EP0882811B2 - Method of carburizing metallic workpieces in a vacuum furnace - Google Patents

Method of carburizing metallic workpieces in a vacuum furnace Download PDF

Info

Publication number
EP0882811B2
EP0882811B2 EP97108860A EP97108860A EP0882811B2 EP 0882811 B2 EP0882811 B2 EP 0882811B2 EP 97108860 A EP97108860 A EP 97108860A EP 97108860 A EP97108860 A EP 97108860A EP 0882811 B2 EP0882811 B2 EP 0882811B2
Authority
EP
European Patent Office
Prior art keywords
carbon
carbon carrier
carburizing
furnace
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97108860A
Other languages
German (de)
French (fr)
Other versions
EP0882811A1 (en
EP0882811B1 (en
Inventor
Bernd Dr. Edenhofer
Hansjakob Drissen
Winfried Gräfen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ipsen International GmbH
Original Assignee
Ipsen International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8226864&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0882811(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ipsen International GmbH filed Critical Ipsen International GmbH
Priority to DE59704123T priority Critical patent/DE59704123D1/en
Priority to ES97108860T priority patent/ES2161398T5/en
Priority to AT97108860T priority patent/ATE203572T1/en
Priority to EP97108860A priority patent/EP0882811B2/en
Publication of EP0882811A1 publication Critical patent/EP0882811A1/en
Application granted granted Critical
Publication of EP0882811B1 publication Critical patent/EP0882811B1/en
Publication of EP0882811B2 publication Critical patent/EP0882811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the invention relates to a method of carburizing metallic workpieces in a vacuum furnace, wherein the furnace atmosphere contains a carbon support which is split under the carburization process conditions to release pure carbon.
  • thermochemical treatment processes for case hardening of metallic workpieces in addition to conventional gas carburization, carburization processes have increasingly become established in vacuum plants in recent years, since carburization without edge oxidation is feasible only with these processes.
  • These carburizing processes in vacuum plants are vacuum and plasma carburizing. Since working with these carburizing without oxygen-containing reaction gases, no C-level control can be done; In this process, the decisive parameter for the carbon transition is the carbon mass flow density, which is defined as the amount of carbon that passes into the material per unit time and area.
  • This carbon needed for carburizing is provided by a carbonaceous carrier in the furnace atmosphere, usually a hydrocarbon, which is split at the given process conditions with release of pure carbon.
  • Vacuum carburization processes are, for example, from the documents SU-A-668978 .
  • the carbon carrier used is generally propane (C 3 H 8 ), which is split in the course of the so-called propane pyrolysis according to the following reaction equations: C 3 H 8 ⁇ CH 4 + C 2 H 4 C 2 H 4 ⁇ 2C + 2H 2 CH 4 ⁇ C + 2H 2
  • the carbon carrier used is usually methane (CH 4 ), which is obtained by methane pyrolysis according to the equation CH 4 ⁇ C + 2H 2 is split.
  • methane methane
  • propane propane instead of methane.
  • propane is a more effective carbon carrier than methane because of its greater number of carbon atoms - 3 C atoms for propane versus 1 C atom for methane.
  • propane has the disadvantage that it is already thermally cracked in the temperature range above 600 ° C, which can lead to sooting of the furnace and tar formation in the oven.
  • the early dissociation of the propane even at low temperatures also has the consequence that in the treatment of densely packed batches as well as workpieces with difficult to access surfaces, such as blind holes, the dissociated carbon is released mainly outside of the batch, so that the carburizing effect in the middle of the batch is lower. The same is true not only for densely packed batches, but also for drilling, in particular blind holes, in which the carbon is discharged predominantly at the hole opening and in the interior of the bore barely a carburizing effect can be detected.
  • methane has only one carbon atom
  • the methane molecule is so stable that it is not already split at the necessary carburizing temperature.
  • the cleavage takes place only in the plasma and thus really only on the workpiece surface. Since the carbon mass density in the cleavage of methane is low, large quantities of process gas must be supplied to the furnace in large-scale batches.
  • soot formation in the furnace increases with increasing carbon-hydrogen ratio (C / H) of the carbon support.
  • C / H carbon-hydrogen ratio
  • the carbon carrier is a hydrocarbon with a carbon-hydrogen ratio of 1: 1, preferably is used under the conditions stated in claim 1 acetylene.
  • a partial pressure of the carbon support of less than 20 mbar, preferably 10 mbar, is advantageously maintained in order to achieve a high carbon mass flow density or carbon transfer rate without soot formation.
  • the partial pressure of the carbon carrier is varied in a pulsating manner, the partial pressure of the carbon carrier reaching values of up to 50 mbar.
  • the furnace atmosphere may additionally contain other gases, in particular hydrogen and / or argon, which should additionally prevent the oxidation of the workpieces as inert gases.
  • the splitting of the carbon carrier can be assisted by a plasma.
  • the vacuum carburization with the carbon carriers propane and ethane was carried out at 860 ° C and with a partial pressure of the carbon carrier of 10 mbar.
  • the vacuum carburization with the carbon carrier acetylene was carried out at 930 ° C and a partial pressure of the carbon carrier of 10 mbar over a period for the carburizing and diffusion phase of 260 min.
  • the above-described uniform carburization on the outer and inner surface of the sample workpiece also illustrate the illustrations Fig. 2 to 4 in which the surface hardness and the case hardening depth (HV 1.0) are shown at different measuring points.
  • a comparison of the graphics in Fig. 3 and 4 shows that when acetylene is used as the carbon support, not only a nearly uniform surface hardness along the inner and outer workpiece surfaces is achieved, but also the case hardening depth (HV 1.0) at the inner and outer workpiece surfaces coincide almost at all measurement points.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Details (AREA)

Abstract

The method concerns carburisation of metal workpieces in a vacuum furnace, according to which the furnace atmosphere contains a carbon carrier which under the process conditions is split for delivery of pure carbon. The carbon carrier used is a hydrocarbon with a carbon to hydrogen ratio of 1:1, preferably acetylene.

Description

Die Erfindung betrifft ein Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen, wobei die Ofenatmosphäre einen Kohlenstoff-Träger enthält, der unter den Prozeßbedingungen der Aufkohlung unter Abgabe von reinem Kohlenstoff gespalten wird.The invention relates to a method of carburizing metallic workpieces in a vacuum furnace, wherein the furnace atmosphere contains a carbon support which is split under the carburization process conditions to release pure carbon.

Unter den thermochemischen Behandlungsverfahren zur Einsatzhärtung metallischer Werkstücke haben sich in den letzten Jahren neben der konventionellen Gasaufkohlung immer mehr die Aufkohlungsprozesse in Vakuumanlagen durchgesetzt, da nur mit diesen Verfahren eine randoxidationsfreie Aufkohlung realisierbar ist. Bei diesen Aufkohlungsprozessen in Vakuumanlagen handelt es sich um die Unterdruck- und die Plasmaaufkohlung. Da bei diesen Aufkohlungsverfahren ohne sauerstoffhaltige Reaktionsgase gearbeitet wird, kann keine C-Pegelregelung erfolgen; die entscheidende Kenngröße für den Kohlenstoffübergang ist bei diesen Verfahren die Kohlenstoff-Massenstromdichte, die als Kohlenstoffmenge definiert ist, die pro Zeit- und Flächeneinheit in den Werkstoff übergeht. Dieser zur Aufkohlung benötigte Kohlenstoff wird von einem in der Ofenatmosphäre befindlichen Kohlenstoff-Träger - meist einem Kohlenwasserstoff - zur Verfügung gestellt, der bei den gegebenen Prozeßbedingungen unter Abgabe von reinem Kohlenstoff gespalten wird.Among the thermochemical treatment processes for case hardening of metallic workpieces, in addition to conventional gas carburization, carburization processes have increasingly become established in vacuum plants in recent years, since carburization without edge oxidation is feasible only with these processes. These carburizing processes in vacuum plants are vacuum and plasma carburizing. Since working with these carburizing without oxygen-containing reaction gases, no C-level control can be done; In this process, the decisive parameter for the carbon transition is the carbon mass flow density, which is defined as the amount of carbon that passes into the material per unit time and area. This carbon needed for carburizing is provided by a carbonaceous carrier in the furnace atmosphere, usually a hydrocarbon, which is split at the given process conditions with release of pure carbon.

Unterdruck-Aufkohlungsverfahren sind zum Beispiel aus den Doku- menten SU-A-668978 , WO-A-96/3056 und GB-A-226127 bekannt.Vacuum carburization processes are, for example, from the documents SU-A-668978 . WO-A-96/3056 and GB-A-226127 known.

Bei den bekannten Unterdruck-Aufkohlungsverfahren wird als Kohlenstoff-Träger in der Regel Propan (C3H8) verwendet, welches im Laufe der sogenannten Propanpyrolyse nach folgenden Reaktionsgleichungen gespalten wird:

        C3H8 → CH4 + C2H4

        C2H4 → 2C + 2H2

        CH4 → C + 2H2

In the known vacuum carburizing process, the carbon carrier used is generally propane (C 3 H 8 ), which is split in the course of the so-called propane pyrolysis according to the following reaction equations:

C 3 H 8 → CH 4 + C 2 H 4

C 2 H 4 → 2C + 2H 2

CH 4 → C + 2H 2

Bei der Plasmaaufkohlung wird als Kohlenstoff-Träger meist Methan (CH4) verwendet, welches im Wege der Methanpyrolyse nach der Gleichung

        CH4 → C + 2H2

gespalten wird. Bei der Plasmaaufkohlung ist es jedoch auch möglich, anstelle von Methan Propan zu verwenden.
In the case of plasma carburization, the carbon carrier used is usually methane (CH 4 ), which is obtained by methane pyrolysis according to the equation

CH 4 → C + 2H 2

is split. In plasma carburization, however, it is also possible to use propane instead of methane.

Die Verwendung von Methan oder Propan als Kohlenstoff-Träger ist jeweils mit verschiedenen Vor- und Nachteilen verbunden. So ist beispielsweise Propan aufgrund seiner größeren Anzahl von Kohlenstoffatomen - 3 C-Atome bei Propan gegenüber 1 C-Atom bei Methan - ein wirksamerer Kohlenstoff-Träger als Methan. Andererseits weist Propan jedoch den Nachteil auf, daß es bereits im Temperaturbereich über 600°C thermisch gespalten wird, was zum Verrußen des Ofens sowie zur Teerbildung im Ofen führen kann. Die frühe Dissoziation des Propan schon bei niedrigen Temperaturen hat darüber hinaus zur Folge, daß bei der Behandlung dicht gepackter Chargen sowie von Werkstücken mit schwierig zugängigen Oberflächen, wie beispielsweise Sacklochbohrungen, der dissoziierte Kohlenstoff überwiegend außen an der Charge abgegeben wird, so daß die Aufkohlungswirkung in der Chargenmitte geringer ist. Dasselbe gilt nicht nur für dicht gepackte Chargen, sondern auch für Bohrungen, insbesondere Sacklochbohrungen, bei denen der Kohlenstoff überwiegend an der Bohrungsöffnung abgegeben wird und im Inneren der Bohrung kaum noch eine Aufkohlungswirkung nachzuweisen ist.The use of methane or propane as a carbon carrier is associated with various advantages and disadvantages. For example, propane is a more effective carbon carrier than methane because of its greater number of carbon atoms - 3 C atoms for propane versus 1 C atom for methane. On the other hand, however, propane has the disadvantage that it is already thermally cracked in the temperature range above 600 ° C, which can lead to sooting of the furnace and tar formation in the oven. The early dissociation of the propane even at low temperatures also has the consequence that in the treatment of densely packed batches as well as workpieces with difficult to access surfaces, such as blind holes, the dissociated carbon is released mainly outside of the batch, so that the carburizing effect in the middle of the batch is lower. The same is true not only for densely packed batches, but also for drilling, in particular blind holes, in which the carbon is discharged predominantly at the hole opening and in the interior of the bore barely a carburizing effect can be detected.

Methan hingegen weist zwar nur ein C-Atom auf, jedoch ist das Methan-Molekül so stabil, daß es nicht bereits bei der notwendigen Aufkohlungstemperatur gespalten wird. Die Spaltung erfolgt vielmehr erst im Plasma und somit wirklich nur an der Werkstückoberfläche. Da die Kohlenstoff-Massenstromdichte bei der Spaltung von Methan gering ist, müssen bei großflächigen Chargen große Mengen an Prozeßgas dem Ofen zugeführt werden.Although methane has only one carbon atom, the methane molecule is so stable that it is not already split at the necessary carburizing temperature. The cleavage takes place only in the plasma and thus really only on the workpiece surface. Since the carbon mass density in the cleavage of methane is low, large quantities of process gas must be supplied to the furnace in large-scale batches.

Wie bereits voranstehend angedeutet, liegt ein weiteres Problem bei den aus dem Stand der Technik bekannten Aufkohlungsverfahren darin, daß mit zunehmendem Kohlenstoff-Wasserstoff-Verhältnis (C/H) des Kohlenstoff-Trägers die Rußbildung im Ofen zunimmt. Bei Methan, CH4 (C/H = 0,25), ist der Rußanfall gering, bei Ethan, C2H6 (C/H = 0,33), ist der Rußanfall mittelgroß, bei Propan, C3H8 (C/H = 0,375) groß und bei Butan, C4H10 (C/H = 0,4) sehr hoch. Somit stehen sich bei der Optimierung der Aufkohlungsverfahren in Vakuum-Öfen zwei widerstreitende Forderungen bzw. Prozesse gegenüber, nämlich einerseits die Forderung nach einer Erhöhung des Kohlenstoff-Wasserstoff-Verhältnisses beim Kohlenstoff-Träger zur Erhöhung der Kohlenstoff-Massenstromdichte zur Erzielung einer besseren Aufkohlungswirkung und andererseits die zunehmende Rußbildung bei der Erhöhung des Kohlenstoff-Wasserstoff-Verhältnisses beim Kohlenstoff-Träger. Eine zur Erhöhung der Kohlenstoff-Massenstromdichte angestrebte Erhöhung des Partialdruckes des Kohlenstoff-Trägers erhöht dabei zusätzlich die Rußbildung im Ofen.As already indicated above, another problem with the carburization methods known from the prior art is that soot formation in the furnace increases with increasing carbon-hydrogen ratio (C / H) of the carbon support. For methane, CH 4 (C / H = 0.25), the soot accumulation is low, for ethane, C 2 H 6 (C / H = 0.33), the soot accumulation is medium, for propane, C 3 H 8 ( C / H = 0.375) and very high for butane, C 4 H 10 (C / H = 0.4). Thus, in optimizing the carburizing processes in vacuum furnaces, there are two conflicting demands and processes, namely, on the one hand, the requirement for increasing the carbon-to-hydrogen ratio in the carbon support to increase the carbon mass flow density to achieve a better carburizing effect and, on the other hand the increasing soot formation in increasing the carbon-to-hydrogen ratio of the carbon support. An increase of the partial pressure of the carbon carrier aimed at increasing the carbon mass flow density additionally increases soot formation in the furnace.

Zur Reduzierung der Rußbildung bei steigendem Partialdruck des Kohlenstoff-Trägers ist es beispielsweise aus der US-PS 3 796 615 bekannt, den Partialdruck des Kohlenstoff-Trägers pulsierend auf höhere Partialdrücke zu variieren, so daß der die Kohlenstoff-Massenstromdichte erhöhende Partialdruck des Kohlenstoff-Trägers nur kurzzeitig zur Erhöhung der Aufkohlungswirkung zur Verfügung steht, danach jedoch wieder absinkt, so daß die Rußbildung in Grenzen gehalten werden kann. Aufgrund des teilweise hohen Partialdruckes des Kohlenstoff-Trägers von bis zu 100 mbar liegt jedoch selbst bei diesem mit Druckpulsen betriebenen Verfahren eine allmähliche Verrußung des Ofens vor, so daß dieser immer noch zu Reinigungszwecken abgeschaltet werden muß.To reduce the soot formation with increasing partial pressure of the carbon carrier, it is for example from U.S. Patent 3,796,615 known to vary the partial pressure of the carbon carrier pulsating to higher partial pressures, so that the carbon mass flow density-increasing partial pressure of the Carbon support is available only for a short time to increase the carburizing effect, but then decreases again, so that the soot formation can be kept within limits. Due to the partially high partial pressure of the carbon support of up to 100 mbar, however, even in this operated with pressure pulses process is a gradual sooting of the furnace, so that it still has to be turned off for cleaning purposes.

In Anbetracht des voranstehend geschilderten Standes der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Aufkohlung metallischer Werkstücke in einem Vakuum-Ofen bereitzustellen, das eine gleichbleibende Aufkohlung mit einer hohen Kohlenstoff-Massenstromdichte gewährleistet, ohne daß gleichzeitig die Gefahr der Verrußung des Ofens besteht.In view of the above-described prior art, it is an object of the present invention to provide a method of carburizing metallic workpieces in a vacuum furnace which ensures consistent carburizing with a high carbon mass flow density without the risk of fouling of the furnace ,

Überraschenderweise hat sich herausgestellt, daß diese Aufgabe erfindungsgemäß dadurch gelöst wird, daß als Kohlenstoff-Träger ein Kohlenwasserstoff mit einem Kohlenstoff-Wasserstoff-Verhältnis von 1:1, vorzugsweise Acetylen, unter den in Anspruch 1 angegeben Bedingungen verwendet wird.Surprisingly, it has been found that this object is achieved in that as the carbon carrier is a hydrocarbon with a carbon-hydrogen ratio of 1: 1, preferably is used under the conditions stated in claim 1 acetylene.

Überraschend bei der Verwendung von Acetylen als Kohlenstoff-Träger ist nicht nur die sehr gute und gleichmäßige Aufkohlungswirkung auch bei schwierig zugänglichen Werkstücken, sondern insbesondere die Tatsache, daß trotz des hohen Kohlenstoff-Wasserstoff-Verhältnisses von 1:1 so gut wie keine Ruß- und Teerbildung auftritt. Die gute Aufkohlungswirkung bei der Verwendung von Acetylen als Kohlenstoff-Träger läßt sich damit erklären, daß aufgrund des hohen Kohlenstoff-Wasserstoff-Verhältnisses auch schon bei geringen Partialdrücken des Kohlenstoff-Trägers eine ausreichende Kohlenstoff-Massenstromdichte zur Verfügung steht, um eine gleichbleibende und ausreichende Aufkohlung zu erzielen.Surprising in the use of acetylene as a carbon carrier is not only the very good and uniform carburizing effect even with difficult to access workpieces, but in particular the fact that despite the high carbon-to-hydrogen ratio of 1: 1 as well as no soot and Tar formation occurs. The good Aufkohlungswirkung when using acetylene as a carbon support can be explained by the fact that due to the high carbon-to-hydrogen ratio even at low partial pressures of the carbon support sufficient carbon mass flow density is available to a consistent and sufficient carburization to achieve.

Gemäß der erfindungsgemäßen Verfahrensweise wird mit Vorteil ein Partialdruck des Kohlenstoff-Trägers von unter 20 mbar, vorzugsweise 10 mbar, eingehalten, um ohne Rußbildung eine hohe Kohlenstoff-Massenstromdichte bzw. Kohlenstoff-Übertragungsrate zu erzielen. Dabei wird der Partialdruck des Kohlenstoff-Trägers pulsierend variiert, wobei der Partialdruck des Kohlenstoff-Trägers Werte von bis zu 50 mbar erreicht.According to the procedure of the invention, a partial pressure of the carbon support of less than 20 mbar, preferably 10 mbar, is advantageously maintained in order to achieve a high carbon mass flow density or carbon transfer rate without soot formation. In this case, the partial pressure of the carbon carrier is varied in a pulsating manner, the partial pressure of the carbon carrier reaching values of up to 50 mbar.

Neben dem Kohlenwasserstoff mit einem Kohlenstoff-Wasserstoff-Verhältnis von 1:1 kann die Ofenatmosphäre zusätzlich noch weitere Gase, insbesondere Wasserstoff und/oder Argon enthalten, welche als Inertgase zusätzlich die Oxydation der Werkstücke verhindern sollen.In addition to the hydrocarbon with a carbon-to-hydrogen ratio of 1: 1, the furnace atmosphere may additionally contain other gases, in particular hydrogen and / or argon, which should additionally prevent the oxidation of the workpieces as inert gases.

Bei einer erfindungsgemäßen Weiterbildung des Verfahrens kann die Aufspaltung des Kohlenstoff-Trägers durch ein Plasma unterstützt werden.In a development of the method according to the invention, the splitting of the carbon carrier can be assisted by a plasma.

Merkmale des Verfahrens ohne die erfindungsgemäße Druckpulsierung ergeben sich aus den nachfolgenden Erläuterungen, die auf die beigefügten Zeichnungen Bezug nehmen. In der Zeichnung zeigt:

Fig. 1
einen schematischen Längsschnitt durch ein Probewerkstück mit zugehörigem Tabellenwerk, die Oberflächenhärtewerte auf der Innenseite des Probewerkstücks bei verschiedenen Kohlenstoff-Trägern wiedergebend;
Fig. 2
eine Seitenansicht des Probewerkstücks gemäß Fig. 1 mit der Angabe verschiedener Meßpunkte für den Härteverlauf an der Außen- und Innenseite des Probewerkstücks;
Fig. 3
eine graphische Darstellung des Härteverlaufs an den Meßpunkten A, C und E gemäß Fig. 2 an der Außenseite des Probewerkstücks nach der Einsatzhärtung mit Acetylen und
Fig. 4
eine graphische Darstellung des Härteverlaufs an den Meßpunkten B, D, F und H gemäß Fig. 2 an der Innenseite des Probewerkstück nach der Einsatzhärtung mit Acetylen.
Features of the method without the pressure pulsation according to the invention will become apparent from the following explanations, which refer to the accompanying drawings. In the drawing shows:
Fig. 1
a schematic longitudinal section through a sample workpiece with associated tables, the surface hardness values on the inside of the sample workpiece in different carbon carriers reproduced;
Fig. 2
a side view of the sample workpiece according to Fig. 1 with the indication of different measuring points for the hardness profile on the outside and inside of the sample work piece;
Fig. 3
a graphical representation of the hardness curve at the measuring points A, C and E according to Fig. 2 on the outside of the trial workpiece after case hardening with acetylene and
Fig. 4
a graphical representation of the hardness curve at the measuring points B, D, F and H according to Fig. 2 on the inside of the sample piece after case hardening with acetylene.

In der Zeichnung mit dem zugehörigen Tabellenwerk ist für ein Rohr aus dem Werkstoff 16 MnCr 5 mit einer abgestuften Durchgangsbohrung der Verlauf der Oberflächenhärte auf der Innenseite des Rohres nach dem Unterdruckaufkohlen mit den Kohlenstoff-Trägern Acetylen, Propan und Ethan vergleichend dargestellt.In the drawing with the corresponding tables, the course of the surface hardness on the inside of the tube after the vacuum carburizing with the carbon carriers acetylene, propane and ethane is shown comparatively for a tube made of the material 16 MnCr 5 with a stepped through hole.

Die Unterdruckaufkohlung mit den Kohlenstoff-Trägern Propan und Ethan erfolgte bei 860°C und mit einem Partialdruck des Kohlenstoff-Trägers von 10 mbar. Die Unterdruckaufkohlung mit dem Kohlenstoff-Träger Acetylen erfolgte bei 930°C und einem Partialdruck des Kohlenstoff-Trägers von 10 mbar über einen Zeitraum für die Aufkohlungs- und Diffusionsphase von 260 min.The vacuum carburization with the carbon carriers propane and ethane was carried out at 860 ° C and with a partial pressure of the carbon carrier of 10 mbar. The vacuum carburization with the carbon carrier acetylene was carried out at 930 ° C and a partial pressure of the carbon carrier of 10 mbar over a period for the carburizing and diffusion phase of 260 min.

Wie aus der Abbildung sowie dem zugehörigen Tabellenwerk ersichtlich ist, wurden mit den aus dem Stand der Technik bekannten Kohlenstoff-Trägern Propan und Ethan Oberflächenhärten von etwa 60 HRC und mehr nur in den Randbereichen der Bohrungen, das heißt bis zu einer Bohrungstiefe von etwa 50 mm von beiden Bohrungsöffnungen her gesehen, erzielt. Dahingegen lag bei der Verwendung von Propan als Kohlenstoff-Träger der Wert der Oberflächenhärte in der Mitte der Durchgangsbohrung bei einer Bohrtiefe von 110 mm bei nur 36,0 HRC. Hier fand also so gut wie keine Aufkohlung statt. Bei der Verwendung von Ethan als Kohlenstoff-Träger, welches aufgrund seines geringeren Kohlenstoff-Wasserstoff-Verhältnisses bei gleichem Partialdruck des Kohlenstoff-Trägers auch nur eine geringere Kohlenstoff-Massendichte erzielen kann, lag der Wert für die Oberflächenhärte in der Mitte der Durchgangsbohrung sogar bei nur 25,9 HRC.As can be seen from the figure and the accompanying tables, with the known from the prior art carbon carriers propane and ethane surface hardness of about 60 HRC and more only in the edge regions of the holes, that is up to a hole depth of about 50 mm seen from both bore openings, scored. By contrast, when using propane as the carbon support, the surface hardness value at the center of the through hole at a depth of 110 mm was only 36.0 HRC. So there was almost no carburisation here. When using ethane as a carbon support, which due to its lower carbon-to-hydrogen ratio at the same partial pressure of the carbon support only can achieve a lower carbon mass density, the surface hardness value in the middle of the through-hole was as low as 25.9 HRC.

Im Vergleich mit diesen bekannten Kohlenstoff-Trägern Propan und Ethan wurde mit dem neuen Kohlenstoff-Träger Acetylen eine nahezu gleichbleibend gute Aufkohlung über die gesamte Durchgangsbohrung erzielt. Wie aus der Tabelle ersichtlich ist, liegt der Wert für die Oberflächenhärte an der inneren Oberfläche der Durchgangsbohrung fast durchgehend bei einem Wert von 60 HRC und mehr.In comparison with these known carbon carriers propane and ethane was achieved with the new carbon carrier acetylene almost consistently good carburization over the entire through hole. As can be seen from the table, the surface hardness value at the inner surface of the through hole is almost continuously at 60 HRC or more.

Die voranstehend beschriebene gleichmäßige Aufkohlung an der äußeren und inneren Oberfläche des Probewerkstücks verdeutlichen auch die Abbildungen Fig. 2 bis 4, in denen die Oberflächenhärte sowie die Einsatzhärtungstiefe (HV 1,0) an verschiedenen Meßpunkten dargestellt ist. Ein Vergleich der Graphiken in Fig. 3 und 4 zeigt, daß bei der Verwendung von Acetylen als Kohlenstoff-Träger nicht nur eine nahezu gleichbleibende Oberflächenhärte entlang der inneren und äußeren Werkstückoberfläche erzielt wird, sondern auch die Einsatzhärtungstiefe (HV 1,0) an der inneren und äußeren Werkstückoberfläche fast an allen Meßpunkten übereinstimmt.The above-described uniform carburization on the outer and inner surface of the sample workpiece also illustrate the illustrations Fig. 2 to 4 in which the surface hardness and the case hardening depth (HV 1.0) are shown at different measuring points. A comparison of the graphics in Fig. 3 and 4 shows that when acetylene is used as the carbon support, not only a nearly uniform surface hardness along the inner and outer workpiece surfaces is achieved, but also the case hardening depth (HV 1.0) at the inner and outer workpiece surfaces coincide almost at all measurement points.

Mit dem voranstehend dargestellten Verfahren ist es somit möglich, durch die Verwendung eines Kohlenwasserstoffes mit einem Kohlenstoff-Wasserstoff-Verhältnis von 1:1, vorzugsweise Acetylen, als Kohlenstoff-Träger die Aufkohlungswirkung bei der Aufkohlung von metallischen Werkstücken in einem Vakuum-Ofen auch bei Werkstücken mit schwer zugänglichen Oberflächen deutlich zu erhöhen, ohne daß die Gefahr der Verrußung des Ofens besteht.Thus, by using a hydrocarbon having a carbon-to-hydrogen ratio of 1: 1, preferably acetylene, as the carbon support, it is possible to use the carburizing effect of carburizing metallic workpieces in a vacuum furnace even on workpieces To increase significantly with hard to reach surfaces without the risk of fouling of the furnace.

Claims (4)

  1. Method for carburizing metallic workpieces in a vacuum furnace with a furnace atmosphere, which contains a carbon carrier, wherein the process conditions in the furnace atmosphere are set such that the carbon carrier is decomposed while releasing pure carbon at a reduced pressure,
    characterised in that the carbon carrier has a carbon-hydrogen ratio of 1:1 and the partial pressure of the carbon carrier is varied in a pulsating fashion, wherein the partial pressure of the carbon carrier is raised in pressure pulses to 50 mbar and otherwise maintained below 20 mbar.
  2. Method according to Claim 1, characterised by acetylene as the carbon carrier.
  3. Method according to Claim 1 or 2, characterised in that hydrogen and/or argon is/are contained in the furnace atmosphere in addition to the carbon carrier.
  4. Method according to any one of Claims 1 to 3, characterised in that the carbon carrier is decomposed with the assistance of a plasma.
EP97108860A 1997-06-03 1997-06-03 Method of carburizing metallic workpieces in a vacuum furnace Expired - Lifetime EP0882811B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59704123T DE59704123D1 (en) 1997-06-03 1997-06-03 Process for carburizing metallic workpieces in a vacuum furnace
ES97108860T ES2161398T5 (en) 1997-06-03 1997-06-03 PROCEDURE FOR CARBURATION OF METAL PARTS IN A VACUUM OVEN.
AT97108860T ATE203572T1 (en) 1997-06-03 1997-06-03 METHOD FOR CARBURING METAL WORKPIECES IN A VACUUM FURNACE
EP97108860A EP0882811B2 (en) 1997-06-03 1997-06-03 Method of carburizing metallic workpieces in a vacuum furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97108860A EP0882811B2 (en) 1997-06-03 1997-06-03 Method of carburizing metallic workpieces in a vacuum furnace

Publications (3)

Publication Number Publication Date
EP0882811A1 EP0882811A1 (en) 1998-12-09
EP0882811B1 EP0882811B1 (en) 2001-07-25
EP0882811B2 true EP0882811B2 (en) 2010-12-15

Family

ID=8226864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97108860A Expired - Lifetime EP0882811B2 (en) 1997-06-03 1997-06-03 Method of carburizing metallic workpieces in a vacuum furnace

Country Status (4)

Country Link
EP (1) EP0882811B2 (en)
AT (1) ATE203572T1 (en)
DE (1) DE59704123D1 (en)
ES (1) ES2161398T5 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145714C (en) 1995-03-29 2004-04-14 株式会社日本H Method and equipment for vacuum carburization and products of carburization
JP3531736B2 (en) 2001-01-19 2004-05-31 オリエンタルエンヂニアリング株式会社 Carburizing method and carburizing device
FR2821362B1 (en) * 2001-02-23 2003-06-13 Etudes Const Mecaniques LOW PRESSURE CEMENTING PROCESS
DE10209382B4 (en) * 2002-03-02 2011-04-07 Robert Bosch Gmbh Method of carburizing components
DE10221605A1 (en) * 2002-05-15 2003-12-04 Linde Ag Method and device for the heat treatment of metallic workpieces
DE10235131A1 (en) * 2002-08-01 2004-02-19 Ipsen International Gmbh Method and device for blackening components
PL204202B1 (en) 2002-10-21 2009-12-31 Politechnika & Lstrok Odzka Mixture for negative pressure carburization
DE10254846B4 (en) * 2002-11-25 2011-06-16 Robert Bosch Gmbh Method for case-hardening components made of hot-work steels by means of vacuum carburizing
DE10322563B3 (en) * 2003-05-20 2004-11-11 Ipsen International Gmbh Vacuum carburizing or vacuum case hardening of steel components at low absolute pressure with addition of hydrogen, nitrogen, or argon
DE102009041927B4 (en) 2009-09-17 2015-08-06 Hanomag Härtecenter GmbH Process for low-pressure carburizing of metallic workpieces
EP2886668B1 (en) 2013-12-19 2018-12-12 Groz-Beckert KG Textile tool and manufacturing method for the same
PL422596A1 (en) 2017-08-21 2019-02-25 Seco/Warwick Spółka Akcyjna Method for low pressure carburizing (LPC) of elements made from iron and other metals alloys

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216688A1 (en) 1971-06-23 1973-01-11 Hayes Inc C I PROCESS FOR CARBURIZING THE EDGE ZONES OF A WORKPIECE
EP0818555A1 (en) 1995-03-29 1998-01-14 JH Corporation Method and equipment for vacuum carburization and products of carburization

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU668978A1 (en) * 1977-06-02 1979-06-28 Предприятие П/Я А-7697 Method of carburisation of steel articles
GB2261227B (en) * 1991-11-08 1995-01-11 Univ Hull Surface treatment of metals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2216688A1 (en) 1971-06-23 1973-01-11 Hayes Inc C I PROCESS FOR CARBURIZING THE EDGE ZONES OF A WORKPIECE
EP0818555A1 (en) 1995-03-29 1998-01-14 JH Corporation Method and equipment for vacuum carburization and products of carburization

Also Published As

Publication number Publication date
ES2161398T5 (en) 2011-04-05
DE59704123D1 (en) 2001-08-30
EP0882811A1 (en) 1998-12-09
ES2161398T3 (en) 2001-12-01
EP0882811B1 (en) 2001-07-25
ATE203572T1 (en) 2001-08-15

Similar Documents

Publication Publication Date Title
EP0882811B2 (en) Method of carburizing metallic workpieces in a vacuum furnace
DE3144192C2 (en) Process for vaporizing a surface with hard materials and application of the process
DE3841731C1 (en) Process for coating a tool base, and tool produced by this process
EP2203575B1 (en) Method for carburising workpieces and associated use
EP2118332B1 (en) Method for the production of a coating
DE2263210A1 (en) WEAR PART MADE OF CARBIDE, ESPECIALLY FOR TOOLS
DE2710748B2 (en) Process for carburizing workpieces made of iron
EP1011884A1 (en) Extrusion die, production and use
DE102015114479A1 (en) MANUFACTURING METHOD FOR HARD SURFACE ELEMENT
DE60223202T2 (en) PROCESS FOR LOW PRESSURE RECYCLING
EP0544987A1 (en) Method of treating steel alloys and refractory metals
EP1333105B1 (en) Process for heat treating metallic articles and heat treated article
EP0662525A1 (en) Process for preventing surface oxidation during steel carburizing
DE3019830C2 (en) Process for carburizing and heating workpieces made of steel in a controlled furnace atmosphere
DE2837272B2 (en) Process for gas carburizing of work pieces made of steel
EP0779376B2 (en) Plasma carburizing of metallic workpieces
DE60315693T2 (en) HYDROCARBON GAS MIXTURE FOR PRESSURE COOLING OF STEEL
EP1160349B1 (en) Process and apparatus for heat treating of metallic workpieces
EP1088118B1 (en) Method for applying a lubricating layer on an object and object with an adhesive lubricating layer
DE2605873C2 (en) Process for increasing the abrasion resistance of writing tubes
DE692080C (en) Process for casting metal objects in gas or vapor form
DE2109997A1 (en) Process for metallic cementing animals
EP0552460A1 (en) Process for hardening of work pieces unter the action of plasma-pulses
AT312952B (en) Wear part made of hard metal, in particular for tools
EP0545069A1 (en) Method of treating steel and refractory metals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19990609

AKX Designation fees paid

Free format text: AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20000331

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 203572

Country of ref document: AT

Date of ref document: 20010815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010726

REF Corresponds to:

Ref document number: 59704123

Country of ref document: DE

Date of ref document: 20010830

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALD VACUUM TECHNOLOGIES AG

Effective date: 20010921

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161398

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALD VACUUM TECHNOLOGIES AG

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: AICHELIN GESMBH

Effective date: 20020402

Opponent name: ALD VACUUM TECHNOLOGIES AG

Effective date: 20010921

NLR1 Nl: opposition has been filed with the epo

Opponent name: AICHELIN GESMBH

Opponent name: ALD VACUUM TECHNOLOGIES AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: IPSEN INTERNATIONAL GMBH

Free format text: IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE) -TRANSFER TO- IPSEN INTERNATIONAL GMBH#FLUTSTRASSE 78#47533 KLEVE (DE)

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20101215

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2161398

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20110405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140618

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140627

Year of fee payment: 18

Ref country code: SE

Payment date: 20140618

Year of fee payment: 18

Ref country code: ES

Payment date: 20140627

Year of fee payment: 18

Ref country code: DE

Payment date: 20140619

Year of fee payment: 18

Ref country code: CH

Payment date: 20140618

Year of fee payment: 18

Ref country code: NL

Payment date: 20140618

Year of fee payment: 18

Ref country code: AT

Payment date: 20140611

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140620

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140619

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59704123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150603

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 203572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150604

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150603

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150603

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630