EP0736680B1 - Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine - Google Patents

Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine Download PDF

Info

Publication number
EP0736680B1
EP0736680B1 EP19960105600 EP96105600A EP0736680B1 EP 0736680 B1 EP0736680 B1 EP 0736680B1 EP 19960105600 EP19960105600 EP 19960105600 EP 96105600 A EP96105600 A EP 96105600A EP 0736680 B1 EP0736680 B1 EP 0736680B1
Authority
EP
European Patent Office
Prior art keywords
parameter
gradient
engine
simulated
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960105600
Other languages
German (de)
French (fr)
Other versions
EP0736680A1 (en
Inventor
Mariano Sans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive France SAS
Original Assignee
Siemens Automotive SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Automotive SA filed Critical Siemens Automotive SA
Publication of EP0736680A1 publication Critical patent/EP0736680A1/en
Application granted granted Critical
Publication of EP0736680B1 publication Critical patent/EP0736680B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1437Simulation

Definitions

  • the present invention relates to a method for self-correcting physical parameters of a dynamic system, such as a combustion engine internal.
  • the pressure simulation processes consist in introducing additive corrections or multiplicative on the pressure measurement carried out before opening of the intake valves. These corrections are determined according to the point of engine operation and / or as a function of variations in the opening angle of the butterfly valve, to anticipate foreseeable variations in real air filling.
  • the aim of the present invention is to create a method allowing a automatic correction of discrepancies between simulated parameters and real parameters, acting directly on the relation allowing the calculation of parameters simulated and taking into account variations in real parameters between each calculation step.
  • the method according to the invention thus allows at each calculation step, in general at each top dead center (TDC), to compare a simulated parameter and a real parameter. From this comparison, a correction coefficient is removed, not of the simulated parameter, but of the instantaneous derivative (gradient) of this setting.
  • TDC top dead center
  • the present invention can be applied to all simulated parameters whose gradient is taken into account in the function of simulation. This is the case, for example, with the inlet pressure in the manifold, or with engine speed.
  • the method according to the invention makes it possible to follow closely, even during a transient regime, the variations of these settings.
  • the correction coefficient determined by the method according to the invention applies equally well in static (this is to say if the regime is stabilized), that in dynamics (ie in the phases transients in engine operation).
  • the correction coefficient determined corrects not only the agreement between simulated values and measured values, but also their derivatives (gradients or variations).
  • the self-correction method according to the invention is first described in a general framework. Secondly, as example, we will show its application to the monitoring of two specific parameters such as manifold pressure and engine speed.
  • the self-correction method according to the invention makes it possible to follow at most close to the variations of a parameter X, of a dynamic system.
  • dynamic system is the internal combustion engine of a motor vehicle.
  • the correction coefficient ⁇ ⁇ c is then applied either to the first term a (X), or to the second term b (X) according to a confidence coefficient attached to each of these two terms.
  • X k [a (X) -b (X) ⁇ ⁇ c].
  • the coefficient ⁇ ⁇ c can be interpreted as representing a variation of the first term a (X) or the second term b (X), or apply both terms in a balanced way (half on each term) or unbalanced. It all depends on the measurement and simulation conditions and is left to the discretion of those skilled in the art. The important thing is that correction coefficient is applied in its entirety to the calculation of the gradient of the parameter X.
  • Such an engine 10 has four cylinders 11 (only one is shown in Figure 2) which, during an engine cycle, fill with a mixture air / fuel. Each cylinder 11 is supplied with a mixture when a valve intake 12 formed in this cylinder opens. Upstream of this valve intake 12 there is a manifold 13, optionally provided with an air filter 14. The manifold 13 is provided with a throttle valve 15, the role of which is to leave more or less penetrate air inside the collector. This throttle 15 is coupled to an accelerator pedal (not shown in Figure 2) operated by a driver.
  • the driver By pressing more or less on the accelerator pedal, the driver varies the opening angle a of the butterfly which results in vary the amount of air admitted into the cylinder.
  • a fuel injector 16 sends in the collector, a quantity of fuel predetermined by a computer 18.
  • FIG. 2 also shows a system for regulating idle r, an All ignition device of the compressed air / fuel mixture in the cylinder and a catalyst 17 recycling the exhaust gases discharged by the cylinder 11. These devices of known type are not detailed.
  • the electronic computer 18, associated with the engine 10 receives the value of the pressure P prevailing in the intake manifold 13. This pressure is measured by an appropriate sensor 19, known per se.
  • the computer 18 is also kept informed by suitable sensors of the speed of rotation of the engine N (engine speed), water temperature ⁇ , etc.
  • One of the functions of the electronic calculator is to calculate the quantity of fuel to be injected into a cylinder, to make a mixture air / fuel in specified proportions.
  • the calculator needs know the pressure prevailing in the intake manifold when the valve admission will close. We consider that the pressure prevailing in the intake manifold at the time a valve closes equals the pressure in the cylinder in question. Knowing the prevailing pressure in a cylinder, and knowing the volume of this cylinder and the temperature of gas, we deduce the amount of air present inside the cylinder. The amount of gas which had to be injected to have an air / fuel mixture in given proportions is therefore easy to deduce. It is therefore important to be able to predict the pressure that will prevail in the manifold of a cylinder when the This cylinder's intake valve opens and closes.
  • the method according to the present invention makes it possible to correct automatically all the differences that may exist between the intake pressure simulated or predicted and the actual intake pressure as measured.
  • the coefficient 1 / C is known
  • Pa is the pressure atmospheric
  • the first term Q (P, Pa, ⁇ ) is representative of the air flow entering the intake manifold
  • the second term Q (P, N) is representative of the cylinder filling.
  • the first and second terms of the pressure derivative are determined by mapping for each type of engine.
  • the difference ⁇ P - Ps is measured at a given time.
  • a correction coefficient ⁇ ⁇ c which we apply to calculation of the derivative of the intake pressure P ⁇ .
  • the flow rate Q (P, Pa, ⁇ ) indeed reflects the variations in throttle flow, idle control valve and altimetric correction. However, all of these variables are difficult to measure, and highly unstable.
  • Q (P, N) is better known and its variations are easier to determine.
  • the method according to the present invention can be applied to self-correction of the engine rotation speed N, in relation to the value simulated Ns of this scheme.
  • ⁇ 1 is the driving torque and ⁇ 2 is the resisting torque.
  • ⁇ 2 is the resisting torque.
  • the self-correction method according to the invention is not limited to the embodiments described above. So this self-correcting process can be implemented to correct discrepancies between a parameter simulated according to a certain model (for example a so-called failed model) with this same parameter but simulated according to a second model (for example a model not readjusted says "free").
  • a certain model for example a so-called failed model
  • a second model for example a model not readjusted says "free”

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

La présente invention concerne un procédé d'auto-correction de paramètres physiques d'un système dynamique, tel qu'un moteur à combustion interne.The present invention relates to a method for self-correcting physical parameters of a dynamic system, such as a combustion engine internal.

Pour faire fonctionner de manière optimisée un moteur à combustion interne, il est déjà connu de le placer sous le contrôle d'un circuit électronique de commande. Ce circuit électronique gère l'ensemble des paramètres nécessaires au bon fonctionnement du moteur.To optimally operate a combustion engine internal, it is already known to place it under the control of an electronic circuit of ordered. This electronic circuit manages all the necessary parameters the proper functioning of the engine.

Malheureusement tous ces paramètres ne peuvent être mesurés. En effet pour connaítre certains paramètres il faudrait des capteurs placés dans des endroits très difficiles d'accès, et pour d'autres le circuit électronique de commande a besoin de connaítre à un instant donné la valeur qu'aura un paramètre dans le futur. Dans ce cas il est impératif d'estimer ou de simuler la valeur de certains paramètres au lieu de les mesurer réellement.Unfortunately, not all of these parameters can be measured. In effect to know certain parameters would require sensors placed in places very difficult to access, and for others the electronic circuit of command needs to know at a given moment the value that a setting in the future. In this case it is imperative to estimate or simulate the value of certain parameters instead of actually measuring them.

Il existe déjà de nombreux procédés de simulation de la valeur future de certains paramètres, comme par exemple la pression d'admission dans le collecteur, ou la quantité de carburant à injecter.There are already many methods of simulating future value certain parameters, such as the inlet pressure in the manifold, or the amount of fuel to inject.

Le problème inhérent à ces procédés de simulation ou de prédiction, est qu'il est impératif de faire en sorte qu'ils suivent au plus près la valeur réelle du paramètre. A cet effet, de manière classique, la valeur simulée d'un paramètre à un instant donné est comparée à la valeur réelle de ce paramètre à ce même instant. On déduit de cette comparaison un coefficient de correction qui réalise le recalage du paramètre simulé, sur le paramètre mesuré. Cependant on ne vient pas agir directement sur le calcul du paramètre simulé. On se contente de corrections additives ou soustractives qui ne corrigent en rien la relation permettant d'obtenir le paramètre simulé.The problem inherent in these methods of simulation or prediction, is that it is imperative to ensure that they follow the actual value as closely as possible of the parameter. For this purpose, conventionally, the simulated value of a parameter at a given time is compared to the actual value of this parameter with this same instant. We deduce from this comparison a correction coefficient which achieves the registration of the simulated parameter on the measured parameter. However we don't come not act directly on the calculation of the simulated parameter. We are content with additive or subtractive corrections that do not correct the relationship to obtain the simulated parameter.

De tels procédés de recalage des valeurs simulées sur les valeurs réelles ne sont pas satisfaisants, car ils ne permettent pas de suivre au plus près les variations des paramètres réels, notamment pendant les phases de régime transitoires. Ces phases de régimes transitoires apparaissent à chaque changement de régime c'est à dire notamment en décélération ou en accélération. Lors de ces régimes transitoires les paramètres simulés sont toujours en retard ou en avance sur les paramètres réels et le fonctionnement du moteur n'est pas optimisé.Such methods of resetting simulated values to values are not satisfactory because they do not allow to follow more closely variations in actual parameters, especially during the operating phases transient. These phases of transient regimes appear at each regime change, in particular in deceleration or acceleration. During these transient regimes the simulated parameters are always behind or ahead of the actual parameters and operation of the engine is not optimized.

Ainsi par exemple, les procédés de simulation de la pression d'admission, connus à ce jour, consistent à introduire des corrections additives ou multiplicatives sur la mesure de la pression effectuée avant ouverture des soupapes d'admission. Ces corrections sont déterminées en fonction du point de fonctionnement moteur et/ou en fonction des variations de l'angle d'ouverture du papillon, pour anticiper les variations prévisibles du remplissage en air réel. So for example, the pressure simulation processes , known to date, consist in introducing additive corrections or multiplicative on the pressure measurement carried out before opening of the intake valves. These corrections are determined according to the point of engine operation and / or as a function of variations in the opening angle of the butterfly valve, to anticipate foreseeable variations in real air filling.

Ces éléments de correction sur la pression d'admission n'apportent cependant pas une réelle simulation de la future pression, mais introduisent uniquement des termes correctifs équivalents, sans réelle signification physique avec l'évolution future de la pression. De ce fait les procédés connus à ce jour n'utilisent pas de modèles physiques suffisamment représentatifs de l'état futur du système d'admission, ce qui rend empirique, par exemple, la mise au point des stratégies de calcul de la quantité de carburant à injecter à chaque cycle moteur.These correction elements on the intake pressure do not provide however not a real simulation of future pressure, but introduce only equivalent corrective terms, with no real physical meaning with future changes in pressure. Therefore the processes known to date do not use physical models sufficiently representative of the future state of the admission system, making it empirical, for example, the development of strategies for calculating the amount of fuel to inject at each engine cycle.

Le but de la présente invention est de créer un procédé permettant une correction automatique des divergences entre les paramètres simulés et les paramètres réels, agissant directement sur la relation permettant le calcul des paramètres simulés et tenant compte des variations des paramètres réels entre chaque pas de calcul.The aim of the present invention is to create a method allowing a automatic correction of discrepancies between simulated parameters and real parameters, acting directly on the relation allowing the calculation of parameters simulated and taking into account variations in real parameters between each calculation step.

A cet effet la présente invention concerne un procédé d'auto correction d'au moins un paramètre physique d'un système dynamique, tel qu'un moteur à combustion interne, dans lequel l'évolution dans le temps du dit paramètre est simulée par une fonction tenant compte du gradient de ce paramètre, de telle sorte qu'à chaque pas de calcul la fonction de simulation calcule un paramètre simulé, le dit procédé selon l'invention étant caractérisé en ce qu'il consiste à:

  • mesurer une erreur entre la valeur réelle mesurée du paramètre à un pas de calcul donné et la valeur simulée de ce paramètre à ce même pas de calcul,
  • en déduire une correction à appliquer au calcul du gradient de ce paramètre, afin de modifier simultanément, pour le pas de calcul suivant, la fonction de simulation permettant d'obtenir la valeur simulée de ce paramètre et son gradient.
To this end, the present invention relates to a method of self-correction of at least one physical parameter of a dynamic system, such as an internal combustion engine, in which the evolution over time of said parameter is simulated by a function taking into account the gradient of this parameter, so that at each calculation step the simulation function calculates a simulated parameter, the said method according to the invention being characterized in that it consists in:
  • measure an error between the actual measured value of the parameter at a given calculation step and the simulated value of this parameter at this same calculation step,
  • deduce therefrom a correction to be applied to the calculation of the gradient of this parameter, in order to simultaneously modify, for the next calculation step, the simulation function making it possible to obtain the simulated value of this parameter and its gradient.

Le procédé selon l'invention permet ainsi à chaque pas de calcul, en général à chaque point mort haut (PMH), de comparer un paramètre simulé et un paramètre réel. De cette comparaison, il est retiré un coefficient de correction, non pas du paramètre simulé, mais de la dérivée instantanée (gradient) de ce paramètre.The method according to the invention thus allows at each calculation step, in general at each top dead center (TDC), to compare a simulated parameter and a real parameter. From this comparison, a correction coefficient is removed, not of the simulated parameter, but of the instantaneous derivative (gradient) of this setting.

Ceci permet de tenir compte des variations du gradient entre chaque pas de calcul et de ne pas considérer que ce gradient est constant sur l'horizon d'itération. En conséquence les variations transitoires pendant un cycle moteur sont suivies au plus près.This allows for variations in the gradient between each no calculation and not to consider that this gradient is constant over the horizon iteration. Consequently transient variations during an engine cycle are followed as closely as possible.

Avantageusement la présente invention peut être appliquée à tous paramètres simulés dont le gradient est pris en compte dans la fonction de simulation. C'est le cas, par exemple, avec la pression d'admission dans le collecteur, ou avec le régime moteur. Ainsi le procédé selon l'invention permet de suivre au plus près, même pendant un régime transitoire, les variations de ces paramètres.Advantageously, the present invention can be applied to all simulated parameters whose gradient is taken into account in the function of simulation. This is the case, for example, with the inlet pressure in the manifold, or with engine speed. Thus the method according to the invention makes it possible to follow closely, even during a transient regime, the variations of these settings.

Avantageusement encore, on notera que le coefficient de correction déterminé par le procédé selon l'invention s'applique aussi bien en statique (c'est à dire si le régime est stabilisé), qu'en dynamique (c'est à dire dans les phases transitoires du fonctionnement moteur). En effet le coefficient de correction déterminé corrige, non seulement la concordance entre valeurs simulées et valeurs mesurées, mais aussi leurs dérivées (gradients ou variations).Advantageously again, it will be noted that the correction coefficient determined by the method according to the invention applies equally well in static (this is to say if the regime is stabilized), that in dynamics (ie in the phases transients in engine operation). Indeed the correction coefficient determined corrects not only the agreement between simulated values and measured values, but also their derivatives (gradients or variations).

De manière intrinsèque, on corrige donc le gradient du système, ce qui accentue l'intérêt de ce procédé, quel que soit le paramètre concerné (pression ou régime ...etc.) et agit réellement sur la fonction de simulation et non pas seulement sur le résultat final (c'est à dire le paramètre simulé).Intrinsically, we therefore correct the gradient of the system, which accentuates the interest of this process, whatever the parameter concerned (pressure or regime ... etc.) and really acts on the simulation function and not only on the final result (ie the simulated parameter).

D'autres objets, caractéristiques et avantages de la présente invention ressortiront d'ailleurs de la description qui suit, à titre d'exemple non limitatif, et en référence aux dessins annexés dans lesquels:

  • la figure 1 est une vue schématique illustrant la mise en oeuvre du procédé selon l'invention, et
  • la figure 2 est une vue schématique illustrant le fonctionnement d'un moteur classique à quatre temps, auquel le procédé selon l'invention est appliqué, à titre d'exemple.
Other objects, characteristics and advantages of the present invention will emerge from the following description, by way of non-limiting example, and with reference to the appended drawings in which:
  • FIG. 1 is a schematic view illustrating the implementation of the method according to the invention, and
  • Figure 2 is a schematic view illustrating the operation of a conventional four-stroke engine, to which the method according to the invention is applied, by way of example.

En référence à la figure 1 le procédé d'auto correction selon l'invention est tout d'abord décrit dans un cadre général. Dans un second temps, à titre d'exemple, on montera son application au suivi de deux paramètres spécifiques tels que la pression d'admission dans le collecteur et le régime moteur.With reference to FIG. 1, the self-correction method according to the invention is first described in a general framework. Secondly, as example, we will show its application to the monitoring of two specific parameters such as manifold pressure and engine speed.

Le procédé d'auto-correction selon l'invention, permet de suivre au plus près les variations d'un paramètre X, d'un système dynamique. En l'occurrence ce système dynamique est le moteur à combustion interne, d'un véhicule automobile.The self-correction method according to the invention makes it possible to follow at most close to the variations of a parameter X, of a dynamic system. In this case, dynamic system is the internal combustion engine of a motor vehicle.

L'évolution de ce paramètre X est simulé par une fonction tenant compte du gradient X ˙ de ce paramètre. Soit Xs la valeur du paramètre simulé au temps t. On a la relation suivante: Xs = f(X). The evolution of this parameter X is simulated by a function taking into account the gradient X ˙ of this parameter. Let Xs be the value of the simulated parameter at time t. We have the following relation: Xs = f ( X ).

Il ressort de cette relation que la valeur simulée Xs du paramètre est fonction de la dérivée X ˙ de ce paramètre.It emerges from this relation that the simulated value Xs of the parameter is function of the derivative X ˙ of this parameter.

Comme cela est montré à la figure 1, régulièrement, par exemple à chaque point mort haut (PMH), on effectue une comparaison entre le paramètre simulé Xs et la valeur réelle mesurée X de ce paramètre. On en déduit une erreur appelée ε selon la relation suivante: ε = X - Xs. As shown in FIG. 1, regularly, for example at each top dead center (TDC), a comparison is made between the simulated parameter Xs and the actual measured value X of this parameter. We deduce an error called ε according to the following relation: ε = X - Xs.

A partir de cette erreur, on détermine par un procédé classique (par exemple par un circuit électronique PID analogique ou numérique) un coefficient de correction ±δc. Ce coefficient de correction ±δc est appliqué non pas à la valeur simulée du paramètre mais au gradient X ˙ de ce paramètre.From this error, we determine by a conventional process (by example by an analog or digital PID electronic circuit) a coefficient correction ± δc. This correction coefficient ± δc is applied not to the simulated value of the parameter but at the gradient X ˙ of this parameter.

Dans les cas particuliers du suivi de la pression d'admission et du régime moteur, le gradient X ˙ du paramètre physique s'exprime plus précisémment de la manière suivante: X = k[a(X)-b(X)]. In the specific cases of monitoring the intake pressure and the engine speed, the gradient X ˙ of the physical parameter is expressed more precisely as follows: X = k [a (X) -b (X)].

Le coefficient de correction ±δc est alors appliqué soit au premier terme a (X), soit au second terme b (X) en fonction d'un coefficient de confiance attaché à chacun de ces deux termes. On a: X = k[a(X)-b(X)±δc]. The correction coefficient ± δc is then applied either to the first term a (X), or to the second term b (X) according to a confidence coefficient attached to each of these two terms. We have: X = k [a (X) -b (X) ± δc].

Lorsque le gradient du paramètre a ainsi été corrigé, on calcule le paramètre Xs simulé pour le pas suivant en utilisant le gradient corrigé. En conséquence c'est la fonction de simulation f(X ˙) qui est ainsi modifiée pour suivre au plus près les variations du paramètre réel.When the gradient of the parameter has thus been corrected, the parameter Xs simulated for the next step using the corrected gradient. In consequence it is the simulation function f (X ˙) which is thus modified to follow as closely as possible the variations of the real parameter.

Il est à noter que le coefficient ±δc, peut être interprété comme représentant une variation du premier terme a (X) ou du second terme b (X), ou bien s'appliquer aux deux termes de manière équilibrée (la moitié sur chaque terme) ou désiquilibrée. Tout dépend des conditions de mesures et de simulation et est laissée à l'appréciation de l'homme du métier. L'important est que ce coefficient de correction soit appliqué dans sa globalité au calcul du gradient du paramètre X.It should be noted that the coefficient ± δc, can be interpreted as representing a variation of the first term a (X) or the second term b (X), or apply both terms in a balanced way (half on each term) or unbalanced. It all depends on the measurement and simulation conditions and is left to the discretion of those skilled in the art. The important thing is that correction coefficient is applied in its entirety to the calculation of the gradient of the parameter X.

Ce procédé d'auto-correction selon l'invention sera mieux compris à l'aide d'un premier exemple d'application dans lequel le paramètre X est la pression d'admission du collecteur. A cet effet, pour mieux replacer l'invention dans son contexte, le fonctionnement d'un moteur à quatre temps est briévement rappelé.This self-correction method according to the invention will be better understood at using a first application example in which the parameter X is the manifold inlet pressure. To this end, to better replace the invention in context, the operation of a four-stroke engine is briefly recalled.

On a choisi d'illustrer à la figure 2 l'application du procédé selon l'invention, à un moteur à combustion interne, à quatre temps. Bien entendu l'homme du métier pourra extrapoler cet exemple à des moteurs à combustion interne présentant un cycle de tout type (deux temps ou plus).We have chosen to illustrate in Figure 2 the application of the process according to the invention, a four-stroke internal combustion engine. Of course those skilled in the art can extrapolate this example to combustion engines internal presenting a cycle of any type (two or more times).

Un tel moteur 10, comporte quatre cylindres 11 (un seul est représenté à la figure 2) qui, au cours d'un cycle moteur, se remplissent d'un mélange air/carburant. Chaque cylindre 11 est alimenté en mélange lorsqu'une soupape d'admission 12 ménagée dans ce cylindre s'ouvre. En amont de cette soupape d'admission 12 on trouve un collecteur 13, éventuellement muni d'un filtre à air 14. Le collecteur 13 est muni d'un papillon des gaz 15, dont le rôle est de laisser plus ou moins pénétrer d'air à l'intérieur du collecteur. Ce papillon des gaz 15 est couplé à une pédale d'accélération (non représentée à la figure 2) manoeuvrée par un conducteur.Such an engine 10 has four cylinders 11 (only one is shown in Figure 2) which, during an engine cycle, fill with a mixture air / fuel. Each cylinder 11 is supplied with a mixture when a valve intake 12 formed in this cylinder opens. Upstream of this valve intake 12 there is a manifold 13, optionally provided with an air filter 14. The manifold 13 is provided with a throttle valve 15, the role of which is to leave more or less penetrate air inside the collector. This throttle 15 is coupled to an accelerator pedal (not shown in Figure 2) operated by a driver.

En appuyant plus ou moins sur sa pédale d'accélération, le conducteur fait varier l'angle d'ouverture a du papillon ce qui a pour conséquence de faire varier la quantité d'air admise dans le cylindre.By pressing more or less on the accelerator pedal, the driver varies the opening angle a of the butterfly which results in vary the amount of air admitted into the cylinder.

Un injecteur de carburant 16, envoie dans le collecteur, une quantité de carburant prédéterminée par un calculateur 18.A fuel injector 16, sends in the collector, a quantity of fuel predetermined by a computer 18.

Lorsque la soupape d'admission 12 du cylindre 11 s'ouvre, le mélange air / carburant accumulé dans le collecteur 13, pénètre dans le cylindre en question.When the inlet valve 12 of the cylinder 11 opens, the mixture air / fuel accumulated in the manifold 13, enters the cylinder in question.

A la figure 2 on a également représenté un système de régulation de ralenti r, un dispositif d'allumage All du mélange air / carburant comprimé dans le cylindre et un catalyseur 17 recyclant les gaz d'échappement refoulés par le cylindre 11. Ces dispositifs de type connus, ne sont pas détaillés.FIG. 2 also shows a system for regulating idle r, an All ignition device of the compressed air / fuel mixture in the cylinder and a catalyst 17 recycling the exhaust gases discharged by the cylinder 11. These devices of known type are not detailed.

Le calculateur électronique 18, associé au moteur 10 reçoit la valeur de la pression P régnant dans le collecteur d'admission 13. Cette pression est mesurée par un capteur approprié 19, connu en soi. Le calculateur 18 est également tenu informé par des capteurs adéquats de la vitesse de rotation du moteur N (régime moteur), de la température d'eau , etc.The electronic computer 18, associated with the engine 10 receives the value of the pressure P prevailing in the intake manifold 13. This pressure is measured by an appropriate sensor 19, known per se. The computer 18 is also kept informed by suitable sensors of the speed of rotation of the engine N (engine speed), water temperature , etc.

L'une des fonctions du calculateur électronique est de calculer la quantité de carburant à injecter dans un cylindre, pour réaliser un mélange air / carburant en proportions déterminées. A cet effet le calculateur a besoin de connaítre la pression régnant dans le collecteur d'admission lorsque la soupape d'admission se fermera. On considère en effet que la pression régnant dans le collecteur d'admission au moment où une soupape se ferme est égale à la pression régnant dans le cylindre en question. Connaissant la pression régnant dans un cylindre, et connaissant le volume de ce cylindre et la température des gaz, on en déduit la quantité d'air présente à l'intérieur du cylindre. La quantité d'essence qu'il fallait injecter pour avoir un mélange air / carburant dans des proportions données est donc facile à déduire. Il est donc important de pouvoir prédire la pression qui régnera dans le collecteur d'un cylindre lorsque la soupape d'admission de ce cylindre s'ouvre et se referme.One of the functions of the electronic calculator is to calculate the quantity of fuel to be injected into a cylinder, to make a mixture air / fuel in specified proportions. For this purpose the calculator needs know the pressure prevailing in the intake manifold when the valve admission will close. We consider that the pressure prevailing in the intake manifold at the time a valve closes equals the pressure in the cylinder in question. Knowing the prevailing pressure in a cylinder, and knowing the volume of this cylinder and the temperature of gas, we deduce the amount of air present inside the cylinder. The amount of gas which had to be injected to have an air / fuel mixture in given proportions is therefore easy to deduce. It is therefore important to be able to predict the pressure that will prevail in the manifold of a cylinder when the This cylinder's intake valve opens and closes.

Le procédé selon la présente invention permet de corriger automatiquement tous les écarts pouvant exister entre la pression d'admission simulée ou prédite et la pression d'admission réelle telle que mesurée.The method according to the present invention makes it possible to correct automatically all the differences that may exist between the intake pressure simulated or predicted and the actual intake pressure as measured.

La pression d'admission simulée Ps est une fonction du gradient de la pression d'admission telle que mesurée. Ainsi on a: Ps = f(P). The simulated inlet pressure Ps is a function of the inlet pressure gradient as measured. So we have: Ps = f ( P ).

Le gradient P ˙ de la pression d'admission s'exprime de la manière suivante: P = 1C ×[Q(P,Pa,α)-Q(P,N)]. The gradient P ˙ of the intake pressure is expressed as follows: P = 1 VS × [Q (P, Pa, α) -Q (P, N)].

Dans cette relation le coefficient 1 / C est connu, Pa est la pression atmosphérique, le premier terme Q(P, Pa, α) est représentatif du débit d'air entrant dans le collecteur d'admission, et le second terme Q (P,N) est représentatif du remplissage du cylindre.In this relation the coefficient 1 / C is known, Pa is the pressure atmospheric, the first term Q (P, Pa, α) is representative of the air flow entering the intake manifold, and the second term Q (P, N) is representative of the cylinder filling.

Les premier et second termes de la dérivée de la pression sont déterminés par cartographie pour chaque type de moteur.The first and second terms of the pressure derivative are determined by mapping for each type of engine.

Selon l'invention on mesure à un instant donné la différence ε = P - Ps. on déduit de cette différence un coefficient de correction ±δc, que l'on aplique au calcul de la dérivée de la pression d'admission P ˙.According to the invention, the difference ε = P - Ps is measured at a given time. we deduce from this difference a correction coefficient ± δc, which we apply to calculation of the derivative of the intake pressure P ˙.

Lorsque le moteur fonctionne à moyennes ou à fortes charges le coefficient de correction ±δc est appliqué au premier terme Q (P, Pa, α), car c'est ce terme qui présente le coefficient de confiance le plus faible. En effet ce terme varie le plus sans que l'on ait de moyens directs de vérifier l'importance de ces variations.When the engine is running at medium or heavy loads the correction coefficient ± δc is applied to the first term Q (P, Pa, α), because it is this term which has the lowest confidence coefficient. Indeed this term varies the most without any direct means of verifying the importance of these variations.

Dans l'exemple donné le débit Q (P, Pa, α) reflète en effet les variations du débit du papillon, de la vanne de régulation de ralenti et de la correction altimétrique. Or toutes ces variables sont difficilement mesurables, et hautement instables. Le terme Q(P,N) est quant à lui mieux connu et ses variations sont plus faciles à déterminer.In the example given, the flow rate Q (P, Pa, α) indeed reflects the variations in throttle flow, idle control valve and altimetric correction. However, all of these variables are difficult to measure, and highly unstable. The term Q (P, N) is better known and its variations are easier to determine.

Dans le cas où le moteur fonctionne à faibles charges c'est à dire au ralenti, contrairement à ce qui précède c'est le terme Q(P,N) qui présente le coefficient de confiance le plus faible. En effet le débit d'air entrant Q (P, Pa, α) est faible et régulé puisque le moteur tourne au ralenti, par contre en raison des phénomènes d'aspirations du moteur (pulsations du moteur à faibles charges ) c'est le débit Q(P,N) qui est difficile à maítriser.If the engine is running at low loads, i.e. at slowed down, unlike the above it is the term Q (P, N) which presents the lowest confidence coefficient. Indeed the incoming air flow Q (P, Pa, α) is weak and regulated since the engine idles, however due to motor suction phenomena (motor pulsations at low loads) it is the flow Q (P, N) which is difficult to control.

Dans ce cas le coefficient de correction de ±δc s'applique au second terme de la relation permettant le calcul de la dérivée P ˙.In this case the correction coefficient of ± δc applies to the second term of the relation allowing the computation of the derivative P ˙.

Ainsi la comparaison entre la valeur de la pression prédite à un pas de calcul et la valeur réelle de cette pression à ce même pas, n'est pas directement utilisée pour recaler la valeur prédite sur la valeur mesurée en utilisant un coefficient de correction additif, mais est utilisée pour redéfinir la relation permettant le calcul de la pression prédite.Thus the comparison between the value of the pressure predicted at a step of calculation and the actual value of this pressure at this same step, is not directly used to reset the predicted value to the measured value using a additive correction coefficient, but is used to redefine the relationship allowing the calculation of the predicted pressure.

De même le procédé selon la présente invention peut être appliqué à l'auto-correction du régime N de rotation du moteur, par rapport à la valeur simulée Ns de ce régime. Likewise, the method according to the present invention can be applied to self-correction of the engine rotation speed N, in relation to the value simulated Ns of this scheme.

Le régime d'un moteur à combustion interne peut être simulé selon la loi suivante: Ns= g(N). The speed of an internal combustion engine can be simulated according to the following law: Ns = g ( NOT ).

Le gradient N ˙ de ce régime est donné par la relation suivante: N=k[Γ1(N)-Γ2(N)]. The gradient N ˙ of this regime is given by the following relation: NOT = k [Γ 1 (N) -Γ 2 (NOT)].

Dans cette relation Γ1 est le couple moteur et Γ2 est le couple résistant. De la même manière que précedemment décrit on mesure une erreur ε = N - Ns, à un instant donné. De cette erreur on tire de manière classique un coefficient de correction ±δc que l'on applique au couple (moteur ou résistant) présentant le coefficient de confiance le plus faible. Dans le cas du suivi du régime de rotation du moteur, le couple dont les variations sont les plus difficiles à simuler est le couple résistant. Selon l'invention le coefficient de correction ±δc s'applique donc de la manière suivante: N=k[Γ1(N)-Γ2(N) ± δc]. In this relation Γ 1 is the driving torque and Γ 2 is the resisting torque. In the same way as previously described, an error ε = N - Ns is measured at a given time. From this error, a correction coefficient ± δc is conventionally drawn which is applied to the torque (motor or resistor) having the lowest confidence coefficient. In the case of monitoring the engine speed, the torque whose variations are the most difficult to simulate is the resisting torque. According to the invention, the correction coefficient ± δc therefore applies as follows: NOT = k [Γ 1 (N) -Γ 2 (N) ± δc].

Ce gradient corrigé permet de recalculer un régime de rotation simulé tenant compte des variations du gradient, et donc suivant au mieux les variations du paramètre réel N. En outre le terme [Γ2(N) ± δc] est une image du couple résistant, qu'il est difficile d'appréhender par les moyens de mesure connus.This corrected gradient makes it possible to recalculate a simulated rotation regime taking account of the variations of the gradient, and therefore as closely as possible the variations of the real parameter N. In addition the term [Γ 2 (N) ± δc] is an image of the resistant couple, that it is difficult to apprehend by known measurement means.

Bien entendu le procédé d'auto-correction selon l'invention n'est pas limité aux modes de réalisations ci dessus décrits. Ainsi ce procédé d'auto-correction peut être mis en oeuvre pour corriger les écarts entre un paramètre simulé selon un certain modèle (par exemple un modèle dit recalé) avec ce même paramètre mais simulé selon un second modèle (par exemple un modèle non recalé dit "libre").Of course, the self-correction method according to the invention is not limited to the embodiments described above. So this self-correcting process can be implemented to correct discrepancies between a parameter simulated according to a certain model (for example a so-called failed model) with this same parameter but simulated according to a second model (for example a model not readjusted says "free").

Claims (8)

  1. Method of self-correction of at least one physical parameter X of a dynamic system of a technical process, such as an internal combustion engine, in which the evolution over time of the said parameter is simulated by a function that takes account of the gradient X ˙ of this parameter, so that on each calculation step, the simulation function calculates a simulated parameter Xs, the method according to the invention consisting in:
    measuring an error (ε) between the actual measured value (X) of the parameter on a given calculation step and the simulated value (Xs) of this parameter on this same calculation step,
    and being characterized in that it consists in:
    from this, deducing a correction (±δc) to be applied to the calculation of the gradient (X ˙) of this parameter, so as to modify simultaneously, for the next calculation step, the simulation function making it possible to obtain the simulated value (Xs) of this parameter and its gradient (X ˙).
  2. Method according to Claim 1, characterized in that the gradient (X ˙) of the parameter can be expressed by the following relationship: X = k[a(X)-b(X)], and in that the correction coefficient ±δc is applied to the first term a(X) or to the second term (b(X) depending on a confidence coefficient associated with each of these two terms.
  3. Method according to Claim 2, characterized in that the parameter monitored is the inlet pressure (P) of an internal combustion engine, and in that the gradient P ˙ of this pressure is given by the following relationship: P=1V ×[Q(P,Pa,α)-Q(P,N)], in which 1/C is a known coefficient, the first term Q(P,Pa,α) represents an airflow rate entering the inlet manifold, the second term Q(P,N) represents an amount of mixture actually absorbed by a cylinder, (P) is the inlet pressure, (Pa) is atmospheric pressure, (α) is the throttle-valve angle, and (N) is the rotational speed of the engine.
  4. Self-correction method according to Claim 3, characterized in that when the engine is at heavy or medium load, the correction coefficient (±δc) is applied to the first term.
  5. Method according to Claim 3, characterized in that when the engine is at light load, the correction coefficient (±δc) is applied to the second term.
  6. Method according to Claim 2, characterized in that the parameter monitored is the rotational speed (N) of an internal combustion engine, the gradient (N ˙) of this parameter being expressed by the following relationship: N=k(Γ1(N)-Γ2(N)), in which Γ1 is an engine torque and Γ2 is a resistive torque, the coefficient (±δc) being applied to the torque which has the lowest confidence coefficient.
  7. Method according to Claim 6, characterized in that the corrected gradient of the rotational speed of the engine can be expressed by the following relationship: N=k(Γ1(N)-Γ2(N)±δc).
  8. Method according to one of the preceding claims, characterized in that the parameter which evolves over time is itself a simulated parameter.
EP19960105600 1995-04-06 1996-04-09 Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine Expired - Lifetime EP0736680B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9504233 1995-04-06
FR9504233A FR2732724B1 (en) 1995-04-06 1995-04-06 METHOD FOR SELF CORRECTING PHYSICAL PARAMETERS OF A DYNAMIC SYSTEM, SUCH AS AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
EP0736680A1 EP0736680A1 (en) 1996-10-09
EP0736680B1 true EP0736680B1 (en) 1999-10-27

Family

ID=9477927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960105600 Expired - Lifetime EP0736680B1 (en) 1995-04-06 1996-04-09 Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine

Country Status (4)

Country Link
EP (1) EP0736680B1 (en)
DE (1) DE69604853T2 (en)
ES (1) ES2138259T3 (en)
FR (1) FR2732724B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7325210B2 (en) * 2005-03-10 2008-01-29 International Business Machines Corporation Hybrid linear wire model approach to tuning transistor widths of circuits with RC interconnect
CN102562335B (en) * 2010-12-16 2015-11-25 北汽福田汽车股份有限公司 The transition control method of motor, motor and automobile thereof
CN114460222B (en) * 2022-01-28 2023-11-17 青海青乐化工机械有限责任公司 Smoke generating time testing device of smoke generating tank

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615811B2 (en) * 1988-04-22 1997-06-04 トヨタ自動車株式会社 Fuel injection amount control device for internal combustion engine
US4893244A (en) * 1988-08-29 1990-01-09 General Motors Corporation Predictive spark timing method
FR2672087A1 (en) * 1991-01-29 1992-07-31 Siements Automotive Sa METHOD AND DEVICE FOR EVALUATING THE AIR FLOW ALLOWED IN AN INTERNAL COMBUSTION ENGINE, IN TRANSITIONAL CONDITION.
US5094213A (en) * 1991-02-12 1992-03-10 General Motors Corporation Method for predicting R-step ahead engine state measurements

Also Published As

Publication number Publication date
ES2138259T3 (en) 2000-01-01
DE69604853D1 (en) 1999-12-02
FR2732724B1 (en) 1997-05-09
FR2732724A1 (en) 1996-10-11
EP0736680A1 (en) 1996-10-09
DE69604853T2 (en) 2000-04-20

Similar Documents

Publication Publication Date Title
FR2850432A1 (en) METHOD OF OPERATING AN INTERNAL COMBUSTION ENGINE
FR2905412A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
FR2787511A1 (en) METHOD AND DEVICE FOR EQUALIZING THE TORQUES OF EACH CYLINDER OF AN ENGINE
EP0705381B1 (en) Method and device for optimizing air filling in an internal combustion motor cylinder
FR2813100A1 (en) METHOD AND DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE
EP2935828A1 (en) Supercharged engine diagnostics method and associated engine
EP0686762A1 (en) Method and apparatus for determining specific parameters of injectors for combustion engines, in particular diesel engines with pre-injection
EP0736680B1 (en) Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine
FR2553831A1 (en) METHOD FOR CONTROLLING THE VALUE OF QUANTITIES TO BE GENERATED BY A MEANS FOR CONTROLLING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE
EP1671023B1 (en) Engine air supply control method which is intended, for example, for the control of a turbocharged engine
FR2549143A1 (en) FUEL SUPPLY CONTROL METHOD FOR INTERNAL COMBUSTION ENGINES IN THE ACCELERATION PHASE
FR2553830A1 (en) METHOD FOR ADJUSTING A DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
FR2894626A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
EP1607605A1 (en) Pressure estimating system in the exhaust manifold of a diesel engine and method for calibrating said system
EP0639704B1 (en) Method for calculating the mass of air admitted to an internal combustion engine
WO2004085811A1 (en) Method of measuring ambient pressure in a turbocharged engine
EP0886055B1 (en) Method and apparatus for controlling a spark ignited internal combustion engine
EP1377734B1 (en) Method for calculating the mass of air admitted into the cylinder of an internal combustion engine in a motor vehicle and injection calculator carrying out said method
EP1647692A1 (en) Air inlet control method for an internal combustion engine and automotive vehicle for applying this method
FR2842869A1 (en) Method of adjusting distance for regulation of motor vehicle exhaust gas turbocharger involves comparing turbine variable to real value to provide correction value
EP0701049B1 (en) Method of controlling an internal combustion engine
FR2688546A1 (en) Method and device for controlling an internal combustion engine
EP3215727B1 (en) Method of estimation of a intake gas throttle position for control of an internal combustion engine
FR2731050A1 (en) Method of quantifying air content of IC engine cylinder
EP0636778B1 (en) Method and apparatus for correcting the injection time as a function of the purge flow of a canister purge system in a fuel injected engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19961216

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69604853

Country of ref document: DE

Date of ref document: 19991202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2138259

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991223

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070511

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070416

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070607

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080409