EP0736680B1 - Verfahren zur Selbstkorrektor von physikalischen Parametern für ein dynamisches System, wie zum Beispiel eine Brennkraftmaschine - Google Patents

Verfahren zur Selbstkorrektor von physikalischen Parametern für ein dynamisches System, wie zum Beispiel eine Brennkraftmaschine Download PDF

Info

Publication number
EP0736680B1
EP0736680B1 EP19960105600 EP96105600A EP0736680B1 EP 0736680 B1 EP0736680 B1 EP 0736680B1 EP 19960105600 EP19960105600 EP 19960105600 EP 96105600 A EP96105600 A EP 96105600A EP 0736680 B1 EP0736680 B1 EP 0736680B1
Authority
EP
European Patent Office
Prior art keywords
parameter
gradient
engine
simulated
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960105600
Other languages
English (en)
French (fr)
Other versions
EP0736680A1 (de
Inventor
Mariano Sans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive France SAS
Original Assignee
Siemens Automotive SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Automotive SA filed Critical Siemens Automotive SA
Publication of EP0736680A1 publication Critical patent/EP0736680A1/de
Application granted granted Critical
Publication of EP0736680B1 publication Critical patent/EP0736680B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1437Simulation

Definitions

  • the present invention relates to a method for self-correcting physical parameters of a dynamic system, such as a combustion engine internal.
  • the pressure simulation processes consist in introducing additive corrections or multiplicative on the pressure measurement carried out before opening of the intake valves. These corrections are determined according to the point of engine operation and / or as a function of variations in the opening angle of the butterfly valve, to anticipate foreseeable variations in real air filling.
  • the aim of the present invention is to create a method allowing a automatic correction of discrepancies between simulated parameters and real parameters, acting directly on the relation allowing the calculation of parameters simulated and taking into account variations in real parameters between each calculation step.
  • the method according to the invention thus allows at each calculation step, in general at each top dead center (TDC), to compare a simulated parameter and a real parameter. From this comparison, a correction coefficient is removed, not of the simulated parameter, but of the instantaneous derivative (gradient) of this setting.
  • TDC top dead center
  • the present invention can be applied to all simulated parameters whose gradient is taken into account in the function of simulation. This is the case, for example, with the inlet pressure in the manifold, or with engine speed.
  • the method according to the invention makes it possible to follow closely, even during a transient regime, the variations of these settings.
  • the correction coefficient determined by the method according to the invention applies equally well in static (this is to say if the regime is stabilized), that in dynamics (ie in the phases transients in engine operation).
  • the correction coefficient determined corrects not only the agreement between simulated values and measured values, but also their derivatives (gradients or variations).
  • the self-correction method according to the invention is first described in a general framework. Secondly, as example, we will show its application to the monitoring of two specific parameters such as manifold pressure and engine speed.
  • the self-correction method according to the invention makes it possible to follow at most close to the variations of a parameter X, of a dynamic system.
  • dynamic system is the internal combustion engine of a motor vehicle.
  • the correction coefficient ⁇ ⁇ c is then applied either to the first term a (X), or to the second term b (X) according to a confidence coefficient attached to each of these two terms.
  • X k [a (X) -b (X) ⁇ ⁇ c].
  • the coefficient ⁇ ⁇ c can be interpreted as representing a variation of the first term a (X) or the second term b (X), or apply both terms in a balanced way (half on each term) or unbalanced. It all depends on the measurement and simulation conditions and is left to the discretion of those skilled in the art. The important thing is that correction coefficient is applied in its entirety to the calculation of the gradient of the parameter X.
  • Such an engine 10 has four cylinders 11 (only one is shown in Figure 2) which, during an engine cycle, fill with a mixture air / fuel. Each cylinder 11 is supplied with a mixture when a valve intake 12 formed in this cylinder opens. Upstream of this valve intake 12 there is a manifold 13, optionally provided with an air filter 14. The manifold 13 is provided with a throttle valve 15, the role of which is to leave more or less penetrate air inside the collector. This throttle 15 is coupled to an accelerator pedal (not shown in Figure 2) operated by a driver.
  • the driver By pressing more or less on the accelerator pedal, the driver varies the opening angle a of the butterfly which results in vary the amount of air admitted into the cylinder.
  • a fuel injector 16 sends in the collector, a quantity of fuel predetermined by a computer 18.
  • FIG. 2 also shows a system for regulating idle r, an All ignition device of the compressed air / fuel mixture in the cylinder and a catalyst 17 recycling the exhaust gases discharged by the cylinder 11. These devices of known type are not detailed.
  • the electronic computer 18, associated with the engine 10 receives the value of the pressure P prevailing in the intake manifold 13. This pressure is measured by an appropriate sensor 19, known per se.
  • the computer 18 is also kept informed by suitable sensors of the speed of rotation of the engine N (engine speed), water temperature ⁇ , etc.
  • One of the functions of the electronic calculator is to calculate the quantity of fuel to be injected into a cylinder, to make a mixture air / fuel in specified proportions.
  • the calculator needs know the pressure prevailing in the intake manifold when the valve admission will close. We consider that the pressure prevailing in the intake manifold at the time a valve closes equals the pressure in the cylinder in question. Knowing the prevailing pressure in a cylinder, and knowing the volume of this cylinder and the temperature of gas, we deduce the amount of air present inside the cylinder. The amount of gas which had to be injected to have an air / fuel mixture in given proportions is therefore easy to deduce. It is therefore important to be able to predict the pressure that will prevail in the manifold of a cylinder when the This cylinder's intake valve opens and closes.
  • the method according to the present invention makes it possible to correct automatically all the differences that may exist between the intake pressure simulated or predicted and the actual intake pressure as measured.
  • the coefficient 1 / C is known
  • Pa is the pressure atmospheric
  • the first term Q (P, Pa, ⁇ ) is representative of the air flow entering the intake manifold
  • the second term Q (P, N) is representative of the cylinder filling.
  • the first and second terms of the pressure derivative are determined by mapping for each type of engine.
  • the difference ⁇ P - Ps is measured at a given time.
  • a correction coefficient ⁇ ⁇ c which we apply to calculation of the derivative of the intake pressure P ⁇ .
  • the flow rate Q (P, Pa, ⁇ ) indeed reflects the variations in throttle flow, idle control valve and altimetric correction. However, all of these variables are difficult to measure, and highly unstable.
  • Q (P, N) is better known and its variations are easier to determine.
  • the method according to the present invention can be applied to self-correction of the engine rotation speed N, in relation to the value simulated Ns of this scheme.
  • ⁇ 1 is the driving torque and ⁇ 2 is the resisting torque.
  • ⁇ 2 is the resisting torque.
  • the self-correction method according to the invention is not limited to the embodiments described above. So this self-correcting process can be implemented to correct discrepancies between a parameter simulated according to a certain model (for example a so-called failed model) with this same parameter but simulated according to a second model (for example a model not readjusted says "free").
  • a certain model for example a so-called failed model
  • a second model for example a model not readjusted says "free”

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Claims (8)

  1. Verfahren zur Selbstkorrektur mindestens eines physikalischen Parameters X eines dynamischen Systems wie z.B. einer Brennkraftmaschine, bei dem der Verlauf dieses Parameters über der Zeit durch eine Funktion simuliert wird, die den Gradienten X dieses Parameters berücksichtigt, derart, daß bei jedem Rechenschritt die Simulationsfunktion einen simulierten Parameter Xs berechnet, wobei das Verfahren gemäß der Erfindung darin besteht, daß:
    ein Fehler (ε) zwischen dem bei einem bestimmten Rechenschritt gemessenen Istwert (X) des Parameters und dem bei dem gleichen Rechenschritt simulierten Wert (Xs) dieses Parameters gemessen wird,
    und dadurch gekennzeichnet ist, daß:
    hieraus eine Korrektur (±δc) abgeleitet wird, die auf die Berechnung des Gradienten (X ˙) dieses Parameters anzuwenden ist, um für den folgenden Rechenschritt gleichzeitig die Simulationsfunktion, mit dem sich der simulierte Wert (Xs) dieses Parameters gewinnen läßt, und seinen Gradienten (X ˙) zu modifizieren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Gradient (X ˙) des Parameters durch folgende Beziehung gegeben ist: X = k[a(X)-b(X)] und daß der Korrekturkoeffizient ±δc auf den ersten Term a(X) oder den zweiten Term b(X) in Abhängigkeit von einem jedem dieser beiden Terme zugeordneten Konfidenzfaktor angewendet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der besagte Parameter der Einlaßdruck (P) einer Brennkraftmaschine ist und daß der Gradient P ˙ dieses Drucks durch die folgende Beziehung gegeben ist: P = 1 C x [Q(P,Pa,α) - Q(P,N)], worin 1/C ein bekannter Koeffizient ist, der erste Term Q(P,Pa,α) den Durchsatz der in das Saugrohr eintretenden Luft darstellt, der zweite Term Q(P,N) die von einem Zylinder tatsächlich geschluckte Gemischmenge darstellt, P der Einlaßdruck ist, Pa der Atmosphärendruck ist, α der Öffnungswinkel der Drosselklappe ist und N die Motordrehzahl ist.
  4. Verfahren zur Selbstkorrektur nach Anspruch 3, dadurch gekennzeichnet, daß unter großer oder mittlerer Last der Brennkraftmaschine der Korrekturkoeffizient (±δc) auf den ersten Term angewendet wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß unter geringer Last der Brennkraftmaschine der Korrekturfaktor (±δc) auf den zweiten Term angewendet wird.
  6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der betreffende Parameter die Drehzahl (N) einer Brennkraftmaschine ist und der Gradient (N ˙) dieses Parameters durch die folgende Beziehung gegeben ist. N = k(Γ1(N)) - Γ2(N)), worin Γ1 ein Motormoment und Γ2 ein Widerstandsmoment ist, wobei der Koeffizient (±δc) auf das Moment angewendet wird, das den kleinsten Konfidenzfaktor aufweist.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der korrigierte Gradient der Motordrehzahl durch folgende Beziehung gegeben ist: N = k(Γ1(N) - Γ2(N)±δc).
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der über der Zeit ermittelte Parameter seinerseits ein simulierter Parameter ist.
EP19960105600 1995-04-06 1996-04-09 Verfahren zur Selbstkorrektor von physikalischen Parametern für ein dynamisches System, wie zum Beispiel eine Brennkraftmaschine Expired - Lifetime EP0736680B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9504233A FR2732724B1 (fr) 1995-04-06 1995-04-06 Procede d'auto-correction de parametres physiques d'un systeme dynamique, tel qu'un moteur a combustion interne
FR9504233 1995-04-06

Publications (2)

Publication Number Publication Date
EP0736680A1 EP0736680A1 (de) 1996-10-09
EP0736680B1 true EP0736680B1 (de) 1999-10-27

Family

ID=9477927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960105600 Expired - Lifetime EP0736680B1 (de) 1995-04-06 1996-04-09 Verfahren zur Selbstkorrektor von physikalischen Parametern für ein dynamisches System, wie zum Beispiel eine Brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP0736680B1 (de)
DE (1) DE69604853T2 (de)
ES (1) ES2138259T3 (de)
FR (1) FR2732724B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7325210B2 (en) * 2005-03-10 2008-01-29 International Business Machines Corporation Hybrid linear wire model approach to tuning transistor widths of circuits with RC interconnect
CN102562335B (zh) * 2010-12-16 2015-11-25 北汽福田汽车股份有限公司 发动机的过渡控制方法、发动机及其汽车
CN114460222B (zh) * 2022-01-28 2023-11-17 青海青乐化工机械有限责任公司 发烟罐的发烟时间测试装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615811B2 (ja) * 1988-04-22 1997-06-04 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
US4893244A (en) * 1988-08-29 1990-01-09 General Motors Corporation Predictive spark timing method
FR2672087A1 (fr) * 1991-01-29 1992-07-31 Siements Automotive Sa Procede et dispositif d'evaluation du debit d'air admis dans un moteur a combustion interne, en regime transitoire.
US5094213A (en) * 1991-02-12 1992-03-10 General Motors Corporation Method for predicting R-step ahead engine state measurements

Also Published As

Publication number Publication date
ES2138259T3 (es) 2000-01-01
FR2732724B1 (fr) 1997-05-09
DE69604853D1 (de) 1999-12-02
FR2732724A1 (fr) 1996-10-11
DE69604853T2 (de) 2000-04-20
EP0736680A1 (de) 1996-10-09

Similar Documents

Publication Publication Date Title
FR2850432A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
FR2787511A1 (fr) Procede et dispositif d'egalisation des couples de chaque cylindre d'un moteur
EP0705381B1 (de) Verfahren und vorrichtung zur optimierung der luftfüllung in einem zylinder einer brennkraftmaschine
FR2813100A1 (fr) Procede et dispositif pour la mise en oeuvre d'un moteur a combustion interne
EP2935828A1 (de) Diagnoseverfahren für aufgeladenen motor und zugehöriger motor
EP0686762A1 (de) Verfahren und Vorrichtung zur Bestimmung von spezifischen Parametern von Einspritzventilen eines Verbrennungsmotors insbesondere für Dieselmotoren mit Voreinspritzung
EP0736680B1 (de) Verfahren zur Selbstkorrektor von physikalischen Parametern für ein dynamisches System, wie zum Beispiel eine Brennkraftmaschine
FR2553831A1 (fr) Procede permettant de commander la valeur de quantites a produire par un moyen de commande du fonctionnement d'un moteur a combustion interne
EP1671023B1 (de) Motorluftzufuhrsteuerverfahren, das zum beispiel zur steuerung eines motors mit turbolader bestimmt ist
FR2549143A1 (fr) Methode de controle de l'alimentation en carburant, pour moteurs a combustion interne en phase d'acceleration
FR2553830A1 (fr) Procede de reglage d'un dispositif de commande d'un moteur a combustion interne
FR2894626A1 (fr) Procede de gestion d'un moteur a combustion interne
EP1607605A1 (de) System zum Abschätzen des Drucks im Abgaskrümmer einer Dieselbrennkraftmaschine und Verfahren zur Systemkalibrierung
EP0639704B1 (de) Verfahren zur Berechnung der einer Brennkraftmaschine zugeführten Luftmasse
WO2004085811A1 (fr) Mesure de la pression ambiante dans un moteur turbocompresse
EP0886055B1 (de) Verfahren und Vorrichtung zur Steuerung des Betriebs einer fremdgezündeten Brennkraftmaschine
EP1377734B1 (de) Verfahren zur berechnung der einer brennkraftmaschine zugeführten luftmasse und rechner für kraftstoffeinspritzung
EP1647692A1 (de) Ansaugluftsteuerverfahren für eine Brennkraftmaschine und Kraftfahrzeug zur Anwendung dieses Verfahrens
FR2842869A1 (fr) Procede permettant d'adapter un modele de distance de reglage pour un organe de reglage de turbocompresseur a gaz d'echappement
EP0701049B1 (de) Verfahren zum Steuern einer Brennkraftmaschine
FR2688546A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne.
EP3215727B1 (de) Verfahren zur vorhersage einer gaseinlassseitigen drosselklappe für die steuerung einer brennkraftmaschine
EP4015808B1 (de) Steuersystem und verfahren zur steuerung eines verbrennungsmotors, das auf dem wirkungsgrad der befüllung basiert
EP3214293A1 (de) Verfahren und vorrichtung zur berechnung einer luftmenge in einem fahrzeugmotor-ansaugrohr, und entsprechendes fahrzeug
WO2023072565A1 (fr) Procédé d'estimation de la pression atmosphérique pour un moteur à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19961216

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69604853

Country of ref document: DE

Date of ref document: 19991202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2138259

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991223

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070511

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070416

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070607

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080409