EP0736680A1 - Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine - Google Patents
Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine Download PDFInfo
- Publication number
- EP0736680A1 EP0736680A1 EP96105600A EP96105600A EP0736680A1 EP 0736680 A1 EP0736680 A1 EP 0736680A1 EP 96105600 A EP96105600 A EP 96105600A EP 96105600 A EP96105600 A EP 96105600A EP 0736680 A1 EP0736680 A1 EP 0736680A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- parameter
- gradient
- simulated
- correction
- term
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 34
- 238000002485 combustion reaction Methods 0.000 title claims description 11
- 238000004364 calculation method Methods 0.000 claims abstract description 21
- 238000004088 simulation Methods 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000446 fuel Substances 0.000 description 10
- 230000001052 transient effect Effects 0.000 description 6
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/045—Detection of accelerating or decelerating state
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
- F02D2041/1437—Simulation
Definitions
- the present invention relates to a method for self-correcting physical parameters of a dynamic system, such as an internal combustion engine.
- the inlet pressure simulation methods consist in introducing additive or multiplicative corrections on the measurement of the pressure carried out before opening the inlet valves. These corrections are determined as a function of the engine operating point and / or as a function of variations in the throttle opening angle, in order to anticipate foreseeable variations in filling with real air.
- the aim of the present invention is to create a method allowing an automatic correction of the divergences between the simulated parameters and the real parameters, acting directly on the relation allowing the calculation of the simulated parameters and taking into account the variations of the real parameters between each calculation step. .
- the method according to the invention thus makes it possible at each calculation step, in general at each top dead center (TDC), to compare a simulated parameter and a real parameter. From this comparison, a correction coefficient is removed, not from the simulated parameter, but from the instantaneous derivative (gradient) of this parameter.
- TDC top dead center
- the present invention can be applied to all simulated parameters whose gradient is taken into account in the simulation function. This is the case, for example, with the intake pressure in the manifold, or with the engine speed.
- the method according to the invention makes it possible to follow closely, even during a transient regime, the variations of these parameters.
- the correction coefficient determined by the method according to the invention applies both in static (that is to say if the speed is stabilized), as in dynamics (that is to say in the transient phases of engine operation).
- the determined correction coefficient corrects not only the agreement between simulated values and measured values, but also their derivatives (gradients or variations).
- the system gradient is therefore corrected, which accentuates the interest of this process, whatever the parameter concerned (pressure or speed ... etc.) and really acts on the simulation function and not only on the final result (ie the simulated parameter).
- the self-correction method according to the invention is first described in a general framework.
- a second step by way of example, we will apply it to the monitoring of two specific parameters such as the intake pressure in the manifold and the engine speed.
- the self-correction method according to the invention makes it possible to follow as closely as possible the variations of a parameter X, of a dynamic system.
- this dynamic system is the internal combustion engine of a motor vehicle.
- a correction method ⁇ ⁇ c is determined by a conventional method (for example by an analog or digital PID electronic circuit). This correction coefficient ⁇ ⁇ c is applied not to the simulated value of the parameter but to the gradient ⁇ of this parameter.
- the correction coefficient ⁇ ⁇ c is then applied either to the first term a (X), or to the second term b (X) according to a confidence coefficient attached to each of these two terms.
- X ⁇ k [a (X) -b (X) ⁇ ⁇ c].
- the coefficient ⁇ ⁇ c can be interpreted as representing a variation of the first term a (X) or the second term b (X), or else apply to both terms in a balanced way (half on each term ) or unbalanced. Everything depends on the measurement and simulation conditions and is left to the discretion of the person skilled in the art. The important thing is that this correction coefficient is applied in its entirety to the calculation of the gradient of the parameter X.
- Such an engine 10 comprises four cylinders 11 (only one is shown in FIG. 2) which, during an engine cycle, fill with an air / fuel mixture.
- Each cylinder 11 is supplied with a mixture when an intake valve 12 formed in this cylinder opens.
- Upstream of this intake valve 12 there is a manifold 13, optionally provided with an air filter 14.
- the manifold 13 is provided with a throttle valve 15, whose role is to allow more or less to penetrate air inside the manifold.
- This throttle 15 is coupled to an accelerator pedal (not shown in Figure 2) operated by a driver.
- the driver By pressing more or less on his accelerator pedal, the driver varies the opening angle a of the butterfly which has the consequence of varying the amount of air admitted into the cylinder.
- a fuel injector 16 sends a quantity of fuel predetermined by a computer 18 to the manifold.
- FIG. 2 also shows an idle regulation system r, an ignition device All of the compressed air / fuel mixture in the cylinder and a catalyst 17 recycling the exhaust gases discharged by the cylinder 11. These devices known types, are not detailed.
- the electronic computer 18, associated with the engine 10 receives the value of the pressure P prevailing in the intake manifold 13. This pressure is measured by an appropriate sensor 19, known per se.
- the computer 18 is also kept informed by suitable sensors of the rotation speed of the engine N (engine speed), of the water temperature ⁇ , etc.
- One of the functions of the electronic calculator is to calculate the quantity of fuel to be injected into a cylinder, in order to produce an air / fuel mixture in determined proportions.
- the computer needs to know the pressure prevailing in the intake manifold when the intake valve closes. It is indeed considered that the pressure prevailing in the intake manifold when a valve closes is equal to the pressure prevailing in the cylinder in question. Knowing the pressure prevailing in a cylinder, and knowing the volume of this cylinder and the temperature of the gases, we deduce the amount of air present inside the cylinder. The amount of gasoline that had to be injected to have an air / fuel mixture in given proportions is therefore easy to deduce. It is therefore important to be able to predict the pressure that will prevail in the manifold of a cylinder when the intake valve of this cylinder opens and closes.
- the method according to the present invention makes it possible to automatically correct all the differences which may exist between the simulated or predicted inlet pressure and the actual inlet pressure as measured.
- the coefficient 1 / C is known
- Pa is the atmospheric pressure
- the first term Q (P, Pa, ⁇ ) is representative of the air flow entering the intake manifold
- the second term Q (P , N) is representative of the filling of the cylinder.
- the first and second terms of the pressure derivative are determined by mapping for each type of engine.
- the difference is measured at a given instant.
- ⁇ P - Ps .
- a correction coefficient ⁇ ⁇ c is deduced from this difference, which is applied to the calculation of the derivative of the intake pressure ⁇ .
- the flow rate Q (P, Pa, ⁇ ) indeed reflects the variations in the flow rate of the throttle valve, of the idle speed control valve and of the altimetric correction.
- Q (P, N) is better known and its variations are easier to determine.
- the method according to the present invention can be applied to the self-correction of the engine speed N of rotation, with respect to the simulated value Ns of this engine speed.
- the self-correction method according to the invention is not limited to the embodiments described above.
- this self-correction method can be implemented to correct the discrepancies between a parameter simulated according to a certain model (for example a so-called recalibrated model) with this same parameter but simulated according to a second model (for example a model not recalibrated says "free").
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
La présente invention concerne un procédé d'auto-correction de paramètres physiques d'un système dynamique, tel qu'un moteur à combustion interne.The present invention relates to a method for self-correcting physical parameters of a dynamic system, such as an internal combustion engine.
Pour faire fonctionner de manière optimisée un moteur à combustion interne, il est déjà connu de le placer sous le contrôle d'un circuit électronique de commande. Ce circuit électronique gère l'ensemble des paramètres nécessaires au bon fonctionnement du moteur.To operate an internal combustion engine in an optimized manner, it is already known to place it under the control of an electronic control circuit. This electronic circuit manages all the parameters necessary for the proper functioning of the engine.
Malheureusement tous ces paramètres ne peuvent être mesurés. En effet pour connaître certains paramètres il faudrait des capteurs placés dans des endroits très difficiles d'accès, et pour d'autres le circuit électronique de commande a besoin de connaître à un instant donné la valeur qu'aura un paramètre dans le futur. Dans ce cas il est impératif d'estimer ou de simuler la valeur de certains paramètres au lieu de les mesurer réellement.Unfortunately, not all of these parameters can be measured. Indeed to know certain parameters would require sensors placed in places very difficult to access, and for others the electronic control circuit needs to know at a given moment the value that will have a parameter in the future. In this case it is imperative to estimate or simulate the value of certain parameters instead of actually measuring them.
Il existe déjà de nombreux procédés de simulation de la valeur future de certains paramètres, comme par exemple la pression d'admission dans le collecteur, ou la quantité de carburant à injecter.There are already many methods of simulating the future value of certain parameters, such as, for example, the intake pressure in the manifold, or the quantity of fuel to be injected.
Le problème inhérent à ces procédés de simulation ou de prédiction, est qu'il est impératif de faire en sorte qu'ils suivent au plus près la valeur réelle du paramètre. A cet effet, de manière classique, la valeur simulée d'un paramètre à un instant donné est comparée à la valeur réelle de ce paramètre à ce même instant. On déduit de cette comparaison un coefficient de correction qui réalise le recalage du paramètre simulé, sur le paramètre mesuré. Cependant on ne vient pas agir directement sur le calcul du paramètre simulé. On se contente de corrections additives ou soustractives qui ne corrigent en rien la relation permettant d'obtenir le paramètre simulé.The problem inherent in these methods of simulation or prediction is that it is imperative to ensure that they follow as closely as possible the real value of the parameter. To this end, conventionally, the simulated value of a parameter at a given instant is compared with the real value of this parameter at this same instant. A correction coefficient is deduced from this comparison which realigns the simulated parameter, on the measured parameter. However, we do not come to act directly on the calculation of the simulated parameter. We are satisfied with additive or subtractive corrections which in no way correct the relation allowing the simulated parameter to be obtained.
De tels procédés de recalage des valeurs simulées sur les valeurs réelles ne sont pas satisfaisants, car ils ne permettent pas de suivre au plus près les variations des paramètres réels, notamment pendant les phases de régime transitoires. Ces phases de régimes transitoires apparaissent à chaque changement de régime c'est à dire notamment en décélération ou en accélération. Lors de ces régimes transitoires les paramètres simulés sont toujours en retard ou en avance sur les paramètres réels et le fonctionnement du moteur n'est pas optimisé.Such methods of resetting the simulated values to the real values are not satisfactory, because they do not make it possible to follow as closely as possible the variations of the real parameters, in particular during the transient regime phases. These transient regime phases appear at each regime change, in particular when decelerating or accelerating. During these transient regimes, the simulated parameters are always behind or ahead of the real parameters and the operation of the engine is not optimized.
Ainsi par exemple, les procédés de simulation de la pression d'admission, connus à ce jour, consistent à introduire des corrections additives ou multiplicatives sur la mesure de la pression effectuée avant ouverture des soupapes d'admission. Ces corrections sont déterminées en fonction du point de fonctionnement moteur et/ou en fonction des variations de l'angle d'ouverture du papillon, pour anticiper les variations prévisibles du remplissage en air réel.For example, the inlet pressure simulation methods, known to date, consist in introducing additive or multiplicative corrections on the measurement of the pressure carried out before opening the inlet valves. These corrections are determined as a function of the engine operating point and / or as a function of variations in the throttle opening angle, in order to anticipate foreseeable variations in filling with real air.
Ces éléments de correction sur la pression d'admission n'apportent cependant pas une réelle simulation de la future pression, mais introduisent uniquement des termes correctifs équivalents, sans réelle signification physique avec l'évolution future de la pression. De ce fait les procédés connus à ce jour n'utilisent pas de modèles physiques suffisamment représentatifs de l'état futur du système d'admission, ce qui rend empirique, par exemple, la mise au point des stratégies de calcul de la quantité de carburant à injecter à chaque cycle moteur.These correction elements on the intake pressure do not, however, provide a real simulation of the future pressure, but only introduce equivalent corrective terms, with no real physical significance with the future evolution of the pressure. Therefore the methods known to date do not use physical models sufficiently representative of the future state of the intake system, which makes empirical, for example, the development of strategies for calculating the amount of fuel to be injected at each engine cycle.
Le but de la présente invention est de créer un procédé permettant une correction automatique des divergences entre les paramètres simulés et les paramètres réels, agissant directement sur la relation permettant le calcul des paramètres simulés et tenant compte des variations des paramètres réels entre chaque pas de calcul.The aim of the present invention is to create a method allowing an automatic correction of the divergences between the simulated parameters and the real parameters, acting directly on the relation allowing the calculation of the simulated parameters and taking into account the variations of the real parameters between each calculation step. .
A cet effet la présente invention concerne un procédé d'auto correction d'au moins un paramètre physique d'un système dynamique, tel qu'un moteur à combustion interne, dans lequel l'évolution dans le temps du dit paramètre est simulée par une fonction tenant compte du gradient de ce paramètre, de telle sorte qu'à chaque pas de calcul la fonction de simulation calcule un paramètre simulé, le dit procédé selon l'invention étant caractérisé en ce qu'il consiste à:
- mesurer une erreur entre la valeur réelle mesurée du paramètre à un pas de calcul donné et la valeur simulée de ce paramètre à ce même pas de calcul,
- en déduire une correction à appliquer au calcul du gradient de ce paramètre, afin de modifier simultanément, pour le pas de calcul suivant, la fonction de simulation permettant d'obtenir la valeur simulée de ce paramètre et son gradient.
- measure an error between the actual measured value of the parameter at a given calculation step and the simulated value of this parameter at this same calculation step,
- deduce therefrom a correction to be applied to the calculation of the gradient of this parameter, in order to simultaneously modify, for the next calculation step, the simulation function making it possible to obtain the simulated value of this parameter and its gradient.
Le procédé selon l'invention permet ainsi à chaque pas de calcul, en général à chaque point mort haut (PMH), de comparer un paramètre simulé et un paramètre réel. De cette comparaison, il est retiré un coefficient de correction, non pas du paramètre simulé, mais de la dérivée instantanée (gradient) de ce paramètre.The method according to the invention thus makes it possible at each calculation step, in general at each top dead center (TDC), to compare a simulated parameter and a real parameter. From this comparison, a correction coefficient is removed, not from the simulated parameter, but from the instantaneous derivative (gradient) of this parameter.
Ceci permet de tenir compte des variations du gradient entre chaque pas de calcul et de ne pas considérer que ce gradient est constant sur l'horizon d'itération. En conséquence les variations transitoires pendant un cycle moteur sont suivies au plus près.This makes it possible to take account of the variations in the gradient between each calculation step and not to consider that this gradient is constant over the iteration horizon. Consequently, the transient variations during an engine cycle are closely monitored.
Avantageusement la présente invention peut être appliquée à tous paramètres simulés dont le gradient est pris en compte dans la fonction de simulation. C'est le cas, par exemple, avec la pression d'admission dans le collecteur, ou avec le régime moteur. Ainsi le procédé selon l'invention permet de suivre au plus près, même pendant un régime transitoire, les variations de ces paramètres.Advantageously, the present invention can be applied to all simulated parameters whose gradient is taken into account in the simulation function. This is the case, for example, with the intake pressure in the manifold, or with the engine speed. Thus the method according to the invention makes it possible to follow closely, even during a transient regime, the variations of these parameters.
Avantageusement encore, on notera que le coefficient de correction déterminé par le procédé selon l'invention s'applique aussi bien en statique (c'est à dire si le régime est stabilisé), qu'en dynamique (c'est à dire dans les phases transitoires du fonctionnement moteur). En effet le coefficient de correction déterminé corrige, non seulement la concordance entre valeurs simulées et valeurs mesurées, mais aussi leurs dérivées (gradients ou variations).Advantageously also, it will be noted that the correction coefficient determined by the method according to the invention applies both in static (that is to say if the speed is stabilized), as in dynamics (that is to say in the transient phases of engine operation). In fact, the determined correction coefficient corrects not only the agreement between simulated values and measured values, but also their derivatives (gradients or variations).
De manière intrinsèque, on corrige donc le gradient du système, ce qui accentue l'intérêt de ce procédé, quel que soit le paramètre concerné (pression ou régime ...etc.) et agit réellement sur la fonction de simulation et non pas seulement sur le résultat final (c'est à dire le paramètre simulé).Intrinsically, the system gradient is therefore corrected, which accentuates the interest of this process, whatever the parameter concerned (pressure or speed ... etc.) and really acts on the simulation function and not only on the final result (ie the simulated parameter).
D'autres objets, caractéristiques et avantages de la présente invention ressortiront d'ailleurs de la description qui suit, à titre d'exemple non limitatif, et en référence aux dessins annexés dans lesquels:
- la figure 1 est une vue schématique illustrant la mise en oeuvre du procédé selon l'invention, et
- la figure 2 est une vue schématique illustrant le fonctionnement d'un moteur classique à quatre temps, auquel le procédé selon l'invention est appliqué, à titre d'exemple.
- FIG. 1 is a schematic view illustrating the implementation of the method according to the invention, and
- Figure 2 is a schematic view illustrating the operation of a conventional four-stroke engine, to which the method according to the invention is applied, by way of example.
En référence à la figure 1 le procédé d'auto correction selon l'invention est tout d'abord décrit dans un cadre général. Dans un second temps, à titre d'exemple, on montera son application au suivi de deux paramètres spécifiques tels que la pression d'admission dans le collecteur et le régime moteur.With reference to FIG. 1, the self-correction method according to the invention is first described in a general framework. In a second step, by way of example, we will apply it to the monitoring of two specific parameters such as the intake pressure in the manifold and the engine speed.
Le procédé d'auto-correction selon l'invention, permet de suivre au plus près les variations d'un paramètre X, d'un système dynamique. En l'occurrence ce système dynamique est le moteur à combustion interne, d'un véhicule automobile.The self-correction method according to the invention makes it possible to follow as closely as possible the variations of a parameter X, of a dynamic system. In this case, this dynamic system is the internal combustion engine of a motor vehicle.
L'évolution de ce paramètre X est simulé par une fonction tenant compte du gradient Ẋ de ce paramètre. Soit Xs la valeur du paramètre simulé au temps t. On a la relation suivante:
Il ressort de cette relation que la valeur simulée Xs du paramètre est fonction de la dérivée Ẋ de ce paramètre.It follows from this relation that the simulated value Xs of the parameter is a function of the derivative Ẋ of this parameter.
Comme cela est montré à la figure 1, régulièrement, par exemple à chaque point mort haut (PMH), on effectue une comparaison entre le paramètre simulé Xs et la valeur réelle mesurée X de ce paramètre. On en déduit une erreur appelée ε selon la relation suivante:
A partir de cette erreur, on détermine par un procédé classique (par exemple par un circuit électronique PID analogique ou numérique) un coefficient de correction ±δc. Ce coefficient de correction ±δc est appliqué non pas à la valeur simulée du paramètre mais au gradient Ẋ de ce paramètre.From this error, a correction method ± δc is determined by a conventional method (for example by an analog or digital PID electronic circuit). This correction coefficient ± δc is applied not to the simulated value of the parameter but to the gradient Ẋ of this parameter.
Dans les cas particuliers du suivi de la pression d'admission et du régime moteur, le gradient Ẋ du paramètre physique s'exprime plus précisémment de la manière suivante:
Le coefficient de correction ±δc est alors appliqué soit au premier terme a (X), soit au second terme b (X) en fonction d'un coefficient de confiance attaché à chacun de ces deux termes. On a:
Lorsque le gradient du paramètre a ainsi été corrigé, on calcule le paramètre Xs simulé pour le pas suivant en utilisant le gradient corrigé. En conséquence c'est la fonction de simulation f(Ẋ) qui est ainsi modifiée pour suivre au plus près les variations du paramètre réel.When the gradient of the parameter has thus been corrected, the simulated parameter Xs for the next step is calculated using the corrected gradient. Consequently it is the simulation function f (Ẋ) which is thus modified to follow as closely as possible the variations of the real parameter.
Il est à noter que le coefficient ±δc, peut être interprété comme représentant une variation du premier terme a (X) ou du second terme b (X), ou bien s'appliquer aux deux termes de manière équilibrée (la moitié sur chaque terme) ou désiquilibrée. Tout dépend des conditions de mesures et de simulation et est laissée à l'appréciation de l'homme du métier. L'important est que ce coefficient de correction soit appliqué dans sa globalité au calcul du gradient du paramètre X.It should be noted that the coefficient ± δc, can be interpreted as representing a variation of the first term a (X) or the second term b (X), or else apply to both terms in a balanced way (half on each term ) or unbalanced. Everything depends on the measurement and simulation conditions and is left to the discretion of the person skilled in the art. The important thing is that this correction coefficient is applied in its entirety to the calculation of the gradient of the parameter X.
Ce procédé d'auto-correction selon l'invention sera mieux compris à l'aide d'un premier exemple d'application dans lequel le paramètre X est la pression d'admission du collecteur. A cet effet, pour mieux replacer l'invention dans son contexte, le fonctionnement d'un moteur à quatre temps est brièvement rappelé.This self-correction method according to the invention will be better understood with the aid of a first application example in which the parameter X is the manifold inlet pressure. To this end, to better place the invention in context, the operation of a four-stroke engine is briefly recalled.
On a choisi d'illustrer à la figure 2 l'application du procédé selon l'invention, à un moteur à combustion interne, à quatre temps. Bien entendu l'homme du métier pourra extrapoler cet exemple à des moteurs à combustion interne présentant un cycle de tout type (deux temps ou plus).We have chosen to illustrate in Figure 2 the application of the method according to the invention, to an internal combustion engine, four times. Of course, those skilled in the art can extrapolate this example to internal combustion engines having a cycle of any type (two or more times).
Un tel moteur 10, comporte quatre cylindres 11 (un seul est représenté à la figure 2) qui, au cours d'un cycle moteur, se remplissent d'un mélange air/carburant. Chaque cylindre 11 est alimenté en mélange lorsqu'une soupape d'admission 12 ménagée dans ce cylindre s'ouvre. En amont de cette soupape d'admission 12 on trouve un collecteur 13, éventuellement muni d'un filtre à air 14. Le collecteur 13 est muni d'un papillon des gaz 15, dont le rôle est de laisser plus ou moins pénétrer d'air à l'intérieur du collecteur. Ce papillon des gaz 15 est couplé à une pédale d'accélération (non représentée à la figure 2) manoeuvrée par un conducteur.Such an
En appuyant plus ou moins sur sa pédale d'accélération, le conducteur fait varier l'angle d'ouverture a du papillon ce qui a pour conséquence de faire varier la quantité d'air admise dans le cylindre.By pressing more or less on his accelerator pedal, the driver varies the opening angle a of the butterfly which has the consequence of varying the amount of air admitted into the cylinder.
Un injecteur de carburant 16, envoie dans le collecteur, une quantité de carburant prédéterminée par un calculateur 18.A
Lorsque la soupape d'admission 12 du cylindre 11 s'ouvre, le mélange air / carburant accumulé dans le collecteur 13, pénètre dans le cylindre en question.When the
A la figure 2 on a également représenté un système de régulation de ralenti r, un dispositif d'allumage All du mélange air / carburant comprimé dans le cylindre et un catalyseur 17 recyclant les gaz d'échappement refoulés par le cylindre 11. Ces dispositifs de type connus, ne sont pas détaillés.FIG. 2 also shows an idle regulation system r, an ignition device All of the compressed air / fuel mixture in the cylinder and a
Le calculateur électronique 18, associé au moteur 10 reçoit la valeur de la pression P régnant dans le collecteur d'admission 13. Cette pression est mesurée par un capteur approprié 19, connu en soi. Le calculateur 18 est également tenu informé par des capteurs adéquats de la vitesse de rotation du moteur N (régime moteur), de la température d'eau θ, etc.The
L'une des fonctions du calculateur électronique est de calculer la quantité de carburant à injecter dans un cylindre, pour réaliser un mélange air / carburant en proportions déterminées. A cet effet le calculateur a besoin de connaître la pression régnant dans le collecteur d'admission lorsque la soupape d'admission se fermera. On considère en effet que la pression régnant dans le collecteur d'admission au moment où une soupape se ferme est égale à la pression régnant dans le cylindre en question. Connaissant la pression régnant dans un cylindre, et connaissant le volume de ce cylindre et la température des gaz, on en déduit la quantité d'air présente à l'intérieur du cylindre. La quantité d'essence qu'il fallait injecter pour avoir un mélange air / carburant dans des proportions données est donc facile à déduire. Il est donc important de pouvoir prédire la pression qui régnera dans le collecteur d'un cylindre lorsque la soupape d'admission de ce cylindre s'ouvre et se referme.One of the functions of the electronic calculator is to calculate the quantity of fuel to be injected into a cylinder, in order to produce an air / fuel mixture in determined proportions. For this purpose the computer needs to know the pressure prevailing in the intake manifold when the intake valve closes. It is indeed considered that the pressure prevailing in the intake manifold when a valve closes is equal to the pressure prevailing in the cylinder in question. Knowing the pressure prevailing in a cylinder, and knowing the volume of this cylinder and the temperature of the gases, we deduce the amount of air present inside the cylinder. The amount of gasoline that had to be injected to have an air / fuel mixture in given proportions is therefore easy to deduce. It is therefore important to be able to predict the pressure that will prevail in the manifold of a cylinder when the intake valve of this cylinder opens and closes.
Le procédé selon la présente invention permet de corriger automatiquement tous les écarts pouvant exister entre la pression d'admission simulée ou prédite et la pression d'admission réelle telle que mesurée.The method according to the present invention makes it possible to automatically correct all the differences which may exist between the simulated or predicted inlet pressure and the actual inlet pressure as measured.
La pression d'admission simulée Ps est une fonction du gradient de la pression d'admission telle que mesurée. Ainsi on a:
Le gradient Ṗ de la pression d'admission s'exprime de la manière suivante:
Dans cette relation le coefficient 1 / C est connu, Pa est la pression atmosphérique, le premier terme Q(P, Pa, α) est représentatif du débit d'air entrant dans le collecteur d'admission, et le second terme Q (P,N) est représentatif du remplissage du cylindre.In this relationship the coefficient 1 / C is known, Pa is the atmospheric pressure, the first term Q (P, Pa, α) is representative of the air flow entering the intake manifold, and the second term Q (P , N) is representative of the filling of the cylinder.
Les premier et second termes de la dérivée de la pression sont déterminés par cartographie pour chaque type de moteur.The first and second terms of the pressure derivative are determined by mapping for each type of engine.
Selon l'invention on mesure à un instant donné la différence
Lorsque le moteur fonctionne à moyennes ou à fortes charges le coefficient de correction ±δc est appliqué au premier terme Q (P, Pa, α), car c'est ce terme qui présente le coefficient de confiance le plus faible. En effet ce terme varie le plus sans que l'on ait de moyens directs de vérifier l'importance de ces variations.When the engine is running at medium or high loads the correction coefficient ± δc is applied to the first term Q (P, Pa, α), because it is this term which has the lowest confidence coefficient. Indeed, this term varies the most without any direct means of verifying the importance of these variations.
Dans l'exemple donné le débit Q (P, Pa, α) reflète en effet les variations du débit du papillon, de la vanne de régulation de ralenti et de la correction altimétrique. Or toutes ces variables sont difficilement mesurables, et hautement instables. Le terme Q (P,N) est quant à lui mieux connu et ses variations sont plus faciles à déterminer.In the example given, the flow rate Q (P, Pa, α) indeed reflects the variations in the flow rate of the throttle valve, of the idle speed control valve and of the altimetric correction. However, all of these variables are difficult to measure, and highly unstable. The term Q (P, N) is better known and its variations are easier to determine.
Dans le cas où le moteur fonctionne à faibles charges c'est à dire au ralenti, contrairement à ce qui précède c'est le terme Q(P,N) qui présente le coefficient de confiance le plus faible. En effet le débit d'air entrant Q (P, Pa, α) est faible et régulé puisque le moteur tourne au ralenti, par contre en raison des phénomènes d'aspirations du moteur (pulsations du moteur à faibles charges ) c'est le débit Q(P,N) qui est difficile à maîtriser.In the case where the engine operates at low loads, ie at idle, contrary to the above, it is the term Q (P, N) which has the lowest confidence coefficient. Indeed the incoming air flow Q (P, Pa, α) is low and regulated since the engine idles, on the other hand due to the phenomena of suction of the engine (pulsations of the engine at low loads) it is the flow Q (P, N) which is difficult to control.
Dans ce cas le coefficient de correction de ±δc s'applique au second terme de la relation permettant le calcul de la dérivée Ṗ.In this case the correction coefficient of ± δc applies to the second term of the relation allowing the computation of the derivative Ṗ.
Ainsi la comparaison entre la valeur de la pression prédite à un pas de calcul et la valeur réelle de cette pression à ce même pas, n'est pas directement utilisée pour recaler la valeur prédite sur la valeur mesurée en utilisant un coefficient de correction additif, mais est utilisée pour redéfinir la relation permettant le calcul de la pression prédite.Thus the comparison between the value of the pressure predicted at a calculation step and the real value of this pressure at this same step, is not directly used to readjust the predicted value to the measured value using an additive correction coefficient, but is used to redefine the relation allowing the calculation of the predicted pressure.
De même le procédé selon la présente invention peut être appliqué à l'auto-correction du régime N de rotation du moteur, par rapport à la valeur simulée Ns de ce régime.Similarly, the method according to the present invention can be applied to the self-correction of the engine speed N of rotation, with respect to the simulated value Ns of this engine speed.
Le régime d'un moteur à combustion interne peut être simulé selon la loi suivante:
Le gradient Ṅ de ce régime est donné par la relation suivante:
Dans cette relation Γ1 est le couple moteur et Γ2 est le couple résistant. De la même manière que précedemment décrit on mesure une erreur
Ce gradient corrigé permet de recalculer un régime de rotation simulé tenant compte des variations du gradient, et donc suivant au mieux les variations du paramètre réel N. En outre le terme [Γ2(N) ± δc] est une image du couple résistant, qu'il est difficile d'appréhender par les moyens de mesure connus.This corrected gradient makes it possible to recalculate a simulated rotation regime taking account of the variations of the gradient, and therefore as closely as possible the variations of the real parameter N. In addition the term [Γ 2 (N) ± δc] is an image of the resistant couple, that it is difficult to apprehend by known measurement means.
Bien entendu le procédé d'auto-correction selon l'invention n'est pas limité aux modes de réalisations ci dessus décrits. Ainsi ce procédé d'auto-correction peut être mis en oeuvre pour corriger les écarts entre un paramètre simulé selon un certain modèle (par exemple un modèle dit recalé) avec ce même paramètre mais simulé selon un second modèle (par exemple un modèle non recalé dit "libre").Of course, the self-correction method according to the invention is not limited to the embodiments described above. Thus this self-correction method can be implemented to correct the discrepancies between a parameter simulated according to a certain model (for example a so-called recalibrated model) with this same parameter but simulated according to a second model (for example a model not recalibrated says "free").
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9504233 | 1995-04-06 | ||
FR9504233A FR2732724B1 (en) | 1995-04-06 | 1995-04-06 | METHOD FOR SELF CORRECTING PHYSICAL PARAMETERS OF A DYNAMIC SYSTEM, SUCH AS AN INTERNAL COMBUSTION ENGINE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0736680A1 true EP0736680A1 (en) | 1996-10-09 |
EP0736680B1 EP0736680B1 (en) | 1999-10-27 |
Family
ID=9477927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19960105600 Expired - Lifetime EP0736680B1 (en) | 1995-04-06 | 1996-04-09 | Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0736680B1 (en) |
DE (1) | DE69604853T2 (en) |
ES (1) | ES2138259T3 (en) |
FR (1) | FR2732724B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7325210B2 (en) * | 2005-03-10 | 2008-01-29 | International Business Machines Corporation | Hybrid linear wire model approach to tuning transistor widths of circuits with RC interconnect |
CN102562335A (en) * | 2010-12-16 | 2012-07-11 | 北汽福田汽车股份有限公司 | Engine, transition control method of engine and automobile thereof |
CN114460222A (en) * | 2022-01-28 | 2022-05-10 | 青海青乐化工机械有限责任公司 | Smoke generating time testing device of smoke generating tank |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01271642A (en) * | 1988-04-22 | 1989-10-30 | Toyota Motor Corp | Device for controlling fuel injection quantity of internal combustion engine |
US4893244A (en) * | 1988-08-29 | 1990-01-09 | General Motors Corporation | Predictive spark timing method |
US5094213A (en) * | 1991-02-12 | 1992-03-10 | General Motors Corporation | Method for predicting R-step ahead engine state measurements |
WO1992013184A1 (en) * | 1991-01-29 | 1992-08-06 | Siemens Automotive S.A. | Method and device for evaluating the flow rate of air admitted into an internal combustion engine, in the transient regime |
-
1995
- 1995-04-06 FR FR9504233A patent/FR2732724B1/en not_active Expired - Lifetime
-
1996
- 1996-04-09 EP EP19960105600 patent/EP0736680B1/en not_active Expired - Lifetime
- 1996-04-09 ES ES96105600T patent/ES2138259T3/en not_active Expired - Lifetime
- 1996-04-09 DE DE1996604853 patent/DE69604853T2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01271642A (en) * | 1988-04-22 | 1989-10-30 | Toyota Motor Corp | Device for controlling fuel injection quantity of internal combustion engine |
US4893244A (en) * | 1988-08-29 | 1990-01-09 | General Motors Corporation | Predictive spark timing method |
WO1992013184A1 (en) * | 1991-01-29 | 1992-08-06 | Siemens Automotive S.A. | Method and device for evaluating the flow rate of air admitted into an internal combustion engine, in the transient regime |
US5094213A (en) * | 1991-02-12 | 1992-03-10 | General Motors Corporation | Method for predicting R-step ahead engine state measurements |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 14, no. 39 (M - 924) 24 January 1990 (1990-01-24) * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7325210B2 (en) * | 2005-03-10 | 2008-01-29 | International Business Machines Corporation | Hybrid linear wire model approach to tuning transistor widths of circuits with RC interconnect |
CN102562335A (en) * | 2010-12-16 | 2012-07-11 | 北汽福田汽车股份有限公司 | Engine, transition control method of engine and automobile thereof |
CN102562335B (en) * | 2010-12-16 | 2015-11-25 | 北汽福田汽车股份有限公司 | The transition control method of motor, motor and automobile thereof |
CN114460222A (en) * | 2022-01-28 | 2022-05-10 | 青海青乐化工机械有限责任公司 | Smoke generating time testing device of smoke generating tank |
CN114460222B (en) * | 2022-01-28 | 2023-11-17 | 青海青乐化工机械有限责任公司 | Smoke generating time testing device of smoke generating tank |
Also Published As
Publication number | Publication date |
---|---|
FR2732724B1 (en) | 1997-05-09 |
DE69604853T2 (en) | 2000-04-20 |
EP0736680B1 (en) | 1999-10-27 |
FR2732724A1 (en) | 1996-10-11 |
DE69604853D1 (en) | 1999-12-02 |
ES2138259T3 (en) | 2000-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2787511A1 (en) | METHOD AND DEVICE FOR EQUALIZING THE TORQUES OF EACH CYLINDER OF AN ENGINE | |
FR2659114A1 (en) | METHOD AND DEVICE FOR CONTROLLING THE WEIGHT OF THE AIR / FUEL SUPPLY MIXTURE OF AN INTERNAL COMBUSTION ENGINE. | |
EP0705381B1 (en) | Method and device for optimizing air filling in an internal combustion motor cylinder | |
EP2935828A1 (en) | Supercharged engine diagnostics method and associated engine | |
FR2893984A1 (en) | Cylinder`s operating condition determining method for e.g. petrol engine, involves evaluating time deviation of angle of rotation for each combustion cycle of cylinder of internal combustion engine | |
EP0686762A1 (en) | Method and apparatus for determining specific parameters of injectors for combustion engines, in particular diesel engines with pre-injection | |
EP0736680B1 (en) | Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine | |
FR2553831A1 (en) | METHOD FOR CONTROLLING THE VALUE OF QUANTITIES TO BE GENERATED BY A MEANS FOR CONTROLLING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE | |
FR2549143A1 (en) | FUEL SUPPLY CONTROL METHOD FOR INTERNAL COMBUSTION ENGINES IN THE ACCELERATION PHASE | |
FR2553830A1 (en) | METHOD FOR ADJUSTING A DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE | |
EP1671023B1 (en) | Engine air supply control method which is intended, for example, for the control of a turbocharged engine | |
FR2678684A1 (en) | METHOD AND SYSTEM FOR CALCULATING THE FRESH AIR MASS IN A CYLINDER OF AN INTERNAL COMBUSTION ENGINE. | |
EP1607605B1 (en) | Pressure estimating system in the exhaust manifold of a diesel engine and method for calibrating said system | |
FR2894626A1 (en) | METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE | |
EP0639704B1 (en) | Method for calculating the mass of air admitted to an internal combustion engine | |
EP1377734B1 (en) | Method for calculating the mass of air admitted into the cylinder of an internal combustion engine in a motor vehicle and injection calculator carrying out said method | |
EP1647692A1 (en) | Air inlet control method for an internal combustion engine and automotive vehicle for applying this method | |
EP0886055B1 (en) | Method and apparatus for controlling a spark ignited internal combustion engine | |
FR2688546A1 (en) | Method and device for controlling an internal combustion engine | |
EP3214293A1 (en) | Method and device for calculating a quantity of air in a vehicle engine intake manifold and associated vehicle | |
FR2903448A1 (en) | Internal combustion engine e.g. diesel engine, controlling method for motor vehicle, involves recording finally obtained correction susceptible to reduce difference between value and preset magnitude when difference is lower than threshold | |
EP4015808B1 (en) | System and method for controlling an internal combustion engine based on filling performance | |
FR2731050A1 (en) | Method of quantifying air content of IC engine cylinder | |
FR2724203A1 (en) | METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE | |
FR2724433A1 (en) | METHOD AND DEVICE FOR SUPPRESSION OF LONGITUDINAL OSCILLATIONS OF A MOTOR VEHICLE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES GB IT |
|
17P | Request for examination filed |
Effective date: 19961216 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19990208 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES GB IT |
|
REF | Corresponds to: |
Ref document number: 69604853 Country of ref document: DE Date of ref document: 19991202 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2138259 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19991223 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20070511 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070621 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070416 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070607 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081101 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20080410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080409 |