EP0883141B1 - Heating process with magnetic field of a soft magnetic component - Google Patents

Heating process with magnetic field of a soft magnetic component Download PDF

Info

Publication number
EP0883141B1
EP0883141B1 EP98401043A EP98401043A EP0883141B1 EP 0883141 B1 EP0883141 B1 EP 0883141B1 EP 98401043 A EP98401043 A EP 98401043A EP 98401043 A EP98401043 A EP 98401043A EP 0883141 B1 EP0883141 B1 EP 0883141B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
maximum
pulse
magnetic
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401043A
Other languages
German (de)
French (fr)
Other versions
EP0883141A1 (en
Inventor
Georges Couderchon
Philippe Verin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0883141A1 publication Critical patent/EP0883141A1/en
Application granted granted Critical
Publication of EP0883141B1 publication Critical patent/EP0883141B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Definitions

  • the present invention relates to a heat treatment process under magnetic field of a magnetic component, for example of a nucleus magnetic circuit breaker, made of a soft magnetic alloy such as than a FeNiMo 15-80-5 alloy, an amorphous Co base alloy or an alloy Nanocrystalline FeSiCuNbB.
  • a magnetic component for example of a nucleus magnetic circuit breaker, made of a soft magnetic alloy such as than a FeNiMo 15-80-5 alloy, an amorphous Co base alloy or an alloy Nanocrystalline FeSiCuNbB.
  • the shape of the cycle hysteresis is not essential. However, for many applications processing low amplitude electrical signals, for example circuit breakers RCDs, switching power supplies or connection transformers to digital telephone networks, the shape of the hysteresis cycle takes on a capital importance.
  • the shape of the hysteresis cycle is characterized, in particular, by the Br / Bm ratio, ratio of the residual induction to the maximum induction. When Br / Bm is greater than 0.9, approximately, the hysteresis cycle is said to be “rectangular”.
  • the hysteresis cycle is said " layer ".
  • Materials with a rectangular hysteresis cycle are used, for example example, to make the magnetic cores of magnetic amplifiers or switching power supply regulation stages.
  • Cycle materials of coated hysteresis are used, in particular, to produce the magnetic cores earth leakage circuit breakers, electric filters or transformers galvanic decoupling.
  • soft magnetic alloys with low anisotropies are used (anisotropy coefficients less than 5000 ergs / cm 3 , and preferably less than 1000 ergs / cm 3 ), such as FeNiMo 15-80-5 alloys, amorphous Co base alloys or alloys of the FeSiCuNbB nanocrystalline type, and the magnetic components are subjected to annealing under an intense magnetic field. Annealing is carried out at a temperature below the Curie point of the alloy.
  • the magnetic field is longitudinal, that is to say parallel to the direction in which the magnetic properties will be measured, when one wants to obtain a rectangular hysteresis cycle. It is transverse, that is to say perpendicular to the direction in which the magnetic properties will be measured, when one wants to obtain a lying hysteresis cycle.
  • the magnetic field is applied for the duration of the treatment, and it is constant.
  • the temperature and the duration of treatment are the two parameters which affect the result of the heat treatment. These treatments, when they are of long duration (from one to a few hours), make it possible to obtain with good reliability either very rectangular hysteresis cycles (Br / Bm> 0.9), or hysteresis cycles very coated Br / Bm ⁇ 0.2).
  • the object of the present invention is to remedy this drawback by giving means for reproducibly obtaining magnetic components by soft magnetic alloy having intermediate hysteresis cycles between very rectangular hysteresis cycles and very layered hysteresis cycles is that is, characterized by a Br / Bm ratio of between 0.3 and 0.9.
  • the invention relates to a heat treatment process under magnetic field of a magnetic component made of soft magnetic material such that, for example, a FeNiMo 15-80-5 alloy, an amorphous Co base alloy or a nanocrystalline FeSiCuNbB alloy, according to which the component is annealed magnetic at a temperature below the curie point of the magnetic material, and, during annealing, the magnetic component is subjected to a magnetic field longitudinal or transverse, unidirectional, alternating or continuous, applied in the form of a succession of slots each comprising a first part during which the intensity of the magnetic field reaches a maximum value, and a second part during which the intensity of the magnetic field has a minimum value.
  • This minimum value is preferably less than 10% of the maximum value of the field corresponding to the most important niche in which the component magnetic is subject.
  • the maximum intensities of the magnetic fields of two slots successive can be substantially equal or substantially different.
  • the maximum intensity of the magnetic field of the second slot can be less than the maximum intensity of the magnetic field of the first niche, so as to obtain a decrease in the maximum magnetic field throughout the treatment.
  • the maximum intensity of magnetic field of the last niche performed can, therefore, be less than 25% of the maximum intensity of the magnetic field of the first niche performed.
  • the minimum field strength magnetic is zero.
  • each slot has a total duration of less than 30 minutes, the duration of the period during which the magnetic field has a maximum intensity is less than 15 minutes.
  • the heat treatment according to the invention which applies to any component magnetic soft magnetic alloy having very weak anisotropies, consists annealing under magnetic field at a temperature below the Curie point of soft magnetic alloy, in which the magnetic field is applied discontinuously.
  • This heat treatment under magnetic field is carried out in a known unidirectional magnetic field heat treatment oven in himself.
  • the magnetic component is a core magnetic ring consisting of a ribbon of soft magnetic alloy wound in order to form a torus of rectangular section
  • the magnetic field is generated either by an electric conductor traversed by a direct electric current or alternating, on which the torus is threaded, either by a coil whose axis is parallel to the axis of revolution of the torus, and which surrounds the torus.
  • the field magnetic is longitudinal, i.e. parallel to the longitudinal axis of the ribbon soft magnetic alloy.
  • the magnetic field is transverse, that is, parallel to the surface of the ribbon, but perpendicular to the axis longitudinal of it.
  • the annealing temperature should preferably be greater than 0.5 times the Curie temperature expressed in degrees centigrade.
  • Each slot comprises a first part of duration ⁇ t ( ⁇ t 1 for C 1 , ⁇ t 2 for C 2 , etc.) during which the intensity of the magnetic field has a maximum value Hmax (Hmax 1 for C 1 , Hmax 2 for C 2 , etc.), and a second part of duration ⁇ t '( ⁇ t' 1 for C 1 , ⁇ t ' 2 for C 2 , etc.) during which the intensity of the magnetic field has a minimum value Hmin (Hmin 1 for C 1 , Hmin 2 for C 2 , etc.).
  • Hmax represents the intensity of the magnetic field.
  • Hmax represents the peak intensity of the magnetic field (maximum intensity reached at each alternating).
  • the slots are rectangular. But the slots can be, for example, of the trapezoidal type or of the triangular type, the intensity of the magnetic field decreasing regularly during the part of the niche corresponding to the intense magnetic field.
  • the maximum values of the magnetic field Hmax 1 and Hmax 2 are equal.
  • Hmax 3 is lower than Hmax 2 and higher than Hmax 4 .
  • the evolution of the successive maximum values of the magnetic field can be chosen at will.
  • these successive values can decrease throughout the treatment, starting from a value allowing to saturate the toroids during treatment (this value depends not only on the nature of the material constituting the toroids, but also on the dimensions tori) to reach, at the end of treatment, a value less than 25% of the initial value.
  • the minimum values of the magnetic field Hmin are, in general, substantially zero, and in any case must remain below 10% of the value maximum reached by the magnetic field during treatment.
  • ⁇ t are, in general, of the order of 5 minutes, and preferably should remain less than 15 minutes. They are not necessarily equal from niche to the other.
  • the number of slots can be chosen at will depending on the result obtain, and also, depending on the total duration of treatment which, from preferably, is more than 10 minutes and can reach several hours. In all in any event, the number of slots must be greater than 2.
  • magnetic cores in the form of tori were produced, 26 mm in outside diameter, 16 mm in inside diameter and 10 mm thick.
  • These magnetic cores were first subjected to a heat treatment by maintaining at the temperature of 530 ° C. for 1 hour in order to give them a nanocrystalline structure, then subjected to various anneals under magnetic field in accordance with the invention.
  • the different treatments were differentiated by the holding temperature, by the proportion of the holding time during which the magnetic field was applied and by the direction of the magnetic field.
  • the temperature retention time was 1 hour
  • the magnetic field was applied in the form of rectangular slots during which the maximum intensity of the magnetic field was sufficient to saturate the toroids for a few minutes.

Abstract

A magnetisable material such as an iron-nickel-molybdenum 15-80-5 alloy, an amorphous cobalt-based alloy or an iron-silicon-copper-niobium-boron nanocrystalline alloy is heated below the Curie point. It is subjected to a magnetic field whose intensity is varied over time, following a series of peaks. The intensity is progressively increased to a maximum and thereafter decreased to a minimum. The field may be longitudinal, transverse, unidirectional, continuous or alternating.

Description

La présente invention concerne un procédé de traitement thermique sous champ magnétique d'un composant magnétique, par exemple d'un noyau magnétique pour disjoncteur différentiel, constitué d'un alliage magnétique doux tel qu'un alliage FeNiMo 15-80-5, un alliage base Co amorphe ou un alliage FeSiCuNbB nanocristallin.The present invention relates to a heat treatment process under magnetic field of a magnetic component, for example of a nucleus magnetic circuit breaker, made of a soft magnetic alloy such as than a FeNiMo 15-80-5 alloy, an amorphous Co base alloy or an alloy Nanocrystalline FeSiCuNbB.

Pour les applications en électrotechnique, telles que les transformateurs de mesure ou d'alimentation, on utilise des noyaux magnétiques constitués d'un matériau magnétique choisi pour ses propriétés magnétiques telles que la perméabilité magnétique ou les pertes. Pour ces applications, la forme du cycle d'hystérésis n'est pas essentielle. En revanche, pour de nombreuses applications traitant des signaux électriques de faible amplitude, par exemple les disjoncteurs différentiels, les alimentations à découpage ou les transformateurs de raccordement aux réseaux téléphoniques numériques, la forme du cycle d'hystérésis revêt une importance capitale. La forme du cycle d'hystérésis est caractérisée, notamment, par le rapport Br/Bm, rapport de l'induction rémanente à l'induction maximale. Lorsque Br/Bm est supérieur à 0,9, environ, le cycle d'hystérésis est dit « rectangulaire ». Lorsque le rapport Br/Bm est inférieur à 0,5, environ, le cycle d'hystérésis est dit « couché ». Les matériaux à cycle d'hystérésis rectangulaire sont utilisés, par exemple, pour réaliser les noyaux magnétiques des amplificateurs magnétiques ou des étages de régulation des alimentations à découpage. Les matériaux à cycle d'hystérésis couché sont utilisés, notamment, pour réaliser les noyaux magnétiques de disjoncteurs différentiels, de filtres électriques ou de transformateurs de découplage galvanique.For electrical engineering applications, such as transformers measurement or power supply, we use magnetic cores made up of a magnetic material chosen for its magnetic properties such as magnetic permeability or losses. For these applications, the shape of the cycle hysteresis is not essential. However, for many applications processing low amplitude electrical signals, for example circuit breakers RCDs, switching power supplies or connection transformers to digital telephone networks, the shape of the hysteresis cycle takes on a capital importance. The shape of the hysteresis cycle is characterized, in particular, by the Br / Bm ratio, ratio of the residual induction to the maximum induction. When Br / Bm is greater than 0.9, approximately, the hysteresis cycle is said to be “rectangular”. When the Br / Bm ratio is less than about 0.5, the hysteresis cycle is said " layer ". Materials with a rectangular hysteresis cycle are used, for example example, to make the magnetic cores of magnetic amplifiers or switching power supply regulation stages. Cycle materials of coated hysteresis are used, in particular, to produce the magnetic cores earth leakage circuit breakers, electric filters or transformers galvanic decoupling.

Pour fabriquer des composants magnétiques en matériau magnétique doux ayant un cycle d'hystérésis de forme précise, rectangulaire ou couché, on utilise des alliages magnétiques doux à faibles anisotropies (coefficients d'anisotropie inférieurs à 5000 ergs/cm3, et, de préférence, inférieurs à 1000 ergs/cm3), tels que les alliages FeNiMo 15-80-5, les alliages base Co amorphes ou les alliages du type FeSiCuNbB nanocristallins, et on soumet les composants magnétiques à un recuit sous champ magnétique intense. Le recuit est effectué à une température inférieure au point de Curie de l'alliage. Le champ magnétique est longitudinal, c'est à dire parallèle à la direction dans laquelle on mesurera les propriétés magnétiques, lorsqu'on veut obtenir un cycle d'hystérésis rectangulaire. Il est transversal, c'est à dire perpendiculaire à la direction dans laquelle on mesurera les propriétés magnétiques, lorsqu'on veut obtenir un cycle d'hystérésis couché. Le champ magnétique est appliqué pendant toute la durée du traitement, et il est constant. La température et la durée de traitement sont les deux paramètres qui ont une incidence sur le résultat du traitement thermique. Ces traitements, lorsqu'ils sont de longue durée (de une à quelques heures), permettent d'obtenir avec une bonne fiabilité soit des cycles d'hystérésis très rectangulaires (Br/Bm > 0,9), soit des cycles d'hystérésis très couchés Br/Bm < 0,2). Mais ils ne permettent pas d'obtenir avec une fiabilité suffisante des cycles d'hystérésis ayant une forme intermédiaire (0,3 < Br/Bm < 0,9), très utiles pour certaines applications. En effet, pour obtenir de tels cycles d'hystérésis, il est nécessaire d'effectuer des recuits de faible durée, mais, alors, les résultats sont beaucoup trop aléatoires aussi bien en termes de rectangularité que de perméabilité pour pouvoir envisager une application industrielle. Il faut, en effet, pouvoir contrôler simultanément ces deux paramètres.To manufacture magnetic components from soft magnetic material having a hysteresis cycle of precise shape, rectangular or coated, soft magnetic alloys with low anisotropies are used (anisotropy coefficients less than 5000 ergs / cm 3 , and preferably less than 1000 ergs / cm 3 ), such as FeNiMo 15-80-5 alloys, amorphous Co base alloys or alloys of the FeSiCuNbB nanocrystalline type, and the magnetic components are subjected to annealing under an intense magnetic field. Annealing is carried out at a temperature below the Curie point of the alloy. The magnetic field is longitudinal, that is to say parallel to the direction in which the magnetic properties will be measured, when one wants to obtain a rectangular hysteresis cycle. It is transverse, that is to say perpendicular to the direction in which the magnetic properties will be measured, when one wants to obtain a lying hysteresis cycle. The magnetic field is applied for the duration of the treatment, and it is constant. The temperature and the duration of treatment are the two parameters which affect the result of the heat treatment. These treatments, when they are of long duration (from one to a few hours), make it possible to obtain with good reliability either very rectangular hysteresis cycles (Br / Bm> 0.9), or hysteresis cycles very coated Br / Bm <0.2). However, they do not make it possible to obtain, with sufficient reliability, hysteresis cycles having an intermediate form (0.3 <Br / Bm <0.9), which are very useful for certain applications. Indeed, to obtain such hysteresis cycles, it is necessary to carry out annealing of short duration, but, then, the results are much too random both in terms of rectangularity and permeability to be able to envisage an industrial application. These two parameters must be able to be controlled simultaneously.

Le but de la présente invention est de remédier à cet inconvénient en donnant un moyen pour obtenir de façon reproductible des composants magnétiques en alliage magnétique doux ayant des cycles d'hystérésis intermédiaires entre les cycles d'hystérésis très rectangulaires et les cycles d'hystérésis très couchés, c'est à dire, caractérisés par un rapport Br/Bm compris entre 0,3 et 0,9.The object of the present invention is to remedy this drawback by giving means for reproducibly obtaining magnetic components by soft magnetic alloy having intermediate hysteresis cycles between very rectangular hysteresis cycles and very layered hysteresis cycles is that is, characterized by a Br / Bm ratio of between 0.3 and 0.9.

A cet effet, l'invention a pour objet un procédé de traitement thermique sous champ magnétique d'un composant magnétique en matériau magnétique doux tel que, par exemple, un alliage FeNiMo 15-80-5, un alliage base Co amorphe ou un alliage FeSiCuNbB nanocristallin, selon lequel on effectue un recuit du composant magnétique à une température inférieure au point de curie du matériau magnétique, et, pendant le recuit, on soumet le composant magnétique à un champ magnétique longitudinal ou transversal, unidirectionnel, alternatif ou continu, appliqué sous forme d'une succession de créneaux comportant chacun une première partie pendant laquelle l'intensité du champ magnétique atteint une valeur maximale, et une deuxième partie pendant laquelle l'intensité du champ magnétique a une valeur minimale. Cette valeur minimale est, de préférence, inférieure à 10% de la valeur maximale du champ correspondant au créneaux le plus important au quel le composant magnétique est soumis.To this end, the invention relates to a heat treatment process under magnetic field of a magnetic component made of soft magnetic material such that, for example, a FeNiMo 15-80-5 alloy, an amorphous Co base alloy or a nanocrystalline FeSiCuNbB alloy, according to which the component is annealed magnetic at a temperature below the curie point of the magnetic material, and, during annealing, the magnetic component is subjected to a magnetic field longitudinal or transverse, unidirectional, alternating or continuous, applied in the form of a succession of slots each comprising a first part during which the intensity of the magnetic field reaches a maximum value, and a second part during which the intensity of the magnetic field has a minimum value. This minimum value is preferably less than 10% of the maximum value of the field corresponding to the most important niche in which the component magnetic is subject.

Les intensités maximales des champs magnétiques de deux créneaux successifs peuvent être sensiblement égales ou sensiblement différentes. En particulier, pour tout couple de deux créneaux successifs, l'intensité maximale du champ magnétique du deuxième créneaux peut être inférieure à l'intensité maximale du champ magnétique du premier créneau, de façon à obtenir une décroissance du champ magnétique maximal tout au long du traitement. L'intensité maximale du champ magnétique du dernier créneau effectué peut, alors, être inférieure à 25 % de l'intensité maximale du champ magnétique du premier créneau effectué.The maximum intensities of the magnetic fields of two slots successive can be substantially equal or substantially different. In particular, for any couple of two successive slots, the maximum intensity of the magnetic field of the second slot can be less than the maximum intensity of the magnetic field of the first niche, so as to obtain a decrease in the maximum magnetic field throughout the treatment. The maximum intensity of magnetic field of the last niche performed can, therefore, be less than 25% of the maximum intensity of the magnetic field of the first niche performed.

De préférence, pour chaque créneau, l'intensité minimale du champ magnétique est nulle.Preferably, for each niche, the minimum field strength magnetic is zero.

De préférence également, chaque créneau a une durée totale inférieure à 30 minutes, la durée de la période pendant laquelle le champ magnétique a une intensité maximale est inférieure à 15 minutes.Also preferably, each slot has a total duration of less than 30 minutes, the duration of the period during which the magnetic field has a maximum intensity is less than 15 minutes.

L'invention va maintenant être décrite plus en détails en regard de l'unique figure annexée qui représente l'évolution en fonction du temps de la température et du champ magnétique appliqué au cours du traitement thermique d'un composant magnétique en alliage magnétique doux. L'invention va, également, être illustrée par des exemples.The invention will now be described in more detail with reference to the single attached figure which represents the evolution as a function of time of the temperature and of the magnetic field applied during the heat treatment of a component magnetic soft magnetic alloy. The invention will also be illustrated by examples.

Le Traitement thermique selon l'invention, qui s'applique à tout composant magnétique en alliage magnétique doux ayant des anisotropies très faibles, consiste en un recuit sous champ magnétique à une température inférieure au point de Curie de l'alliage magnétique doux, dans lequel le champ magnétique est appliqué de façon discontinue. Ce traitement thermique sous champ magnétique est effectué dans un four de traitement thermique sous champ magnétique unidirectionnel connu en lui-même. Lorsque, par exemple, le composant magnétique est un noyau magnétique torique constitué d'un ruban en alliage magnétique doux enroulé de façon à former un tore de section rectangulaire, le champ magnétique est engendré soit par un conducteur électrique parcouru par un courant électrique continu ou alternatif, sur lequel le tore est enfilé, soit par une bobine dont l'axe est parallèle à l'axe de révolution du tore, et qui entoure le tore. Dans le premier cas, le champ magnétique est longitudinal, c'est à dire, parallèle à l'axe longitudinal du ruban en alliage magnétique doux. Dans le second cas, le champ magnétique est transversal, c'est à dire, parallèle à la surface du ruban, mais, perpendiculaire à l'axe longitudinal de celui-ci.The heat treatment according to the invention, which applies to any component magnetic soft magnetic alloy having very weak anisotropies, consists annealing under magnetic field at a temperature below the Curie point of soft magnetic alloy, in which the magnetic field is applied discontinuously. This heat treatment under magnetic field is carried out in a known unidirectional magnetic field heat treatment oven in himself. When, for example, the magnetic component is a core magnetic ring consisting of a ribbon of soft magnetic alloy wound in order to form a torus of rectangular section, the magnetic field is generated either by an electric conductor traversed by a direct electric current or alternating, on which the torus is threaded, either by a coil whose axis is parallel to the axis of revolution of the torus, and which surrounds the torus. In the first case, the field magnetic is longitudinal, i.e. parallel to the longitudinal axis of the ribbon soft magnetic alloy. In the second case, the magnetic field is transverse, that is, parallel to the surface of the ribbon, but perpendicular to the axis longitudinal of it.

La température de recuit doit, de préférence, être supérieure à 0,5 fois la température de Curie exprimée en degrés centigrades.The annealing temperature should preferably be greater than 0.5 times the Curie temperature expressed in degrees centigrade.

Le déroulement du traitement thermique, représenté à la figure 1, comporte :

  • pour la température, un maintien à la température de traitement , inférieure au point de Curie c, entre les instants t0 de début de traitement, et t1 de fin de traitement,
  • pour le champ magnétique, une succession de créneaux C1, C2, C3 et C4.
The heat treatment process, shown in Figure 1, includes:
  • for the temperature, maintaining at the treatment temperature , below the Curie point c, between the instants t 0 at the start of treatment, and t 1 at the end of treatment,
  • for the magnetic field, a succession of slots C 1 , C 2 , C 3 and C 4 .

Chaque créneau comporte une première partie de durée Δt (Δt1 pour C1, Δt2 pour C2, etc.) pendant laquelle l'intensité du champ magnétique a une valeur maximale Hmax (Hmax1 pour C1, Hmax2 pour C2, etc.), et une deuxième partie de durée Δt' (Δt'1 pour C1, Δt'2 pour C2, etc.) pendant laquelle l'intensité du champ magnétique a une valeur minimale Hmin (Hmin1 pour C1, Hmin2 pour C2, etc.).Each slot comprises a first part of duration Δt (Δt 1 for C 1 , Δt 2 for C 2 , etc.) during which the intensity of the magnetic field has a maximum value Hmax (Hmax 1 for C 1 , Hmax 2 for C 2 , etc.), and a second part of duration Δt '(Δt' 1 for C 1 , Δt ' 2 for C 2 , etc.) during which the intensity of the magnetic field has a minimum value Hmin (Hmin 1 for C 1 , Hmin 2 for C 2 , etc.).

Lorsque le champ magnétique est continu, Hmax représente l'intensité du champ magnétique. Lorsque le champ magnétique est alternatif, Hmax représente l'intensité de crête du champ magnétique (intensité maximale atteinte à chaque alternance).When the magnetic field is continuous, Hmax represents the intensity of the magnetic field. When the magnetic field is alternating, Hmax represents the peak intensity of the magnetic field (maximum intensity reached at each alternating).

Les créneaux, tels qu'ils ont été représentés, sont rectangulaires. Mais les créneaux peuvent être, par exemple, du type trapézoïdal ou du type triangulaire, l'intensité du champ magnétique décroissant régulièrement au cours de la partie du créneau correspondant au champ magnétique intense.The slots, as they have been represented, are rectangular. But the slots can be, for example, of the trapezoidal type or of the triangular type, the intensity of the magnetic field decreasing regularly during the part of the niche corresponding to the intense magnetic field.

Dans l'exemple représenté, les valeurs maximales du champ magnétique Hmax1 et Hmax2, correspondant aux deux créneaux successifs C1 et C2, sont égales. En revanche, Hmax3 est plus faible que Hmax2 et plus élevé que Hmax4. En fait, l'évolution des valeurs maximales successives du champ magnétique peut être choisie à volonté. En particulier, ces valeurs successives peuvent décroítre tout au long du traitement, en partant d'une valeur permettant de saturer les tores en cours de traitement (cette valeurs dépend non seulement de la nature du matériau constituant les tores, mais, également, des dimensions des tores) pour atteindre, en fin de traitement, une valeur inférieure à 25% de la valeur initiale.In the example shown, the maximum values of the magnetic field Hmax 1 and Hmax 2 , corresponding to the two successive slots C 1 and C 2 , are equal. On the other hand, Hmax 3 is lower than Hmax 2 and higher than Hmax 4 . In fact, the evolution of the successive maximum values of the magnetic field can be chosen at will. In particular, these successive values can decrease throughout the treatment, starting from a value allowing to saturate the toroids during treatment (this value depends not only on the nature of the material constituting the toroids, but also on the dimensions tori) to reach, at the end of treatment, a value less than 25% of the initial value.

Les valeurs minimales du champ magnétique Hmin, sont, en général, sensiblement nulles, et, en tous cas, doivent rester inférieures à 10% de la valeur maximale atteinte par le champ magnétique au cours du traitement.The minimum values of the magnetic field Hmin, are, in general, substantially zero, and in any case must remain below 10% of the value maximum reached by the magnetic field during treatment.

Δt sont, en général, de l'ordre de 5 minutes, et, de préférence, doivent rester inférieures à 15 minutes. Elles ne sont pas nécessairement égales d'un créneau à l'autre. Les durées Δt' sont, en général, de l'ordre de 5 minutes, et, de préférence, doivent rester inférieures à 30 minutes.Δt are, in general, of the order of 5 minutes, and preferably should remain less than 15 minutes. They are not necessarily equal from niche to the other. The durations Δt 'are, in general, of the order of 5 minutes, and preferably must remain less than 30 minutes.

Le nombre de créneaux peut être choisi à volonté en fonction du résultat à obtenir, et, également, en fonction de la durée totale du traitement qui, de préférence, est supérieure à 10 minutes et peut atteindre plusieurs heures. En tout état de cause, le nombre de créneaux doit être supérieur à 2.The number of slots can be chosen at will depending on the result obtain, and also, depending on the total duration of treatment which, from preferably, is more than 10 minutes and can reach several hours. In all in any event, the number of slots must be greater than 2.

Dans une variante, certains créneaux sont réalisés sous champ longitudinal, les autres étant réalisés sous champ transversal.In a variant, certain slots are produced in the longitudinal field, the others being carried out under transverse field.

A titre d'exemple, avec un ruban en alliage Fe73,5Si13,5Nb3Cu1B9, On a fabriqué des noyaux magnétiques en forme de tores de 26 mm de diamètre extérieur, 16 mm de diamètre intérieur et 10 mm d'épaisseur. Ces noyaux magnétiques ont d'abord été soumis à un traitement thermique par maintien à la température de 530°C pendant 1 heure afin de leur conférer une structure nanocristalline, puis soumis à différents recuits sous champ magnétique conformes à l'invention. Les différents traitements se différenciaient par la température de maintien, par la proportion du temps de maintien pendant lequel le champ magnétique était appliqué et par la direction du champ magnétique. Dans tous les cas, le temps de maintien en température était de 1 heure, le champ magnétique était appliqué sous forme de créneaux rectangulaires au cours des quels l'intensité maximale du champ magnétique était suffisant pour saturer les tores pendant quelques minutes. Les formes des cycles d'hystérésis obtenus, caractérisées par le rapport Br/Bm, étaient :

Figure 00050001
For example, with a strip of Fe 73.5 Si 13.5 Nb 3 Cu 1 B 9 alloy, magnetic cores in the form of tori were produced, 26 mm in outside diameter, 16 mm in inside diameter and 10 mm thick. These magnetic cores were first subjected to a heat treatment by maintaining at the temperature of 530 ° C. for 1 hour in order to give them a nanocrystalline structure, then subjected to various anneals under magnetic field in accordance with the invention. The different treatments were differentiated by the holding temperature, by the proportion of the holding time during which the magnetic field was applied and by the direction of the magnetic field. In all cases, the temperature retention time was 1 hour, the magnetic field was applied in the form of rectangular slots during which the maximum intensity of the magnetic field was sufficient to saturate the toroids for a few minutes. The forms of the hysteresis cycles obtained, characterized by the Br / Bm ratio, were:
Figure 00050001

Sur ce tableau, on voit, par exemple, que pour un traitement sous champ transverse appliqué pendant 25% du temps et une température de recuit de 250°C, le rapport Br/Bm était de 0,35. En fait, ces valeurs étaient obtenues à +/- 0,02 près. De plus, les perméabilités magnétiques maximales à 50Hz étaient systématiquement supérieures d'au moins 25 % aux perméabilités magnétiques maximales à 50Hz obtenues par des traitements thermiques sous champ magnétique continu, conformément à l'art antérieur.On this table, we see, for example, that for a treatment under field transverse applied for 25% of the time and an annealing temperature of 250 ° C, the Br / Bm ratio was 0.35. In fact, these values were obtained to within +/- 0.02. In addition, the maximum magnetic permeabilities at 50Hz were systematically at least 25% higher than the maximum magnetic permeabilities at 50Hz obtained by heat treatments under a continuous magnetic field, in accordance with the prior art.

Plus précisément, avec un recuit à 400°C sous champ transverse appliqué sous forme de créneaux, le champ intense étant appliqué pendant 25 % du temps de maintien en température, on a obtenu un rapport Br/Bm compris entre 0,08 et 0,12 et une perméabilité magnétique d'impédance à 50 Hz µmax comprise entre 180 000 et 220 000.More precisely, with an annealing at 400 ° C. under a transverse field applied in the form of slots, the intense field being applied for 25% of the temperature maintenance time, a Br / Bm ratio of between 0.08 and 0 was obtained, 12 and a magnetic permeability of impedance at 50 Hz µ max between 180,000 and 220,000.

A titre de comparaison, on a effectué des traitements thermiques sous champ conformes à l'art antérieur, c'est à dire, au cours des quels le champ magnétique est maintenu constant pendant tout le maintien en température. Ces traitements ont consisté en un recuit à 350 °C sous champ perpendiculaire. Ils ont conduit à des valeurs de Br/Bm comprises entre 0,12 et 0,31, soit une dispersion cinq fois plus importante que dans l'exemple précédent. La perméabilité µmax étaient comprises entre 180 000 et 220 000.By way of comparison, heat treatments have been carried out under field in accordance with the prior art, that is to say, during which the magnetic field is kept constant throughout the temperature maintenance. These treatments consisted of annealing at 350 ° C. under a perpendicular field. They led to Br / Bm values between 0.12 and 0.31, that is to say a dispersion five times greater than in the previous example. The permeability µ max was between 180,000 and 220,000.

Claims (10)

  1. Method for thermal treatment under the influence of a magnetic field, of a magnetic component made of soft magnetic material with low anisotropies, such as for instance an FeNiMo 15-80-5 alloy, an alloy based on amorphous Co or a nanocrystalline FeSiCuNbB alloy, according to which an annealing of the magnetic component is carried out at a temperature less than the Curie point of the magnetic material, and, during the annealing, the magnetic component being subjected to a longitudinal or transverse, unidirectional, continuous or alternating magnetic field, characterised in that the magnetic field is applied in the form of a pulse sequence, each pulse comprising a first part during which the magnetic field strength reaches a maximum value, and a second part during which the magnetic field strength has a minimum value.
  2. Method according to claim 1, characterised in that, for at least two successive pulses the maximum magnetic field strengths are approximately equal.
  3. Method according to claim 1, characterised in that, for at least two successive pulses the maximum magnetic field strengths are noticeably different.
  4. Method according to claim 3, characterised in that the maximum magnetic field strength of the second pulse is smaller than the maximum magnetic field strength of the first pulse.
  5. Method according to claim 4, characterised in that, for any pair of two successive pulses the maximum magnetic field strength of the second pulse is smaller than the maximum magnetic field strength of the first pulse.
  6. Method according to claim 5, characterised in that the maximum magnetic field strength of the last performed pulse is less than 25% of the maximum magnetic field strength of the first performed pulse.
  7. Method according to any of the claims 1 to 6, characterised in that, for at least one pulse, the minimum magnetic field strength is less than 10% of the maximum field strength reached by the magnetic field during the treatment.
  8. Method according to any of the claims 1 to 7, characterised in that at least one pulse has a total duration less then 30 minutes.
  9. Method according to claim 8, characterised in that, for at least one pulse, the total duration of which is less than 30 minutes, the duration of the part during which the magnetic field has a maximum strength is less than 15 minutes.
  10. Method according to any of the claims 1 to 9, characterised in that the total duration of the thermal treatment is more than 10 minutes.
EP98401043A 1997-06-04 1998-04-29 Heating process with magnetic field of a soft magnetic component Expired - Lifetime EP0883141B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706849A FR2764430B1 (en) 1997-06-04 1997-06-04 METHOD OF HEAT TREATMENT IN A MAGNETIC FIELD OF A COMPONENT MADE OF SOFT MAGNETIC MATERIAL
FR9706849 1997-06-04

Publications (2)

Publication Number Publication Date
EP0883141A1 EP0883141A1 (en) 1998-12-09
EP0883141B1 true EP0883141B1 (en) 2003-05-28

Family

ID=9507559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98401043A Expired - Lifetime EP0883141B1 (en) 1997-06-04 1998-04-29 Heating process with magnetic field of a soft magnetic component

Country Status (19)

Country Link
US (1) US5935346A (en)
EP (1) EP0883141B1 (en)
JP (1) JPH118110A (en)
KR (1) KR19990006483A (en)
CN (1) CN1112711C (en)
AT (1) ATE241849T1 (en)
AU (1) AU733279B2 (en)
CZ (1) CZ165998A3 (en)
DE (1) DE69814983T2 (en)
ES (1) ES2196510T3 (en)
FR (1) FR2764430B1 (en)
HU (1) HUP9801275A3 (en)
PL (1) PL184069B1 (en)
RO (1) RO119574B1 (en)
RU (1) RU2190023C2 (en)
SK (1) SK67798A3 (en)
TR (1) TR199801001A3 (en)
TW (1) TW367508B (en)
ZA (1) ZA984148B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176943B1 (en) * 1999-01-28 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Processing treatment of amorphous magnetostrictive wires
JP4047114B2 (en) * 2002-09-13 2008-02-13 アルプス電気株式会社 Thin film magnetic head
US7713888B2 (en) * 2004-05-24 2010-05-11 Ashkenazi Brian I Magnetic processing of electronic materials
US7479859B2 (en) 2006-03-08 2009-01-20 Jack Gerber Apparatus and method for processing material in a magnetic vortex
EP2209127A1 (en) 2009-01-14 2010-07-21 ArcelorMittal - Stainless & Nickel Alloys Method for manufacturing a magnetic core from a magnetic alloy having a nanocrystalline structure
CN101717901B (en) * 2009-12-22 2011-07-20 上海大学 Process and device for amorphous thin ribbon heat treatment under the action of pulsed magnetic field
CN102031348B (en) * 2010-11-09 2012-03-14 顾群业 Method for eliminating stress of hot-rolled steel plate
CN102031349B (en) * 2010-11-09 2012-02-29 张子睿 Method for eliminating stress of cast steel structure
DE102010060740A1 (en) * 2010-11-23 2012-05-24 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
US9457404B2 (en) * 2013-02-04 2016-10-04 The Boeing Company Method of consolidating/molding near net-shaped components made from powders
US9993946B2 (en) 2015-08-05 2018-06-12 The Boeing Company Method and apparatus for forming tooling and associated materials therefrom
US9933392B2 (en) * 2015-09-30 2018-04-03 The Boeing Company Apparatus, system, and method for non-destructive ultrasonic inspection
CN105861959B (en) * 2016-05-26 2018-01-02 江苏奥玛德新材料科技有限公司 Intelligent electric meter low angular difference nano-crystal soft magnetic alloy magnetic core and preparation method thereof
CN106119500B (en) * 2016-08-04 2017-11-07 江西大有科技有限公司 Soft magnetic materials magnetic core adds vertical magnetic field heat treatment process and device
CN107464649B (en) * 2017-08-03 2020-03-17 江苏奥玛德新材料科技有限公司 Magnetic core with linear hysteresis loop
CN112251648B (en) * 2020-09-29 2022-02-11 绵阳西磁科技有限公司 High-permeability low-loss FeNiMo magnetic powder core and preparation method thereof
CN115094210B (en) * 2022-07-16 2023-04-25 温州大学 Soft magnetic alloy multifunctional composite magnetic field vacuum heat treatment device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674172A4 (en) * 1972-05-05 1973-08-31
DE2816173C2 (en) * 1978-04-14 1982-07-29 Vacuumschmelze Gmbh, 6450 Hanau Method of manufacturing tape cores
JPS565962A (en) * 1979-06-27 1981-01-22 Sony Corp Manufacture of amorphous magnetic alloy
JPS5779157A (en) * 1980-10-31 1982-05-18 Sony Corp Manufacture of amorphous magnetic alloy
US4873605A (en) * 1986-03-03 1989-10-10 Innovex, Inc. Magnetic treatment of ferromagnetic materials
JPS6311654A (en) * 1986-06-30 1988-01-19 Mitsubishi Electric Corp Production of amorphous magnetic material
JPH0694589B2 (en) * 1987-04-13 1994-11-24 富士写真フイルム株式会社 Heat treatment method for amorphous soft magnetic material
US4816965A (en) * 1987-05-29 1989-03-28 Innovex Inc. Mechanism for providing pulsed magnetic field
JP2713363B2 (en) * 1987-06-04 1998-02-16 日立金属 株式会社 Fe-based soft magnetic alloy compact and manufacturing method thereof
IT1211537B (en) * 1987-11-18 1989-11-03 Halsall Prod Ltd Electronically-driven brushless DC motor for fan drive
JP2710949B2 (en) * 1988-03-30 1998-02-10 日立金属株式会社 Manufacturing method of ultra-microcrystalline soft magnetic alloy
US4950337A (en) * 1989-04-14 1990-08-21 China Steel Corporation Magnetic and mechanical properties of amorphous alloys by pulse high current
JP2927826B2 (en) * 1989-07-24 1999-07-28 ティーディーケイ株式会社 Soft magnetic alloy and manufacturing method thereof
JPH0570901A (en) * 1991-09-16 1993-03-23 Hitachi Metals Ltd Fe base soft magnetic alloy
JPH0636927A (en) * 1992-07-14 1994-02-10 Fujitsu Ltd Soft magnetic thin film and thin film magnetic head using that
JPH07254116A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Method of heat treatment for thin film magnetic head

Also Published As

Publication number Publication date
PL326622A1 (en) 1998-12-07
RO119574B1 (en) 2004-12-30
AU733279B2 (en) 2001-05-10
AU6483698A (en) 1998-12-10
PL184069B1 (en) 2002-08-30
KR19990006483A (en) 1999-01-25
US5935346A (en) 1999-08-10
TR199801001A2 (en) 1999-10-21
DE69814983T2 (en) 2004-05-13
CZ165998A3 (en) 1999-01-13
ES2196510T3 (en) 2003-12-16
FR2764430A1 (en) 1998-12-11
TW367508B (en) 1999-08-21
JPH118110A (en) 1999-01-12
TR199801001A3 (en) 1999-10-21
RU2190023C2 (en) 2002-09-27
EP0883141A1 (en) 1998-12-09
DE69814983D1 (en) 2003-07-03
ATE241849T1 (en) 2003-06-15
ZA984148B (en) 1998-11-26
CN1201991A (en) 1998-12-16
FR2764430B1 (en) 1999-07-23
HUP9801275A2 (en) 2000-12-28
HUP9801275A3 (en) 2002-12-28
CN1112711C (en) 2003-06-25
HU9801275D0 (en) 1998-07-28
SK67798A3 (en) 1999-01-11

Similar Documents

Publication Publication Date Title
EP0883141B1 (en) Heating process with magnetic field of a soft magnetic component
EP0848397B1 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure
EP1805772B1 (en) Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing same
FR2738984A1 (en) METHOD AND DEVICE FOR MEASURING AN ION FLOW IN A PLASMA
EP0844628B1 (en) Process for producing a magnetic core of nanocristalline soft magnetic material
FR2895638A1 (en) Inductor device for electric boiling plate of induction cooking plate, has conductor element extended beyond coil so as to be disposed under another coil to magnetically couple coils, where coils are polarized in opposite directions
FR2706615A1 (en) Method and apparatus for measuring a section ratio between two materials forming part of an electric wire covered with a metal.
EP0015244A1 (en) Process for manufacturing stators for stepping motors of electronic watches, and motor realized according to the process
EP2387788B1 (en) Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure
FR2485247A1 (en) ADJUSTABLE INDUCTOR AND METHOD FOR MAKING SAME
EP0834890A1 (en) Method of demagnetizing electro-permanent devices
EP0771135B1 (en) Inductive Litz wire winding used in an induction cooking apparatus
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
EP1260821A1 (en) Detectiont transformer for a differential protection device and protection device using such a transformer
FR2744135A1 (en) PROCESS FOR MANUFACTURING NON-ORIENT GRAIN MAGNETIC STEEL SHEET AND THE SAME OBTAINED BY THE METHOD
EP0667628B1 (en) Superconductive bobbin with general transition
Gladskikh et al. Silver structures at the percolation threshold, prepared by laser annealing
EP1058278A2 (en) Wound magnetic circuit
EP1936745A2 (en) Method for connecting cable cores by magnetostriction and magnetostriction generating device
EP0544082B1 (en) Method for compacting transformer windings
FR2723246A1 (en) Accurate resistivity metal resistor with insulating film
FR2663805A1 (en) METHOD OF MANUFACTURING A MAGNETOSTRICTIVE ELEMENT FOR THE PRODUCTION OF ELECTRO-ACOUSTIC TRANSDUCERS AND ELECTRO-ACOUSTIC TRANSDUCER PRODUCED USING SUCH ELEMENTS.
FR2581264A1 (en) Summing current transformer for one or three=phase circuit protection
EP0817530A1 (en) Method for optimising the inductors of an induction cooktop and thus optimised inductors
FR2632804A1 (en) ELECTROSTATIC PARTICLE ACCELERATOR, OPERATING IN PULSE CONDITIONS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990609

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69814983

Country of ref document: DE

Date of ref document: 20030703

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031106

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2196510

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20040324

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040331

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20040402

Year of fee payment: 7

Ref country code: CH

Payment date: 20040402

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

26N No opposition filed

Effective date: 20040302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040527

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

BERE Be: lapsed

Owner name: *MECAGIS

Effective date: 20050430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050429

BERE Be: lapsed

Owner name: *MECAGIS

Effective date: 20050430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170313

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170428

Year of fee payment: 20

Ref country code: DE

Payment date: 20170412

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170411

Year of fee payment: 20

Ref country code: ES

Payment date: 20170508

Year of fee payment: 20

Ref country code: AT

Payment date: 20170323

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69814983

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180428

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 241849

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180429

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180430