EP2886668B1 - Textile tool and manufacturing method for the same - Google Patents

Textile tool and manufacturing method for the same Download PDF

Info

Publication number
EP2886668B1
EP2886668B1 EP13198583.0A EP13198583A EP2886668B1 EP 2886668 B1 EP2886668 B1 EP 2886668B1 EP 13198583 A EP13198583 A EP 13198583A EP 2886668 B1 EP2886668 B1 EP 2886668B1
Authority
EP
European Patent Office
Prior art keywords
tool
textile
regions
base body
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13198583.0A
Other languages
German (de)
French (fr)
Other versions
EP2886668A1 (en
Inventor
Simone Schwarz
Frank-Martin Durst
Richard Zeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Groz Beckert KG
Original Assignee
Groz Beckert KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI201331309T priority Critical patent/SI2886668T1/en
Application filed by Groz Beckert KG filed Critical Groz Beckert KG
Priority to PT13198583T priority patent/PT2886668T/en
Priority to ES13198583T priority patent/ES2707585T3/en
Priority to EP13198583.0A priority patent/EP2886668B1/en
Priority to TR2019/02562T priority patent/TR201902562T4/en
Priority to JP2016541565A priority patent/JP6556141B2/en
Priority to RU2016129123A priority patent/RU2682264C1/en
Priority to MX2016008153A priority patent/MX369012B/en
Priority to CN201480069077.2A priority patent/CN106062218B/en
Priority to BR112016013426-5A priority patent/BR112016013426B1/en
Priority to PT14809042T priority patent/PT3084017T/en
Priority to EP14809042.6A priority patent/EP3084017B1/en
Priority to KR1020167018464A priority patent/KR102414280B1/en
Priority to HUE14809042A priority patent/HUE041641T2/en
Priority to ES14809042T priority patent/ES2713375T3/en
Priority to PCT/EP2014/077022 priority patent/WO2015091103A1/en
Priority to PL14809042T priority patent/PL3084017T3/en
Priority to US15/106,006 priority patent/US10487429B2/en
Priority to SI201431092T priority patent/SI3084017T1/en
Priority to TW103143991A priority patent/TWI544087B/en
Publication of EP2886668A1 publication Critical patent/EP2886668A1/en
Application granted granted Critical
Publication of EP2886668B1 publication Critical patent/EP2886668B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/003Needles for special purposes, e.g. knitting, crochet, hat-pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/006Special treatments of pins or needles, e.g. annealing, straightening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21GMAKING NEEDLES, PINS OR NAILS OF METAL
    • B21G1/00Making needles used for performing operations
    • B21G1/10Making needles used for performing operations equipped with locking means for the material to be drawn through, e.g. for repairing tubeless tyres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/26Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for needles; for teeth for card-clothing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars

Definitions

  • the invention relates to a textile tool, in particular a needle, such as a felting needle, a sewing needle, a tufting needle, a knitting needle, a knitting needle, a tufting needle, a loop taker, or the like.
  • a textile tool in particular a needle, such as a felting needle, a sewing needle, a tufting needle, a knitting needle, a knitting needle, a tufting needle, a loop taker, or the like.
  • a textile tool in particular a needle, such as a felting needle, a sewing needle, a tufting needle, a knitting needle, a knitting needle, a tufting needle, a loop taker, or the like.
  • Such textile tools are used for the mechanical production or processing of textiles.
  • Textile tools are typically made of carbon steel and cured as needed.
  • the DE 199 36 082 A1 a sewing needle and a knitting needle, each made of carbon steel.
  • the blank for the production of the needle is subjected to a heat treatment and a shot peening treatment. This results in a surface hardening of the textile tool.
  • the DE PS 21 14 734 describes a method for tempering hardened needles, resulting in longitudinal sections of different hardness. This is effected by supplying different amounts of heat at the individual longitudinal sections of the needles. In this method, the size of the hardened zones is largely determined by the size of the zones heated by the needles during the hardening process.
  • Textile tools typically have relatively fine structures that are subject to different conditions during operation.
  • the so-called working part for example, in felting needles by a front provided with one or more hooks or barbs elongated tip in a sewing needle through the eye and other coming into contact with textile and thread lots and a hook needle through the hook and the immediately adjacent part formed of the shaft.
  • These workpieces must be highly wear-resistant and as hard as possible, but it must be made break-proof.
  • the rest of the shaft of the textile tool should often meet other conditions. This not only results in the desire for a zone-wise hardening, but also the desire for different hardening depths or hardness gradients in the textile tool.
  • the textile tool is subject to a wide range of storage and operating conditions. It must be able to be stored for a long time at various temperatures and humidities without losing its properties or corroding it. Compensation treatments, as of the DE 199 36 082 A1 proposed, are provided to increase the corrosion resistance. Such tempering treatments may be, for example, galvanic chrome plating.
  • the textile tool according to the invention has a tool body, ie a base body which consists of a chromium steel. This naturally brings a high corrosion resistance with it. Its chromium content is in the range of 11 to 30 weight percent. Preferably, it is an iron-based alloy. The total carbon content of more than 0.8 percent in at least one surface section enables hardening by martensite formation. This makes it possible to provide corrosion-resistant textile tools with high hardness and thus high wear resistance.
  • the main body has areas whose material has different degrees of deformation. wherein the body in areas with larger degrees of deformation has a higher hardness than in areas with lower degrees of deformation.
  • the invention has particular advantages with non-cutting textile tools. These are often non-cutting needles. Such needles can also be designed to pierce textile materials, which is the case with sewing, felt and tufting needles.
  • the total carbon content includes the carbon bonded in the carbides and the metal space lattice, i. the total carbon present.
  • the total carbon content can be determined inter alia by vaporizing the metal (plasma formation) and feeding the alloy components to a spectrometer and examining them.
  • the at least one surface section, in which total carbon concentrations of at least 0.8% by weight are established, is preferably located in the working part and / or has a high degree of deformation, as described in more detail below.
  • the hardening can be limited to specific sections (working part, shaft part) or designed differently in different sections.
  • This can produce different material properties in the shaft part and in the working part. Due to the different carbon contents and / or distributions in the shaft and working part, they can undergo the same heat treatment and yet form different properties.
  • the material on which the formation of the body was based is preferably X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8. It is advantageous if material which still contains the element carbon in its initial concentration is still present in the main body. Generally, the concentration of carbon in the main body is between 0.1 and 0.8%, but preferably between 0.2 and 0.6% in the low-carbon regions of the main body, between 0.8 and 1.2%, but preferably between 0, 9 and 1.1% in the carbon-rich areas of the same.
  • the main body preferably contains inclusions of chromium carbide. These may have been generated in a carburizing process. Thus, more chromium carbides are contained in the base material of the finished fabric tool than in the chrome steel used as the starting material.
  • the chromium carbide produced by the carburizing process may be at least partially concentrated at the surface of the textile tool. Preferably, it forms a layer of roundish crystals protruding from the surface, which are separated from one another by small distances. Preferably, adjacent crystals are not or only rarely connected by melt bridges.
  • the existing chromium carbide brings along a considerable hardness itself and therefore counteracts a wear of the surface. The moreover in the body carbon present allows hardening of the body.
  • the base body preferably has at least one partial section which has a higher total carbon content near the surface than the surface (deeper).
  • sections which still have the total carbon concentration of the starting material of preferably at most 0.3% by weight can be located in the center of the textile tool.
  • the diffusion depth of the carbon may be different in zones. In this way, through-hardened areas and only surface-hardened areas can be formed on one and the same workpiece. This is, as mentioned, also possible by exposing the entire textile tool to a uniform temperature treatment during curing rather than just a zone-wise temperature treatment. In this way, the zone-wise curing can be obtained safely and reproducibly.
  • the main body may consist wholly or partly of martensite full hardness.
  • full hardness is meant the maximum achievable hardness of martensite, which is about 67 HRC and is also referred to as "glass hardness".
  • glass hardness is achieved by stressing the martensite crystal lattice by incorporation of carbon, but the total carbon content may decrease from the surface to the core, it is possible that full hardness martensite is present only in selected zones of the textile tool.
  • martensite can be full of hardness due to thermal After treatment (tempering) relaxed and thus its hardness (locally) be reduced.
  • the main body may contain through hardened entirely of martensite full hardness subsets and other sections that contain only partially, for example, in a near-surface area martensite full hardness or consist of such. It is preferably free of oxides, especially on its surface.
  • the main body contains sections with different degrees of deformation. Typically, high degrees of deformation are encountered in particular in the working part of the textile tool. These sections are preferably through hardened.
  • the carbon which is not bound in chromium carbide, can be fairly uniformly distributed over the entire cross section of the material.
  • sections with a lower degree of deformation preferably have a marked carbon gradient, ie a decrease in carbon from the surface into the body.
  • the main body has its greatest hardness in sections with the highest degrees of deformation. Subsections that are to receive the highest hardness and the largest hardness depth are usually provided with high and highest degree of deformation. Thus, before hardening, a plastic deformation of the tool blank took place, which plastically deformed the entire material cross-section. The participation of the entire cross section in the flow of the material has resulted in a high number of dislocations, which provide additional diffusion paths for the carbon and thus a high penetration depth.
  • the method according to the invention comprises the step of providing a tool blank made of a chromium steel having a chromium content of at least 11 percent, preferably 12 percent or more.
  • a next step different sections of the blank are deformed to different degrees, so that at least one working part and at least one shaft part are formed. The working part is much more deformed than the shaft part.
  • the carburizing of the tool blank is done by chromium carbide formation.
  • the carburized tool blank is brought to a temperature suitable for curing. For hardening, cooling or heating of the tool blank may be necessary. During exposure to high temperature, excess carbons not bound in carbides may diffuse from near-surface regions to deeper regions further away from the surface.
  • the tool blank For hardening the tool blank, it is exposed to a hardening temperature and then quenched to form martensite.
  • the tool blank is brought to a uniform temperature during both carburizing and curing.
  • the working part and the shaft part are exposed to substantially the same temperature. This opens up the possibility of running the diffusion process on the carburized blank for a long time (several minutes). A temperature difference does not have to be maintained at the blank. This will cause inaccuracies in the size of the hardened areas, distortion or other undesirable Suppresses effects when quenching the tool blank.
  • the forming of the tool blank preferably detects at least in the working part the material of the entire tool cross-section, but in any case the degree of deformation is higher than in the shaft part. This increases the hardness during subsequent carburizing and quenching in these more highly deformed areas.
  • the carburizing is preferably carried out at a temperature between 900 ° and 1050 °, whereby not only carbon diffuses into the tool body, but also carbides, in particular chromium carbides, e.g. Cr23C6 but also mixed carbides ME23C6 and others form.
  • the carburizing is carried out at low pressure (a few millibar) and the presence of a carbon bearing gas, for example a hydrocarbon, preferably ethane, ethene or ethane.
  • a carbon bearing gas for example a hydrocarbon, preferably ethane, ethene or ethane.
  • the gas can be supplied to the textile tool in a reaction vessel permanently or in cycles (batchwise).
  • the process can be carried out as a low pressure carburizing process, as for example in the EP882811B1 is disclosed.
  • a suitable hardening temperature is set, which may be the same as the carburizing temperature. However, the hardening temperature can also be up to 100 ° above or below this temperature. All these measures have specific advantages.
  • Quenching may include one or more cooling steps and may be performed uniformly on parts of the textile tool or on the entire textile tool.
  • quenching involves freezing. This can be done with liquid nitrogen.
  • the concentration limits given here can be measured as follows.
  • the concentration of Cr in the steel can be determined with a spark spectrometer or an optical emission spectrometer.
  • the carbon concentration in the steel can be determined with a carbon-sulfur analyzer (CSA).
  • CSA carbon-sulfur analyzer
  • a material sample is melted at high temperature (about 2000 ° C), rinsed with pure oxygen and the escaping CO 2 gas is measured with an infrared measuring cell.
  • measurements with wavelength dispersive spectroscopy in which the sample is excited with an electron beam and the X-ray spectrum is measured spectroscopically, are also possible.
  • the presence of martensite or carbides can be detected by evaluating the texture in the cut.
  • FIG. 1 shows the textile tool 10 as a felting needle 11th
  • FIG. 2 shows the textile tool 10 as a sewing needle 12th
  • FIG. 3 shows that Textile tool 10 as a knitting needle 13.
  • the textile tool 10 may also be a knitting needle, a tufting needle, a crochet hook, a loop taker, a board, or the like.
  • a textile tool no matter what type, has a working part 14 which can come into contact with the threads, the yarns or the fibers.
  • the textile tool 10 also has a shaft portion 15, which serves to store the textile tool in a receptacle and to guide the working part 14 and hold.
  • the textile tool 10 is preferably made of an elongate material blank, for example a wire section, a metal strip or the like. After provision of such a blank, it is plastically deformed in a forming process in order to form the desired structures on the working part 14 and the shank part 15. In the working part 14, these are typically far further from the prototype than in the shank part 15.
  • the example of the felting needle 11 shows that the working part 14 has been reduced substantially more in diameter than the shank part 15 Diverge from circular shape. The change in shape is generated in areas that are to have a high hardness later, mainly by plastic deformation. Forming techniques are used that generate a large number of dislocations. In particular, the process is conducted so that those zones undergo a strong plastic deformation, which should later have a high hardness.
  • the existing material has been deformed much more plastically than in the shaft portion 15. This concerns both the diameter reduction and not further illustrated, arranged on the working part 15 hooks and / or barbs. It can be seen from the example of the sewing needle 12 that, in particular, the region of its eye 16 and a subsequent yarn channel 17 and at the tip 18 have been subjected to a great plastic deformation in order to produce the desired structures. In the knitting needle 13 of the working part 14 has also been deformed much more than the shank portion 15. In particular her hook 19, which has been produced by plastic deformation, characterized by a much greater flow of the material during manufacture, as it is on the shaft part 15th to be recorded.
  • FIG. 4 the example of the sewing needle 12 closer.
  • the cross section In the area of the round shaft, the cross section is essentially round. If the needle 12 was made of a wire, the cross section 20 is only slightly changed. The material is slightly compressed and flowed here. In the area of the thread groove 17, however, the cross section 21 is deformed much more strongly. In the plastic deformation of the entire cross-section 21 was transformed. The degree of deformation in the region of the eye 16 is even greater.
  • the cross section 22 is separated and, overall, very strongly deformed. The degree of deformation is slightly lower again towards the tip 18, as the cross section 23 shows.
  • the sewing needle 12 has in its shaft part 15 and its working part 14 different hardnesses. These are produced in a uniform hardening treatment.
  • the needle 12, as well as any other textile tool 10, in the method according to the invention when exposed to high temperatures and / or when it is exposed to low temperatures, each be exposed to both the working part 14 and the shaft part 15 same heating and cooling media. Nevertheless, despite the filigree structure of the textile tools and the consequent about the same cooling rate of shaft portion 15 and working part 14 different hardness profiles can be formed.
  • the cross section 20 in an outer near-surface zone 24 may have a relatively high carbon content and a high hardness, while a core zone 25 remote from the surface may have a lower carbon content and thus a lower hardness.
  • a near-surface zone 24 and a core zone 25 may also be present.
  • the near-surface zone 24 is thicker here.
  • the surface remote core zone 25 is much smaller. It can disappear completely.
  • the carbon content in the near-surface zone 24 of the shaft portion 15 may be as large or less than the carbon content of the near-surface zone 24 of the working part 14, for example, at the eye 16.
  • the carbon content in the shaft portion 15 decreases from the surface to the core
  • the Carbon content in the working part 14 show a slight decrease from the surface towards the core.
  • the carbon content in the working part 14 may be higher overall than in the shaft part 15. It is also possible that the carbon content in the entire cross section 22 (21 or 23) of the working part 14 is constant.
  • the textile tool 10 is made of chromium steel prior to the heat treatment, for example, X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8. These may contain additional carbon and chromium carbides after the heat treatment.
  • FIG. 6 is a greatly enlarged section of the working part 124 of the felting needle 11 after FIG. 1 represented in the region of a notch 26.
  • the surface has, for example, 4000x magnification in the area of the notch 26 after the appearance FIG. 7 ,
  • the appearance of the surface is characterized by a number of roundish or even elongated carbide crystals, in particular chromium carbide crystals 27, which are approximately bean or pea shaped and protrude from the otherwise defined from the surface level 28. However, they preferably do not form a coherent layer and are hardly or not fused together.
  • the individual roundish carbide crystals have a diameter, preferably 0.2 to 1 .mu.m. If they are elongated, they can have a longitudinal diameter of between 2 and 3 microns and a transverse knife between 0.5 and 2 microns.
  • the surface is preferably approximately as if from FIG. 8 formed visible.
  • the carbide crystals 27 are stochastically distributed over the surface 28 and predominantly roundish bean or pea shaped. Again, this results in an overall spotty surface with a layer of carbide crystals that are embedded in the surface and partially protrude from this.
  • the individual carbide crystals 27 are from each other spaced and rarely or not merged. Melt bridges 29 are found only in a vanishing minority of individual carbide crystals, ie, preferably at less than 20 percent of the same.
  • the size of the individual carbide crystals 27 varies between 0.3 ⁇ m and 1.5 ⁇ m. The majority of the carbide crystals have approximately roundish shapes with a diameter between 0.3 and 1.5 microns. Elongated types have a transverse blade of up to 1.5 ⁇ m and a longitudinal blade of up to 4 ⁇ m.
  • FIG. 9 another less desirable surface configuration, in which the individual carbide crystals 27 are often interconnected by melt bridges 29.
  • irregularly shaped contiguous carbide crystals are formed whose length and width exceed 1 ⁇ m, with some contiguous carbide crystal areas also larger than 2 ⁇ m.
  • the working part 14 is characterized by low sensitivity to breakage, high hardness and low thread sliding resistance.
  • FIGS. 7 and 8 show how the surfaces, which have proved to be advantageous qualitatively from the in FIG. 9 different surface shown:
  • the carbides in the FIGS. 7 and 8 have a predominantly convex in shape and are largely free of concave areas, while the carbides in FIG. 9 are predominantly concave shaped.
  • the carbides in the FIGS. 7 and 8 are largely free of fusion bridges.
  • a tool blank which consists for example of a metal strip, a wire section or the like of a steel having a chromium content of at least 11 weight percent.
  • steel is meant here an iron-based alloy.
  • the tool blank preferably consists of X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8.
  • This tool blank is now subjected to forming processes. These forming processes include at least in the working part 14 plastic forming processes. In the plastic forming processes, the material in the working part 14 flows much more strongly than in the shaft part 15.
  • the forming processes may include embossing, rolling, kneading, and the like plastic forming processes.
  • the plastic deformation covers the entire material cross-section. The more deformed material has more dislocations than the less deformed material.
  • the tool blank is brought to a carbonization temperature Tc.
  • a carbonization temperature Tc This is preferably between 900 ° C and 1050 ° C.
  • the carbonization is carried out in a vacuum oven. This is fed with low pressure of a few millibars a carbon carrier gas such as acetylene. This can be done in continuous gas flow or in bursts (pulsed).
  • carbon accumulates in the surface layer. Part of the carbon reacts with chrome contained in chromium steel to chromium carbide.
  • the entire textile tool 10 is brought to a hardening temperature.
  • the textile tool 10 is quenched starting from the hardening temperature T H. It is worked in one or more cooling stages. For example, the textile tool 10 may first be cooled to a quenching temperature T Q that is, for example, at or slightly above room temperature. After a time of a few seconds to minutes, the textile tool 10 can then be cooled to a freezing temperature T K in order to stay there for a longer time (one minute to several hours). The manufacturing process then ends with the reheating of the textile tool 10 to room temperature Tz.
  • T Q quenching temperature
  • T K freezing temperature
  • textile tools having hardness gradients both in the longitudinal and in the transverse direction from the outside to the inside and from the working part 14 to the shaft part 15 can be achieved. It is a high wear resistance and despite high carbon content, a high rust resistance achieved. This results in an increased life.
  • the process does not require surface activation. Due to the carbonization at high temperature, passive layers on the surface of the textile tool do not disturb the carbon input.
  • the textile tool 10 consists of chromium steel, in which carbon has been incorporated into a carbonization process to a different extent locally.
  • a formation of martensite full hardness is achieved especially in those zones in which larger amounts of carbon have been registered. It can thus produce a textile tool with zones of different hardness without having to expose the individual different hard zones different process conditions in the manufacturing process.
  • the hardness control is based on the degree of deformation of the textile tool.

Description

Die Erfindung betrifft ein Textilwerkzeug, insbesondere eine Nadel, wie zum Beispiel eine Filznadel, eine Nähnadel, eine Tuftingnadel, eine Wirknadel, eine Stricknadel, eine Tuftingnadel, einen Schlingengreifer, oder dergleichen. Solche Textilwerkzeuge werden zum maschinellen Herstellen oder Verarbeiten von Textilien eingesetzt.The invention relates to a textile tool, in particular a needle, such as a felting needle, a sewing needle, a tufting needle, a knitting needle, a knitting needle, a tufting needle, a loop taker, or the like. Such textile tools are used for the mechanical production or processing of textiles.

Textilwerkzeuge, insbesondere Nadeln, werden typischerweise aus Kohlenstoffstahl hergestellt und bedarfsweise gehärtet. Zum Beispiel offenbart die DE 199 36 082 A1 eine Nähnadel und eine Stricknadel, jeweils bestehend aus Kohlenstoffstahl. Zur oberflächlichen Erhöhung der Härte wird der Rohling zur Herstellung der Nadel einer Wärmebehandlung und einer Kugelstrahlbehandlung unterzogen. Es ergibt sich somit eine oberflächliche Härtung des Textilwerkzeugs.Textile tools, especially needles, are typically made of carbon steel and cured as needed. For example, the DE 199 36 082 A1 a sewing needle and a knitting needle, each made of carbon steel. For superficial increase in hardness, the blank for the production of the needle is subjected to a heat treatment and a shot peening treatment. This results in a surface hardening of the textile tool.

Die DE PS 21 14 734 beschreibt ein Verfahren zum Anlassen gehärteter Nadeln, wobei sich Längsabschnitte unterschiedlicher Härte ergeben. Dies wird durch Zuführung unterschiedlicher Wärmemengen an den einzelnen Längsabschnitten der Nadeln bewirkt. Bei diesem Verfahren wird die Größe der gehärteten Zonen maßgeblich durch die Größe der an den Nadeln während des Härtevorgangs beheizten Zonen bestimmt.The DE PS 21 14 734 describes a method for tempering hardened needles, resulting in longitudinal sections of different hardness. This is effected by supplying different amounts of heat at the individual longitudinal sections of the needles. In this method, the size of the hardened zones is largely determined by the size of the zones heated by the needles during the hardening process.

Prinzipiell ist es auch bekannt, chromhaltige Stähle zu härten. Die US 4 049 430 offenbart dazu ein Ausscheidungshärtungsverfahren. Die CH 641 840 beschreibt das Aufkohlen von Edelstahl und Nickelmetall-Legierungen. Weiter sehen zum Beispiel die WO 2011/ 017495 A1 wie auch die US PS 6,093,303 vor, dass der zu härtende Gegenstand aus rostfreiem Stahl zunächst von einer den Kohlenstoffeintritt hindernden Passivschicht aus Chromoxid befreit und dann bei vergleichsweise niedrigen Temperaturen von weniger als 540°C einer kohlenstoffspendenden Niederdruckatmosphäre ausgesetzt wird. Die WO 2011/017495 A1 sieht als kohlenstoffspendendes Gas Acetylen vor. Beide Druckschriften streben die Vermeidung einer Karbidbildung im Stahl an.In principle, it is also known to cure chromium-containing steels. The US 4,049,430 discloses a precipitation hardening process. The CH 641 840 describes that Carburizing stainless steel and nickel metal alloys. Next see for example the WO 2011/017495 A1 as well as the U.S. Patent 6,093,303 in that the stainless steel article to be hardened is first freed of a chromium oxide passive layer inhibiting the carbon entrance and then exposed to a low-pressure carbon-donating atmosphere at comparatively low temperatures of less than 540 ° C. The WO 2011/017495 A1 envisages acetylene as a carbon-donating gas. Both publications aim to avoid carbide formation in the steel.

Textilwerkzeuge weisen typischerweise relativ feine Strukturen auf, die im Betrieb unterschiedlichen Bedingungen unterworfen sind. Der sogenannte Arbeitsteil wird beispielsweise bei Filznadeln durch eine vordere mit ein oder mehreren Haken oder Widerhaken versehene längliche Spitze, bei einer Nähnadel durch das Öhr und sonstige mit Textil und Faden in Berührung kommende Partien und bei einer Hakennadel durch den Haken und den sich unmittelbar anschließenden Teil des Schafts gebildet. Diese Arbeitsteile müssen hoch verschleißfest und möglichst hart, dabei aber bruchfest ausgebildet sein. Der übrige Schaft des Textilwerkzeugs soll hingegen häufig anderen Bedingungen genügen. Daraus ergibt sich nicht nur der Wunsch nach einer lediglich zonenweisen Härtung, sondern auch der Wunsch nach unterschiedlichen Härtungstiefen bzw. Härtegradienten im Textilwerkzeug. Beispielsweise kann es bei einer Nähnadel angestrebt werden, den Öhrbereich durch und durch zu härten, während der sich anschließende, nicht mit dem Faden in Berührung kommende Schaftteil lediglich oberflächengehärtet sein soll. Es können somit an verschiedenen Stellen der Oberfläche des Textilwerkzeugs verschiedene Härtetiefen gewünscht sein. Darüber hinaus können an verschiedenen Stellen dieser Oberfläche verschiedene Härteverläufe in der Tiefenrichtung des Textilwerkzeugs gewünscht sein.Textile tools typically have relatively fine structures that are subject to different conditions during operation. The so-called working part, for example, in felting needles by a front provided with one or more hooks or barbs elongated tip in a sewing needle through the eye and other coming into contact with textile and thread lots and a hook needle through the hook and the immediately adjacent part formed of the shaft. These workpieces must be highly wear-resistant and as hard as possible, but it must be made break-proof. The rest of the shaft of the textile tool, however, should often meet other conditions. This not only results in the desire for a zone-wise hardening, but also the desire for different hardening depths or hardness gradients in the textile tool. For example, in the case of a sewing needle, it may be desirable to harden the eye area through and through, while the adjoining shaft portion, which does not come into contact with the thread, should merely be surface hardened. It can thus desired different depths of hardness at different points of the surface of the textile tool be. In addition, different hardness profiles in the depth direction of the textile tool may be desired at different points on this surface.

Außerdem unterliegt das Textilwerkzeug einer großen Bandbreite von Lager- und Einsatzbedingungen. Es muss bei verschiedenen Temperaturen und Feuchtigkeiten langfristig lagerbar sein, ohne seine Eigenschaften zu verlieren oder zu korrodieren. Vergütungsbehandlungen, wie von der DE 199 36 082 A1 vorgeschlagen, sind zur Erhöhung der Korrosionsfestigkeit vorgesehen. Solche Vergütungsbehandlungen können beispielsweise die galvanische Chromplattierung sein.In addition, the textile tool is subject to a wide range of storage and operating conditions. It must be able to be stored for a long time at various temperatures and humidities without losing its properties or corroding it. Compensation treatments, as of the DE 199 36 082 A1 proposed, are provided to increase the corrosion resistance. Such tempering treatments may be, for example, galvanic chrome plating.

Es ist Aufgabe der Erfindung, ein Konzept anzugeben, das diesen Anforderungen genügt.It is an object of the invention to provide a concept that meets these requirements.

Diese Aufgabe wird mit dem Textilwerkzeug nach Anspruch 1 und auch mit dem Verfahren nach Anspruch 8 gelöst:
Das erfindungsgemäße Textilwerkzeug weist einen Werkzeugkörper d.h. einen Grundkörper auf, der aus einem Chromstahl besteht. Dieser bringt naturgemäß eine hohe Korrosionsfestigkeit mit sich. Sein Chromgehalt liegt im Bereich von 11 bis 30 Gewichtsprozent. Vorzugsweise handelt es sich um eine Eisenbasislegierung. Der Gesamtkohlenstoffgehalt von mehr als 0,8 Prozent in zumindest einem Oberflächenabschnitt ermöglicht eine Härtung durch Martensitbildung. Damit lassen sich korrosionsträge Textilwerkzeuge mit hoher Härte und somit großer Verschleißfestigkeit bereitstellen. Der Grundkörper weist Bereiche auf, deren Material unterschiedliche Umformgrade hat. wobei der Grundkörper in Bereichen mit größeren Umformgraden eine höhere Härte aufweist als in Bereichen mit niedrigeren Umformgraden.
This object is achieved with the textile tool according to claim 1 and also with the method according to claim 8:
The textile tool according to the invention has a tool body, ie a base body which consists of a chromium steel. This naturally brings a high corrosion resistance with it. Its chromium content is in the range of 11 to 30 weight percent. Preferably, it is an iron-based alloy. The total carbon content of more than 0.8 percent in at least one surface section enables hardening by martensite formation. This makes it possible to provide corrosion-resistant textile tools with high hardness and thus high wear resistance. The main body has areas whose material has different degrees of deformation. wherein the body in areas with larger degrees of deformation has a higher hardness than in areas with lower degrees of deformation.

Die Erfindung hat besondere Vorteile bei nicht schneidenden Textilwerkzeugen. Dies sind oft nicht schneidende Nadeln. Solche Nadeln können auch dazu ausgebildet sein textile Materialien zu durchstechen, was bei Näh-, Filz und Tuftingnadeln der Fall ist.The invention has particular advantages with non-cutting textile tools. These are often non-cutting needles. Such needles can also be designed to pierce textile materials, which is the case with sewing, felt and tufting needles.

Der Gesamtkohlenstoffgehalt umfasst den in den Karbiden und den in dem Metallraumgitter gebundenen Kohlenstoff, d.h. den insgesamt vorhandenen Kohlenstoff. Der Gesamtkohlenstoffgehalt kann unter anderem ermittelt werden, indem das Metall verdampft wird (Plasmabildung) und die Legierungsbestandteile einem Spektrometer zugeführt und dort untersucht werden. Der zumindest eine Oberflächenabschnitt, in dem sich Kohlenstoffgesamtkonzentrationen von mindestens 0,8 Gew.% einstellen, befindet sich bevorzugt im Arbeitsteil und/oder weist einen hohen Umformgrad auf, wie weiter unten detaillierter beschrieben ist.The total carbon content includes the carbon bonded in the carbides and the metal space lattice, i. the total carbon present. The total carbon content can be determined inter alia by vaporizing the metal (plasma formation) and feeding the alloy components to a spectrometer and examining them. The at least one surface section, in which total carbon concentrations of at least 0.8% by weight are established, is preferably located in the working part and / or has a high degree of deformation, as described in more detail below.

Die Härtung lässt sich auf bestimmte Teilabschnitte (Arbeitsteil, Schaftteil) beschränken oder in verschiedenen Teilabschnitten unterschiedlich gestalten. Insbesondere ist es möglich, in unterschiedlichen Teilabschnitten des Textilwerkzeugs unterschiedliche Kohlenstoffgehalte oder unterschiedliche Kohlenstoffverteilungen zu erzeugen. Z.B. ist es möglich, Kohlenstoff im Schaftteil im Wesentlichen in oberflächennahen Bereichen zu konzentrieren, während der Arbeitsteil einen höheren Kohlenstoffgehalt auch in oberflächenfernen, kernnahen Bereichen aufweist. Damit lassen sich unterschiedliche Materialeigenschaften im Schaftteil und im Arbeitsteil erzeugen. Durch die unterschiedlichen Kohlenstoffgehalte und/oder -Verteilungen in Schaft- und Arbeitsteil können diese der gleichen Wärmebehandlung unterliegen und dennoch unterschiedliche Eigenschaften ausbilden.The hardening can be limited to specific sections (working part, shaft part) or designed differently in different sections. In particular, it is possible to produce different carbon contents or different carbon distributions in different sections of the textile tool. For example, it is possible to concentrate carbon in the shaft part substantially in near-surface regions, while the working part has a higher carbon content even in surface-remote, near-nuclear regions. This can produce different material properties in the shaft part and in the working part. Due to the different carbon contents and / or distributions in the shaft and working part, they can undergo the same heat treatment and yet form different properties.

Das Material, das der Bildung des Grundkörpers zugrunde lag, ist vorzugsweise X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 oder X10CrNi18-8. Es ist von Vorteil, wenn Material, welches das Element Kohlenstoff noch in seiner Ausgangskonzentration enthält, noch im Grundkörper vorhanden ist. Allgemein liegt die Konzentration von Kohlenstoff im Grundkörper zwischen 0,1 und 0,8%, bevorzugt jedoch zwischen 0,2 und 0,6% in den kohlenstoffärmsten Bereichen des Grundkörpers, zwischen 0,8 und 1,2% bevorzugt jedoch zwischen 0,9 und 1,1% in den kohlenstoffreichsten Bereichen desselben.The material on which the formation of the body was based is preferably X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8. It is advantageous if material which still contains the element carbon in its initial concentration is still present in the main body. Generally, the concentration of carbon in the main body is between 0.1 and 0.8%, but preferably between 0.2 and 0.6% in the low-carbon regions of the main body, between 0.8 and 1.2%, but preferably between 0, 9 and 1.1% in the carbon-rich areas of the same.

Vorzugsweise enthält der Grundkörper Einlagerungen von Chromkarbid. Diese können in einem Aufkohl-Prozess erzeugt worden sein. Damit sind in dem Grundmaterial des fertig hergestellten Textilwerkzeugs mehr Chromkarbide enthalten, als in dem Chromstahl, der als Ausgangsmaterial verwendet wurde. Das durch den Aufkohlprozess erzeugte Chromkarbid kann zumindest teilweise an der Oberfläche des Textilwerkzeugs konzentriert sein. Vorzugsweise bildet es dort eine Lage rundlicher aus der Oberfläche ragender Kristalle, die voneinander durch geringe Abstände getrennt sind. Vorzugsweise sind benachbarte Kristalle miteinander nicht oder nur selten durch Schmelzbrücken verbunden. Das vorhandene Chromkarbid bringt eine erhebliche Härte mit sich und wirkt deshalb einem Verschleiß der Oberfläche entgegen. Der darüber hinaus in dem Grundkörper vorhandene Kohlenstoff ermöglicht ein Härten des Grundkörpers. Insbesondere weist der Grundkörper vorzugsweise zumindest einen Teilabschnitt auf, der oberflächennah einen höheren Gesamtkohlenstoffanteil besitzt als oberflächenfern (tiefer). Hierbei können sich im Zentrum des Textilwerkzeugs Abschnitte befinden, die nach wie vor die Gesamtkohlenstoffkonzentration des Ausgangsmaterials von vorzugsweise höchstens 0,3 Gew.% besitzen.The main body preferably contains inclusions of chromium carbide. These may have been generated in a carburizing process. Thus, more chromium carbides are contained in the base material of the finished fabric tool than in the chrome steel used as the starting material. The chromium carbide produced by the carburizing process may be at least partially concentrated at the surface of the textile tool. Preferably, it forms a layer of roundish crystals protruding from the surface, which are separated from one another by small distances. Preferably, adjacent crystals are not or only rarely connected by melt bridges. The existing chromium carbide brings along a considerable hardness itself and therefore counteracts a wear of the surface. The moreover in the body carbon present allows hardening of the body. In particular, the base body preferably has at least one partial section which has a higher total carbon content near the surface than the surface (deeper). In this case, sections which still have the total carbon concentration of the starting material of preferably at most 0.3% by weight can be located in the center of the textile tool.

Allgemein kann die Diffusionstiefe des Kohlenstoffs zonenweise unterschiedlich sein. Auf diese Weise können durchgehärtete Bereiche und nur oberflächlich gehärtete Bereiche an ein und demselben Werkstück ausgebildet werden. Dies ist, wie erwähnt, auch möglich, indem das gesamte Textilwerkzeug bei dem Härten einer einheitlichen Temperaturbehandlung und nicht lediglich einer zonenweisen Temperaturbehandlung ausgesetzt wird. Auf diese Weise kann die zonenweise Härtung sicher und reproduzierbar erhalten werden. Der Grundkörper kann ganz oder teilweise aus Martensit voller Härte bestehen.Generally, the diffusion depth of the carbon may be different in zones. In this way, through-hardened areas and only surface-hardened areas can be formed on one and the same workpiece. This is, as mentioned, also possible by exposing the entire textile tool to a uniform temperature treatment during curing rather than just a zone-wise temperature treatment. In this way, the zone-wise curing can be obtained safely and reproducibly. The main body may consist wholly or partly of martensite full hardness.

Unter "voller Härte" wird dabei die maximal von Martensit erzielbare Härte verstanden, die bei etwa 67 HRC liegt und auch als "Glashärte" bezeichnet wird. Weil die Glashärte durch Verspannung des Martensitkristallgitters durch Einlagerung von Kohlenstoff erreicht wird, der Gesamtkohlenstoffgehalt jedoch von der Oberfläche zum Kern hin abnehmen kann, ist es möglich, dass Martensit voller Härte nur in ausgewählten Zonen des Textilwerkzeugs vorhanden ist. Außerdem kann Martensit voller Härte durch thermisehe Nachbehandlung (Anlassen) entspannt und somit dessen Härte (lokal) gemindert werden.By "full hardness" is meant the maximum achievable hardness of martensite, which is about 67 HRC and is also referred to as "glass hardness". However, because the glass hardness is achieved by stressing the martensite crystal lattice by incorporation of carbon, but the total carbon content may decrease from the surface to the core, it is possible that full hardness martensite is present only in selected zones of the textile tool. In addition, martensite can be full of hardness due to thermal After treatment (tempering) relaxed and thus its hardness (locally) be reduced.

Der Grundkörper kann durchgehärtete ganz aus Martensit voller Härte bestehende Teilabschnitte und andere Teilabschnitte enthalten, die nur bereichsweise zum Beispiel in einem oberflächennahen Bereich Martensit voller Härte enthalten oder aus solchem bestehen. Er ist vorzugsweise insbesondere an seiner Oberfläche oxidfrei.The main body may contain through hardened entirely of martensite full hardness subsets and other sections that contain only partially, for example, in a near-surface area martensite full hardness or consist of such. It is preferably free of oxides, especially on its surface.

Der Grundkörper enthält Teilabschnitte mit verschiedenen Umformgraden. Typischerweise sind insbesondere im Arbeitsteil des Textilwerkzeugs hohe Umformgrade anzutreffen. Diese Teilabschnitte sind vorzugsweise durchgehärtet. Der nicht in Chromkarbid gebundene Kohlenstoff kann sich hier einigermaßen gleichmäßig auf den gesamten Materialquerschnitt verteilen. Teilabschnitte mit niedrigerem Umformgrad weisen hingegen vorzugsweise einen deutlichen Kohlenstoffgradienten, d.h. eine Kohlenstoffabnahme von der Oberfläche in den Körper hinein auf. Der Grundkörper hat seine größte Härte in Teilabschnitten mit den höchsten Umformgraden. Teilabschnitte, die die größte Härte und die größte Härtetiefe erhalten sollen, werden in der Regel mit hohem und höchstem Umformgrad bereitgestellt. So hat dann vor dem Härten eine plastische Verformung des Werkzeugrohlings stattgefunden, die den gesamten Materialquerschnitt plastisch verformt hat. Die Teilnahme des gesamten Querschnitts am Fließen des Materials hat zu einer hohen Anzahl von Versetzungen geführt, die zusätzliche Diffusionswege für den Kohlenstoff und somit eine hohe Eindringtiefe schaffen.The main body contains sections with different degrees of deformation. Typically, high degrees of deformation are encountered in particular in the working part of the textile tool. These sections are preferably through hardened. The carbon, which is not bound in chromium carbide, can be fairly uniformly distributed over the entire cross section of the material. On the other hand, sections with a lower degree of deformation preferably have a marked carbon gradient, ie a decrease in carbon from the surface into the body. The main body has its greatest hardness in sections with the highest degrees of deformation. Subsections that are to receive the highest hardness and the largest hardness depth are usually provided with high and highest degree of deformation. Thus, before hardening, a plastic deformation of the tool blank took place, which plastically deformed the entire material cross-section. The participation of the entire cross section in the flow of the material has resulted in a high number of dislocations, which provide additional diffusion paths for the carbon and thus a high penetration depth.

Das erfindungsgemäße Verfahren umfasst den Schritt des Bereitstellens eines Werkzeugrohlings aus einem Chromstahl mit einem Chromgehalt von mindestens 11 Prozent, vorzugsweise 12 Prozent oder mehr. In einem nächsten Schritt werden verschiedene Teilabschnitte des Rohlings unterschiedlich stark verformt, so dass mindestens ein Arbeitsteil und mindestens ein Schaftteil geformt werden. Der Arbeitsteil ist dabei wesentlich stärker verformt als der Schaftteil. Nach diesem Schritt erfolgt das Aufkohlen des Werkzeugrohlings unter Chromkarbidbildung. In einem weiteren Bearbeitungsschritt wird der aufgekohlte Werkzeugrohling auf eine zum Härten geeignete Temperatur, gebracht. Zur Härtung kann ein Abkühlen oder ein Erhitzen des Werkzeugsrohlings nötig sein. Während der Beaufschlagung mit hoher Temperatur kann nicht in Karbiden gebundener überschüssiger Kohlenstoff von oberflächennahen Bereichen in tiefere oberflächenfernere Bereiche diffundieren.The method according to the invention comprises the step of providing a tool blank made of a chromium steel having a chromium content of at least 11 percent, preferably 12 percent or more. In a next step, different sections of the blank are deformed to different degrees, so that at least one working part and at least one shaft part are formed. The working part is much more deformed than the shaft part. After this step, the carburizing of the tool blank is done by chromium carbide formation. In a further processing step, the carburized tool blank is brought to a temperature suitable for curing. For hardening, cooling or heating of the tool blank may be necessary. During exposure to high temperature, excess carbons not bound in carbides may diffuse from near-surface regions to deeper regions further away from the surface.

Zum Härten des Werkzeugrohlings wird dieser einer Härtetemperatur ausgesetzt und danach abgeschreckt, wobei sich Martensit bildet.For hardening the tool blank, it is exposed to a hardening temperature and then quenched to form martensite.

Bei den vorliegenden Verfahren wird der Werkzeugrohling sowohl beim Aufkohlen als auch beim Härten auf jeweils eine einheitliche Temperatur gebracht. Insbesondere werden der Arbeitsteil und der Schaftteil im Wesentlichen der gleichen Temperatur ausgesetzt. Dies eröffnet die Möglichkeit, den Diffusionsprozess an dem aufgekohlten Rohling längere Zeit (mehrere Minuten) ablaufen zu lassen. Eine Temperaturdifferenz muss am Rohling nicht aufrechterhalten werden. Dadurch werden Ungenauigkeiten hinsichtlich der Größe der gehärteten Bereiche, Verzug oder sonstige unerwünschte Effekte beim Abschrecken des Werkzeugrohlings unterdrückt.In the subject methods, the tool blank is brought to a uniform temperature during both carburizing and curing. In particular, the working part and the shaft part are exposed to substantially the same temperature. This opens up the possibility of running the diffusion process on the carburized blank for a long time (several minutes). A temperature difference does not have to be maintained at the blank. This will cause inaccuracies in the size of the hardened areas, distortion or other undesirable Suppresses effects when quenching the tool blank.

Das Umformen des Werkzeugrohlings erfasst zumindest im Arbeitsteil vorzugsweise das Material des gesamten Werkzeugquerschnitts, jedenfalls aber ist der Umformgrad höher als im Schaftteil. Dadurch wird die Härte beim nachfolgenden Aufkohlen und Abschrecken in diesen stärker umgeformten Bereichen größer.The forming of the tool blank preferably detects at least in the working part the material of the entire tool cross-section, but in any case the degree of deformation is higher than in the shaft part. This increases the hardness during subsequent carburizing and quenching in these more highly deformed areas.

Ein Aktivierungsschritt zur Entfernung von Passivschichten ist nicht unbedingt erforderlich. Das Aufkohlen erfolgt vorzugsweise bei einer Temperatur zwischen 900° und 1050°, wobei nicht nur Kohlenstoff in den Werkzeugkörper eindiffundiert, sondern sich auch Karbide, insbesondere Chromkarbide, z.B. Cr23C6 aber auch Mischkarbide ME23C6 und andere bilden.An activation step to remove passive layers is not essential. The carburizing is preferably carried out at a temperature between 900 ° and 1050 °, whereby not only carbon diffuses into the tool body, but also carbides, in particular chromium carbides, e.g. Cr23C6 but also mixed carbides ME23C6 and others form.

Vorzugsweise wird das Aufkohlen bei geringem Druck (wenige Millibar) und der Anwesenheit eines kohlenstofftragenden Gases, zum Beispiel eines Kohlenwasserstoffs, vorzugsweise Äthan, Äthen oder Äthin vorgenommen. Das Gas kann dem Textilwerkzeug in einem Reaktionsgefäß permanent oder in Zyklen (schubweise) zugeführt werden. Im Großen und Ganzen kann das Verfahren als ein Niederdruck Aufkohlverfahren durchgeführt werden, wie es zum Beispiel in der EP882811B1 offenbart ist. Diese Verfahren ermöglichen die Herstellung randoxidationsfreier Werkzeuge.Preferably, the carburizing is carried out at low pressure (a few millibar) and the presence of a carbon bearing gas, for example a hydrocarbon, preferably ethane, ethene or ethane. The gas can be supplied to the textile tool in a reaction vessel permanently or in cycles (batchwise). By and large, the process can be carried out as a low pressure carburizing process, as for example in the EP882811B1 is disclosed. These methods allow the production of randoxidationsfreier tools.

Kostengünstiger sind jedoch atmosphärische Verfahren zum Aufkohlen des Werkzeugs. Bekannt ist hier unter anderem das Aufkohlen im Salzbad, wie es unter anderem in der DE 10 2006 026 883 B3 beschrieben ist.However, more economical are atmospheric methods for carburizing the tool. Among other things, the carburizing in the salt bath, as it is known among others in of the DE 10 2006 026 883 B3 is described.

Beim nachfolgenden Härten wird eine geeignete Härtetemperatur eingestellt, die gleich sein kann wie die Temperatur beim Aufkohlen. Die Härtetemperatur kann jedoch auch bis zu 100° über oder unter dieser Temperatur liegen. Alle diese Maßnahmen bringen spezifische Vorteile mit sich.Upon subsequent curing, a suitable hardening temperature is set, which may be the same as the carburizing temperature. However, the hardening temperature can also be up to 100 ° above or below this temperature. All these measures have specific advantages.

Das Abschrecken kann eine oder mehrere Kühlschritte umfassen und an Teilen des Textilwerkzeugs oder an dem gesamten Textilwerkzeug einheitlich durchgeführt werden. Vorzugsweise gehört zum Abschrecken ein Tiefkühlen. Dieses kann mit flüssigem Stickstoff durchgeführt werden.Quenching may include one or more cooling steps and may be performed uniformly on parts of the textile tool or on the entire textile tool. Preferably, quenching involves freezing. This can be done with liquid nitrogen.

Die hier angegebenen Konzentrationsgrenzen können folgendermaßen gemessen werden. Die Konzentration von Cr im Stahl kann mit einem Funkenspektrometer bzw. einem optischen Emissionsspektrometer bestimmt werden. Die Kohlenstoffkonzentration im Stahl kann mit einem Kohlenstoff-Schwefel Analysator (CSA) bestimmt werden. Zur Messung wird eine Materialprobe bei hoher Temperatur (ca. 2000° C) geschmolzen, mit reinem Sauerstoff gespült und das entweichende CO2-Gas wird mit einer Infrarotmesszelle gemessen. Alternativ aber weniger vorteilhaft sind auch Messungen mit Wavelength Dispersiv Spectroscopy, bei denen die Probe mit einem Elektronenstrahl angeregt wird und das Röntgenspektrum spektroskopisch gemessen wird, möglich.The concentration limits given here can be measured as follows. The concentration of Cr in the steel can be determined with a spark spectrometer or an optical emission spectrometer. The carbon concentration in the steel can be determined with a carbon-sulfur analyzer (CSA). For measurement, a material sample is melted at high temperature (about 2000 ° C), rinsed with pure oxygen and the escaping CO 2 gas is measured with an infrared measuring cell. Alternatively, however, measurements with wavelength dispersive spectroscopy, in which the sample is excited with an electron beam and the X-ray spectrum is measured spectroscopically, are also possible.

Das Vorhandensein von Martensit bzw. von Karbiden kann durch Bewertung des Gefüges im Schliff nachgewiesen werden.The presence of martensite or carbides can be detected by evaluating the texture in the cut.

Weitere Einzelheiten vorteilhafter Ausführungsformen der Erfindung ergeben sich aus der Zeichnung, der Beschreibung oder Ansprüchen. Es zeigen:

  • Figur 1 bis 3 verschiedene Ausführungsformen von Textilwerkzeugen, in schematisierten Darstellungen.
  • Figur 4 eine Nähnadel nach Figur 2, in schematisierter ausschnittsweiser Seitenansicht mit Querschnitten,
  • Figur 5 ein Temperaturzeitdiagramm für das Härten des Textilwerkzeugs,
  • Figur 6 ein stark vergrößerter Ausschnitt aus dem Arbeitsteil eines Textilwerkzeugs nach Figur 1,
  • Figur 7 eine stark vergrößerte Oberflächenansicht des Arbeitsteils nach Figur 6 im Bereich seiner Kerbe,
  • Figur 8 eine stark vergrößerte Oberflächenansicht des Arbeitsteils nach Figur 6 im Bereich seiner Spitze und
  • Figur 9 eine stark vergrößerte Oberflächenansicht eines Arbeitsteils nach Figur 6 im Bereich seiner Spitze bei unzulänglicher Oberflächenqualität.
Further details of advantageous embodiments of the invention will become apparent from the drawings, the description or claims. Show it:
  • Figure 1 to 3 various embodiments of textile tools, in schematic representations.
  • FIG. 4 a sewing needle behind FIG. 2 in a schematic sectional side view with cross sections,
  • FIG. 5 a temperature-time diagram for the hardening of the textile tool,
  • FIG. 6 a greatly enlarged section of the working part of a textile tool after FIG. 1 .
  • FIG. 7 a greatly enlarged surface view of the working part FIG. 6 in the area of his score,
  • FIG. 8 a greatly enlarged surface view of the working part FIG. 6 in the area of its tip and
  • FIG. 9 a greatly enlarged surface view of a working part FIG. 6 in the area of its tip with inadequate surface quality.

In Figur 1 bis 3 wird ein Textilwerkzeug 10 in verschiedenen Ausgestaltungen veranschaulicht. Figur 1 zeigt das Textilwerkzeug 10 als Filznadel 11. Figur 2 zeigt das Textilwerkzeug 10 als Nähnadel 12. Figur 3 zeigt das Textilwerkzeug 10 als Stricknadel 13. Das Textilwerkzeug 10 kann außerdem eine Wirknadel, eine Tuftingnadel, eine Häkelnadel, ein Schlingengreifer, eine Platine, oder dergleichen mehr sein.In Figure 1 to 3 a textile tool 10 is illustrated in various embodiments. FIG. 1 shows the textile tool 10 as a felting needle 11th FIG. 2 shows the textile tool 10 as a sewing needle 12th FIG. 3 shows that Textile tool 10 as a knitting needle 13. The textile tool 10 may also be a knitting needle, a tufting needle, a crochet hook, a loop taker, a board, or the like.

Typischerweise weist ein Textilwerkzeug, gleich welcher Bauart, einen Arbeitsteil 14 auf, der mit den Fäden, den Garnen oder den Fasern in Berührung kommen kann. Das Textilwerkzeug 10 weist außerdem einen Schaftteil 15 auf, der dazu dient, das Textilwerkzeug in einer Aufnahme zu lagern und den Arbeitsteil 14 zu führen und zu halten.Typically, a textile tool, no matter what type, has a working part 14 which can come into contact with the threads, the yarns or the fibers. The textile tool 10 also has a shaft portion 15, which serves to store the textile tool in a receptacle and to guide the working part 14 and hold.

Das Textilwerkzeug 10 wird vorzugsweise aus einem länglichen Materialzuschnitt, beispielsweise einem Drahtabschnitt, einem Blechstreifen oder dergleichen, hergestellt. Nach Bereitstellung eines solchen Rohlings wird dieser in einem Umformvorgang plastisch verformt, um an dem Arbeitsteil 14 und dem Schaftteil 15 die gewünschten Strukturen auszubilden. Diese sind in dem Arbeitsteil 14 typischerweise wesentlich weiter von der Urform entfernt als in dem Schaftteil 15. Am Beispiel der Filznadel 11 ist erkennbar, dass der Arbeitsteil 14 im Durchmesser wesentlich stärker reduziert worden ist als der Schaftteil 15. Auch kann der Querschnitt deutlich von der Kreisform abweichen. Die Formänderung wird in Bereichen, die später eine große Härte aufweisen sollen, vorwiegend durch plastisches Umformen erzeugt. Es werden Umformtechniken genutzt, die eine große Anzahl von Versetzungen generieren. Insbesondere wird der Prozess so geführt, dass diejenigen Zonen einer starken plastischen Verformung unterliegen, die später eine große Härte aufweisen sollen.The textile tool 10 is preferably made of an elongate material blank, for example a wire section, a metal strip or the like. After provision of such a blank, it is plastically deformed in a forming process in order to form the desired structures on the working part 14 and the shank part 15. In the working part 14, these are typically far further from the prototype than in the shank part 15. The example of the felting needle 11 shows that the working part 14 has been reduced substantially more in diameter than the shank part 15 Diverge from circular shape. The change in shape is generated in areas that are to have a high hardness later, mainly by plastic deformation. Forming techniques are used that generate a large number of dislocations. In particular, the process is conducted so that those zones undergo a strong plastic deformation, which should later have a high hardness.

In dem Arbeitsteil 14 ist das vorhandene Material wesentlich stärker plastisch verformt worden als im Schaftteil 15. Dies betrifft sowohl die Durchmesserreduktion als auch nicht weiter veranschaulichte, am Arbeitsteil 15 angeordnete Haken und/oder Widerhaken. Am Beispiel der Nähnadel 12 ist erkennbar, dass insbesondere der Bereich ihres Öhrs 16 sowie einer sich anschließenden Fadenrinne 17 sowie an der Spitze 18 einer starken plastischen Verformung unterworfen worden ist, um die gewünschten Strukturen zu erzeugen. Bei der Stricknadel 13 ist der Arbeitsteil 14 ebenfalls wesentlich stärker verformt worden als der Schaftteil 15. Insbesondere ihr Haken 19, der durch plastische Verformung hergestellt worden ist, zeichnet sich durch ein wesentlich stärkeres Fließen des Materials während der Herstellung aus, als es am Schaftteil 15 zu verzeichnen ist.In the working part 14, the existing material has been deformed much more plastically than in the shaft portion 15. This concerns both the diameter reduction and not further illustrated, arranged on the working part 15 hooks and / or barbs. It can be seen from the example of the sewing needle 12 that, in particular, the region of its eye 16 and a subsequent yarn channel 17 and at the tip 18 have been subjected to a great plastic deformation in order to produce the desired structures. In the knitting needle 13 of the working part 14 has also been deformed much more than the shank portion 15. In particular her hook 19, which has been produced by plastic deformation, characterized by a much greater flow of the material during manufacture, as it is on the shaft part 15th to be recorded.

Diesen Umstand veranschaulicht Figur 4 am Beispiel der Nähnadel 12 näher. Im Bereich des runden Schafts ist der Querschnitt im Wesentlichen rund. Wurde die Nadel 12 aus einem Draht hergestellt, ist der Querschnitt 20 nur geringfügig verändert. Das Material ist hier wenig gestaucht und geflossen. Im Bereich der Fadenrinne 17 ist der Querschnitt 21 hingegen wesentlich stärker verformt. Bei der plastischen Deformation wurde der gesamte Querschnitt 21 umgeformt. Noch stärker ist der Umformgrad im Bereich des Öhrs 16. Hier ist der Querschnitt 22 aufgetrennt und insgesamt sehr stark verformt. Etwas geringer ist der Verformungsgrad wieder zu der Spitze 18 hin, wie der Querschnitt 23 zeigt.This circumstance is illustrated FIG. 4 the example of the sewing needle 12 closer. In the area of the round shaft, the cross section is essentially round. If the needle 12 was made of a wire, the cross section 20 is only slightly changed. The material is slightly compressed and flowed here. In the area of the thread groove 17, however, the cross section 21 is deformed much more strongly. In the plastic deformation of the entire cross-section 21 was transformed. The degree of deformation in the region of the eye 16 is even greater. Here, the cross section 22 is separated and, overall, very strongly deformed. The degree of deformation is slightly lower again towards the tip 18, as the cross section 23 shows.

Die Nähnadel 12 weist in ihrem Schaftteil 15 und ihrem Arbeitsteil 14 unterschiedliche Härten auf. Diese werden in einer einheitlichen Härtungsbehandlung erzeugt. Dabei kann die Nadel 12, wie auch jedes andere Textilwerkzeug 10, bei dem erfindungsgemäßen Verfahren, wenn es hohen Temperaturen und/oder wenn es niedrigen Temperaturen ausgesetzt wird, jeweils sowohl am Arbeitsteil 14 als auch am Schaftteil 15 gleichen Heiz- und Kühlmedien ausgesetzt sein. Dennoch können sich trotz der filigranen Struktur der Textilwerkzeuge und der daraus folgenden etwa gleichen Abkühlgeschwindigkeit von Schaftteil 15 und Arbeitsteil 14 unterschiedliche Härteprofile ausbilden. Beispielsweise kann in dem Schaftteil 15 der Querschnitt 20 in einer äußeren oberflächennahen Zone 24 einen relativ hohen Kohlenstoffanteil und eine große Härte aufweisen, während eine oberflächenferne Kernzone 25 einen geringeren Kohlenstoffgehalt und somit eine geringere Härte aufweist. In dem Querschnitt 22 können ebenfalls eine oberflächennahe Zone 24 und eine Kernzone 25 vorhanden sein. Vorzugsweise ist hier jedoch die oberflächennahe Zone 24 dicker. Die oberflächenferne Kernzone 25 ist wesentlich kleiner. Sie kann auch ganz verschwinden. Der Kohlenstoffanteil in der oberflächennahen Zone 24 des Schaftteils 15 kann so groß oder auch geringer sein als der Kohlenstoffgehalt der oberflächennahen Zone 24 des Arbeitsteils 14, beispielsweise am Öhr 16. Während der Kohlenstoffgehalt im Schaftteil 15 von der Oberfläche zu dem Kern hin abnimmt, kann der Kohlenstoffgehalt im Arbeitsteil 14 eine geringe Abnahme von der Oberfläche zum Kern hin zeigen. Zusätzlich kann der Kohlenstoffgehalt in dem Arbeitsteil 14 insgesamt höher als in dem Schaftteil 15 sein. Es ist auch möglich, dass der Kohlenstoffgehalt im gesamten Querschnitt 22 (21 oder 23) des Arbeitsteils 14 konstant ist.The sewing needle 12 has in its shaft part 15 and its working part 14 different hardnesses. These are produced in a uniform hardening treatment. In this case, the needle 12, as well as any other textile tool 10, in the method according to the invention, when exposed to high temperatures and / or when it is exposed to low temperatures, each be exposed to both the working part 14 and the shaft part 15 same heating and cooling media. Nevertheless, despite the filigree structure of the textile tools and the consequent about the same cooling rate of shaft portion 15 and working part 14 different hardness profiles can be formed. For example, in the shank portion 15, the cross section 20 in an outer near-surface zone 24 may have a relatively high carbon content and a high hardness, while a core zone 25 remote from the surface may have a lower carbon content and thus a lower hardness. In the cross-section 22, a near-surface zone 24 and a core zone 25 may also be present. Preferably, however, the near-surface zone 24 is thicker here. The surface remote core zone 25 is much smaller. It can disappear completely. The carbon content in the near-surface zone 24 of the shaft portion 15 may be as large or less than the carbon content of the near-surface zone 24 of the working part 14, for example, at the eye 16. While the carbon content in the shaft portion 15 decreases from the surface to the core, the Carbon content in the working part 14 show a slight decrease from the surface towards the core. In addition, the carbon content in the working part 14 may be higher overall than in the shaft part 15. It is also possible that the carbon content in the entire cross section 22 (21 or 23) of the working part 14 is constant.

Vorzugsweise besteht das Textilwerkzeug 10 vor der Wärmebehandlung aus einem Chromstahl, zum Beispiel X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 oder X10CrNi18-8. Diese können nach der Wärmebehandlung zusätzlichen Kohlenstoff und Chromkarbide enthalten.Preferably, the textile tool 10 is made of chromium steel prior to the heat treatment, for example, X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8. These may contain additional carbon and chromium carbides after the heat treatment.

In Figur 6 ist ein stark vergrößerter Ausschnitt aus dem Arbeitsteil 124 der Filznadel 11 nach Figur 1 im Bereich einer Kerbe 26 dargestellt. Die Oberfläche hat bei beispielsweise 4000facher Vergrößerung im Bereich der Kerbe 26 das Aussehen nach Figur 7. Wie ersichtlich, wird das Aussehen der Oberfläche von einer Anzahl rundlicher oder auch länglicher Karbid-Kristalle, insbesondere Chromkarbid-Kristalle 27, geprägt, die ungefähr bohnen- oder erbsenförmig sind und aus der sonst von der Oberfläche definierten Ebene 28 herausragen. Sie bilden jedoch vorzugsweise keine zusammenhängende Schicht und sind miteinander kaum oder gar nicht verschmolzen. Die einzelnen rundlichen Karbid-Kristalle weisen einen Durchmesser, vorzugsweise 0,2 bis 1 µm auf. Sind sie länglich, können sie einen Längsmesser von zwischen 2 und 3 µm und einem Quermesser zwischen 0,5 und 2 µm aufweisen.In FIG. 6 is a greatly enlarged section of the working part 124 of the felting needle 11 after FIG. 1 represented in the region of a notch 26. The surface has, for example, 4000x magnification in the area of the notch 26 after the appearance FIG. 7 , As can be seen, the appearance of the surface is characterized by a number of roundish or even elongated carbide crystals, in particular chromium carbide crystals 27, which are approximately bean or pea shaped and protrude from the otherwise defined from the surface level 28. However, they preferably do not form a coherent layer and are hardly or not fused together. The individual roundish carbide crystals have a diameter, preferably 0.2 to 1 .mu.m. If they are elongated, they can have a longitudinal diameter of between 2 and 3 microns and a transverse knife between 0.5 and 2 microns.

Außerhalb der Kerbe 26, insbesondere im Bereich der Spitze des Arbeitsteils, ist die Oberfläche vorzugsweise etwa wie aus Figur 8 ersichtlich ausgebildet. Die Karbid-Kristalle 27 sind stochastisch über die Oberfläche 28 verteilt und vorwiegend rundlich bohnen- oder erbsenförmig. Wiederum ergibt sich eine insgesamt pickelig erscheinende Oberfläche mit einer Lage aus Karbid-Kristallen, die in die Oberfläche eingebettet sind und teilweise aus dieser heraus ragen. Die einzelnen Karbidkristalle 27 sind voneinander beabstandet und nur selten oder nicht miteinander verschmolzen. Schmelzbrücken 29 sind nur bei einer verschwindenden Minderheit von einzelnen Karbidkristallen anzutreffen, d.h. vorzugsweise bei weniger als 20 Prozent derselben. Die Größe der einzelnen Karbid-Kristalle 27 schwankt zwischen 0,3 µm und 1,5 µm. Die Mehrzahl der Karbid-Kristalle hat etwa rundliche Formen mit einem Durchmesser zwischen 0,3 und 1,5 µm. Längliche Typen haben einen Quermesser von bis zu 1,5 µm und einen Längsmesser von bis zu 4 µm.Outside the notch 26, in particular in the region of the tip of the working part, the surface is preferably approximately as if from FIG. 8 formed visible. The carbide crystals 27 are stochastically distributed over the surface 28 and predominantly roundish bean or pea shaped. Again, this results in an overall spotty surface with a layer of carbide crystals that are embedded in the surface and partially protrude from this. The individual carbide crystals 27 are from each other spaced and rarely or not merged. Melt bridges 29 are found only in a vanishing minority of individual carbide crystals, ie, preferably at less than 20 percent of the same. The size of the individual carbide crystals 27 varies between 0.3 μm and 1.5 μm. The majority of the carbide crystals have approximately roundish shapes with a diameter between 0.3 and 1.5 microns. Elongated types have a transverse blade of up to 1.5 μm and a longitudinal blade of up to 4 μm.

Zur besseren Verdeutlichung veranschaulicht Figur 9 noch eine weniger wünschenswerte Oberflächenkonfiguration, bei der die einzelnen Karbid-Kristalle 27 häufig durch Schmelzbrücken 29 untereinander verbunden sind. Es bilden sich dadurch unregelmäßig geformte zusammenhängende Karbid-Kristalle, deren Länge und Breite 1 µm überschreiten, wobei manche zusammenhängende Karbid-Kristallbereiche auch größer als 2 µm sind.Illustrated for clarity FIG. 9 another less desirable surface configuration, in which the individual carbide crystals 27 are often interconnected by melt bridges 29. As a result, irregularly shaped contiguous carbide crystals are formed whose length and width exceed 1 μm, with some contiguous carbide crystal areas also larger than 2 μm.

Die Filznadel 11 und allgemein ein Textilwerkzeug 10 mit einer gehärteten Oberflächenstruktur nach Figur 7 und 8 am Arbeitsteil 14 zeichnet sich durch geringe Bruchempfindlichkeit, hohe Härte und geringe Fadengleitwiderstände aus.The felting needle 11 and generally a textile tool 10 with a hardened surface structure according to FIGS. 7 and 8 The working part 14 is characterized by low sensitivity to breakage, high hardness and low thread sliding resistance.

Ein Vergleich der Figuren 7 und 8 mit der Figur 9 zeigt wie sich die Oberflächen, die sich als vorteilhaft erwiesen haben, qualitativ von der in Figur 9 gezeigten Oberfläche unterscheiden:
Die Karbide in den Figuren 7 und 8 haben eine überwiegend konvexe Form und sind weitgehend frei von konkaven Bereichen, während die Karbide in Figur 9 überwiegend konkav geformt sind. Die Karbide in den Figuren 7 und 8 sind weitgehend schmelzbrückenfrei.
A comparison of FIGS. 7 and 8 with the FIG. 9 shows how the surfaces, which have proved to be advantageous qualitatively from the in FIG. 9 different surface shown:
The carbides in the FIGS. 7 and 8 have a predominantly convex in shape and are largely free of concave areas, while the carbides in FIG. 9 are predominantly concave shaped. The carbides in the FIGS. 7 and 8 are largely free of fusion bridges.

Die Aufkohlung des Werkzeugs kann folgendermaßen vorgenommen werden:
In einem ersten Schritt wird ein Werkzeugrohling bereitgestellt, der beispielsweise aus einem Blechstreifen, einem Drahtabschnitt oder dergleichen aus einem Stahl mit einem Chromgehalt von mindestens 11 Gewichtsprozent besteht. Unter Stahl wird hier eine Eisenbasislegierung verstanden. Bevorzugt besteht der Werkzeugrohling aus X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 oder X10CrNi18-8. Dieser Werkzeugrohling wird nun Umformprozessen unterzogen. Diese Umformprozesse umfassen mindestens im Arbeitsteil 14 plastische Umformprozesse. Bei den plastischen Umformprozessen fließt das Material im Arbeitsteil 14 wesentlich stärker als im Schaftteil 15. Die Umformprozesse können Prägen, Walzen, Kneten, und dergleichen plastische Umformverfahren umfassen. An durchzuhärtenden Stellen des Arbeitsteils 14 erfasst die plastische Umformung den gesamten Materialquerschnitt. Das stärker verformte Material hat dabei mehr Versetzungen als das schwächer verformte Material.
The carburizing of the tool can be done as follows:
In a first step, a tool blank is provided, which consists for example of a metal strip, a wire section or the like of a steel having a chromium content of at least 11 weight percent. By steel is meant here an iron-based alloy. The tool blank preferably consists of X10Cr13, X20Cr13, X46Cr13, X65Cr13, X6Cr17, X6CrNi18-8 or X10CrNi18-8. This tool blank is now subjected to forming processes. These forming processes include at least in the working part 14 plastic forming processes. In the plastic forming processes, the material in the working part 14 flows much more strongly than in the shaft part 15. The forming processes may include embossing, rolling, kneading, and the like plastic forming processes. At through-hardening points of the working part 14, the plastic deformation covers the entire material cross-section. The more deformed material has more dislocations than the less deformed material.

In einem nächsten Arbeitsschritt wird der Werkzeugrohling auf eine Karbonisierungstemperatur Tc gebracht. Diese liegt vorzugsweise zwischen 900° C und 1050° C. Das Karbonisieren wird in einem Vakuumofen durchgeführt. Diesem wird mit geringem Druck von einigen Millibar ein Kohlenstoffträgergas beispielsweise Acetylen zugeführt. Dieses kann in kontinuierlichem Gasstrom oder auch schubweise (gepulst) geschehen. Hierbei reichert sich Kohlenstoff in der Oberflächenschicht an. Ein Teil des Kohlenstoffs reagiert mit im Chromstahl enthaltenen Chrom zu Chromkarbid.In a next step, the tool blank is brought to a carbonization temperature Tc. This is preferably between 900 ° C and 1050 ° C. The carbonization is carried out in a vacuum oven. This is fed with low pressure of a few millibars a carbon carrier gas such as acetylene. This can be done in continuous gas flow or in bursts (pulsed). Here, carbon accumulates in the surface layer. Part of the carbon reacts with chrome contained in chromium steel to chromium carbide.

In einem nachfolgenden Härteprozess wird vorzugsweise das gesamte Textilwerkzeug 10 auf eine Härtetemperatur gebracht.In a subsequent curing process, preferably the entire textile tool 10 is brought to a hardening temperature.

In einem nachfolgenden Schritt wird das Textilwerkzeug 10 von der Härtetemperatur TH ausgehend abgeschreckt. Es wird dabei in einer oder mehreren Kühlstufen gearbeitet. Zum Beispiel kann das Textilwerkzeug 10 zunächst auf eine Abschrecktemperatur TQ abgekühlt werden, die zum Beispiel bei oder wenig oberhalb der Zimmertemperatur liegt. Nach einer Zeit von wenigen Sekunden bis Minuten kann das Textilwerkzeug 10 dann auf eine Tiefkühltemperatur TK abgekühlt werden, um dort längere Zeit (eine Minute bis mehreren Stunden) zu verweilen. Der Herstellungsprozess endet dann mit der Rückerwärmung des Textilwerkzeugs 10 auf Zimmertemperatur Tz.In a subsequent step, the textile tool 10 is quenched starting from the hardening temperature T H. It is worked in one or more cooling stages. For example, the textile tool 10 may first be cooled to a quenching temperature T Q that is, for example, at or slightly above room temperature. After a time of a few seconds to minutes, the textile tool 10 can then be cooled to a freezing temperature T K in order to stay there for a longer time (one minute to several hours). The manufacturing process then ends with the reheating of the textile tool 10 to room temperature Tz.

Mit dem erfindungsgemäßen Konzept lassen sich Textilwerkzeuge mit Härtegradienten sowohl in Längs- als auch Querrichtung von außen nach innen sowie von dem Arbeitsteil 14 zu dem Schaftteil 15 hin erzielen. Es wird ein hoher Verschleißwiderstand und trotz hohen Kohlenstoffgehalts eine hohe Rostbeständigkeit erreicht. Es ergibt sich eine erhöhte Lebensdauer. Das Verfahren kommt ohne Oberflächenaktivierung aus. Infolge der Karbonisierung bei hoher Temperatur stören Passivschichten auf der Oberfläche des Textilwerkzeugs den Kohlenstoffeintrag nicht.With the concept according to the invention, textile tools having hardness gradients both in the longitudinal and in the transverse direction from the outside to the inside and from the working part 14 to the shaft part 15 can be achieved. It is a high wear resistance and despite high carbon content, a high rust resistance achieved. This results in an increased life. The process does not require surface activation. Due to the carbonization at high temperature, passive layers on the surface of the textile tool do not disturb the carbon input.

Das erfindungsgemäße Textilwerkzeug 10 besteht aus Chromstahl, in den in einem Karbonisierungsprozess in lokal unterschiedlichem Maße Kohlenstoff eingelagert worden ist. In einer Wärmebehandlung wird eine Bildung von Martensit voller Härte insbesondere in solchen Zonen erreicht, in die größere Kohlenstoffanteile eingetragen worden sind. Es lässt sich so ein Textilwerkzeug mit zonenweise unterschiedlichen Härten erzeugen, ohne im Herstellungsprozess die einzelnen verschieden harten Zonen unterschiedlichen Prozessbedingungen aussetzen zu müssen. Die Härtesteuerung erfolgt anhand des Umformgrades des Textilwerkzeugs.The textile tool 10 according to the invention consists of chromium steel, in which carbon has been incorporated into a carbonization process to a different extent locally. In a heat treatment, a formation of martensite full hardness is achieved especially in those zones in which larger amounts of carbon have been registered. It can thus produce a textile tool with zones of different hardness without having to expose the individual different hard zones different process conditions in the manufacturing process. The hardness control is based on the degree of deformation of the textile tool.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

1010
Textilwerkzeugtextile tool
1111
Filznadelfelting needle
1212
Nähnadelsewing needle
1313
Stricknadelknitting needle
1414
Arbeitsteilworking part
1515
Schaftteilshank part
1616
Öhreyelet
1717
Fadenbereichthread area
1818
Spitzetop
1919
Hakenhook
20 - 2320-23
Querschnittcross-section
2424
oberflächennahe Zone des Schaftteils 15near-surface zone of the shaft part 15
2525
oberflächenferne Kernzone des Schaftteils 15surface remote core zone of the shaft portion 15th
2626
Kerbescore
2727
Karbidkristallecarbide crystals
2828
Ebenelevel
2929
Schmelzbrückenfusible links

Claims (13)

  1. Textile tool (10), in particular needle,
    with a base body comprising chromium steel,
    which has a chromium content of 11% to 30% and a total carbon content of more than 0.8% in at least one surface portion,
    characterised in that the base body has regions (14, 15) in which the material has different forming degrees, and that in the regions with higher forming degrees, the base body has a higher hardness than in regions with lower forming degrees.
  2. Textile tool according to claim 1, characterised in that the base body comprises carburized chromium steel with a starting carbon content of no more than 0.7% or 0.5%, preferably however no more than 0.3%.
  3. Textile tool according to one of the preceding claims, characterised in that the base body contains chromium carbide.
  4. Textile tool according to any of the preceding claims, characterised in that in the regions close to the surface, the base body has a higher carbon content than in the regions more remote from surface.
  5. Textile tool according to any of the preceding claims, characterised in that the base body consists fully or in portions of martensite of full hardness.
  6. Textile tool according to any of the preceding claims, characterised in that the base body is formed elongate and along its length has regions (14, 15) with different forming degrees.
  7. Textile tool according to any of the preceding claims, characterised in that in regions of lower forming degrees, the base body is hardened less deeply than in regions with higher forming degrees.
  8. Method for producing textile tools (10), in particular needles, with the following steps:
    - provision of a tool blank of chromium steel with a chromium content of at least 11%,
    - forming of different regions of the blank with different forming degrees to produce at least a working part (14) and a shaft part (15),
    - carburization of the tool blank with the formation of chromium carbide,
    - application of a hardening temperature to the carburized tool blank,
    - quenching of the tool blank to form martensite.
  9. Method according to claim 8, characterised in that the forming of the tool blank in the working part (14) includes flowing of the material in the entire tool cross-section.
  10. Method according to one of claims 8 or 9, characterised in that carburization takes place at a temperature between 900°C and 1050°C.
  11. Method according to any of claims 1 to 10, characterised in that the carburization takes place by means of a carbon-containing carrier gas, preferably a hydrocarbon, preferably ethane, ethene or ethine.
  12. Method according to any of claims 1 to 11, characterised in that hardening takes place at a temperature which is greater than, equal to or less than the temperature of carburization.
  13. Method according to any of claims 1 to 12, characterised in that the quenching comprises deep-cooling of the tool blank.
EP13198583.0A 2013-12-19 2013-12-19 Textile tool and manufacturing method for the same Active EP2886668B1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
PT13198583T PT2886668T (en) 2013-12-19 2013-12-19 Textile tool and manufacturing method for the same
ES13198583T ES2707585T3 (en) 2013-12-19 2013-12-19 Textile tool and its manufacturing process
EP13198583.0A EP2886668B1 (en) 2013-12-19 2013-12-19 Textile tool and manufacturing method for the same
SI201331309T SI2886668T1 (en) 2013-12-19 2013-12-19 Textile tool and manufacturing method for the same
PCT/EP2014/077022 WO2015091103A1 (en) 2013-12-19 2014-12-09 Tool for textiles and production method for same
RU2016129123A RU2682264C1 (en) 2013-12-19 2014-12-09 Tool for textiles and production method for same
MX2016008153A MX369012B (en) 2013-12-19 2014-12-09 Tool for textiles and production method for same.
CN201480069077.2A CN106062218B (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same
BR112016013426-5A BR112016013426B1 (en) 2013-12-19 2014-12-09 tool for textile products and manufacturing method for that tool
PT14809042T PT3084017T (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same
TR2019/02562T TR201902562T4 (en) 2013-12-19 2014-12-09 Textile tool and its production method.
KR1020167018464A KR102414280B1 (en) 2013-12-19 2014-12-09 Tool for textiles and production method for same
HUE14809042A HUE041641T2 (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same
ES14809042T ES2713375T3 (en) 2013-12-19 2014-12-09 Textile tool and its manufacturing process
JP2016541565A JP6556141B2 (en) 2013-12-19 2014-12-09 Textile instrument and method for manufacturing the same
PL14809042T PL3084017T3 (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same
US15/106,006 US10487429B2 (en) 2013-12-19 2014-12-09 Tool for textiles and production method for same
SI201431092T SI3084017T1 (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same
EP14809042.6A EP3084017B1 (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same
TW103143991A TWI544087B (en) 2013-12-19 2014-12-17 Textile tool and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13198583.0A EP2886668B1 (en) 2013-12-19 2013-12-19 Textile tool and manufacturing method for the same

Publications (2)

Publication Number Publication Date
EP2886668A1 EP2886668A1 (en) 2015-06-24
EP2886668B1 true EP2886668B1 (en) 2018-12-12

Family

ID=49880481

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13198583.0A Active EP2886668B1 (en) 2013-12-19 2013-12-19 Textile tool and manufacturing method for the same
EP14809042.6A Active EP3084017B1 (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14809042.6A Active EP3084017B1 (en) 2013-12-19 2014-12-09 Textile tool and manufacturing method for the same

Country Status (16)

Country Link
US (1) US10487429B2 (en)
EP (2) EP2886668B1 (en)
JP (1) JP6556141B2 (en)
KR (1) KR102414280B1 (en)
CN (1) CN106062218B (en)
BR (1) BR112016013426B1 (en)
ES (2) ES2707585T3 (en)
HU (1) HUE041641T2 (en)
MX (1) MX369012B (en)
PL (1) PL3084017T3 (en)
PT (2) PT2886668T (en)
RU (1) RU2682264C1 (en)
SI (2) SI2886668T1 (en)
TR (1) TR201902562T4 (en)
TW (1) TWI544087B (en)
WO (1) WO2015091103A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3483319T (en) 2017-11-09 2022-02-14 Groz Beckert Kg Textile tool with indicator film

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2201425A (en) * 1937-05-03 1940-05-21 Sandvikens Jernverks Ab Alloy steel
US2662462A (en) * 1951-01-18 1953-12-15 E A Maddux Cultivator
DE2114734C3 (en) 1970-06-09 1979-04-05 The Torrington Co., Torrington, Conn. (V.St.A.) Method and device for tempering hardened needles
US3753412A (en) * 1971-12-02 1973-08-21 Torrington Co Selectively hardened needles
FR2180193A5 (en) * 1972-04-12 1973-11-23 Ugine Aciers
US4049430A (en) * 1976-08-18 1977-09-20 Carpenter Technology Corporation Precipitation hardenable stainless steel
CH641840A5 (en) * 1977-06-16 1984-03-15 Standardgraph Filler & Fiebig Process for increasing the abrasion resistance of workpieces of stainless steel or nickel metal alloys
DE2838135A1 (en) * 1978-09-01 1980-03-13 Singer Spezialnadelfab Hard-wearing tools for textile prodn. processes - produced by boriding or similar treatment of selected areas
JPH0638146Y2 (en) * 1989-11-30 1994-10-05 金井 宏之 Felting needle
JPH03199433A (en) * 1989-12-26 1991-08-30 Kanai Hiroyuki Ring for spinning frame
JPH0488149A (en) * 1990-07-30 1992-03-23 Kanai Hiroyuki Needle for textile machinery
SU1765250A1 (en) * 1990-08-06 1992-09-30 Сумское Машиностроительное Научно-Производственное Объединение Им.М.В.Фрунзе Method of treating articles made of stainless chromium steels
JPH04107212A (en) * 1990-08-24 1992-04-08 Kobe Steel Ltd Production of non-magnetic pin having high hardness and rust resistance
CN1068054A (en) * 1991-06-28 1993-01-20 大连制钉厂 Produce the process of cement nail and nailing with mild steel
JPH05171355A (en) * 1991-12-19 1993-07-09 Kanai Hiroyuki Needle for fiber
CN1048526C (en) * 1994-06-09 2000-01-19 田义德 Low-carbon alloy steel nail for nailingun cement and jet nail and making method
ES2161398T5 (en) 1997-06-03 2011-04-05 Ipsen International Gmbh PROCEDURE FOR CARBURATION OF METAL PARTS IN A VACUUM OVEN.
JPH11216290A (en) 1998-02-04 1999-08-10 Organ Needle Co Ltd Needle kind and manufacture therefor
JP4078467B2 (en) 1998-05-01 2008-04-23 マニー株式会社 Surgical needle
US6093303A (en) 1998-08-12 2000-07-25 Swagelok Company Low temperature case hardening processes
CN1236878C (en) * 1999-08-03 2006-01-18 风琴针株式会社 Needls and manufacturing method thereof
JP4604140B2 (en) * 2004-09-13 2010-12-22 マニー株式会社 Medical needle or blade
CN1772939A (en) * 2005-11-17 2006-05-17 上海隆兴特钢有限公司 High purity steel belt for textile needle and its production process
RU2294970C1 (en) * 2005-11-28 2007-03-10 Открытое акционерное общество "Московский завод координатно-расточных станков" (ОАО "МЗКРС") Method of treatment of suture needles
DE102006026883B8 (en) 2006-06-09 2007-10-04 Durferrit Gmbh Process for hardening stainless steel and molten salt for carrying out the process
JP2008264523A (en) * 2007-03-29 2008-11-06 Manii Kk Eyed needle, and its manufacturing method
KR101704849B1 (en) 2009-08-07 2017-02-08 스와겔로크 컴패니 Low temperature carburization under soft vacuum
JP5417229B2 (en) * 2010-03-16 2014-02-12 三和ニードルベアリング株式会社 Manufacturing method of sliding parts
CN102560266A (en) * 2010-12-10 2012-07-11 浪莎针织有限公司 High-wear-resistant steel for knitting needle and manufacturing method thereof
CN102383052B (en) * 2011-10-13 2013-07-10 浪莎针织有限公司 Manufacture method of high wear resistance steel for knitting needle
EP2662462A1 (en) * 2012-05-07 2013-11-13 Valls Besitz GmbH Low temperature hardenable steels with excellent machinability
CN103014524A (en) * 2012-12-05 2013-04-03 南京钢铁股份有限公司 Preparation method of needle steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2016129123A (en) 2018-01-24
ES2707585T3 (en) 2019-04-04
TW201540848A (en) 2015-11-01
WO2015091103A1 (en) 2015-06-25
ES2713375T3 (en) 2019-05-21
JP2017512248A (en) 2017-05-18
MX2016008153A (en) 2017-02-27
EP3084017A1 (en) 2016-10-26
JP6556141B2 (en) 2019-08-07
SI3084017T1 (en) 2019-04-30
EP3084017B1 (en) 2019-01-30
SI2886668T1 (en) 2019-03-29
US10487429B2 (en) 2019-11-26
CN106062218A (en) 2016-10-26
PT3084017T (en) 2019-03-14
CN106062218B (en) 2021-08-17
EP2886668A1 (en) 2015-06-24
PT2886668T (en) 2019-02-04
BR112016013426B1 (en) 2021-03-09
TWI544087B (en) 2016-08-01
KR20160101015A (en) 2016-08-24
MX369012B (en) 2019-10-24
PL3084017T3 (en) 2019-06-28
RU2682264C1 (en) 2019-03-18
HUE041641T2 (en) 2019-05-28
US20160319472A1 (en) 2016-11-03
TR201902562T4 (en) 2019-03-21
KR102414280B1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
DE60030364T2 (en) Production method of a high pressure resistant component
DE3923999A1 (en) METHOD FOR CARBONING AND PAYNING STEEL PARTS
DE3800838C1 (en)
DE10209264B4 (en) Method for producing a metal component
DE112012000408B4 (en) Steel gear and manufacturing method therefor
DE102004053935B4 (en) Process for the heat treatment of a component made of a thermosetting heat-resistant steel and a component made of a thermosetting, heat-resistant steel
CH637162A5 (en) METHOD FOR REINFORCING STRENGTH OF CARBON STEEL AND LOW-ALLOY STEEL.
EP2886668B1 (en) Textile tool and manufacturing method for the same
DE112012000484B4 (en) Steel gear and manufacturing method therefor
EP1812609A1 (en) Method and device for shaping wire-shaped and rod-shaped starting materials close to the gauge block, and correspondingly produced flat profiled element
WO2006013055A1 (en) Method for the heat treatment of workpieces made from steel
DE102017101907B4 (en) Manufacturing method for a sliding camshaft
DE4218099C2 (en)
DE102017108716A1 (en) Rolling contact shaft part
WO2004018715A2 (en) Method and device for the continuous annealing of strip steel and correspondingly produced strip steel
WO2018188686A1 (en) Carbonitriding of rolling bearings produced by non-cutting processes
DE3029339A1 (en) Glow discharge heat treatment plant - with vacuum furnace and auxiliary electrodes initiating discharge
DE2251894A1 (en) Steel for roller components - with 15-80 volume % quasi-carbide dispersed in martensite matrix of surface layer
DE7729569U1 (en) COMPONENT, IN PARTICULAR TOOL, FOR TEXTILE MACHINERY
WO2023104385A1 (en) Method and device for the localised nitriding or nitrocarburising of the surface of a component
DE2009305A1 (en) Tire or anti-skid net for vehicle tires and process for its manufacture
EP3597779A1 (en) High-strength steering pinion
EP0507762A2 (en) Process for making a frog
DE2838135A1 (en) Hard-wearing tools for textile prodn. processes - produced by boriding or similar treatment of selected areas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150724

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170828

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/18 20060101ALI20180613BHEP

Ipc: C21D 1/06 20060101ALI20180613BHEP

Ipc: C21D 9/26 20060101AFI20180613BHEP

Ipc: C23C 8/22 20060101ALI20180613BHEP

Ipc: C21D 7/10 20060101ALI20180613BHEP

Ipc: B21G 1/00 20060101ALI20180613BHEP

Ipc: C21D 8/00 20060101ALI20180613BHEP

Ipc: C21D 1/18 20060101ALI20180613BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180802

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1076047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011797

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2886668

Country of ref document: PT

Date of ref document: 20190204

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2707585

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190404

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011797

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

26N No opposition filed

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1076047

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131219

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181212

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221219

Year of fee payment: 10

Ref country code: ES

Payment date: 20230112

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231026

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20231025

Year of fee payment: 11

Ref country code: RO

Payment date: 20231127

Year of fee payment: 11

Ref country code: PT

Payment date: 20231219

Year of fee payment: 11

Ref country code: IT

Payment date: 20231110

Year of fee payment: 11

Ref country code: FR

Payment date: 20231009

Year of fee payment: 11

Ref country code: DE

Payment date: 20231231

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240117

Year of fee payment: 11