EP1597468B1 - Verfahren zur bestimmung der verstärkung eines kraftstoffeinspritzventils - Google Patents

Verfahren zur bestimmung der verstärkung eines kraftstoffeinspritzventils Download PDF

Info

Publication number
EP1597468B1
EP1597468B1 EP04711386A EP04711386A EP1597468B1 EP 1597468 B1 EP1597468 B1 EP 1597468B1 EP 04711386 A EP04711386 A EP 04711386A EP 04711386 A EP04711386 A EP 04711386A EP 1597468 B1 EP1597468 B1 EP 1597468B1
Authority
EP
European Patent Office
Prior art keywords
engine
injector
fuel
injection
injectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04711386A
Other languages
English (en)
French (fr)
Other versions
EP1597468A1 (de
Inventor
Henri Mazet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Argentan France SAS
Original Assignee
Magneti Marelli Motopropulsion France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli Motopropulsion France SAS filed Critical Magneti Marelli Motopropulsion France SAS
Publication of EP1597468A1 publication Critical patent/EP1597468A1/de
Application granted granted Critical
Publication of EP1597468B1 publication Critical patent/EP1597468B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount

Definitions

  • the invention relates to a method for real-time determination of the gain, or static flow, of at least one fuel injector, of the electrically controlled type, supplying an internal combustion engine, and mounted in a fuel supply circuit. of the engine, this circuit comprising at least one pump, fed from a fuel tank, and connected to a common fuel supply rail of each injector of the engine.
  • each injector the gain of which is to be determined by the method according to the invention, is mounted in a fixed-volume type supply circuit and without permanent return of fuel from the downstream upstream of said pump. which is controlled in flow, each injector and said pump being controlled by at least one computer, generally belonging to an electronic control unit and motor control, so that each cycle of the engine the pump delivers in the circuit a mass of fuel known from the computer, and that each injector delivers to said engine a fuel mass injected determined by an injector flow rate, expressing the injected mass according to an increasing function of the injection duration of said injector, controlled by said computer, and for which corresponds to each value of the injection duration, a local gain defined by a ratio of a variation of mass injected, consecutive there is a variation in injection duration, in said variation of injection duration (the local gain thus corresponding to the local slope at any point on the curve representing the flow characteristic of the injector).
  • Injectors of this type are generally qualified by their manufacturer by a theoretical injector flow rate characteristic, a substantially linear portion of which is determined by a theoretical injector gain as well as an offset at the theoretical origin, or theoretical offset, corresponding to a minimum order duration for a zero injected mass, obtained at the intersection of the extrapolation, to the origin of the durations of control, of the linear part of the characteristic with the abscissa axis, expressing the control times, on a plane diagram on which the injected masses are indicated along the y-axis, while a non-linear part of the characteristic , at the low values of the injection duration, can be stored in the computer in the form of mapping or theoretical table.
  • Electrically operated fuel injectors of this type can be fitted to diesel or spark ignition engines, and can be mounted in direct or indirect injection fuel systems.
  • the injectors used to perform the injection of a predetermined amount of fuel by an engine control computer have dispersions and evolutions in time of their characteristics, which has the consequence that the injection of a mass fuel data requires a different injection time control depending on the injector ordered and the age of the latter.
  • the dispersions of the characteristics of the injectors result from the manufacturing tolerances of the physical components of the injectors, and therefore from their dimensional dispersions and physical characteristics, in particular the number and diameter (s) of the injection orifices of the injectors, their orientations, the elastic characteristic of their springs, etc ..., and the evolution over time of the flow characteristics of the injectors results in particular from the aging of the physical components of the injectors.
  • the components involved are those that calculate the intake air flow to the engine and control the flow of fuel injected into the engine, so that these components include the injectors. But, unless specific strategies, closed loop wealth controls do not identify the characteristics of each of the components involved, either globally or individually.
  • the metering of the air-fuel mixture consists in controlling a flow of intake air to the engine and a corresponding fuel flow, and the closed-loop richness checks make it possible to compensate for the ratio of the air flow rate to the flow rate. of fuel, without identifying the part of correction to be made to the air flow or the fuel flow, and, in addition, these richness checks do not allow to calculate an individualized correction for each cylinder, and therefore each injector.
  • the problem underlying the invention therefore consists, from the knowledge of a theoretical injector flow rate characteristic, of determining in real time the gain of at least one fuel injector of an engine, in order to learn the relationship between the mass of fuel injected and the control time of at least one injector considered, during learning phases that occur regularly, during operation of the engine, on points operating conditions that are not necessarily steady state, and during learning periods short enough that the driver of the vehicle does not feel any change in engine operation that would be due to these learning phases.
  • the object of the invention is therefore to allow a better knowledge of the flow characteristic of at least one injector of a running engine by a real-time determination of the gain of the injector in question, in order to have a follow-up. the evolution of the individual flow characteristic of each injector.
  • EP-0 488 362-A a method for determining a parameter (K pni ) of at least one fuel injector mounted in a fuel supply circuit of an internal combustion engine of the type shown above, the method comprising at least one step of determining this parameter according to the variation (Q di ) of the mass of fuel injected into the engine by the set of injectors resulting from the application on said at least one injector considered a duration command of injection different from that applied to the other injector or injectors.
  • This K pni parameter does not represent the local gain, but is directly related to the inverse of the gain.
  • the implementation of this method provides the advantage of allowing, without having to make the injectors, and therefore their components, with very tight tolerances, and thus without increasing the cost of the injection system, to guarantee greater accuracy. of the mass of fuel injected into each cylinder of the engine, and, consequently, to ensure the accuracy of the air-fuel dosage and the torque developed by the engine. This results in a good control of emissions in the exhaust, and a better driving pleasure of the motor vehicle. It is thus possible to simply equip the engine with less efficient injectors, since the implementation of the method according to the invention makes it possible to compensate for the dispersions at the level of the physical components of the injectors.
  • this embodiment is preferred, as appropriate to the actual operating conditions of the engine, in which the fuel requirement of the engine is not strictly stable during substantially successive phases of operation of the engine.
  • the method according to the invention is furthermore to repeat the steps a) to g) presented above for different points of operation of the engine and / or for a plurality of values different from the injection times corresponding to different parts of the injector flow characteristic, so as to determine the individual gain of said at least one injector considered.
  • the behavior model of the circuit may be a model that takes into account the flow rate or mass entering the common rail, imposed by the high pressure pump and determined by the calculator, the flow or mass leaving the common rail and injected into the engine, and also determined by the computer, as well as the rigidity of the circuit.
  • the method of the invention can thus consist in determining the individual gain of a single injector of the engine at a time, by applying to this single injector commands of injection times different from those applied to the other injectors of the engine, during said second phase of the process.
  • the method consists in determining, in succession, the individual gain of each of the injectors of the same engine in operation, in order to optimize the contribution of each injector to the supply of the corresponding cylinder of the engine.
  • an internal combustion engine 1 for a motor vehicle On the figure 1 is schematically shown an internal combustion engine 1 for a motor vehicle.
  • the engine considered 1 is an in-line four-cylinder engine, four-stroke spark ignition and four-stroke engine fuel supplied by direct injection fuel, although the method of the invention is applicable to an injection engine indirect and / or diesel type.
  • Fuel injection is provided in each cylinder of the engine by one respectively of the four injectors 2.
  • injectors 2 are supplied with fuel at high pressure by a common fuel rail 3, in which the fuel pressure is measured, at least at certain times of the engine cycle, by a pressure sensor 4 transmitting the pressure signal measured at a maximum speed. motor control unit 5.
  • the engine control unit 5 is an electronic unit controlling the injection of the fuel into the engine 1, by controlling the instants and injector injection timing times of the injectors 2 with the control electrical conductor beam 6, as well as the ignition in the cylinders of the engine 1, in the example of a spark ignition engine, and possibly other functions, such as the control of air intake to the engine, via a motorized throttle body, in particular according to the depressing of the accelerator pedal, and other safety functions, such as anti-slip, traction control and / or anti-lock braking of the vehicle wheels.
  • This electronic unit 5 comprises, in a well known manner, at least one computer with calculation means, memory means and comparison means in particular, and in its injection control function, the control and control unit 5 the quantity of fuel injected by each of the injectors 2 into the corresponding cylinder of the engine 1, as a function of the engine times in each of the cylinders, of the parameters and operating conditions of the engine, in particular of its speed, its load or its temperature, and the fuel demand, depending in particular on the air intake flow rate in the engine 1 and the torque that the engine must develop, these parameters being entered at 7 in the engine control unit 5.
  • the common rail 3 is supplied with high pressure fuel by a high pressure pump 8, controlled in flow and connected to the ramp 3 by a pipe 9, in which the fuel flows in the direction of the arrow F1, and the engine control unit 5 controls the high pressure pump 8 by the logic link 10 and thus determines the mass of fuel sent by the high pressure pump 8 in the ramp 3, at each cycle of the engine 1.
  • the high pressure pump 8 is rotated by the motor 1 via a mechanical connection schematized at 11, in a manner known per se.
  • the high-pressure pump 8 is itself fed with fuel by a feeding circuit comprising, from upstream to downstream, a fuel tank 12, a booster pump or low-pressure pump 13, immersed in the tank 12 and fed through a filter (not shown), and a fuel pressure regulator 14, an output of which returns excess fuel in the tank 12, and another output is connected to the intake of the high pump pressure 8, at which is implanted a solenoid valve (not shown) controlled in all or nothing from the unit 5 by the logic link 10, so that the fuel flow of the high pressure pump 8 is known to the unit control 5, which can control the inlet solenoid valve so as to impose the high pressure pump 8 a zero flow.
  • the fuel supply circuit 1 of the engine by direct injection is thus a high pressure circuit, comprising the high pressure pump 8 and the downstream members thereof, namely the pipe 9 and the common rail 3, and this high circuit pressure, which is a fixed volume circuit and without permanent return of fuel or without fuel recirculation from the downstream to the upstream of the high pressure pump 8, is fed by a low pressure feeding circuit, upstream of the high pressure pump 8, and comprising the reservoir 12, the pump 13 and the regulator 14.
  • the mass of fuel present in the high-pressure circuit results only from filling actions by the high-pressure pump 8 and injection of fuel into the engine 1 by the injectors 2, these actions being controlled by the unit 5.
  • the flow characteristic of an injector 2, expressing the injected fuel mass M as a function of the injection control time Tinj, determined by the unit 5, corresponds to an increasing function whose curve, represented in FIG. figure 2 , has a slope equal to the local gain G of the injector, which is associated with any value of the injection duration and defined by the ratio between a mass variation injected following a small variation of injection duration , and this same variation in injection duration.
  • This curve comprises a substantially linear part 15, in which the gain is constant, and a non-linear part 16 with small values of the injection duration (values less than the injection control duration corresponding to the lower limit of linearity TinfL ), and in which the local gain is rapidly variable.
  • the linear part 15 of the characteristic is determined not only by its slope or constant gain of the injector in this part, but also by an offset at the origin or offset Ot, at the intersection of the extrapolation or extension of the linear part 15 of the curve to the origin with the abscissa axis indicating the injection times Tinj.
  • the mass MinfL which is injected for an injection control duration equal to the lower limit TinfL of the linear part 15 is equal to the sum of the masses injected during the transitional phases corresponding to the phases of establishment and cutting respectively.
  • instantaneous flow of an injector 2 caused respectively by the opening and closing of the injector resulting from displacements of a shutter respectively at the establishment and the breaking of an excitation current in a coil of the electromagnetically controlled injector, and respectively following the beginning and the end of a logical order of injection control developed in the unit 5 and transmitted by the latter to the injector 2 considered by the corresponding conductor of the beam 6.
  • the injectors 2 of the same type are qualified by a theoretical injector flow rate characteristic determined, on the one hand, by a theoretical gain Gt and a theoretical offset Ot, to define the theoretical linear part 15 of the curve, and, on the other hand, by a theoretical nonlinear part 16, stored in the unit 5 in the form of tables or mappings indicating the injected mass M for an injection control duration Tinj between the lower linearity limit TinfL and the theoretical offset Ot and in the injection duration range corresponds to the nonlinear part 16.
  • the method of the invention aims to determine in real time (engine 1 in operation) the local gain G, as defined above, in order to have a better knowledge of the injected masses in function. controlled injection times, and taking into account the dispersions of characteristics from one injector to another, and / or variations in the characteristic of an injector as a function of time, particularly because of the aging of this injector.
  • the method makes it possible to learn the individual characteristic of an injector 2 under consideration, then by changing the injector considered, to learn the individual characteristics of all injectors equipping the same engine.
  • the method of the invention comprises two main phases. These phases lead to determining the variation ⁇ M of the mass M of fuel that is injected into the engine 1 by all the injectors 2, and which results from the application to the injector 2 whose gain G, an injection time control which is different from that applied to the other injectors 2 of the engine 1, with respect to the mass of fuel injected into the engine 1 by the set of injectors 2 on which the same control of injection duration, preferably a normal injection time, taking into account the operating point of the engine 1.
  • This mass variation therefore corresponds to the contribution of the injector 2 whose injection control time has been modified relative to that of the other injectors 2.
  • the variation ⁇ M of the mass of fuel injected is determined, according to the method of the invention, by taking into account a variation of a pressure drop in the supply circuit, in which the pressure drop results from a control of a disturbance of the operation of the pump 8, whereas the variation of the pressure drop results from the control of the different injection duration, applied on the injector 2, which we want to know the gain G, during the duration of the disturbance.
  • This disturbance of the operation of the pump 8 preferably consists of stopping the operation of this pump, whose flow is thus canceled, so that the pressure drop in the common rail 3 results from the continued application of commands of injection times to the injectors 2, the correspondence between the pressure drop in the ramp 3 and the mass of fuel injected into the engine 1 being ensured in the unit 5 by a module 18 of the behavior of the high pressure supply circuit , this module comprising a memory in which is stored, in the form of tables or maps, a law giving the variation of fuel mass in the high pressure circuit as a function of the pressure drop determined in this circuit during the stop of the pump 8, and can be constituted as described in the French patent FR 2 803 875 , which will be referred to for further details on this subject.
  • the method consists, from of a working point of the engine 1 in steady state and in a first learning phase, to command by the unit 5 the cancellation of the flow rate of the high pressure pump 8, and to maintain this command for a predetermined number of engine cycles, this number being sufficient to obtain a first pressure variation, determinable with sufficient accuracy, in the common rail 3, while a number N of injections is applied during this time to all the injectors 2 of the engine 1, with the same injection control time Tinj, for example normally established by the unit 5 according to the operating point of the engine 1.
  • the behavior model of the circuit stored in the module 18 of the unit 5 and based for example on the mass entering the ramp 3 and imposed by the high pressure pump 8 being determined by the computer 17, and on the mass leaving the ramp 3 being injected into the engine 1, and also determined by the unit 5, as well as the rigidity of the high pressure circuit, it corresponds to the pressure difference DP1 thus determined, a first mass M1 of fuel injected into engine 1 by all injectors 2.
  • a second phase of the process for learning the real gain of the injector 2 under consideration is initiated, and consists in reintroducing the same perturbation as above on the operation of the high pressure pump 8, namely to cut its flow rate during a time interval corresponding to the same predetermined number of motor cycles as in the previous phase, and by controlling the application of the same number N of injections on all the injectors 2 as during the previous phase, but with a modification of a known value of the injection times applied to the particular injector 2, which is to be determined the gain G, while we continue to apply to the other injectors 2 of the engine the same injection times that during the previous phase, it is that is to say for the same number N of injections occurring during the same predetermined number of motor cycles, the latter number and the known value of the modification of the injection times being chosen to be equally sufficient to obtain a second pressure variation, determinable with sufficient accuracy, in the common rail
  • DP2 is greater than DP1
  • the module 18 of the unit 5, in which is recorded and stored the behavior model of the circuit of high pressure supply corresponds to the pressure drop DP2 a second M2 mass fuel left this high pressure circuit, and therefore having been injected by the injectors 2 in the engine 1.
  • the two phases can be reversed, the injected mass M2 with specific injection duration being determined before the mass M1 with normal or reference injection duration, or the non-adjacent succession of the two phases can be repeated. a certain number of times by alternating the order of the phases, but in order to obtain a good learning of the individual gain G of the injector 2 under consideration, this learning procedure must be renewed for a sufficient number of values of the duration of the control, and for different stabilized operating points of the engine.
  • the method according to the invention remains substantially as described above, except that the number of injections N applied during the first and second phases is not necessarily identical, each phase being interrupted when the corresponding pressure drop has reaches a value sufficient to be measurable with a sufficient degree of accuracy.
  • the processing of the measurements consists in finding out by calculation what the mass M1 would have been if, during the first phase, the integral of the fuel requirement of the engine had been the same one as during the second phase of learning.
  • an operating condition of the motor 1 which is relatively stable i.e., for example, a time interval during which the difference between the values maximum and minimum of the injection duration (Tinj.max - Tinj.min) remains below a threshold, and the average injection time Tinj.moy applied in this condition is equal to the value of the injection duration Tinj for which the local gain G of the injector 2 considered must be defined.
  • the procedure is as follows: the first phase is carried out as in the ideal example described above, namely that a pump 8 is introduced into the pump.
  • injection duration ⁇ Tinj is not necessarily constant.
  • ⁇ Tinj is not constant, since, typically, this variation can be relative, and fixed at some percents, for example 10%, of the injection time Tinj, which is precisely strictly constant during the second learning phase.
  • the second phase takes place by applying injection times whose sum is equal to ( ⁇ Tinj) 2 increased da ⁇ Tinj, where ⁇ Tinj is the sum of all the injection duration variations applied to the injector 2 considered during the injection.
  • ⁇ Tinj is the sum of all the injection duration variations applied to the injector 2 considered during the injection.
  • ( ⁇ Tinj) 2 is the sum of all injection times Tinj applied to all injectors 2 during this same second phase.
  • the second mass of fuel M2 injected by all the injectors 2 of the engine 1, during the second phase, which corresponds to the second pressure variation DP2, is determined.
  • the sum ( ⁇ Tinj) 2 has a value close to the sum ( ⁇ Tinj) 1, but differs from it, however, since the operating conditions of the motor have probably changed during the course of the two phases and between them.
  • the different values of M determined and ⁇ Tinj, ⁇ Tinj, ( ⁇ Tinj) 1, ( ⁇ Tinj) 2 and Gmoy, commanded or calculated are stored and updated cyclically to follow in real time the G gain variations.
  • This learning method is in fact applicable on any point of the injector flow characteristic, ie not only on any point of its linear part 15 (see figure 2 ) but also at any point of its non-linear part 16, for small values of the injection control time, when the engine 1 is operating at idle or in areas of low load operation.
  • the parameters determining the characteristic depend on the pressure, in particular the fuel pressure
  • the repetition of the learning process for different operating points makes it possible to ensure a pressure sweep, for a better determination of the local individual gain of its injectors. 2, and a better knowledge of the individual flow characteristics of the injectors 2 is thus obtained, by adopting the gain determined in real time and keeping the theoretical offset ⁇ T, which can also advantageously be replaced by a real offset, of which learning is achieved by an appropriate strategy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (7)

  1. Verfahren zur Echtzeit-Bestimmung der Verstärkung eines elektrisch gesteuerten Kraftstoffeinspritzventils (2), das einen Verbrennungsmotor (1) speist und in einer Kraftstoffversorgungsleitung des Motors (1) angebracht ist, wobei die Versorgungsleitung mindestens eine Pumpe (8) umfasst, die von einem Kraftstoffbehälter (12) aus gespeist wird und mit einer Kraftstoffsammelleitung (3) jedes Einspritzventils (2) des Motors (1) verbunden ist, wobei die Versorgungsleitung der Bauart mit festem Volumen und ohne permanenten Kraftstoffrücklauf von der stromabwärts zu der stromaufwärts liegenden Seite der Pumpe (8) entspricht, deren Durchflussleistung gesteuert wird, wobei jedes Einspritzventil (2) und die Pumpe (8) von mindestens einem Rechner (5) so gesteuert werden, dass bei jedem Takt des Motors die Pumpe (8) eine dem Rechner (5) bekannte Kraftstoffmenge in die Versorgungsleitung abgibt und dass jedes Einspritzventil (2) an den Motor (1) eine Kraftstoffeinspritzmenge (M) abgibt, die durch ein Einspritzventil-Durchflussmerkmal bestimmt wird, das die Einspritzmenge (M) gemäß einer steigenden Funktion der Einspritzdauer (Tinj) des Einspritzventils (2) ausdrückt, die von dem Rechner (5) gesteuert wird, und für welche es für jeden Wert der Einspritzdauer (Tinj) einer lokalen Verstärkung (G) entspricht, die durch ein Verhältnis einer Veränderung der Einspritzmenge, die auf eine Veränderung der Einspritzdauer folgt, zu der Veränderung der Einspritzdauer definiert wird,
    dadurch gekennzeichnet, dass es darin besteht, die lokale Verstärkung (G) des mindestens einen Einspritzventils (2) zu bestimmen, betrachtet nach der Veränderung (ΔM) der Kraftstoffmenge (M), die in den Motor (1) von der Gesamtheit der Einspritzventile (2) eingespritzt wird, was zur Anwendung einer Steuerung einer Einspritzdauer (Tinj) auf das mindestens eine betrachtete Einspritzventil (2) führt, die sich von derjenigen (Tinj) unterscheidet, die auf das bzw. die anderen Einspritzventile (2) angewendet wird, wobei das Verfahren umfasst:
    mindestens die Schritte, die in Abhängigkeit von dem Betrieb des Motors (1) bestehen aus:
    a) Identifizieren einer relativ stabilen Betriebsbedingung des Motors (1), in der die angewendete mittlere Einspritzdauer (Tinj.moy) gleich einem Wert einer Einspritzdauer (Tinj) ist, für den eine Bestimmung der lokalen Verstärkung (G) gewünscht wird, und, sobald der Stabilitätszustand beobachtet wird,
    b)Einführen einer solchen Störgröße in die Steuerung der Pumpe (8), die einen Druckabfall in der Sammelleitung (3) bewirkt, und Aufrechterhalten der Störgröße während einer ersten Phase, an deren Ende eine erste Druckveränderung (DP1) erhalten wird,
    c)Bestimmen einer ersten Kraftstoffmenge (M1), die von der Gesamtheit der Einspritzventile (2) des Motors (1) eingespritzt wird und der ersten Druckveränderung (DP1) entspricht,
    d)Berechnen einer lokalen mittleren Verstärkung (Gmoy) der Gesamtheit der Einspritzventile (2) als gleich dem Verhältnis der ersten Kraftstoffmenge (M1) zur Summe (ΣTinj)1 aller Einspritzdauern (Tinj), die auf alle Einspritzventile (2) während der ersten Phase angewendet werden,
    e)Einführen derselben Störgröße in die Steuerung der Pumpe (8) und Aufrechterhalten derselben während einer zweiten Phase, an deren Ende eine zweite Druckveränderung (DP2) in der Sammelleitung (3) erhalten wird, indem die Steuerung des Einspritzventils (2), für das die lokale Verstärkung einer Veränderung (δTinj) für jeden der Einspritzvorgänge bestimmt werden soll, die während der zweiten Phase erfolgt sind, modifiziert wird und zwar so, dass die Summe der Einspritzdauer-Veränderungen, die während der zweiten Phase auf das Einspritzventil (2) angewendet wurden, gleich ΣδTinj ist,
    f)Bestimmen einer zweiten Kraftstoffmenge (M2), die von der Gesamtheit der Einspritzventile (2) des Motors (1) eingespritzt wird und der zweiten Druckveränderung (DP2) entspricht, und Berücksichtigen, dass die zweite Menge (M2) gleich: M 2 = Gmoy x ΣTinj 2 + Σ δ Tinj x G ist ,
    Figure imgb0011

    wobei (ΣTinj)2 die Summe aller Einspritzdauern (Tinj) ist,
    die während der zweiten Phase angewendet wurden, und G die lokale Verstärkung des betrachteten Einspritzventils (2) ist, und
    g)Berechnen der lokalen Verstärkung (G) des betrachteten Einspritzventils (2) mit der Formel: G = M 2 - Gmoy x Σ Tinj 2 Σ δTinj
    Figure imgb0012
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es des Weiteren daraus besteht, die Schritte a) bis g) für
    verschiedene Betriebspunkte des Motors (1) und/oder eine Vielzahl von verschiedenen Werten der Einspritzdauern (Tinj) zu wiederholen, die verschiedenen Teilen (15, 16) des Einspritzventil-Durchflussmerkmals entsprechen, um so die individuelle Verstärkung des mindestens einen Einspritzventils (2) zu bestimmen.
  3. Verfahren nach einem der Ansprüche 1 und 2, eingesetzt in einer Kraftstoffversorgungsleitung des Motors (1), die eine Direkteinspritz-Versorgungsleitung ist, in der die Sammelleitung (3) durch eine Hochdruckpumpe (8) gespeist wird, die selbst von einer Kraftstoffzusatzpumpe (13) gespeist wird, die an den Behälter (12) angeschlossen ist, dadurch gekennzeichnet, dass die Störgröße in der Steuerung der Hochdruckpumpe (8) darin besteht, ein Anhalten der Hochdruckpumpe (8) zu bewirken.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Bestimmung der ersten (M1) und der zweiten (M2) Kraftstoffmenge, die von der Gesamtheit der Einspritzventile (2) des Motors (1) eingespritzt wird, in Übereinstimmung mit der Bestimmung der ersten (DP1) und der zweiten (DP2) Druckveränderungen mithilfe eines Verhaltensmodells (18) der Versorgungsleitung sichergestellt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Verhaltsmodell der Versorgungsleitung ein Modell (18) ist, das die Durchflussmenge, die in die Sammelleitung (3) eintritt, die von der Hochdruckpumpe (8) durchgesetzt und vom Rechner (5) bestimmt wird, die Durchflussmenge, die aus der Sammelleitung (3) austritt und in den Motor (1) eingespritzt wird und ebenfalls vom Rechner (5) bestimmt wird, sowie die Steifigkeit der Versorgungsleitung berücksichtigt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es daraus besteht, die individuelle Verstärkung (G) eines einzelnen Einspritzventils (2) des Motors (1) auf einmal zu bestimmen, indem jeweils auf dieses einzelne Einspritzventil (2) Steuerungen von Einspritzdauern angewendet werden, die sich von denjenigen (Tinj) unterscheiden, die auf die anderen Einspritzventile (2) des Motors (1) während der zweiten Phase angewendet werden.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass es daraus besteht, nacheinander die individuelle Verstärkung (G) für jedes der Einspritzventile (2) desselben Motors (1) im Betrieb zu bestimmen.
EP04711386A 2003-02-28 2004-02-16 Verfahren zur bestimmung der verstärkung eines kraftstoffeinspritzventils Expired - Lifetime EP1597468B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0302468A FR2851788B1 (fr) 2003-02-28 2003-02-28 Procede de determination du gain d'un injecteur de carburant
FR0302468 2003-02-28
PCT/FR2004/000349 WO2004079176A1 (fr) 2003-02-28 2004-02-16 Procede de determination du gain d’un injecteur de carburant

Publications (2)

Publication Number Publication Date
EP1597468A1 EP1597468A1 (de) 2005-11-23
EP1597468B1 true EP1597468B1 (de) 2010-11-03

Family

ID=32843066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04711386A Expired - Lifetime EP1597468B1 (de) 2003-02-28 2004-02-16 Verfahren zur bestimmung der verstärkung eines kraftstoffeinspritzventils

Country Status (4)

Country Link
EP (1) EP1597468B1 (de)
DE (1) DE602004029865D1 (de)
FR (1) FR2851788B1 (de)
WO (1) WO2004079176A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857700B1 (fr) 2003-07-16 2005-09-30 Magneti Marelli Motopropulsion Procede de determination en temps reel de la caracteristique de debit d'injecteur de carburant
DE102006009920A1 (de) * 2006-03-03 2007-09-06 Robert Bosch Gmbh Bestimmung zylinderindividueller Korrekturwerte der Einspritzmenge einer Brennkraftmaschine
SE1350867A2 (sv) 2013-07-11 2015-04-14 Scania Cv Ab Förfarande vid bränsleinsprutning
US10316786B2 (en) * 2014-12-01 2019-06-11 Ford Global Technologies, Llc Methods and systems for adjusting a direct fuel injector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311138A (ja) * 1989-06-09 1991-01-18 Mitsubishi Motors Corp 燃料噴射量制御システム
US5176122A (en) * 1990-11-30 1993-01-05 Toyota Jidosha Kabushiki Kaisha Fuel injection device for an internal combustion engine
FR2803875B1 (fr) * 2000-01-13 2002-07-19 Magneti Marelli France Procede de determination et de surveillance de la pression du carburant contenu dans une rampe d'alimentation d'un moteur a combustion interne

Also Published As

Publication number Publication date
DE602004029865D1 (de) 2010-12-16
WO2004079176A1 (fr) 2004-09-16
FR2851788A1 (fr) 2004-09-03
FR2851788B1 (fr) 2006-07-21
EP1597468A1 (de) 2005-11-23

Similar Documents

Publication Publication Date Title
EP1644627B1 (de) Verfahren zur echtzeitbestimmung einer kraftstoffeinspritzungsströmungscharakteristik
FR2929650A1 (fr) Procede et dispositif d'adaptation d'un modele dynamique d'une sonde de gaz d'echappement.
EP1769153B1 (de) System zur steuerung der arbeitsweise eines mit einem oxidationskatalysator verbundenem dieselmotors in einem kraftfahrzeug
FR2981697A1 (fr) Procede et dispositif d'adaptation d'une regulation lambda
FR2971009A1 (fr) Procede de determination de la teneur en alcool d'un nouveau melange de carburant dans un moteur a combustion interne d'un vehicule, et dispositif pour sa mise en oeuvre
EP1674699B1 (de) System zum Auslösen der Regeneration in einem Abgasnachbehandlungssystem mit einem NOx-Speicher
EP1597468B1 (de) Verfahren zur bestimmung der verstärkung eines kraftstoffeinspritzventils
FR3062418A1 (fr) Procede de controle des emissions d'oxydes d'azote a l'echappement d'un moteur a combustion interne
EP0954689A1 (de) Steuervorrichtung für eine brennkraftmaschine mit gesteuerter zündung und direkter einspritzung
WO2000065215A1 (fr) Methode de correction a l'avance a l'allumage d'un moteur a combustion interne
EP1760295B1 (de) Regelvorrichtung für eine Diesel-Brennkraftmaschine mit Abgasrückführung
EP1862659A1 (de) Verfahren und Vorrichtung zur Korrektur des Durchsatzes der Voreinspritzung von Treibstoff in einen Dieseldirekteinspritzmotor des Common-Rail-Typs und Motor, der eine solche Vorrichtung umfasst
EP1787020B1 (de) System zur dieselmotorlaufsteuerung für ein kraftfahrzeug
WO2007132104A1 (fr) Système de commande du déclenchement d'une purge de moyens formant piège à nox
EP0886055B1 (de) Verfahren und Vorrichtung zur Steuerung des Betriebs einer fremdgezündeten Brennkraftmaschine
FR2907852A1 (fr) Procede de recalage d'injecteurs d'un moteur et vehicule automobile le mettant en oeuvre
EP0852667B1 (de) Verfahren zur bestimmung des einem verbrennungsmotor zugeführten optimalen luft-kraftstoff-verhältnisses und entsprechende vorrichtung
EP1400679B1 (de) Steuereinrichtung um einen Kraftfahrzeug-Dieselmotor zu betrieben
FR2851298A1 (fr) Procede de commande d'un moteur thermique, appareil de commande et/ou de regulation pour un moteur thermique, programme d'ordinateur et support de memoire electrique d'un moteur thermique
EP2123889A1 (de) Verfahren für Verbrennungsmotor und Gerät für die Durchführung der genannten Verfahren
FR3056254A1 (fr) Procede de diagnostic d'une sonde a oxygene proportionnelle disposee en amont du systeme de post-traitement d'un moteur a combustion interne a allumage commande.
EP0636778B1 (de) Verfahren und Vorrichtung zum korrigieren der Kraftstoffeinspritzungsdauer in Abhängigkeit des Durchflusses einer Tankentlüftungsanlage für einen Einspritzmotor
EP1760300A1 (de) Verfahren und Vorrichtung zur Regelung einer Diesel-Brennkraftmaschine eines Fahrzeugs
FR3115567A1 (fr) Optimisation d’une multi-injection
WO2021052808A1 (fr) Procede de reglage de la richesse d'un moteur a combustion interne a allumage commande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES GB IT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAGNETI MARELLI MOTOPROPULSION FRANCE SAS

17Q First examination report despatched

Effective date: 20090305

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004029865

Country of ref document: DE

Date of ref document: 20101216

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

26N No opposition filed

Effective date: 20110804

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004029865

Country of ref document: DE

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140211

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20140212

Year of fee payment: 11

Ref country code: IT

Payment date: 20140217

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004029865

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150216