EP0881865B1 - Dispositif de production d'une pluralité de jets de plasma basse température - Google Patents

Dispositif de production d'une pluralité de jets de plasma basse température Download PDF

Info

Publication number
EP0881865B1
EP0881865B1 EP98109597A EP98109597A EP0881865B1 EP 0881865 B1 EP0881865 B1 EP 0881865B1 EP 98109597 A EP98109597 A EP 98109597A EP 98109597 A EP98109597 A EP 98109597A EP 0881865 B1 EP0881865 B1 EP 0881865B1
Authority
EP
European Patent Office
Prior art keywords
anode
cylindrical cathode
individual cylindrical
cathode
hollow cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98109597A
Other languages
German (de)
English (en)
Other versions
EP0881865A2 (fr
EP0881865A3 (fr
Inventor
Jürgen Prof. Dr. Dr. h.c. Engemann
Darius Dr. Korzec
Mark Mildner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JE PlasmaConsult GmbH
Original Assignee
JE PlasmaConsult GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JE PlasmaConsult GmbH filed Critical JE PlasmaConsult GmbH
Publication of EP0881865A2 publication Critical patent/EP0881865A2/fr
Publication of EP0881865A3 publication Critical patent/EP0881865A3/fr
Application granted granted Critical
Publication of EP0881865B1 publication Critical patent/EP0881865B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • H05H1/481Hollow cathodes

Definitions

  • the invention relates to a device to produce a variety of low temperature plasma jets according to the preamble of claim 1.
  • the device according to the invention generates plasma jets by means of supplied high-frequency power under Exploitation of the hollow cathode effect.
  • the required energy by a high frequency generator with a frequency between 100 kHz and 100 MHz provided. Due to postal restrictions you usually use the frequency 13.56 MHz.
  • the High frequency power is measured using an appropriate Network adapted.
  • a special form of gas discharge is the hollow cathode discharge, which generates plasmas with a high ion density regardless of the type of excitation.
  • Direct current hollow cathode discharges were reported very early in this century, for example in the article by Günther-Schulze Zeitschrift für Physik 30, pages 175-186 (1924). In the essay by Little and Engel Proc. R. Soc. 224, page 209-227 (1954), a theory for direct current hollow cathode discharges is developed for the first time.
  • the article by Pillow, Spectrochimica Acta 36B, page 821-843 (1981) gives an overview of the various physical properties of direct current hollow cathode discharges.
  • Low-temperature plasma jets are described for the first time in DE 3620214 A1 and in the article by Bardos and Dusek in Thin Solid Films Vol. 158, pages 265-270 (1988) in a device for plasma-assisted CVD (Chemical Vapor Deposition) at very high rates.
  • the device consists of a hollow cathode, which is operated with high-frequency power (27.12 MHz).
  • the substrate itself or the process chamber also serves as a counter electrode.
  • deposition rates of a few ⁇ m per minute for the production of nitride layers can be achieved.
  • no arrangement is reported which enables large-area deposition on web-shaped substrates, such as foils. Coating non-conductive substrates is also a problem.
  • the high-frequency hollow cathode channels have a length of 700 mm and are provided with cathode bores. This forms an efficient hollow anode plasma, but this device is not suitable for the deposition of plasma polymer films on moving, two-dimensional substrates due to the closed construction. The construction also prevents the formation of plasma jets.
  • the high-frequency hollow cathode is designed, for example, as a 30 cm long hollow cathode, it can be seen that at low chamber pressures in the range of a few millibars, a plasma jet of a non-polymerizing gas is not extracted from all the bores which act as nozzles. Depending on the operating conditions gas flow, vacuum chamber pressure, coupled RF power and the type of gas, a pattern of extracted plasma jets is formed. This pattern cannot be avoided with this device and leads to an inhomogeneous substrate influence. However, it is necessary to work at low pressures, since higher pressures can lead to higher temperatures on the substrate and thus to its destruction.
  • the invention solves this problem with the features of claim 1, in particular with those of the identification part, after which the device several separate Single hollow cathode chambers, after which each Plasmajet each as a single hollow cathode chamber Discharge space is assigned and, according to which openings (6,7) in the single hollow cathodes (12) and in the Anode (11) axially aligned pairs of holes form.
  • the principle of the invention is thus essentially based insist on the plasma jets individually in separate Ignite single hollow cathode chambers and out of the chambers extract each in a process room.
  • the solution according to the invention succeeds in the plasma jets to supply independently of each other with working gas. This enables a permanent, even Burn all plasma jets. Fluidic disadvantages in the prior art that prevent several plasma jets emerging from a common discharge space originate, not evenly permanent burn, can be eliminated.
  • the design of the device with a chamber housing and anode housing also enables deposition of insulating layers on a substrate or deposition on insulating substrates.
  • a method is already known from EP 0 727 508 A1 and an apparatus for treating Known substrate surfaces.
  • Here is for treatment proposed larger substrate areas, among other things, one of several individual elements Provide formed hollow cathode which are tubular or have the shape of circular disks. With the known Device is pretensioned to the substrate created. It is also suggested to put an anode on the side of the hollow cathode facing away from the substrate provided.
  • openings in the anode at least in some areas to the process room. This will be the first for the surface of the anode hole which is recognizable by the plasma jet increased. But it works at the same time, side by side shielding arranged plasma jets from one another, so that they are only in an area close to the substrate overlap in the process space and in this way evenly burn. A mutual influence Adjacent plasma jets are reduced.
  • Fig. 1 shows the prior art and represents the principle of creating a low-temperature plasma jet schematically. The generation is based on one on flow-physical effects. To the others the plasma serves as an electrical conductor between a hollow cathode 1 and a hollow anode 2. In a grounded total anode 11 is located one hollow cathode chamber 34 is electrically insulated surrounding hollow cathode 1.
  • a non-polymerizing Working gas e.g. Argon, oxygen, nitrogen, etc. flows through the gas inlet 9 into the hollow cathode chamber 34 a. The gas then flows through a Cathode bore 6 and an anode bore 7 in the Hollow anode 2, which evacuates via the gas outlet 10 becomes.
  • the hollow cathode 1 by a high frequency generator 8 (e.g. 13.56 MHz) is powered a hollow cathode plasma 3 in the hollow cathode chamber 34 generated.
  • the total electrical discharge current also flows through the cathode bore in the plasma 6 and the anode bore 7, so that a zone higher Ion density is created. Both effects create together the Plasmajet 5.
  • a gas outlet 10 is provided in the hollow anode 2, in which a hollow anode plasma 4 burns.
  • a process room 33 is therefore not completely closed. It can therefore lead to a flow of plasma or gas the holes 6, 7 and come through the process space 33 and the plasma jets 5 can exit the anode bore 5 be extracted.
  • Fig. 2a is a longitudinal section through a schematic illustrated first embodiment of the Device for generating several linearly arranged Low temperature plasma jets mapped, with each plasma jet 5 separately in a single hollow cathode chamber 32 of a single hollow cathode 12 is generated.
  • the plasma jets 5 each penetrate an area between the cathode bore 6 and the anode bore 7. They extend beyond the bore areas both in the process space 33 and in the single hollow cathode chambers 32 in. Because of the pressure differences each plasma jet 5 flows through the Cathode bore 6 and the anode bore 7 in the process space 33rd
  • An overall hollow cathode 27 is coaxial in one Total hollow anode 13 arranged and by ceramic Insulating pieces 20 a-d electrically from the grounded total hollow anode 13 isolated. So a dark room 26 with a width of preferably 2.5 mm.
  • the Total hollow cathode 27 is via the high frequency feed 14 supplied with high-frequency power. there is used to isolate the high frequency feed in the Anode 19 is a sleeve, preferably made of PTFE (Polytetrafluoroethylene) used.
  • Several single hollow cathodes 12 are linear a total hollow cathode 27 is arranged.
  • the single hollow cathode chambers 32 of the single hollow cathodes 12 via a cathode gas supply 16 with working gas provided.
  • the working gas flows through one Single hollow cathode gas inlet 15 into the single hollow cathode chambers 32.
  • a total gas supply 18 leads the working gas from the outside on both sides of the device the total hollow cathode 27.
  • An insulation section 17 isolates the total gas supply 18 from the cathode gas supply 16. This insulating section 17 is shaped so that a parasitic discharge between Total hollow anode 13 and the total hollow cathode 27 is prevented.
  • the total hollow cathode 27 comprises a total hollow cathode tube 28, which in the exemplary embodiment Inside diameter of 43 mm with a wall thickness of about 10 mm and a length of, for example, 300 mm Has.
  • the total hollow anode 13 has an inner diameter of 68 mm and a wall thickness of preferably 6 mm at a length of 324 mm.
  • the cathode bores 6 form together with the opposite anode holes 7 shows a row parallel to a longitudinal axis of FIG Total hollow cathode 27.
  • One cathode hole each 6 and an anode hole 7 are axially aligned Hole par arranged.
  • the cathode bore 6 has a diameter of preferably 10 mm.
  • the ones shown in the example Anode holes 7 each have a diameter of 4 mm. Due to the gas flow in each hollow cathode chamber 32 under increased pressure over that Process space 33 flowing in working gas, flows in Plasmajet 5 from the holes 6 and 7 in the process room 33.
  • the total gas supply 18 is e.g. by formed a 6 mm thick stainless steel tube.
  • the Cathode gas supply 16 is through a tube of 6 mm Realized diameter on which several disks 29th with a thickness of 1 mm and a diameter of 43 mm fixed at a respective distance of preferably 20 mm are.
  • the tube 16 with the washers 29 is in pushed the tube 28 forming the entire hollow cathode 27 and thus forms toroidal single hollow cathode chambers 32 of the single hollow cathodes 12.
  • the cathode gas supply forming tube 16 has wall openings 15 through which the working gas into the single hollow cathode chambers 32 arrives.
  • the number of wall openings 15 corresponds to the number of single hollow cathode chambers 32. Any non-polymerizing gas can be used as the working gas Gas can be used.
  • This linear device is designed so that one that can be extended in discrete units of 300 mm Device for generating any large number of high-frequency hollow cathode low-temperature plasma jets results.
  • To a bilateral Treatment or coating of a substrate can achieve two parallel linear trained Devices perpendicular to the direction of movement of the Substrate are arranged opposite to each other.
  • the high frequency power is balanced RF distributor fed to the pair of devices.
  • This distributor is designed so that the distance of the two devices can be varied to each other can.
  • the high-frequency power is via a plug connection, which is also the principle of modularity supported, coupled into the total hollow cathode 27.
  • FIG. 2b shows a cross section through a toroidal Single hollow cathode 12 of the device with process space and substrate.
  • the plasma jet 5 excites the monomer 22 supplied outside the device in a remote process, analogously to the article by Korzec, Theirich, Werner, Traub and Engemann, Surf. and Coating Technol. 74-75, p. 67-74 (1995), for polymerization on the surface of a substrate 24.
  • the monomer 22 to be polymerized is fed through a monomer gas feed 21 a, b with bores, which is arranged near the device according to the invention.
  • a coating plasma zone 23 is formed in the process space 33.
  • the monomer polymerizes on the substrate 24 and forms a plasma polymer film 25.
  • the ion density within a plasma jet 5 is up to 10 12 ions per cm 3 .
  • Fig. 3a is a second embodiment shown.
  • This device works according to the same principle and also enables generation a variety of intense high-frequency hollow cathode low-temperature plasma jets. While that in 2a and 2b example shown a linear Arrangement of single hollow cathode chambers 32 of the single hollow cathodes 12 shows the single hollow cathodes here 12 along with the single hollow cathode chambers 32 arranged on one level. This leads to a Matrix-like formation of plasma jets.
  • the single hollow cathode chambers 32nd circular cylindrical design In contrast to the annular single hollow cathode chambers 32 in FIGS. 3a and 3b are in this Embodiment the single hollow cathode chambers 32nd circular cylindrical design.
  • the feeding of the Working gas is emitted from one end face the cylinder forth through a gas inlet 15.
  • the Gas outlet, the bore 6 in the chamber housing of the single hollow cathode 12, is on the opposite End face of the cylinder arranged.
  • the single hollow cathodes 12 are in one Total hollow cathode 27, which is even within the Total anode 13 is arranged.
  • Total hollow cathode 27 and total anode 13 are by ceramic insulating pieces 20 a-d separated.
  • the total anode 13 is at the electrical earth potential.
  • the Total hollow cathode 27 is via the high frequency feed 14 supplied with high-frequency power.
  • the High-frequency feed 14 is electrical from the anode 19 insulated, preferably as insulating material PFTE (polytetrafluoroethylene) is used.
  • PFTE polytetrafluoroethylene
  • Total hollow cathode 27 is over the insulating section 17th the gas supply and via the total gas supply 18 supplied with a non-polymerizing working gas.
  • This insulating section 17 of the gas supply is shaped in such a way that a parasitic discharge between Total anode 13 and the total hollow cathode 27 prevented becomes.
  • 3b is a cross section of the device for generating low-temperature plasma jets arranged in a matrix shown.
  • the working gas flows from the insulating section 17 of the gas supply into the cathode gas supply 16, which is designed as a channel system is.
  • the gas flows from the cathode gas supply 16 through the hollow cathode gas inlet 15 into each one Hollow cathode chamber 32 to a hollow cathode plasma 3 ignite.
  • a plasma jet 5 forms in the range of Cathode bore 6 and anode bore 7 and flows through the anode bore 7 into the process space 33.
  • Each single hollow cathode chamber 32 of the hollow cathode 12 has a diameter of preferably 20 mm to 40 mm.
  • the length is e.g. 50 mm.
  • the total hollow cathode 27 has, for example a length of approx. 264 mm with a width of e.g. 125 mm.
  • the hollow cathode gas inlet 15 has a diameter of 2 mm.
  • the total hollow cathode 27 is from a space or dark room 26 of width 2 mm surrounded.
  • the cathode bore 6 has a diameter of 10 mm and the anode holes 7 a diameter of 4 mm.
  • the total gas supply 18 is, for example formed by a 6 mm thick stainless steel tube.
  • the monomer 22 to be polymerized is by a arranged near the device according to the invention Monomergaszussel 21 with holes analogous to Fig. 2b supplied.
  • FIG. 4 shows an enlarged section of the area of the bores 6, 7 of the device described above.
  • the ratio of cathode area to anode area plays an important role for the generation of the plasma jet and the operation of the device, as in the article by Horwitz, J. Vac. Sci. Technol . A1 page 60-68 (1983).
  • the cylindrical bore 7 of the entire anode 11 is designed step-like.
  • the plasma jet 5 flows through the cathode bore 6 to the anode bore 7.
  • An optimum area ratio is achieved when the cathode surface and the anode surface are of the same size.
  • the anode bore 7 can face the process space also expand conically or curved. same for for the cathode hole 6.
  • This arrangement according to the invention can the voltage distribution at the high-frequency electrodes adjust so that you get high-intensity plasma jets can extract. It is ensured that the electric discharge current across the surface of the cylindrical, stepped anode bore 7 flows and a covering of the entire anode 11 with the anode bores 7 is avoided with a plasma.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Coating By Spraying Or Casting (AREA)

Claims (22)

  1. Dispositif de production d'une pluralité de jets de plasma basse température (5) au moyen d'une puissance à haute fréquence en utilisant des décharges en cathode creuse effectuées en au moins une chambre à cathode creuse (32), entourée par une cathode creuse (12), comprenant au moins une ouverture d'admission (15) pour un gaz de travail, avec au moins une anode (11) voisine de la cathode creuse (12), la cathode creuse (12) et l'anode (11) présentant des ouvertures (6, 7) opposées l'une à l'autre, à travers lesquelles les jets de plasma (5) arrivent depuis la cathode creuse (32) dans un chambre à processus (33), caractérisé par le fait que le dispositif comprend plusieurs chambres à cathode creuse individuelles (32), en ce que, à chaque jet de plasma (5) est associée une chambre à cathode creuse individuelle (32) à titre d'enceinte de décharge, et par le fait que des ouvertures (6, 7), ménagées dans les cathodes creuses individuelles (12) et dans l'anode (11), forment des paires de perçages alignés axialement entre eux.
  2. Dispositif selon la revendication 1, caractérisé par le fait que la chambre à cathode creuse est subdivisée, en formant des cathodes creuses individuelles (12), en une pluralité de chambres à cathode creuse individuelles (32) et chaque cathode creuse individuelle (12) présente une ouverture d'introduction (15) propre pour l'injection du gaz de travail.
  3. Dispositif selon la revendication 1 ou 2, caractérisé par le fait que les chambres à cathode creuse individuelles (32) sont disposées en rangées.
  4. Dispositif selon la revendication 3, caractérisé par le fait que l'agencement en rangées s'étend de façon linéaire.
  5. Dispositif selon la revendication 3, caractérisé par le fait que les chambres à cathode creuse individuelles (32) sont disposées en forme d'anneau.
  6. Dispositif selon la revendication 1 ou 2, caractérisé par le fait que les chambres à cathode creuse individuelles (32) sont disposées le long d'une face.
  7. Dispositif selon la revendication 6, caractérisé par le fait que la face est un plan.
  8. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que les chambres à cathode creuse individuelles (32) sont disposées sur plusieurs côtés, opposés les uns les autres, d'une enceinte de processus (3).
  9. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que les chambres à cathode creuse individuelles (32) sont formées par agencement de parois de séparation (29) dans un boítier global pour cathodes (27).
  10. Dispositif selon la revendication 9, caractérisé par le fait que le boítier global pour cathodes (27) est entouré par un boítier global pour anodes (13).
  11. Dispositif selon la revendication 10, caractérisé par le fait que le boítier global pour anodes (13) est raccordé électriquement à la terre.
  12. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que des ouvertures (7) ménagées dans l'anode (11) vont en s'élargissant chacune au moins par zones, en allant dans la direction de l'enceinte de processus (33).
  13. Dispositif selon la revendication 12, caractérisé par le fait que les ouvertures (7) ménagées dans l'anode (11) vont en s'élargissant par degrés, en allant en direction de l'enceinte de processus (33).
  14. Dispositif selon la revendication 13, caractérisé en ce que les degrés sont chacun formés par une collerette disposée sur la paroi, située côté processus, de l'anode (11).
  15. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que des ouvertures (6) ménagées dans les électrodes creuses individuelles (12) vont en s'élargissant au moins par zones, en direction de l'enceinte de décharge.
  16. Dispositif selon la revendication 15, caractérisé par le fait que des ouvertures (6) ménagées dans les cathodes creuses individuelles (12) vont s'élargissant par degrés, en direction de l'enceinte de décharge.
  17. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que dans la zone d'au moins un jet de plasma (5) est prévu au moins un dispositif (21) devant injecter un monomère (22) dans l'enceinte de processus (33).
  18. Dispositif selon l'une des revendications 9 à 17, en particulier selon la revendication 9, caractérisé par le fait que l'amenée du gaz de travail aux électrodes creuses individuelles (12) s'effectue en passant par veine isolante (17), disposée entre le boítier global pour cathodes (27) et l'anode globale (11).
  19. Dispositif selon la revendication 18, caractérisé par le fait qu'à l'intérieur du boítier global pour cathode (27) est prévu un système de distribution de gaz (16) alimentant séparément en gaz de travail chaque chambre à cathode creuse individuelle (32).
  20. Dispositif selon la revendication 19, caractérisé par le fait que le système de distribution de gaz (16) est formé d'un tube.
  21. Dispositif selon la revendication 20, caractérisé en ce que sur le tube (16) sont disposées des traversées de paroi (15) à travers lesquelles le gaz de travail arrive dans les chambres à cathode creuse individuelles (32).
  22. Dispositif selon la revendication 21, caractérisé en ce que les chambres à cathode creuse individuelles (32) ont une configuration toroïdale et sont disposées en rangées et le tube (16) constitue l'axe médian de l'agencement.
EP98109597A 1997-05-30 1998-05-27 Dispositif de production d'une pluralité de jets de plasma basse température Expired - Lifetime EP0881865B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19722624 1997-05-30
DE19722624A DE19722624C2 (de) 1997-05-30 1997-05-30 Vorrichtung zur Erzeugung einer Vielzahl von Niedertemperatur-Plasmajets

Publications (3)

Publication Number Publication Date
EP0881865A2 EP0881865A2 (fr) 1998-12-02
EP0881865A3 EP0881865A3 (fr) 2000-06-28
EP0881865B1 true EP0881865B1 (fr) 2002-09-18

Family

ID=7830910

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98109597A Expired - Lifetime EP0881865B1 (fr) 1997-05-30 1998-05-27 Dispositif de production d'une pluralité de jets de plasma basse température

Country Status (2)

Country Link
EP (1) EP0881865B1 (fr)
DE (2) DE19722624C2 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516336C2 (sv) * 1999-04-28 2001-12-17 Hana Barankova Apparat för plasmabehandling av ytor
WO2001069644A1 (fr) * 2000-03-14 2001-09-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede et dispositif de traitement de surface active par plasma et utilisation dudit procede
DE10120405B4 (de) * 2001-04-25 2008-08-21 Je Plasmaconsult Gmbh Vorrichtung zur Erzeugung eines Niedertemperatur-Plasmas
DE10203543B4 (de) * 2002-01-29 2008-04-30 Je Plasmaconsult Gmbh Vorrichtung zur Erzeugung eines APG-Plasmas
DE102004029081A1 (de) * 2004-06-16 2006-01-05 Je Plasmaconsult Gmbh Vorrichtung zur Bearbeitung eines Substrates mittels mindestens eines Plasma-Jets
DE102005032890B4 (de) * 2005-07-14 2009-01-29 Je Plasmaconsult Gmbh Vorrichtung zur Erzeugung von Atmosphärendruck-Plasmen
GB0612814D0 (en) * 2006-06-28 2006-08-09 Boc Group Plc Method of treating a gas stream
TWI318417B (en) 2006-11-03 2009-12-11 Ind Tech Res Inst Hollow-type cathode electricity discharging apparatus
FR2912864B1 (fr) * 2007-02-15 2009-07-31 H E F Soc Par Actions Simplifi Dispositif pour generer un plasma froid dans une enceinte sous vide et utilisation du dispositif pour des traitements thermochimiques
EA030379B1 (ru) 2008-08-04 2018-07-31 Эй-Джи-Си Флет Гласс Норт Эмерике, Инк. Способ нанесения тонкопленочных покрытий с использованием плазменно-химического осаждения из газовой фазы (варианты)
CN101730374B (zh) * 2008-10-30 2012-05-09 财团法人工业技术研究院 等离子体系统
DE102010027570B3 (de) * 2010-07-19 2011-11-10 Eagleburgmann Germany Gmbh & Co. Kg Faltenbalg-Kompensator
RU2466514C2 (ru) * 2011-02-09 2012-11-10 Государственное образовательное учреждение высшего профессионального образования "Камская государственная инженерно-экономическая академия" (ИНЭКА) Способ получения электрического разряда в парах электролита и устройство для его осуществления
JP6508746B2 (ja) 2014-12-05 2019-05-08 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. マクロ粒子低減コーティングを利用したプラズマ源ならびにマクロ粒子低減コーティングを用いたプラズマ源を薄膜コーティングおよび表面改質に使用する方法
BR112017011612A2 (pt) * 2014-12-05 2018-01-16 Agc Glass Europe, S.A fonte de plasma de cátodo oco
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
EP3474635B1 (fr) 2017-10-17 2021-08-18 Leibniz-Institut für Plasmaforschung und Technologie e.V. Système de traitement à jet de plasma modulaire
FR3115180B1 (fr) * 2020-10-14 2022-11-04 Peter Choi Appareil de génération de plasma

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS246982B1 (en) * 1985-06-17 1986-11-13 Ladislav Bardos Method and apparatus for producing chemically active environment for plasma chemical reactions namely for deposition of thin layers
US4954751A (en) * 1986-03-12 1990-09-04 Kaufman Harold R Radio frequency hollow cathode
IT1246682B (it) * 1991-03-04 1994-11-24 Proel Tecnologie Spa Dispositivo a catodo cavo non riscaldato per la generazione dinamica di plasma
DE4233895C2 (de) * 1992-10-08 1996-11-28 Juergen Prof Dr Engemann Vorrichtung zur Behandlung von durch einen Wickelmechanismus bewegten bahnförmigen Materialien mittels eines reaktiven bzw. nichtreaktiven, durch Hochfrequenz- oder Pulsentladung erzeugten Niederdruckplasmas
US5464667A (en) * 1994-08-16 1995-11-07 Minnesota Mining And Manufacturing Company Jet plasma process and apparatus
SE9403988L (sv) * 1994-11-18 1996-04-01 Ladislav Bardos Apparat för alstring av linjär ljusbågsurladdning för plasmabearbetning
DE19505268C2 (de) * 1995-02-16 1999-02-18 Fraunhofer Ges Forschung CVD-Verfahren zur Beschichtung von Substratoberflächen
DE19541236A1 (de) * 1995-11-06 1997-05-07 Leybold Ag Vorrichtung zum Beschichten der Oberflächen von als Rotationskörper ausgeformten Substraten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. Korzec et al., Multi-jet hollow cathode discharge for remote polymer deposition, Surface and Coatings Technology 93 (1997) 128-133; Beitrag zum 3rd European Workshop on Large area Coating, Juni 1995, Würzburg *

Also Published As

Publication number Publication date
DE19722624C2 (de) 2001-08-09
EP0881865A2 (fr) 1998-12-02
DE19722624A1 (de) 1998-12-03
EP0881865A3 (fr) 2000-06-28
DE59805573D1 (de) 2002-10-24

Similar Documents

Publication Publication Date Title
EP0881865B1 (fr) Dispositif de production d'une pluralité de jets de plasma basse température
EP0275018B1 (fr) Procédé et appareil pour le revêtement de pièces conductrices par une décharge à arc
EP0478909B1 (fr) Procédé et appareillage pour la fabrication d'une couche de diamant
DE4011933C2 (de) Verfahren zur reaktiven Oberflächenbehandlung eines Werkstückes sowie Behandlungskammer hierfür
EP3309815B1 (fr) Dispositif de traitement au plasma comprenant deux sources de plasma excitées par micro-ondes couplées ensemble et procédé de fonctionnement d'un tel dispositif de traitement au plasma
EP2849204B1 (fr) Dispositif de production de plasma
EP0478908A1 (fr) Procédé et appareillage pour le traitement réactif d'objets au moyen d'une décharge, luminescente en courant continu
EP0235770A2 (fr) Dispositif pour le traitement par plasma de substrats dans une décharge plasmatique excitée par haute fréquence
DE3521318A1 (de) Verfahren und vorrichtung zum behandeln, insbesondere zum beschichten, von substraten mittels einer plasmaentladung
EP0727508A1 (fr) Procédé et appareil de traitement de surfaces de substrats
WO2009127297A1 (fr) Dispositif de production d'un plasma à la pression atmosphérique
DE4233895C2 (de) Vorrichtung zur Behandlung von durch einen Wickelmechanismus bewegten bahnförmigen Materialien mittels eines reaktiven bzw. nichtreaktiven, durch Hochfrequenz- oder Pulsentladung erzeugten Niederdruckplasmas
DE19713637C2 (de) Teilchenmanipulierung
EP1872637B1 (fr) Dispositif et procede de revetement par jet de plasma
DE102013107659B4 (de) Plasmachemische Beschichtungsvorrichtung
EP0257620B1 (fr) Procédé et dispositif pour former une couche par déposition chimique à plasma
EP2425445B1 (fr) Procédé de production d'un jet de plasma et source de plasma
DE102005049266B4 (de) Vorrichtung und Verfahren zur Plasmabehandlung von Objekten
DE19727857C1 (de) Plasmarektor mit Prallströmung zur Oberflächenbehandlung
DE102010020591A1 (de) Plasmagenerator sowie Verfahren zur Erzeugung und Anwendung eines ionisierten Gases
DE102008062619B4 (de) Mikrowellenplasmaquelle und Verfahren zur Bildung eines linear langgestreckten Plasma bei Atmosphärendruckbedingen
DE102013106315B4 (de) Verfahren und Vorrichtung zum Erzeugen eines physikalischen Plasmas
DE10314932A1 (de) Zerstäubungseinrichtung
DD292028A5 (de) Einrichtung zum Behandeln von Substraten im Plasma
DE102015110562A1 (de) Plasmaquelle, Prozessanordnung und Verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000603

AKX Designation fees paid

Free format text: CH DE FR IT LI

17Q First examination report despatched

Effective date: 20010309

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59805573

Country of ref document: DE

Date of ref document: 20021024

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS & SAVOYE SA

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060531

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: REINHAUSEN PLASMA GMBH

Free format text: JE PLASMACONSULT GMBH#MUENGSTENER STRASSE 10#42285 WUPPERTAL (DE) -TRANSFER TO- REINHAUSEN PLASMA GMBH#WEIDENER STR. 20#93057 REGENSBURG (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59805573

Country of ref document: DE

Owner name: REINHAUSEN PLASMA GMBH, DE

Free format text: FORMER OWNER: JE PLASMACONSULT GMBH, 42119 WUPPERTAL, DE

Effective date: 20110715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: REINHAUSEN PLASMA GMBH

Free format text: REINHAUSEN PLASMA GMBH#WEIDENER STR. 20#93057 REGENSBURG (DE) -TRANSFER TO- REINHAUSEN PLASMA GMBH#WEIDENER STR. 20#93057 REGENSBURG (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: REINHAUSEN PLASMA GMBH, DE

Effective date: 20110914

Ref country code: FR

Ref legal event code: CA

Effective date: 20110914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140522

Year of fee payment: 17

Ref country code: DE

Payment date: 20140519

Year of fee payment: 17

Ref country code: FR

Payment date: 20140516

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59805573

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601