EP0868956B1 - Procédé de fabrication d'articles métalliques à porosité interne - Google Patents

Procédé de fabrication d'articles métalliques à porosité interne Download PDF

Info

Publication number
EP0868956B1
EP0868956B1 EP98890051A EP98890051A EP0868956B1 EP 0868956 B1 EP0868956 B1 EP 0868956B1 EP 98890051 A EP98890051 A EP 98890051A EP 98890051 A EP98890051 A EP 98890051A EP 0868956 B1 EP0868956 B1 EP 0868956B1
Authority
EP
European Patent Office
Prior art keywords
metal
powder
heavy
temperature
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98890051A
Other languages
German (de)
English (en)
Other versions
EP0868956A1 (fr
Inventor
Peter H. Prof. Dr. Degischer
Brigitte Dr. Kriszt
Ahmad Falahati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Edelstahl GmbH
Original Assignee
Voestalpine Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Edelstahl GmbH filed Critical Voestalpine Edelstahl GmbH
Priority to AT98890051T priority Critical patent/ATE248675T1/de
Publication of EP0868956A1 publication Critical patent/EP0868956A1/fr
Application granted granted Critical
Publication of EP0868956B1 publication Critical patent/EP0868956B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process

Definitions

  • the invention relates to a process for the production of metal bodies with a substantially homogeneously formed internal porosity of metal powders and gas-releasing propellant powders. Furthermore, the invention comprises porous, in particular produced by the above process metal body.
  • a production of metal foam bodies takes place when using mostly Light metals and the like alloys in that liquid metal foamed and allowed to solidify. Such manufactured bodies can be many times for reasons of manufacturability have only simple geometric shapes and must be further elaborately processed throughout.
  • a process for producing a body with continuous porosity referred to as Silencer or filter can be used is disclosed in DE-A-3421858 disclosed. According to this method, a powder is sintered without any pressing, wherein a fusion of the sharp edges of the powder grains below the melting point of the powder material takes place.
  • DE-4 018 360 C1 discloses another process for producing porous ones Metal body made of light metals by means of metal powder and at least one Propellant powder.
  • a semi-finished is doing by hot compacting the Powder mixture at a temperature at which the compound of Metal powder particles predominantly by diffusion and at a pressure, the is high enough to prevent the decomposition of the propellant, thus created, that the metal particles are in a fixed connection with each other and represent a gas-tight seal for the particles of the blowing agent.
  • Subsequently is heated by heating the semifinished product to a temperature above the Decomposition temperature of the blowing agent, preferably in the temperature range of Melting point of the metal used, the porous metal body formed.
  • This object is achieved according to the invention that from starting materials powder of at least one heavy metal and / or at least one heavy metal alloy, from at least one gas-forming and / or gas-releasing propellant and from at least one non-metallic reaction and / or alloying agent prepared and the powders are processed into a homogeneous mixture, which Powder mixture under all-round pressure, if necessary in a closable Container and / or compacted at elevated temperature to form a blank and this is subjected to a heat treatment, which heat treatment at least each partially in a temperature range between solidus and liquidus one formed by non-metallic agent, lower melting heavy metal phase on the surface of the powder grains, which Phase a metallic compound or welding the Metal particles causes, and in the field of reaction and / or Decomposition temperature of the blowing agent is, with a gas-forming and / or a volumsverierewort reaction by the
  • the advantages achieved by the invention are essentially to be seen in that by the powder grain structure and / or the powder composition according to a intensive mixing a blank can be produced, which optimally the required Requirements for creating a connection of the metal particles with each other, with a largely gas-tight inclusion of the blowing agent particles, offers.
  • a particularly advantageous method of preparation and uniformly good mechanical Properties of the porous metal body in comparison with its specific Weight is reached when, after raising the melting temperature of the grain connecting areas by diffusion, a heating and / or Pressure reduction on the decomposition and / or reaction criteria of Propellant takes place.
  • Powder with a lower melting thin film on The grain surfaces are, for example, by annealing in one Reaction gas stream produced, wherein after compacting to a blank by a temperature effect, at least a partial melting of the Surface areas and welding of the powder particles can be done. It is also advantageously possible, powder with largely homogeneous chemical Composition across the grain cross-section by means of alloying and / or Coating reagent to compact this mix and a Underlie glowing, whereby by diffusing the Coating elements alloyed, lower melting surface areas formed and the powder grains are joined together. So can for example a substantially pure iron with a melting point of 1500 ° C.
  • the metal powder (s) and the blowing agent (s) powder (s) are used as the Reaction and / or alloying agent is a non-metallic element or a the like compound, preferably carbon, in particular graphite, before homogenizing mixing process is added.
  • alloyed and high-alloyed heavy metals can also be favorable in particular for alloyed and high-alloyed heavy metals be if in the area of the surface of heavy metal powder grains a layer is formed with increased nitrogen content, whereby during a heat treatment the blank is a compound of the same, because ultimately a high Strength of the pore walls can be achieved.
  • a carbon dioxide-releasing substance preferably at least one Carbonate, especially the elements of the second group of periodic System or a heavy metal is used and that through Temperature effect of split off gas, optionally by reaction with the added carbon, undergoes an increase in volume, with highly effective Propellants, optionally with low propellant quantities, particularly favorable achieved trained porosity in the metal body.
  • An increase in volume of a propellant at elevated temperature split carbon dioxide is mixed by a reaction with Carbon causing carbon monoxide formation.
  • At least one oxide preferably a Heavy metal oxide, in particular iron oxide, used and with at least one such amount of carbon are distributed in the powder that the oxygen content of the Oxides is reacted to CO gas.
  • a highly tear-free inflation of the blank is achievable if the Heating rate to the temperature at which the propellant gas splits off, has a value that is greater than 1.05 ° C / s.
  • At least two heavy metal powder and / or at least two propellant powders each having different chemical Composition prepared and used to form the blank For example, the conditions for a metallic compound of the powder particles to Formation of metal bodies with special mechanical properties and uniform small porosity can be optimized.
  • the metal body is a dense Has surface layer and is formed in particular as a composite body.
  • the invention further includes a substantially homogeneous inner porosity of at least 40% by volume.
  • Has porosity, of at least one heavy metal and / or at least one Heavy metal alloy is formed and carbon contents of 0.05 to 4.1 wt .-% and / or nitrogen contents of 0.002 to 0.3 wt .-%.
  • Carbon and / or nitrogen contents in heavy metal is an improved connection-technical or welding metallurgical quality of the connection areas secured around the pores.
  • the metal body can be achieved, if this essentially of an iron-based or nickel-based or a Cobalt-based alloy, in particular each having a chromium content of greater than 1.6 Wt .-% or copper-based alloys and other heavy metals is formed and having a melting point greater than 900 ° C.
  • the metal body consists essentially of at least one intermetallic Phase exists, can advantageously so-called memory properties of such Materials are used.
  • Table 1 show the effects of, on the one hand, propellants of different high dissociation temperature (eg at 1 atm .: CaCO 3 900 ° C, SrCO 3 : 1289 ° C, BaCO 3 : 1360 ° C) and on the other hand the carbon non-metallic reactant a gas volume increasing reaction sequence:
  • the propellant gas volume can be further increased if the carbon oxides formed by splitting off carbonic acid metal oxides, in particular heavy metal oxides, are reducible by carbon at temperatures between 900 ° C and 1250 ° C.
  • This reaction which is advantageously possible with carbonate ores such as iron carbonates, proceeds in principle according to the following equations, where SMe means heavy metal.
  • heavy metal oxides for example iron oxides, in particular lamellar, ie non-amorphous hematite and carbon, can be used, a propellant gas formation taking place according to the formula: Fe 2 O 3 + 3C 2Fe + 3CO
  • Powder additives of lamellar hematite and graphite are particularly advantageous usable, because a platelet-shaped structure of these particles good mixing and Distribution properties in heavy metal powder as well as delayed reactions can effect.
  • AISI 316 stainless steel was processed into a powder having a mean particle diameter of 125 ⁇ m by a gas atomization process. Part of this powder was embroidered on the surface zone of the powder grains. Both the atomized and non-treated as well as the superficially embroidered powder were each partially mixed with 0.1 wt .-% CaCO 3 and 0.15 wt .-% SrCO 3 and compacted at elevated temperature to form blanks. In a subsequent annealing treatment for the formation of internal porosity, the results summarized below in Tab. 2 were obtained: Experiment no.
  • Powder mixture blank Result A 316+ 0.1% CaCO 3 a central bloating B 316+ 0.15% SrCO 3 low porosity C 316 / N + 0.1% CaCO 3 slight porosity D 316 / N + 1.5% SrCO 3 Porosity good
  • Grade 304 L stainless steel was prepared by inert gas atomization techniques and portions of each containing 0.1 wt% CaCO 3 , 0.15 wt% SrCO 3, and 0.15 wt% SrCO 3 + 0 , 4 wt .-% C mixed homogeneously and filled the mixtures in two tin containers, these evacuated and sealed. A series of mixtures was hot isostatically pressed at a temperature of 1100 ° C, after which in an induction heating system, heating of the blanks to a temperature in the range of the melting temperature of the alloy to release the propellant gas followed by cooling took place.
  • a metal body porosity of more than 62% by volume could be found, the carbon exhibiting a significantly increased porosity and alloy hardening effect.
  • the pore volume or the pore size in the center of the part was larger and dropped off towards the partial surface.
  • the second batch was compacted in a hot isostatic press and then heated to near the melting point of the alloy. After holding 30 min.der blanks to temperature was carried out at a homogeneous temperature distribution over the cross section, a reduction of the isostatic pressure to atmospheric pressure and thus a formation of a porosity in the metal body with simultaneous cooling thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Claims (14)

  1. Procédé de production de corps métalliques à porosité interne rendue principalement homogène, dans lequel on produit à partir de matières premières une poudre formée d'au moins un métal lourd et/ou d'au moins un alliage de métal lourd, d'au moins un agent porogène générant et/ou libérant un gaz de même qu'au moins un élément non métallique de réaction et/ou d'alliage et la poudre est transformée en un mélange homogène, ce mélange en poudre est compacté en une ébauche sous pression agissant de tout côté, éventuellement dans un récipient pouvant être fermé et/ou à température élevée, et cette ébauche est soumise à un traitement thermique, la chaleur de ce traitement se situant au moins en partie dans une plage de température entre la température de solidus et de liquidus d'une phase de métal lourd de bas point de fusion formée par des éléments non métalliques à la surface des grains de poudre, cette phase créant une liaison métallique ou un soudage des particules de métal, ainsi que dans la plage de température de réaction et de décomposition de l'agent porogène, la formation de porosité dans le corps métallique, qui est ensuite refroidi, s'accomplissant sous l'effet du gaz porogène produit dans une réaction générant un gaz et/ou produisant une expansion en volume.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'un échauffement et/ou un abaissement de pression aux critères de décomposition et/ou de réaction de l'agent porogène s'effectuent par diffusion après une élévation de la température de fusion des zones de liaison des grains.
  3. Procédé suivant la revendication 1 ou 2, caractérisé en ce que les matières premières sont transformées en une poudre métallique ayant un diamètre moyen des grains de 11 µm à 400 µm et en une poudre de porogène ayant un diamètre moyen des grains de 1,1 à 200 µm et les poudres sont mélangées.
  4. Procédé suivant l'une des revendications 1 à 3, caractérisé en ce qu'au moins une poudre de méta lourd et/ou au moins une poudre d'un alliage de métal lourd de composition chimique non homogène sur la section transversale des grains de poudre sont produites et/ou sont formées par des éléments d'alliage sous l'action de la température, de préférence dans l'ébauche et il est ainsi formé aux surfaces des grains une couche mince de plus bas point de fusion qui subit par compensation de diffusion une élévation de la température de solidus et de liquidus après un soudage au moins partiel des grains de métal sous l'action prolongée de la chaleur.
  5. Procédé suivant l'une des revendications 1 à 4, caractérisé en ce qu'on ajoute à la poudre ou aux poudres métalliques et à la poudre ou aux poudres de porogène, comme élément de réaction et/ou élément d'alliage, un élément non métallique ou un composé de même nature, de préférence du carbone, en particulier du graphite, avant le processus de mélange produisant l'homogénéisation.
  6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce qu'une couche à teneur en azote élevée est formée dans la région de la surface des grains de poudre de métal lourd, ce qui a pour effet qu'une liaison de l'ébauche est produite lorsque cette dernière est soumise à un traitement à la chaleur.
  7. Procédé suivant l'une des revendications 1 à 6, caractérisé en ce qu'on utilise comme porogène une matière libérant du dioxyde de carbone, de préférence au moins un carbonate, en particulier un carbonate des éléments du deuxième groupe du Système Périodique, ou d'un métal lourd, et le gaz libéré sous l'action de la chaleur subit une expansion en volume, le cas échéant, sous l'effet de la réaction avec le carbonate ajouté.
  8. Procédé suivant l'une des revendications 1 à 7, caractérisé en ce qu'on utilise comme agent porogène en poudre au moins un oxyde, de préférence un oxyde de métal lourd, en particulier l'oxyde de fer, et on répartit dans le mélange en poudre au moins une quantité de carbone calculée de manière que la fraction d'oxygène de l'oxyde puisse réagir en formant du CO gazeux.
  9. Procédé suivant l'une des revendications 1 à 8, caractérisé en ce que la vitesse de chauffage jusqu'à la température à laquelle le porogène libère du gaz ait une valeur qui soit supérieure à 1,05°C/s
  10. Procédé suivant l'une des revendications 1 à 9, caractérisé en ce que l'on produit au moins deux poudres de métal lourd et/ou au moins deux poudres de porogène ayant chacune une composition chimique différente et on les utilise pour la formation de l'ébauche.
  11. Procédé suivant l'une des revendications 1 à 10, caractérisé en ce que le corps métallique présente une couche superficielle dense et est réalisé en particulier comme corps composite.
  12. Corps métallique de porosité interne rendue principalement homogène, caractérisé en ce qu'il possède une porosité d'au moins 40 % en volume, il est formé d'au moins un métal lourd et/ou d'au moins un alliage de métal lourd et il présente des teneurs en carbone de 0,05 à 4,1 % en poids et/ou des teneurs en azote de 0,002 à 0,3 % en poids.
  13. Corps métallique suivant la revendication 12, caractérisé en ce qu'il est formé principalement à partir d'un alliage à base de fer ou à base de nickel ou à base de cobalt, chacun ayant en particulier des teneurs en chrome supérieures à 1,6 % en poids, ou d'alliages à base de cuivre, ainsi que d'autres métaux lourds et il présente un point de fusion supérieur à 900°C.
  14. Corps métallique suivant la revendication 12 ou 13, caractérisé en ce qu'il est principalement formé d'au moins une phase intermétallique.
EP98890051A 1997-02-28 1998-02-26 Procédé de fabrication d'articles métalliques à porosité interne Expired - Lifetime EP0868956B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT98890051T ATE248675T1 (de) 1997-02-28 1998-02-26 Verfahren zur herstellung von metallkörpern mit innerer porosität

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT342/97 1997-02-28
AT34297 1997-02-28
AT0034297A AT406557B (de) 1997-02-28 1997-02-28 Verfahren zur herstellung von metallkörpern mit innerer porosität

Publications (2)

Publication Number Publication Date
EP0868956A1 EP0868956A1 (fr) 1998-10-07
EP0868956B1 true EP0868956B1 (fr) 2003-09-03

Family

ID=3488059

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98890051A Expired - Lifetime EP0868956B1 (fr) 1997-02-28 1998-02-26 Procédé de fabrication d'articles métalliques à porosité interne

Country Status (4)

Country Link
EP (1) EP0868956B1 (fr)
AT (2) AT406557B (fr)
DE (1) DE59809442D1 (fr)
ES (1) ES2202793T3 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2154548C1 (ru) * 1999-03-18 2000-08-20 Арбузова Лариса Алексеевна Способ получения пористых полуфабрикатов и готовых изделий из порошков алюминиевых сплавов (варианты)
AT412876B (de) * 2003-08-05 2005-08-25 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh Schäumbares halbzeug und verfahren zur herstellung von metallteilen mit innerer porosität
DE102010022599B3 (de) * 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
KR102040462B1 (ko) * 2016-04-01 2019-11-05 주식회사 엘지화학 금속폼의 제조 방법
CN112662908B (zh) * 2021-01-04 2023-09-12 云南迈特力医疗技术有限公司 一种多孔低熔点金属外骨骼的制备装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB924715A (en) * 1960-05-24 1963-05-01 Lor Corp Foaming granulated metal
FR1269793A (fr) * 1960-07-08 1961-08-18 Commissariat Energie Atomique Procédé de frittage de poudre de nickel, et produit fritté obtenu par ce procédé
DE1571964C3 (de) * 1965-07-20 1975-03-20 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur Herstellung einer Doppelschichtelektrode mit Nickel als Gerüstmetall für die Reduktion von Sauerstoff in Brennstoffzellen
US3758291A (en) * 1971-10-29 1973-09-11 Gen Motors Corp Method for producing metal alloy foams
US4287553A (en) * 1980-06-06 1981-09-01 The Bendix Corporation Capacitive pressure transducer
JPS59232249A (ja) * 1983-06-15 1984-12-27 N D C Kk ステンレス鋼粉の多孔質焼結体の製造方法
DE4018360C1 (en) * 1990-06-08 1991-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
DE4101630A1 (de) * 1990-06-08 1991-12-12 Fraunhofer Ges Forschung Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben
DE4340791A1 (de) * 1993-11-23 1995-05-24 Admos Gleitlager Gmbh Berlin Verfahren zur Herstellung von porösen Metallkörpern

Also Published As

Publication number Publication date
ES2202793T3 (es) 2004-04-01
EP0868956A1 (fr) 1998-10-07
ATA34297A (de) 1999-11-15
AT406557B (de) 2000-06-26
DE59809442D1 (de) 2003-10-09
ATE248675T1 (de) 2003-09-15

Similar Documents

Publication Publication Date Title
DE60121242T2 (de) Molybdän-Kupfer-Verbundpulver sowie dessen Herstellung und Verarbeitung zu einer Pseudolegierung
EP1915226B1 (fr) Procede de fabrication de mousse metallique et de pieces en mousse metallique par metallurgie des poudres
EP2044230B1 (fr) Procédé de fabrication de mousses métalliques
DE112009002701B4 (de) Verfahren zur Herstellung einer gesinterten Eisenlegierung
EP0256450A1 (fr) Procédé de fabrication d'ébauches compactées à résistance élevée et densité relativement faible à partir d'un alliage d'aluminium résistant à la chaleur
DE2125562A1 (de) Verfahren zur Herstellung einer dichten Masse aus Nickel Superlegierung
EP1017864B1 (fr) Alliage destine a la production de corps metalliques en mousse a l'aide d'une poudre ayant des adjuvants formant des germes
DE2833015A1 (de) Molybdaen und wolfram enthaltende legierung in pulverform und verwendung dieser legierung
WO2021058702A1 (fr) Corps métalliques et procédé de production de ceux-ci
DE1125459B (de) Verfahren zum Erzeugen von legiertem Pulver auf Eisenbasis fuer pulvermetallurgische Zwecke
EP3797901A1 (fr) Corps alvéolaire métallique et son procédé de fabrication
EP0868956B1 (fr) Procédé de fabrication d'articles métalliques à porosité interne
EP2427284B1 (fr) Procédé du domaine de la métallurgie des poudres pour fabriquer une mousse métallique
WO2004063406A2 (fr) Procédé pour fabriquer des éléments en mousse métallique
DE3313736A1 (de) Hochfester formkoerper aus einer mechanisch bearbeitbaren pulvermetall-legierung auf eisenbasis, und verfahren zu dessen herstellung
DE1558719A1 (de) Verfahren zum pulvermetallurgischen Herstellen chromhaltiger Legierungen
DE112006000279B4 (de) Verwendung einer gas absorbierenden substanz und einer gas absorbierenden legierung
DE69636580T2 (de) Verfahren zur herstellung von aluminiumnitrid
DE3421858C2 (fr)
DE19810979C2 (de) Aluminiumlegierung zum Herstellen von Aluminiumschaumkörpern unter Verwendung eines Pulvers mit keimbildenden Zusätzen
DE3043321A1 (de) Sinterprodukt aus metall-legierung und dessen herstellung
DE2826301A1 (de) Kupferlegierung
AT165046B (de) Werkstoff und Formkörper, hauptsächlich aus Aluminium sowie Verfahren zu deren Herstellung
DE1483173C (de) Verfaheren zum Pulvermetallurgischen Herstellen eines feinkornigen Legierungs gegenstandes
DE3907310C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19990329

AKX Designation fees paid

Free format text: AT BE CH DE ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 20010123

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER-UDDEHOLM AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59809442

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: STUDIO RAPISARDI S.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040226

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040226

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2202793

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

BERE Be: lapsed

Owner name: *BOHLER-UDDEHOLM A.G.

Effective date: 20040228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040901

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229