) déterminer une première masse de carburant (MI) injectée par l'ensemble des injecteurs du moteur et correspondant à ladite première variation de pression (DP1),
    4. d) calculer un gain local moyen (Gmoy) de l'ensemble des injecteurs comme étant égal au rapport de la première masse de carburant (M1) à la somme (ΣTinj)1 de toutes les durées d'injection (Tinj) appliquées à tous les injecteurs pendant ladite première phase,
    5. e) introduire dans la commande de ladite pompe la même perturbation et la maintenir pendant une deuxième phase, à la fin de laquelle est obtenue une seconde variation de pression (DP2) dans la rampe commune, en modifiant la commande de l'injecteur dont on veut déterminer le gain local d'une variation (δTinj) pour chacune des injections effectuées pendant ladite deuxième phase, et telle que la somme des variations de durée d'injection appliquées pendant la deuxième phase sur ledit injecteur est égale à ΣδTinj,
    6. f) déterminer une seconde masse de carburant (M2) injectée par l'ensemble des injecteurs du moteur et correspondant à ladite seconde variation de pression (DP2), et considérer que ladite seconde masse (M2) est égale à: M 2 = Gmoy x ΣTinj 2 + Σ δ Tinj x G
      Figure imgb0001

      où (ΣTinj)2 est la somme de toutes les durées d'injection (Tinj) appliquées pendant ladite deuxième phase, et G est le gain local dudit injecteur considéré, et
    7. g) calculer ledit gain local (G) dudit injecteur considéré par la formule: G = M 2 - Gmoy x ΣTinj 2 Σ δ Tinj
      Figure imgb0002
In order to remedy the aforementioned drawbacks, the method according to the invention for determining in real time the gain of at least one electrically controlled fuel injector, supplying an internal combustion engine and mounted in a fuel supply circuit. fuel of the type presented above, is characterized in that it consists in determining the local gain of said at least one injector considered according to the variation of the mass of fuel injected into said engine by all the injectors resulting from the applying to said at least one injector considered an injection duration control different from that applied to the other injector or injectors, said method comprising:
  • at least the steps of, during operation of the engine, at:
    1. a) identifying a relatively stable engine operating condition, in which the average injection time applied (Tinj.moy) is equal to the value of an injection duration (Tinj) for which it is desired define the local gain (G), and, as long as the stability condition is observed,
    2. b) introducing into the control of said pump, a disturbance likely to cause a pressure drop in said common rail, and maintain said disturbance during a first phase, at the end of which is obtained a first pressure variation (DP1) ,
    3. c) determining a first mass of fuel (MI) injected by all the injectors of the engine and corresponding to said first variation of pressure (DP1),
    4. d) calculating an average local gain (Gmoy) of the set of injectors as being equal to the ratio of the first mass of fuel (M1) to the sum (ΣTinj) 1 of all the injection durations (Tinj) applied to all the injectors during said first phase,
    5. e) introducing into the control of said pump the same disturbance and maintain it during a second phase, at the end of which is obtained a second variation of pressure (DP2) in the common rail, by changing the control of the injector which one wants to determine the local gain of a variation (δTinj) for each of the injections made during said second phase, and such that the sum of the injection time variations applied during the second phase on said injector is equal to ΣδTinj,
    6. f) determining a second mass of fuel (M2) injected by all the injectors of the engine and corresponding to said second variation of pressure (DP2), and considering that said second mass (M2) is equal to: M 2 = Gmoy x ΣTinj 2 + Σ δ Tinj x G
      Figure imgb0001

      where (ΣTinj) 2 is the sum of all injection times (Tinj) applied during said second phase, and G is the local gain of said injector considered, and
    7. g) calculating said local gain (G) of said injector considered by the formula: BOY WUT = M 2 - Gmoy x ΣTinj 2 Σ δ Tinj
      Figure imgb0002

La mise en oeuvre de ce procédé procure l'avantage de permettre, sans avoir à réaliser les injecteurs, et donc leurs composants, avec des tolérances très serrées, et ainsi sans augmenter le coût du système d'injection, de garantir une plus grande exactitude de la masse de carburant injectée dans chaque cylindre du moteur, et, par voie de conséquence, de garantir l'exactitude du dosage air-carburant et du couple développé par le moteur. Il en résulte un bon contrôle des émissions dans les gaz d'échappement, et un meilleur agrément de conduite du véhicule automobile. On peut ainsi se contenter d'équiper le moteur d'injecteurs moins performants, car la mise en oeuvre du procédé selon l'invention permet de compenser les dispersions au niveau des composants physiques des injecteurs.The implementation of this method provides the advantage of allowing, without having to make the injectors, and therefore their components, with very tight tolerances, and thus without increasing the cost of the injection system, to guarantee greater accuracy. of the mass of fuel injected into each cylinder of the engine, and, consequently, to ensure the accuracy of the air-fuel dosage and the torque developed by the engine. This results in a good control of emissions in the exhaust, and a better driving pleasure of the motor vehicle. It is thus possible to simply equip the engine with less efficient injectors, since the implementation of the method according to the invention makes it possible to compensate for the dispersions at the level of the physical components of the injectors.

De plus, ce mode de réalisation est préféré, car approprié aux conditions réelles de fonctionnement du moteur, dans lesquelles le besoin en carburant du moteur n'est pas rigoureusement stable au cours de phases sensiblement successives de fonctionnement du moteur.In addition, this embodiment is preferred, as appropriate to the actual operating conditions of the engine, in which the fuel requirement of the engine is not strictly stable during substantially successive phases of operation of the engine.

Compte-tenu de ce que le gain d'une caractéristique de débit d'injecteur dépend, entre autres paramètres, de la pression d'air dans le collecteur d'admission au moteur, qui conditionne la charge du moteur, donc la durée d'injection appliquée (Tinj), et la pression de carburant qui peut être variable, le procédé selon l'invention consiste de plus à renouveler les étapes a) à g) présentées ci-dessus pour différents points de fonctionnement du moteur et/ou pour une pluralité de valeurs différentes des durées d'injection correspondant à différentes parties de la caractéristique de débit d'injecteur, de sorte à déterminer le gain individuel dudit au moins un injecteur considéré.Given that the gain of an injector flow rate depends, among other parameters, the air pressure in the intake manifold to the engine, which conditions the engine load, so the duration of applied injection (Tinj), and the fuel pressure can be variable, the method according to the invention is furthermore to repeat the steps a) to g) presented above for different points of operation of the engine and / or for a plurality of values different from the injection times corresponding to different parts of the injector flow characteristic, so as to determine the individual gain of said at least one injector considered.

L'apprentissage du gain est ainsi réalisé pour différents points de fonctionnement du moteur.The learning of the gain is thus achieved for different operating points of the engine.

Lorsque le procédé selon l'invention est mis en oeuvre sur un circuit d'alimentation en carburant du moteur qui est un circuit d'injection directe, dans lequel ladite rampe commune est alimentée par une pompe à haute pression, elle-même alimentée par une pompe de gavage reliée audit réservoir, il est avantageux que ladite perturbation dans la commande de la pompe à haute pression consiste à provoquer un arrêt de ladite pompe à haute pression. Dans ce cas, conformément aux enseignements du brevet FR 2 803 875 de la Demanderesse, la détermination desdites première et deuxième masses de carburant injectées par l'ensemble des injecteurs du moteur en correspondance avec ladite détermination desdites première et deuxième variations de pression est avantageusement assurée au moyen d'un modèle de comportement du circuit d'alimentation. Comme proposé dans le brevet français précité, le modèle de comportement du circuit peut être un modèle qui prend en compte le débit ou la masse entrant dans la rampe commune, imposé(e) par la pompe à haute pression et déterminé(e) par le calculateur, le débit ou la masse sortant de la rampe commune et injecté(e) dans le moteur, et également déterminé(e) par le calculateur, ainsi que la rigidité du circuit.When the method according to the invention is implemented on a fuel supply circuit of the engine which is a direct injection circuit, in which said common rail is fed by a high pressure pump, itself fed by a booster pump connected to said tank, it is advantageous that said disturbance in the control of the high pressure pump is to cause a stoppage of said high pressure pump. In this case, according to the teachings of the patent FR 2 803 875 of the Applicant, the determination of the said first and second masses of fuel injected by all the injectors of the engine in correspondence with said determination of said first and second pressure variations is advantageously provided by means of a model of behavior of the supply circuit. As proposed in the aforementioned French patent, the behavior model of the circuit may be a model that takes into account the flow rate or mass entering the common rail, imposed by the high pressure pump and determined by the calculator, the flow or mass leaving the common rail and injected into the engine, and also determined by the computer, as well as the rigidity of the circuit.

Le procédé de l'invention peut ainsi consister à déterminer le gain individuel d'un seul injecteur du moteur à la fois, en appliquant à ce seul injecteur des commandes de durées d'injection différentes de celles appliquées aux autres injecteurs du moteur, pendant ladite seconde phase du procédé. Dans ce dernier cas, il est avantageux que le procédé consiste à déterminer, en succession, le gain individuel de chacun des injecteurs d'un même moteur en fonctionnement, afin d'optimiser la contribution de chaque injecteur à l'alimentation du cylindre correspondant du moteur.The method of the invention can thus consist in determining the individual gain of a single injector of the engine at a time, by applying to this single injector commands of injection times different from those applied to the other injectors of the engine, during said second phase of the process. In the latter case, it is advantageous that the method consists in determining, in succession, the individual gain of each of the injectors of the same engine in operation, in order to optimize the contribution of each injector to the supply of the corresponding cylinder of the engine.

D'autres avantages et caractéristiques de l'invention ressortiront de la description donnée ci-dessous, à titre non limitatif, d'un exemple de réalisation décrit en référence aux dessins annexés sur lesquels :

  • la figure 1 est un schéma d'un circuit d'alimentation en carburant d'un moteur à combustion interne de véhicule automobile par injection directe, pour la mise en oeuvre du procédé de l'invention,
  • la figure 2 représente une caractéristique de débit d'un injecteur du circuit de la figure 1, et
  • la figure 3 représente l'évolution de la pression dans la rampe commune du circuit de la figure 1, en fonction du temps, dans le cas de deux chutes de pression provoquées par l'arrêt de la pompe du circuit de la figure 1, et dont chacune est obtenue pour l'une respectivement de deux durées différentes d'injection, commandées pour un nombre d'injections, pouvant être le même ou différent, sur un même injecteur.
Other advantages and characteristics of the invention will emerge from the description given below, without limitation, of an exemplary embodiment described with reference to the accompanying drawings in which:
  • the figure 1 is a diagram of a fuel supply circuit of an internal combustion engine of a motor vehicle by direct injection, for the implementation of the method of the invention,
  • the figure 2 represents a flow characteristic of an injector of the circuit of the figure 1 , and
  • the figure 3 represents the evolution of the pressure in the common rail of the circuit of the figure 1 , as a function of time, in the case of two pressure drops caused by the stopping of the circuit pump of the figure 1 , and each of which is obtained for one respectively of two different injection times, controlled for a number of injections, which may be the same or different, on the same injector.

Sur la figure 1 est représenté schématiquement un moteur à combustion interne 1 pour véhicule automobile. Par exemple, le moteur considéré 1 est un moteur à quatre cylindres en ligne, à allumage commandé et à cycle moteur à quatre temps, alimenté en carburant par injection dite directe, bien que le procédé de l'invention soit applicable à un moteur à injection indirecte et/ou de type diesel.On the figure 1 is schematically shown an internal combustion engine 1 for a motor vehicle. For example, the engine considered 1 is an in-line four-cylinder engine, four-stroke spark ignition and four-stroke engine fuel supplied by direct injection fuel, although the method of the invention is applicable to an injection engine indirect and / or diesel type.

L'injection de carburant est assurée dans chaque cylindre du moteur par l'un respectivement des quatre injecteurs 2.Fuel injection is provided in each cylinder of the engine by one respectively of the four injectors 2.

Ces injecteurs 2 sont alimentés en carburant à haute pression par une rampe commune de carburant 3, dans laquelle la pression de carburant est mesurée, au moins à certains instants du cycle moteur, par un capteur de pression 4 transmettant le signal de pression mesurée à une unité de contrôle moteur 5.These injectors 2 are supplied with fuel at high pressure by a common fuel rail 3, in which the fuel pressure is measured, at least at certain times of the engine cycle, by a pressure sensor 4 transmitting the pressure signal measured at a maximum speed. motor control unit 5.

L'unité de contrôle moteur 5 est une unité électronique commandant l'injection du carburant dans le moteur 1, en commandant par le faisceau de conducteurs électriques de commande 6 des instants et durées de commande d'injection des injecteurs 2, ainsi que l'allumage dans les cylindres du moteur 1, dans l'exemple considéré d'un moteur à allumage commandé, et, éventuellement, d'autres fonctions, telles que la commande d'admission d'air au moteur, par l'intermédiaire d'un corps papillon motorisé, en fonction notamment de l'enfoncement de la pédale d'accélérateur, et d'autres fonctions de sécurité, telles qu'antidérapage, antipatinage et/ou antiblocage des roues du véhicule. Cette unité électronique 5 comprend, de manière bien connue, au moins un calculateur avec des moyens de calcul, des moyens de mémoire et des moyens de comparaison notamment, et dans sa fonction de commande de l'injection, l'unité 5 commande et contrôle la quantité de carburant injectée par chacun des injecteurs 2 dans le cylindre correspondant du moteur 1, en fonction des temps moteur dans chacun des cylindres, des paramètres et conditions de fonctionnement du moteur, en particulier de son régime, de sa charge ou encore de sa température, et de la demande en carburant, en fonction notamment du débit d'admission d'air dans le moteur 1 et du couple que doit développer le moteur, ces paramètres étant entrés en 7 dans l'unité 5 de contrôle moteur.The engine control unit 5 is an electronic unit controlling the injection of the fuel into the engine 1, by controlling the instants and injector injection timing times of the injectors 2 with the control electrical conductor beam 6, as well as the ignition in the cylinders of the engine 1, in the example of a spark ignition engine, and possibly other functions, such as the control of air intake to the engine, via a motorized throttle body, in particular according to the depressing of the accelerator pedal, and other safety functions, such as anti-slip, traction control and / or anti-lock braking of the vehicle wheels. This electronic unit 5 comprises, in a well known manner, at least one computer with calculation means, memory means and comparison means in particular, and in its injection control function, the control and control unit 5 the quantity of fuel injected by each of the injectors 2 into the corresponding cylinder of the engine 1, as a function of the engine times in each of the cylinders, of the parameters and operating conditions of the engine, in particular of its speed, its load or its temperature, and the fuel demand, depending in particular on the air intake flow rate in the engine 1 and the torque that the engine must develop, these parameters being entered at 7 in the engine control unit 5.

La rampe commune 3 est alimentée en carburant à haute pression par une pompe à haute pression 8, pilotée en débit et reliée à la rampe 3 par une conduite 9, dans laquelle le carburant s'écoule dans le sens de la flèche F1, et l'unité de contrôle moteur 5 pilote la pompe haute pression 8 par la liaison logique 10 et détermine ainsi la masse de carburant envoyée par la pompe haute pression 8 dans la rampe 3, à chaque cycle du moteur 1.The common rail 3 is supplied with high pressure fuel by a high pressure pump 8, controlled in flow and connected to the ramp 3 by a pipe 9, in which the fuel flows in the direction of the arrow F1, and the the engine control unit 5 controls the high pressure pump 8 by the logic link 10 and thus determines the mass of fuel sent by the high pressure pump 8 in the ramp 3, at each cycle of the engine 1.

La pompe haute pression 8 est entraînée en rotation par le moteur 1 par l'intermédiaire d'une liaison mécanique schématisée en 11, de manière connue en soi. La pompe haute pression 8 est elle-même alimentée en carburant par un circuit de gavage comprenant, de l'amont vers l'aval, un réservoir de carburant 12, une pompe de gavage ou pompe à basse pression 13, immergée dans le réservoir 12 et alimentée à travers un filtre (non représenté), et un régulateur de pression de carburant 14, dont une sortie permet de retourner du carburant en excès dans le réservoir 12, et dont une autre sortie est reliée à l'admission de la pompe haute pression 8, au niveau de laquelle est implantée une électrovanne (non représentée) commandée en tout ou rien depuis l'unité 5 par la liaison logique 10, de sorte que le débit de carburant de la pompe haute pression 8 est connu de l'unité de contrôle 5, laquelle peut commander cette électrovanne d'entrée de façon à imposer à la pompe haute pression 8 un débit nul.The high pressure pump 8 is rotated by the motor 1 via a mechanical connection schematized at 11, in a manner known per se. The high-pressure pump 8 is itself fed with fuel by a feeding circuit comprising, from upstream to downstream, a fuel tank 12, a booster pump or low-pressure pump 13, immersed in the tank 12 and fed through a filter (not shown), and a fuel pressure regulator 14, an output of which returns excess fuel in the tank 12, and another output is connected to the intake of the high pump pressure 8, at which is implanted a solenoid valve (not shown) controlled in all or nothing from the unit 5 by the logic link 10, so that the fuel flow of the high pressure pump 8 is known to the unit control 5, which can control the inlet solenoid valve so as to impose the high pressure pump 8 a zero flow.

Le circuit d'alimentation du moteur 1 en carburant par injection directe est ainsi un circuit haute pression, comprenant la pompe haute pression 8 et les organes en aval de cette dernière, à savoir la conduite 9 et la rampe commune 3, et ce circuit haute pression, qui est un circuit de volume fixé et sans retour permanent de carburant ou sans recirculation de carburant de l'aval vers l'amont de la pompe haute pression 8, est alimenté par un circuit de gavage à basse pression, en amont de la pompe haute pression 8, et comprenant le réservoir 12, la pompe 13 et le régulateur 14.The fuel supply circuit 1 of the engine by direct injection is thus a high pressure circuit, comprising the high pressure pump 8 and the downstream members thereof, namely the pipe 9 and the common rail 3, and this high circuit pressure, which is a fixed volume circuit and without permanent return of fuel or without fuel recirculation from the downstream to the upstream of the high pressure pump 8, is fed by a low pressure feeding circuit, upstream of the high pressure pump 8, and comprising the reservoir 12, the pump 13 and the regulator 14.

Ainsi, la masse de carburant présente dans le circuit haute pression ne résulte que des actions de remplissage par la pompe haute pression 8 et d'injection de carburant dans le moteur 1 par les injecteurs 2, ces actions étant contrôlées par l'unité 5.Thus, the mass of fuel present in the high-pressure circuit results only from filling actions by the high-pressure pump 8 and injection of fuel into the engine 1 by the injectors 2, these actions being controlled by the unit 5.

La caractéristique de débit d'un injecteur 2, exprimant la masse de carburant injecté M en fonction de la durée de commande d'injection Tinj, déterminée par l'unité 5, correspond à une fonction croissante dont la courbe, représentée sur la figure 2, a une pente égale au gain local G de l'injecteur, qui est associé à toute valeur de la durée d'injection et défini par le rapport entre une variation de masse injectée à la suite d'une petite variation de durée d'injection, et cette même variation de durée d'injection. Cette courbe comprend une partie sensiblement linéaire 15, dans laquelle le gain est constant, et une partie non linéaire 16 aux faibles valeurs de la durée d'injection (valeurs inférieures à la durée de commande d'injection correspondant à la limite inférieure de linéarité TinfL), et dans laquelle le gain local est rapidement variable.The flow characteristic of an injector 2, expressing the injected fuel mass M as a function of the injection control time Tinj, determined by the unit 5, corresponds to an increasing function whose curve, represented in FIG. figure 2 , has a slope equal to the local gain G of the injector, which is associated with any value of the injection duration and defined by the ratio between a mass variation injected following a small variation of injection duration , and this same variation in injection duration. This curve comprises a substantially linear part 15, in which the gain is constant, and a non-linear part 16 with small values of the injection duration (values less than the injection control duration corresponding to the lower limit of linearity TinfL ), and in which the local gain is rapidly variable.

La partie linéaire 15 de la caractéristique est déterminée non seulement par sa pente ou gain constant de l'injecteur dans cette partie, mais également par un décalage à l'origine ou offset Ot, à l'intersection de l'extrapolation ou prolongation de la partie linéaire 15 de la courbe vers l'origine avec l'axe des abscisses indiquant les durées d'injection Tinj.The linear part 15 of the characteristic is determined not only by its slope or constant gain of the injector in this part, but also by an offset at the origin or offset Ot, at the intersection of the extrapolation or extension of the linear part 15 of the curve to the origin with the abscissa axis indicating the injection times Tinj.

On sait que la masse MinfL qui est injectée pour une durée de commande d'injection égale à la limite inférieure TinfL de la partie linéaire 15 est égale à la somme des masses injectées pendant les phases transitoires correspondant aux phases respectivement d'établissement et de coupure du débit instantané d'un injecteur 2 provoquées respectivement par l'ouverture et la fermeture de l'injecteur résultant des déplacements d'un obturateur respectivement à l'établissement et à la coupure d'un courant d'excitation dans une bobine de l'injecteur à commande électromagnétique, et faisant suite respectivement au début et à la fin d'un ordre logique de commande d'injection élaboré dans l'unité 5 et transmis par cette dernière à l'injecteur 2 considéré par le conducteur correspondant du faisceau 6.It is known that the mass MinfL which is injected for an injection control duration equal to the lower limit TinfL of the linear part 15 is equal to the sum of the masses injected during the transitional phases corresponding to the phases of establishment and cutting respectively. instantaneous flow of an injector 2 caused respectively by the opening and closing of the injector resulting from displacements of a shutter respectively at the establishment and the breaking of an excitation current in a coil of the electromagnetically controlled injector, and respectively following the beginning and the end of a logical order of injection control developed in the unit 5 and transmitted by the latter to the injector 2 considered by the corresponding conductor of the beam 6.

En général, les injecteurs 2 d'un même type sont qualifiés par une caractéristique théorique de débit d'injecteur, déterminée, d'une part, par un gain théorique Gt et un offset théorique Ot, pour définir la partie linéaire théorique 15 de la courbe, et, d'autre part, par une partie non linéaire 16 théorique, mémorisée dans l'unité 5 sous la forme de tables ou de cartographies indiquant la masse injectée M pour une durée de commande d'injection Tinj comprise entre la limite inférieure de linéarité TinfL et l'offset théorique Ot et dans la plage de durée d'injection correspond à la partie non linéaire 16.In general, the injectors 2 of the same type are qualified by a theoretical injector flow rate characteristic determined, on the one hand, by a theoretical gain Gt and a theoretical offset Ot, to define the theoretical linear part 15 of the curve, and, on the other hand, by a theoretical nonlinear part 16, stored in the unit 5 in the form of tables or mappings indicating the injected mass M for an injection control duration Tinj between the lower linearity limit TinfL and the theoretical offset Ot and in the injection duration range corresponds to the nonlinear part 16.

Partant de cette caractéristique théorique, le procédé de l'invention a pour but de déterminer en temps réel (moteur 1 en fonctionnement) le gain local G, tel que défini ci-dessus, afin d'avoir une meilleure connaissance des masses injectées en fonction des durées d'injection commandées, et en tenant compte des dispersions de caractéristiques d'un injecteur à l'autre, et/ou des variations de la caractéristique d'un injecteur en fonction du temps, en raison notamment du vieillissement de cet injecteur. Le procédé permet de faire l'apprentissage de la caractéristique individuelle d'un injecteur 2 considéré, puis en changeant d'injecteur considéré, de faire l'apprentissage des caractéristiques individuelles de tous les injecteurs équipant un même moteur.Starting from this theoretical characteristic, the method of the invention aims to determine in real time (engine 1 in operation) the local gain G, as defined above, in order to have a better knowledge of the injected masses in function. controlled injection times, and taking into account the dispersions of characteristics from one injector to another, and / or variations in the characteristic of an injector as a function of time, particularly because of the aging of this injector. The method makes it possible to learn the individual characteristic of an injector 2 under consideration, then by changing the injector considered, to learn the individual characteristics of all injectors equipping the same engine.

Pour faire l'apprentissage du gain local d'un injecteur 2 considéré individuellement, sur un point de fonctionnement du moteur 1, le procédé de l'invention comprend deux phases principales. Ces phases conduisent à déterminer la variation ΔM de la masse M de carburant qui est injectée dans le moteur 1 par l'ensemble des injecteurs 2, et qui résulte de l'application sur l'injecteur 2 dont on veut connaître le gain G, d'une commande de durée d'injection qui est différente de celle appliquée sur les autres injecteurs 2 du moteur 1, par rapport à la masse de carburant injecté dans le moteur 1 par l'ensemble des injecteurs 2 sur lesquels est appliquée la même commande de durée d'injection, de préférence une durée d'injection normale, compte tenu du point de fonctionnement considéré du moteur 1. Cette variation de masse correspond donc à la contribution de l'injecteur 2 dont on a modifié la durée de commande d'injection par rapport à celle des autres injecteurs 2. La variation ΔM de la masse de carburant injectée est déterminée, selon le procédé de l'invention, en prenant en compte une variation d'une chute de pression dans le circuit d'alimentation, dans lequel la chute de pression résulte d'une commande d'une perturbation du fonctionnement de la pompe 8, alors que la variation de la chute de pression résulte de la commande de la durée d'injection différente, appliquée sur l'injecteur 2, dont on veut connaître la gain G, pendant la durée de la perturbation.To learn the local gain of an injector 2 considered individually, on an operating point of the engine 1, the method of the invention comprises two main phases. These phases lead to determining the variation ΔM of the mass M of fuel that is injected into the engine 1 by all the injectors 2, and which results from the application to the injector 2 whose gain G, an injection time control which is different from that applied to the other injectors 2 of the engine 1, with respect to the mass of fuel injected into the engine 1 by the set of injectors 2 on which the same control of injection duration, preferably a normal injection time, taking into account the operating point of the engine 1. This mass variation therefore corresponds to the contribution of the injector 2 whose injection control time has been modified relative to that of the other injectors 2. The variation ΔM of the mass of fuel injected is determined, according to the method of the invention, by taking into account a variation of a pressure drop in the supply circuit, in which the pressure drop results from a control of a disturbance of the operation of the pump 8, whereas the variation of the pressure drop results from the control of the different injection duration, applied on the injector 2, which we want to know the gain G, during the duration of the disturbance.

Cette perturbation du fonctionnement de la pompe 8 consiste de préférence en l'arrêt du fonctionnement de cette pompe, dont le débit est ainsi annulé, de sorte que la chute de pression dans la rampe commune 3 résulte de la poursuite de l'application de commandes de durées d'injection aux injecteurs 2, la correspondance entre la chute de pression dans la rampe 3 et la masse de carburant injectée dans le moteur 1 étant assurée dans l'unité 5 par un module 18 de comportement du circuit d'alimentation haute pression, ce module comportant une mémoire dans laquelle est mémorisée, sous la forme de tables ou de cartographies, une loi donnant la variation de masse de carburant dans le circuit haute pression en fonction de la chute de pression déterminée dans ce circuit pendant l'arrêt de la pompe 8, et pouvant être constitué comme décrit dans le brevet français FR 2 803 875 , auquel on se reportera pour davantage de précisions à ce sujet.This disturbance of the operation of the pump 8 preferably consists of stopping the operation of this pump, whose flow is thus canceled, so that the pressure drop in the common rail 3 results from the continued application of commands of injection times to the injectors 2, the correspondence between the pressure drop in the ramp 3 and the mass of fuel injected into the engine 1 being ensured in the unit 5 by a module 18 of the behavior of the high pressure supply circuit , this module comprising a memory in which is stored, in the form of tables or maps, a law giving the variation of fuel mass in the high pressure circuit as a function of the pressure drop determined in this circuit during the stop of the pump 8, and can be constituted as described in the French patent FR 2 803 875 , which will be referred to for further details on this subject.

A titre d'exemple simplifié, pour faciliter la compréhension de l'invention, dans un mode de mise en oeuvre idéal, en supposant que le besoin en carburant du moteur est stable au cours des phases d'apprentissage, le procédé consiste, à partir d'un point de fonctionnement du moteur 1 en régime stabilisé et dans une première phase d'apprentissage, à commander par l'unité 5 l'annulation du débit de la pompe haute pression 8, et à maintenir cette commande pendant un nombre prédéterminé de cycles moteur, ce nombre étant suffisant pour obtenir une première variation de pression, déterminable avec une précision suffisante, dans la rampe commune 3, tandis qu'un nombre N d'injections est appliqué pendant ce temps à tous les injecteurs 2 du moteur 1, avec une même durée de commande d'injection Tinj, par exemple normalement établie par l'unité 5 en fonction du point de fonctionnement du moteur 1.As a simplified example, to facilitate the understanding of the invention, in an ideal embodiment, assuming that the fuel requirement of the engine is stable during the learning phases, the method consists, from of a working point of the engine 1 in steady state and in a first learning phase, to command by the unit 5 the cancellation of the flow rate of the high pressure pump 8, and to maintain this command for a predetermined number of engine cycles, this number being sufficient to obtain a first pressure variation, determinable with sufficient accuracy, in the common rail 3, while a number N of injections is applied during this time to all the injectors 2 of the engine 1, with the same injection control time Tinj, for example normally established by the unit 5 according to the operating point of the engine 1.

Sur la figure 3, qui représente l'évolution de la pression P en fonction du temps t dans la rampe commune 3, on constate que la pression P chute de P0, à partir de l'instant t0 d'arrêt de la pompe 8, jusqu'à P1 au temps t1 correspondant à la fin de la période de blocage du débit de la pompe 8, et donc après le nombre prédéterminé de cycles moteur correspondant au nombre N d'injections sur tous les injecteurs 2 ; la pression P a donc chuté d'une valeur DP1 par rapport à la pression initiale P0 dans la rampe 3. Cette variation de pression DP1 = P1-P0 est mesurée par le capteur 4.On the figure 3 , which represents the evolution of the pressure P as a function of the time t in the common ramp 3, it can be seen that the pressure P drops from P0, from the stop time t0 of the pump 8, to P1 at the time t1 corresponding to the end of the flow blocking period of the pump 8, and therefore after the predetermined number of motor cycles corresponding to the number N of injections on all the injectors 2; the pressure P has therefore fallen by a value DP1 with respect to the initial pressure P0 in the ramp 3. This pressure variation DP1 = P1-P0 is measured by the sensor 4.

Grâce au modèle de comportement du circuit, mémorisé dans le module 18 de l'unité 5 et s'appuyant par exemple sur la masse entrant dans la rampe 3 et imposée par la pompe haute pression 8 en étant déterminée par le calculateur 17, et sur la masse sortant de la rampe 3 en étant injectée dans le moteur 1, et également déterminée par l'unité 5, ainsi que sur la rigidité du circuit haute pression, il correspond à la différence de pression DP1 ainsi déterminée, une première masse M1 de carburant injectée dans le moteur 1 par tous les injecteurs 2.Thanks to the behavior model of the circuit, stored in the module 18 of the unit 5 and based for example on the mass entering the ramp 3 and imposed by the high pressure pump 8 being determined by the computer 17, and on the mass leaving the ramp 3 being injected into the engine 1, and also determined by the unit 5, as well as the rigidity of the high pressure circuit, it corresponds to the pressure difference DP1 thus determined, a first mass M1 of fuel injected into engine 1 by all injectors 2.

Après suppression de la perturbation du fonctionnement de la pompe haute pression 8, et reprise d'un fonctionnement normal du moteur 1 sur le point de fonctionnement stabilisé considéré, une seconde phase du procédé d'apprentissage du gain réel de l'injecteur 2 considéré est initiée, et consiste à réintroduire la même perturbation que précédemment sur le fonctionnement de la pompe haute pression 8, à savoir à couper son débit pendant un intervalle de temps correspondant au même nombre prédéterminé de cycles moteur que dans la phase précédente, et en commandant l'application du même nombre N d'injections sur tous les injecteurs 2 qu'au cours de la phase précédente, mais avec une modification d'une valeur connue des durées d'injection appliquées sur l'injecteur particulier 2, dont on cherche à déterminer le gain G, alors que l'on continue à appliquer aux autres injecteurs 2 du moteur les mêmes durées d'injection qu'au cours de la phase précédente, c'est-à-dire pour le même nombre N d'injections intervenant pendant le même nombre prédéterminé de cycles moteur, ce dernier nombre ainsi que la valeur connue de la modification des durées d'injection étant choisis pour être également suffisant pour obtenir une deuxième variation de pression, déterminable avec une précision suffisante, dans la rampe commune 3.After removal of the disturbance of the operation of the high-pressure pump 8, and resumption of normal operation of the engine 1 on the stabilized operating point in question, a second phase of the process for learning the real gain of the injector 2 under consideration is initiated, and consists in reintroducing the same perturbation as above on the operation of the high pressure pump 8, namely to cut its flow rate during a time interval corresponding to the same predetermined number of motor cycles as in the previous phase, and by controlling the application of the same number N of injections on all the injectors 2 as during the previous phase, but with a modification of a known value of the injection times applied to the particular injector 2, which is to be determined the gain G, while we continue to apply to the other injectors 2 of the engine the same injection times that during the previous phase, it is that is to say for the same number N of injections occurring during the same predetermined number of motor cycles, the latter number and the known value of the modification of the injection times being chosen to be equally sufficient to obtain a second pressure variation, determinable with sufficient accuracy, in the common rail 3.

Sur la figure 3, cette seconde phase d'apprentissage correspond, après l'arrêt de la pompe 8 à l'instant t0, et jusqu'à l'instant t1 postérieur, à la variation de pression DP2 = P0 - P2, où P0 est la pression initiale dans la rampe 3 et P2 la pression dans cette même rampe 3 à l'instant t1, dans le cas d'une valeur modifiée des durées d'injection appliquées sur l'injecteur 2 considéré, qui est supérieure (par exemple de 10 %) à la valeur de la durée d'injection appliquée aux autres injecteurs 2. Il en résulte que DP2 est supérieur à DP1, et que le module 18 de l'unité 5, dans lequel est enregistré et mémorisé le modèle de comportement du circuit d'alimentation haute pression, fait correspondre à la chute de pression DP2 une seconde masse M2 de carburant ayant quittée ce circuit haute pression, et donc ayant été injectée par les injecteurs 2 dans le moteur 1.On the figure 3 this second learning phase corresponds, after stopping the pump 8 at the instant t0, and up to the instant t1 posterior, to the pressure variation DP2 = P0-P2, where P0 is the initial pressure in the ramp 3 and P2 the pressure in this same ramp 3 at time t1, in the case of a modified value of the injection times applied to the injector 2 in question, which is greater (for example by 10%) the value of the injection time applied to the other injectors 2. It follows that DP2 is greater than DP1, and that the module 18 of the unit 5, in which is recorded and stored the behavior model of the circuit of high pressure supply, corresponds to the pressure drop DP2 a second M2 mass fuel left this high pressure circuit, and therefore having been injected by the injectors 2 in the engine 1.

Le gain G pratiquement instantané de l'injecteur 2 considéré est alors donné, dans le cas hypothétique simplifié précisé ci-dessus, par la formule suivante : G = ΔM ΔTinj = M 2 - M 1 NδTinj

Figure imgb0003

dans laquelle :

  • G est le gain local de l'injecteur 2 auquel il a été appliqué la commande spécifique ou différente de durée d'injection,
  • ΔM et ΔTinj sont les variations respectivement des masses injectées et des durées d'injection entre les deux phases,
  • M1 et M2 sont les masses de carburant injectées, déterminées d'après le modèle de comportement du circuit haute pression respectivement lors de la première et de la deuxième des deux phases d'apprentissage décrites ci-dessus,
  • N est le nombre d'injections appliquées à l'injecteur 2 considéré pendant chacune de ces deux phases d'apprentissage, et
  • δTinj est la variation de la durée d'injection appliquée à l'injecteur 2 considéré, c'est-à-dire la différence T'inj - Tinj, où Tinj est la durée d'injection, de préférence normale, commandée pendant la première phase, et T'inj est la durée d'injection spécifique, supérieure dans cet exemple, commandée sur le seul injecteur 2 considéré pendant la deuxième phase précitée.
The substantially instantaneous gain G of the injector 2 considered is then given, in the simplified hypothetical case specified above, by the following formula: BOY WUT = .DELTA.M ΔTinj = M 2 - M 1 NδTinj
Figure imgb0003

in which :
  • G is the local gain of the injector 2 to which the specific or different control of injection duration has been applied,
  • ΔM and ΔTinj are the variations of the injected masses and the injection times respectively between the two phases,
  • M1 and M2 are the fuel masses injected, determined according to the model of behavior of the high pressure circuit respectively during the first and second of the two learning phases described above,
  • N is the number of injections applied to the injector 2 considered during each of these two learning phases, and
  • δTinj is the variation of the injection duration applied to the injector 2 considered, that is to say the difference T'inj-Tinj, where Tinj is the duration of injection, of normal preference, controlled during the first phase, and T'inj is the specific injection time, higher in this example, controlled on the single injector 2 considered during the second phase mentioned above.

Il est à noter que les deux phases peuvent être inversées, la masse injectée M2 avec durée d'injection spécifique étant déterminée avant la masse M1 avec durée d'injection normale ou de référence, ou encore la succession non adjacente des deux phases peut être répétée un certain nombre de fois en alternant l'ordre des phases, mais, pour parvenir à un bon apprentissage du gain individuel G de l'injecteur 2 considéré, cette procédure d'apprentissage doit être renouvelée pour un nombre suffisant de valeurs de la durée de commande, et pour différents points de fonctionnement stabilisés du moteur.It should be noted that the two phases can be reversed, the injected mass M2 with specific injection duration being determined before the mass M1 with normal or reference injection duration, or the non-adjacent succession of the two phases can be repeated. a certain number of times by alternating the order of the phases, but in order to obtain a good learning of the individual gain G of the injector 2 under consideration, this learning procedure must be renewed for a sufficient number of values of the duration of the control, and for different stabilized operating points of the engine.

En considérant à présent le cas plus réel, dans lequel le besoin en carburant du moteur n'est pas rigoureusement stable au cours des deux phases successives d'apprentissage, ou, plus précisément, dans lequel les intégrales du profil de besoin en carburant du moteur, pendant la durée des deux phases, ne sont pas identiques, on comprend que la différence M2-M1 du numérateur de la formule donnée ci-dessus est due non seulement à l'application de la commande d'une durée d'injection spécifique sur l'injecteur 2 dont on veut déterminer le gain, mais aussi au fait que le moteur 1 n'a pas présenté la même demande en carburant pendant les deux phases.Now considering the more real case, in which the fuel requirement of the engine is not rigorously stable during the two successive phases of learning, or, more precisely, in which the integrals of the engine fuel requirement profile. during the duration of the two phases, are not identical, it is understood that the difference M2-M1 of the numerator of the formula given above is due not only to the application of the command of a specific injection duration on the injector 2 whose gain is to be determined, but also to the fact that the engine 1 has not presented the same demand for fuel during the two phases.

Le procédé selon l'invention reste sensiblement tel que décrit ci-dessus, mis à part que le nombre d'injections N appliquées durant les première et seconde phases n'est pas nécessairement identique, chaque phase étant interrompue lorsque la baisse de pression correspondante a atteint une valeur suffisante pour être mesurable avec un degré suffisant de précision. Le traitement des mesures consiste à retrouver par calcul ce qu'aurait été la masse M1 si, pendant la première phase, l'intégrale du besoin en carburant du moteur avait été la même que pendant la seconde phase d'apprentissage.The method according to the invention remains substantially as described above, except that the number of injections N applied during the first and second phases is not necessarily identical, each phase being interrupted when the corresponding pressure drop has reaches a value sufficient to be measurable with a sufficient degree of accuracy. The processing of the measurements consists in finding out by calculation what the mass M1 would have been if, during the first phase, the integral of the fuel requirement of the engine had been the same one as during the second phase of learning.

Dans ce cas, on commence par identifier une condition de fonctionnement du moteur 1 qui est relativement stable, c'est-à-dire, par exemple, un intervalle de temps au cours duquel la différence entre les valeurs maximum et minimum de la durée d'injection (Tinj.max - Tinj.min) reste inférieure à un seuil, et la durée d'injection moyenne Tinj.moy appliquée dans cette condition est égale à la valeur de la durée d'injection Tinj pour laquelle le gain local G de l'injecteur 2 considéré doit être défini. Puis, tant que cette condition de stabilité est observée, on procède de la manière suivante : la première phase se déroule comme dans l'exemple idéal décrit ci-dessus, à savoir qu'on introduit, dans la commande de la pompe 8, une perturbation, à savoir la coupure du débit de la pompe 8, qui provoque une chute de pression dans la rampe commune 3, et cette perturbation est maintenue pendant cette première phase, à la fin de laquelle on obtient une première variation de pression DP1 dans la rampe 3 (en commandant donc une même durée d'injection Tinj, pas nécessairement constante, appliquée à tous les injecteurs 2 pour toutes les injections effectuées pendant cette première phase). Puis, la première masse de carburant M1 injectée par l'ensemble des injecteurs 2 du moteur 1, et correspondant à la première variation de pression DP1, est déterminée par application du modèle de comportement du circuit. Si (ΣTinj)1 représente la somme de toutes les durées d'injection appliquées à tous les injecteurs 2 pendant la première phase, on calcule un gain local moyen Gmoy, tel que Gmoy = M 1 ΣTinj 1

Figure imgb0004
In this case, we first identify an operating condition of the motor 1 which is relatively stable, i.e., for example, a time interval during which the difference between the values maximum and minimum of the injection duration (Tinj.max - Tinj.min) remains below a threshold, and the average injection time Tinj.moy applied in this condition is equal to the value of the injection duration Tinj for which the local gain G of the injector 2 considered must be defined. Then, as long as this stability condition is observed, the procedure is as follows: the first phase is carried out as in the ideal example described above, namely that a pump 8 is introduced into the pump. disturbance, namely the shutdown of the pump 8, which causes a pressure drop in the common rail 3, and this disturbance is maintained during this first phase, at the end of which a first change in pressure DP1 is obtained in the ramp 3 (thus controlling the same injection time Tinj, not necessarily constant, applied to all the injectors 2 for all injections made during this first phase). Then, the first mass of fuel M1 injected by all the injectors 2 of the engine 1, and corresponding to the first pressure variation DP1, is determined by applying the behavior model of the circuit. If (ΣTinj) 1 represents the sum of all the injection durations applied to all the injectors 2 during the first phase, an average local gain Gmoy is calculated, such that Gmoy = M 1 ΣTinj 1
Figure imgb0004

Puis, pendant la seconde phase, on introduit à nouveau dans la commande de la pompe 8 la même perturbation, à savoir la coupure de son débit, et on maintient cette perturbation pendant cette seconde phase, qui n'est pas nécessairement de la même durée que la première, et à la fin de laquelle on obtient la seconde variation de pression DP2 dans la rampe commune 3, en modifiant la commande du seul injecteur 2 dont on veut déterminer le gain local d'une variation de durée d'injection δTinj, pour chacune des injections effectuées pendant cette seconde phase d'apprentissage.Then, during the second phase, is introduced again into the control of the pump 8 the same disturbance, namely the cutting of its flow, and this disturbance is maintained during this second phase, which is not necessarily of the same duration that the first, and at the end of which one obtains the second pressure variation DP2 in the common ramp 3, by modifying the control of the only injector 2 whose local gain is to be determined by an injection duration variation δTinj, for each of the injections made during this second learning phase.

Il faut noter que la variation de durée d'injection δTinj n'est pas nécessairement constante. En général, δTinj n'est pas constant, car, de manière typique, cette variation peut être relative, et fixée à quelques pourcents, par exemple 10 %, de la durée d'injection Tinj, laquelle n'est précisément par rigoureusement constante pendant la seconde phase d'apprentissage.It should be noted that the variation of injection duration δTinj is not necessarily constant. In general, δTinj is not constant, since, typically, this variation can be relative, and fixed at some percents, for example 10%, of the injection time Tinj, which is precisely strictly constant during the second learning phase.

La seconde phase se déroule en appliquant donc des durées d'injection dont la somme est égale à (ΣTinj)2 augmentée da ΣδTinj, où δTinj est la somme de toutes les variations de durée d'injection appliquées à l'injecteur 2 considéré pendant la deuxième phase, et (ΣTinj)2 est la somme de toutes les durées d'injection Tinj appliquées à tous les injecteurs 2 pendant cette même deuxième phase.The second phase takes place by applying injection times whose sum is equal to (ΣTinj) 2 increased da ΣδTinj, where δTinj is the sum of all the injection duration variations applied to the injector 2 considered during the injection. second phase, and (ΣTinj) 2 is the sum of all injection times Tinj applied to all injectors 2 during this same second phase.

A l'aide du modèle de comportement du circuit, on détermine la seconde masse de carburant M2 injecté par l'ensemble des injecteurs 2 du moteur 1, au cours de la seconde phase, et qui correspond à la seconde variation de pression DP2.Using the circuit behavior model, the second mass of fuel M2 injected by all the injectors 2 of the engine 1, during the second phase, which corresponds to the second pressure variation DP2, is determined.

La somme (ΣTinj)2 a une valeur voisine de la somme (ΣTinj)1 , mais en diffère cependant, car les conditions de fonctionnement du moteur ont vraisemblablement changé au cours du déroulement des deux phases et entre ces dernières.The sum (ΣTinj) 2 has a value close to the sum (ΣTinj) 1, but differs from it, however, since the operating conditions of the motor have probably changed during the course of the two phases and between them.

La seconde masse injectée M2, déterminée comme expliqué ci-dessus, à partir du modèle de comportement du circuit et de la seconde chute de pression DP2, peut également être considérée comme égale à : M 2 = Gmoy x ΣTinj 2 + Σ δ Tinj x G

Figure imgb0005

de sorte que le gain G de l'injecteur considéré, sur lequel a été appliquée la variation de durée d'injection (par exemple l'augmentation) δTinj, se calcule par la formule : G = M 2 - Gmoy x ΣTinj 2 Σ δTinj
Figure imgb0006
The second injected mass M2, determined as explained above, from the behavior model of the circuit and the second pressure drop DP2, can also be considered as equal to: M 2 = Gmoy x ΣTinj 2 + Σ δ Tinj x G
Figure imgb0005

so that the gain G of the considered injector, on which the injection duration variation (for example the increase) δTinj has been applied, is calculated by the formula: BOY WUT = M 2 - Gmoy x ΣTinj 2 Σ δTinj
Figure imgb0006

On constate que, par rapport à la formule donnée pour le cas hypothétique simplifié décrit ci-dessus, la première masse injectée M1 a été remplacée par Gmoy x (ΣTinj)2, qui représente ce qu'aurait été la première masse injectée M1, si l'intégrale du profil du besoin en carburant du moteur au cours de la première phase d'apprentissage avait été identique à l'intégrale du profil du besoin en carburant du moteur au cours de la seconde phase d'apprentissage.It can be seen that, compared to the formula given for the simplified hypothetical case described above, the first injected mass M1 has been replaced by Gmoy x (ΣTinj) 2, which represents what would have been the first injected mass M1, if the full engine fuel requirement profile during the first training phase was identical to the full engine fuel requirement profile during the second learning phase.

Les différentes valeurs de M déterminées et de δTinj, ΣδTinj, (ΣTinj)1, (ΣTinj)2 et Gmoy, commandées ou calculées sont mémorisées et réactualisées cycliquement pour suivre en temps réel les variations du gain G.The different values of M determined and δTinj, ΣδTinj, (ΣTinj) 1, (ΣTinj) 2 and Gmoy, commanded or calculated are stored and updated cyclically to follow in real time the G gain variations.

Ce procédé d'apprentissage est en fait applicable sur n'importe quel point de la caractéristique de débit d'injecteur, c'est-à-dire non seulement sur n'importe quel point de sa partie linéaire 15 (voir figure 2) mais également sur n'importe quel point de sa partie non linéaire 16, pour de faibles valeurs de la durée de commande d'injection, lorsque le moteur 1 fonctionne au ralenti ou dans des zones de fonctionnement à faible charge.This learning method is in fact applicable on any point of the injector flow characteristic, ie not only on any point of its linear part 15 (see figure 2 ) but also at any point of its non-linear part 16, for small values of the injection control time, when the engine 1 is operating at idle or in areas of low load operation.

Après détermination du gain individuel d'un injecteur considéré 2 du moteur 1, en appliquant à ce seul injecteur 2, comme décrit ci-dessus, des commandes de durées d'injection T'inj différentes de celles Tinj appliquées aux autres injecteurs du moteur, pendant l'une des deux phases au cours desquelles le débit de la pompe haute pression 8 est maintenu nul pour provoquer des chutes de pression dans la rampe 3, on peut successivement déterminer le gain individuel de chacun des autres injecteurs 2 de ce même moteur 1.After determining the individual gain of a given injector 2 of the engine 1, by applying to this single injector 2, as described above, orders of injection times T'inj different from those Tinj applied to the other injectors of the engine, during one of the two phases during which the flow rate of the high pressure pump 8 is kept zero to cause pressure drops in the ramp 3, the individual gain of each of the other injectors 2 of the same motor 1 can be successively determined 1 .

On peut ainsi piloter l'injection en tenant compte d'un gain individuel, spécifique à chacun des injecteurs 2.It is thus possible to control the injection taking into account an individual gain specific to each of the injectors 2.

Comme les paramètres déterminant la caractéristique dépendent de la pression, en particulier de la pression de carburant, la répétition du processus d'apprentissage pour différents points de fonctionnement permet d'assurer un balayage en pression, pour une meilleure détermination du gain individuel local ses injecteurs 2, et on obtient ainsi une meilleure connaissance de la caractéristique individuelle de débit des injecteurs 2, en adoptant le gain déterminé en temps réel et en conservant l'offset théorique Ot, lequel peut en outre être avantageusement remplacé par un offset réel, dont l'apprentissage est obtenu par une stratégie appropriée.Since the parameters determining the characteristic depend on the pressure, in particular the fuel pressure, the repetition of the learning process for different operating points makes it possible to ensure a pressure sweep, for a better determination of the local individual gain of its injectors. 2, and a better knowledge of the individual flow characteristics of the injectors 2 is thus obtained, by adopting the gain determined in real time and keeping the theoretical offset ΔT, which can also advantageously be replaced by a real offset, of which learning is achieved by an appropriate strategy.

Claims (7)

  1. Method for determining in real time the gain of at least one electrically controlled fuel injector (2) supplying an internal combustion engine (1) and mounted in a fuel supply circuit of the said engine (1), the said circuit comprising at least one pump (8) supplied from a fuel reservoir (12) and connected to a common rail (3) for supplying each injector (2) of the engine (1) with fuel, the said circuit being of the type having a fixed volume and without permanent return of fuel from the downstream side to the upstream side of the said pump (8), which is output-piloted, each injector (2) and the said pump (8) being controlled by at least one computer (5) so that with each cycle of the engine the said pump (8) delivers into the said circuit a mass of fuel known by the computer (5), and that each injector (2) delivers to the said engine (1) a mass of injected fuel (M) determined by an injector output characteristic expressing the injected mass (M) according to an increasing function of the duration of injection (Tinj) of the said injector (2), which duration is controlled by the said computer (5) and for which a local gain (G) corresponds to each value of the duration of injection (Tinj), this local gain being defined by a ratio of an injected mass variation, consecutive to an injection duration variation, to the said injection duration variation, characterised in that it consists of determining the local gain (G) of the said at least one injector (2) concerned according to the variation (ΔM) of the mass of fuel (M) injected into the said engine (1) by the group of injectors (2) resulting from the application to the said at least one injector (2) concerned of an injection duration command (T'inj) which is different from that (Tinj) applied to the other injector or injectors (2), the said method comprising:
    at least the steps consisting, during operation of the engine (1), of:
    a) identifying a relatively stable operational condition of the engine (1) in which the average injection duration applied (Tinj.moy) is equal to the value of an injection duration (Tinj) for which it is desired to define the local gain (G), and, while the stability condition is observed,
    b) introducing, into the control of the said pump (8), a disturbance such as to cause a drop in pressure in the said common rail (3), and maintaining the said disturbance during a first phase, at the end of which a first pressure variation (DP1) is obtained,
    c) determining a first mass of fuel (MI) injected by the group of injectors (2) of the engine (1) and corresponding to the said first pressure variation (DP1),
    d) calculating an average local gain (Gmoy) of the group of injectors (2) as being equal to the ratio of the first fuel mass (M1) to the sum (ΣTinj)1 of all the injection durations (Tinj) applied to all the injectors (2) during the said first phase,
    e) introducing the same disturbance into the control of the said pump (8) and maintaining it during a second phase, at the end of which a second pressure variation (DP2) in the common rail (3) is obtained, modifying the control of the injector (2) of which it is desired to determine the local gain of a variation (δTinj) for each of the injections effected during the said second phase, and such that the sum of the injection duration variations applied during the second phase on the said injector (2) is equal to ΣδTinj,
    f) determining a second fuel mass (M2) injected by the group of injectors (2) of the engine (1) and corresponding to the said second pressure variation (DP2), and considering that the said second mass (M2) is equal to: M 2 = Gmoy x ΣTinj 2 + Σ δ Tinj x G
    Figure imgb0009

    where (ΣTinj)2 is the sum of all the injection durations (Tinj) applied during the said second phase, and G is the local gain of the said injector (2) concerned, and
    g) calculating the said local gain (G) of the said injector (2) concerned by means of the formula: G = M 2 - Gmoy x ΣTinj 2 Σ δTinj
    Figure imgb0010
  2. Method as claimed in claim 1, characterised in that it also consists of repeating steps a) to g) for different points of operation of the engine (1) and/or for a plurality of different values of the injection durations (Tinj) corresponding to different parts (15, 16) of the injector output characteristic so as to determine the individual gain of the said at least one injector (2).
  3. Method as claimed in any one of claims 1 and 2, implemented on a fuel supply circuit of the engine (1) which is a direct injection circuit in which the said common rail (3) is supplied by a high-pressure pump (8) which is itself supplied by a booster pump (13) connected to the said reservoir (12), characterised in that the said disturbance in the control of the high pressure pump (8) consists of causing a stoppage of the said high pressure pump (8).
  4. Method as claimed in claim 3, characterised in that the determination of the said first (M1) and second (M2) masses of fuel injected by the group of injectors (2) of the engine (1) in correspondence with the said determination of the said first (DP1) and second (DP2) pressure variations is ensured by means of a behaviour model (18) of the supply circuit.
  5. Method as claimed in claim 4, characterised in that the said behaviour model of the circuit is a model (18) which takes into account the output entering into the common rail (3) imposed by the high pressure pump (8) and determined by the computer (5), the output leaving the common rail (3) and injected into the engine (1), and also determined by the computer (5), as well as the rigidity of the circuit.
  6. Method as claimed in any one of claims 1 to 5, characterised in that it consists of determining the individual gain (G) of a single injector (2) of the engine (1) at the same time, by applying to this single injector (2) injection duration commands which are different from those (TinJ) applied to the other injectors (2) of the engine (1) during the said second phase.
  7. Method as claimed in claim 6, characterised in that it consists of determining in succession the individual gain (G) of each of the injectors (2) of a single engine (1) in operation.
EP04711386A 2003-02-28 2004-02-16 Method for calculating fuel injector gain Expired - Fee Related EP1597468B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0302468 2003-02-28
FR0302468A FR2851788B1 (en) 2003-02-28 2003-02-28 METHOD FOR DETERMINING THE GAIN OF A FUEL INJECTOR
PCT/FR2004/000349 WO2004079176A1 (en) 2003-02-28 2004-02-16 Method for calculating fuel injector gain

Publications (2)

Publication Number Publication Date
EP1597468A1 EP1597468A1 (en) 2005-11-23
EP1597468B1 true EP1597468B1 (en) 2010-11-03

Family

ID=32843066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04711386A Expired - Fee Related EP1597468B1 (en) 2003-02-28 2004-02-16 Method for calculating fuel injector gain

Country Status (4)

Country Link
EP (1) EP1597468B1 (en)
DE (1) DE602004029865D1 (en)
FR (1) FR2851788B1 (en)
WO (1) WO2004079176A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857700B1 (en) 2003-07-16 2005-09-30 Magneti Marelli Motopropulsion METHOD FOR REAL-TIME DETERMINATION OF FUEL INJECTOR FLOW CHARACTERISTICS
DE102006009920A1 (en) * 2006-03-03 2007-09-06 Robert Bosch Gmbh Determination of individual cylinder correction values of the injection quantity of an internal combustion engine
SE1350867A2 (en) * 2013-07-11 2015-04-14 Scania Cv Ab Procedure for fuel injection
US10316786B2 (en) * 2014-12-01 2019-06-11 Ford Global Technologies, Llc Methods and systems for adjusting a direct fuel injector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311138A (en) * 1989-06-09 1991-01-18 Mitsubishi Motors Corp Fuel injection quantity control system
US5176122A (en) * 1990-11-30 1993-01-05 Toyota Jidosha Kabushiki Kaisha Fuel injection device for an internal combustion engine
FR2803875B1 (en) * 2000-01-13 2002-07-19 Magneti Marelli France METHOD FOR DETERMINING AND MONITORING THE PRESSURE OF FUEL CONTAINED IN A SUPPLY RAMP OF AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
DE602004029865D1 (en) 2010-12-16
FR2851788B1 (en) 2006-07-21
WO2004079176A1 (en) 2004-09-16
EP1597468A1 (en) 2005-11-23
FR2851788A1 (en) 2004-09-03

Similar Documents

Publication Publication Date Title
EP1644627B1 (en) Method for real-time determination of fuel injector flow characteristic
FR2929650A1 (en) METHOD AND DEVICE FOR ADAPTING A DYNAMIC MODEL OF AN EXHAUST GAS PROBE.
FR2981697A1 (en) METHOD AND DEVICE FOR ADAPTING A LAMBDA REGULATION
EP1769153B1 (en) System for controlling the function of a diesel engine in a motor vehicle connected to an oxidation catalyst
FR2971009A1 (en) METHOD FOR DETERMINING THE ALCOHOL CONTENT OF A NEW FUEL MIXTURE IN AN INTERNAL COMBUSTION ENGINE OF A VEHICLE, AND DEVICE FOR IMPLEMENTING SAID METHOD
EP1674699B1 (en) System for starting regeneration of an exhaust system comprising a NOx trap
EP1597468B1 (en) Method for calculating fuel injector gain
EP0954689A1 (en) Device for controlling an internal combustion engine with controlled ignition and direct injection
WO2000065215A1 (en) Method for correcting ignition advance of an internal combustion engine
EP1760295B1 (en) Control system for a diesel engine equipped with exhaust recriculation means
EP1862659A1 (en) Method and device for correcting the flow of a so-called pilot fuel injection in a direct-injection diesel engine of the common rail type, and engine comprising such a device
FR3062418A1 (en) METHOD FOR CONTROLLING THE EMISSIONS OF NITROGEN OXIDES TO THE EXHAUST OF AN INTERNAL COMBUSTION ENGINE
EP1787020B1 (en) System for controlling the operation of a diesel engine of a motor vehicle
WO2007132104A1 (en) System for controlling the triggering of a purge for nox trap means
EP0886055B1 (en) Method and apparatus for controlling a spark ignited internal combustion engine
EP0852667B1 (en) Method for determining an optimal air-fuel mixture ratio in an internal combustion engine, and device therefor
EP1400679B1 (en) Control system for operating a Diesel engine of an automotive vehicle
FR2851298A1 (en) Thermal engine control process, involves defining mass charging that should be applied to combustion chamber, from bunch of curve characteristics, desired torque, and size explaining desired air/fuel ratio
EP2123889A1 (en) Control process for internal combustion engine and device for implementing said process
FR3056254A1 (en) METHOD OF DIAGNOSING A PROPORTIONAL OXYGEN PROBE ARRANGED BEFORE THE POST-PROCESSING SYSTEM OF AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION.
EP0636778B1 (en) Method and apparatus for correcting the injection time as a function of the purge flow of a canister purge system in a fuel injected engine
EP1760300A1 (en) Method and apparatus for controlling a diesel engine of a vehicle
FR3115567A1 (en) Optimization of a multi-injection
EP4031759A1 (en) Method for adjusting richness in a controlled-ignition internal combustion engine
WO2022162045A1 (en) Fuel distribution method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES GB IT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAGNETI MARELLI MOTOPROPULSION FRANCE SAS

17Q First examination report despatched

Effective date: 20090305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004029865

Country of ref document: DE

Date of ref document: 20101216

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

26N No opposition filed

Effective date: 20110804

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004029865

Country of ref document: DE

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20140212

Year of fee payment: 11

Ref country code: IT

Payment date: 20140217

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004029865

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150216