EP0865660A2 - Switchgear control apparatus - Google Patents

Switchgear control apparatus

Info

Publication number
EP0865660A2
EP0865660A2 EP96946021A EP96946021A EP0865660A2 EP 0865660 A2 EP0865660 A2 EP 0865660A2 EP 96946021 A EP96946021 A EP 96946021A EP 96946021 A EP96946021 A EP 96946021A EP 0865660 A2 EP0865660 A2 EP 0865660A2
Authority
EP
European Patent Office
Prior art keywords
control device
coil
magnetic flux
magnet system
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96946021A
Other languages
German (de)
French (fr)
Other versions
EP0865660B1 (en
Inventor
Franz Ultsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0865660A2 publication Critical patent/EP0865660A2/en
Application granted granted Critical
Publication of EP0865660B1 publication Critical patent/EP0865660B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1894Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings minimizing impact energy on closure of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H2047/046Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current with measuring of the magnetic field, e.g. of the magnetic flux, for the control of coil current

Definitions

  • the invention relates to a control device for switching devices, in particular for contactors or relays, with a magnet system which comprises a coil consisting of armature and yoke, and with a regulating device for regulating the magnetic flux in the magnet system.
  • the drives of switching devices usually work with magnetic systems, which previously had to be adapted to the voltage level of the switching device and / or the type of drive. As a result, a large number of coil variants is particularly necessary.
  • Coils can be switched by an auxiliary switch. Furthermore, a clocked coil voltage has already been proposed during the holding phase. The clock ratio determines the effective coil current. Switching takes place after a fixed time when the contactor is securely closed.
  • Holding coil is regulated in the closed state of the holding magnet. To reduce the holding power, is done a switching of threshold values for the current control after a predetermined time. The flow measurement via a Hall probe is used as a measure of the current control.
  • an electromagnetic switching device with a hinged armature system is known, in which the leakage flux is detected with a Hall sensor and in which the power supplied to the coil is regulated via the determined quantity proportional to the magnetic flux. A leakage flux is also detected by generating a magnetic shunt to detect the smallest air gaps in DE 36 37 133.
  • a contactor with a flux sensor is known, in which there is a Hall sensor in the yoke of the magnet system, the signal of which is used to control the electrical excitation of the contactor to a predetermined flux value.
  • the object of the invention is to simplify a control device for switching devices of the type mentioned at the beginning.
  • the aim is a reduced holding power of the magnet system on the one hand and an increase in the mechanical and electrical life on the other.
  • the control device should be used with different switching devices be so that fewer coil variants are necessary and the magnet systems themselves should be able to be built smaller than hitherto.
  • the object is achieved in that the magnetic flux is controlled to a predetermined range with the control device, which is independent of time and distance.
  • the control device preferably detects the magnetic flux through the coil, i.e. the coil flow is regulated.
  • the width of the region for the regulated coil flux is in particular between 0.01 and 10%, preferably between 0.05 and 5%, of the magnetic flux.
  • the width of the area for the coil flow can be selected in particular as a function of the switching frequency.
  • the invention was based on the nontrivial finding that the setpoint of the magnetic flux in the coil can advantageously be selected independently of the state and position. Measurements on a specific contactor have shown that to achieve the pulling force in the open state and to achieve the holding force when the magnet system is closed, approximately the same value for the magnetic one
  • Coil flow is required. In the closed state, a considerably smaller current builds up this flow, since there is a greater inductance or a smaller magnetic resistance.
  • the value for the magnetic flux is independent of the voltage level by adapting the number of turns of the coil. This results in a decisive advantage over the prior art, in which the magnetic flux must be preselected as a function of time in order to simplify the construction of the magnet system. It is also advantageous that the conditions determined on a specific contactor also apply to others
  • Contactor sizes are transferable.
  • appropriately adapted conditions can also be achieved by changing the forced air gap in the yoke of the magnet system.
  • Figure 1 shows the basic structure of a control device for a magnet system
  • Figure 2 is a diagram with regulated to a narrow range
  • FIG. 3 the principle of the detection of the coil flux in the magnet system by an auxiliary coil
  • FIG. 4 the detection of the coil flux by a
  • Magnetic field probe and Figure 5 shows the construction of a magnet system from yoke and armature, in which in particular the importance of the forced air gap can be seen.
  • 1 represents a coil that is part of a gastric system for a switching device. Especially in figure
  • the coil 1 is indicated as electrical inductance and connected to the connection terminals of an AC network via a rectifier bridge 5.
  • the coil 1 is a sensor
  • 10 denotes the actual device for regulating the magnetic flux. It includes a unit 11 for threshold detection and a unit 12 for voltage monitoring, and also a controllable switching element 13.
  • the voltage monitoring in unit 12 ensures that the switch-on process is only released when a defined switch-on threshold is exceeded, for example at 70% nominal voltage. This can prevent the contactor from sticking to the main contacts and welding.
  • the magnetic flux through coil 1 i.e. the coil flux, but not the magnetic flux in the working gap of the magnet system is detected during the switch-on process and used for control.
  • An upper and lower threshold is set for the coil flow.
  • the switching element 13 remains closed as long as the coil flow remains below the upper threshold. When the upper threshold is exceeded, the switching element 13 is opened and the coil flow becomes smaller again. When falling below the lower threshold, the switching element 13 is closed again.
  • the coil flow can thus be regulated to a range which is between 0.01 and 10% of the coil flow, in particular between 0.05 and 5%.
  • FIG. 2 For a more detailed specification of the control range, tests were carried out on the Siemens 3TF56 contactor in order to obtain the basics for simulation calculations. These are illustrated in FIG. 2, in which the magnetic flux ⁇ on the one hand and the associated current I on the other hand are shown as a function of time. For example, it results that for a coil flow from 1.35 to 1.4 Vs, a switching frequency of 400 Hz and a window width of about 3.6%. Since a frequency outside the listening range, ie above about 20 kHz, would be desirable if possible, this results in window widths of values of up to 0.01%. A narrow area is thus defined in a way that has not previously been considered.
  • the magnet system 20 is formed from the coil 21, corresponding to coil 1 in FIG. 1, yoke 22 and armature 23.
  • An auxiliary coil 24 is attached to the yoke 22 of the magnet system 20 and detects the induced voltage.
  • the time integral of this voltage is a measure of the change in the coil flow. The attainable accuracy is sufficient during the tightening phase. Since the induced voltage cannot be controlled in the holding phase, offset errors can lead to the integrator running away with this measuring method, which is why suitable compensation measures must be taken.
  • FIG. 5 essentially results from the combination of FIG. 1 and FIG. 4.
  • the control lines for the coil 1 according to FIG. 1 or 21 according to FIG. 4 are bridged by a diode.
  • a suitable magnetic field probe 34 is introduced into the groove 25.
  • a forced air gap 30 is advantageously present in the magnetic yoke 22.
  • Such forced air gaps are usually already provided in the manufacture of the yoke from laminated iron and filled with a film of insulating material, so that there is a stable connection between the two yoke parts.
  • the specific geometry of slot 25 and forced air gap 30 means that a magnetic voltage divider is implemented between forced air gap 30 and blind gap 25.
  • the magnetic conditions can be influenced by changing the geometry.
  • a narrower forced air gap greatly reduces the coil flow required for holding. However, it has hardly any effect on the magnetic coil flux required to apply the pulling force in the open state. Therefore, the variation of the width b of the forced air gap can be used in particular to adapt the magnetic coil flux required in the closed state so that it has the same value as the coil flux required in the open state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Relay Circuits (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Toys (AREA)

Abstract

Contactors or relays in particular generally have a magnet system comprising a coil with an armature and a yoke. A device has already been proposed for controlling the magnetic flux in the magnet system in a time-dependent manner according to a nominal curve calculated precisely for each magnet model. According to the invention, the control device (10) controls the magnetic flux within a predetermined range which is independent of time and travel. Preferably, the control device (10) controls the magnetic flux by means of the coil (1, 21) (coil flux). In particular, the narrow range set for the coil flux can be independent of time and travel, which is impossible with the prior art.

Description

Beschreibungdescription
Ansteuergerät für SchaltgeräteControl device for switching devices
Die Erfindung bezieht sich auf ein Ansteuergerät für Schalt¬ geräte, insbesondere für Schütze oder Relais, mit einem Magnetsystem, das eine Spule aus Anker und Joch umfaßt, sowie mit einer Regeleinrichtung zur Regelung des magnetischen Flusses im Magnetsystem.The invention relates to a control device for switching devices, in particular for contactors or relays, with a magnet system which comprises a coil consisting of armature and yoke, and with a regulating device for regulating the magnetic flux in the magnet system.
Die Antriebe von Schaltgeräten arbeiten üblicherweise mit MagnetSystemen, welche bisher jeweils auf die Spannungsebene des Schaltgerätes und/oder der Art des Antriebes angepaßt werden müssen. Dadurch ist insbesondere eine große Anzahl von Spulenvarianten notwendig.The drives of switching devices usually work with magnetic systems, which previously had to be adapted to the voltage level of the switching device and / or the type of drive. As a result, a large number of coil variants is particularly necessary.
Speziell bei gleichstromgetriebenen Schützen iεt bekannter¬ maßen während der Anzugsphase des Magnetsystems ein hoher Strom erforderlich, um die Federkräfte zu überwinden. Bei ge- schlossenem Magnetsystem reicht dagegen bereits ein erheblich kleinerer Strom zum sicheren Halten aus. Um die Halteleistung bei gleichstromgetriebenen Schützen zu reduzieren, werden bereits unterschiedliche Techniken verwendet: Bekannt ist beispielsweise die Verwendung von zwei Spulen für die Anzug- phase einerseits und die Haltephase andererseits, wobei dieAs is known, especially in the case of contactors driven by direct current, a high current is required during the pull-in phase of the magnet system in order to overcome the spring forces. In contrast, when the magnet system is closed, a considerably smaller current is sufficient to hold it securely. Different techniques are already used to reduce the holding power in DC-operated contactors: for example, the use of two coils for the pull-in phase on the one hand and the holding phase on the other hand is known, the
Spulen durch einen Hilfsschalter umgeschaltet werden. Weiter¬ hin ist auch bereits eine getaktete Spulenspannung während der Haltephase vorgeschlagen worden. Daε Taktverhältnis be¬ stimmt den effektiven Spulenstrom. Die Umschaltung erfolgt nach einer festen Zeit, wenn das Schütz sicher geschlossen ist .Coils can be switched by an auxiliary switch. Furthermore, a clocked coil voltage has already been proposed during the holding phase. The clock ratio determines the effective coil current. Switching takes place after a fixed time when the contactor is securely closed.
Aus der DE 30 47 488 AI iεt eine elektronische Schaltungs- anordnung für ein elektromagnetisches Schaltgerät bekannt, bei der mit einem Zweipunktregler der Strom durch eineFrom DE 30 47 488 AI an electronic circuit arrangement for an electromagnetic switching device is known, in which the current through a
Haltespule im geschlossenen Zustand des Haltemagnetes ge¬ regelt wird. Um die Halteleistung zu reduzieren, erfolgt eine Umschaltung von Schwellwerten für die Stromregelung nach einer vorgegebenen Zeit . Als Meßgröße zur Stromregelung wird dabei die Flußmessung über eine Hallsonde zu Hilfe genommen. Weiterhin ist aus der DE 41 29 265 AI ein elektromagnetisches Schaltgerät mit einem Klappankersystem bekannt, bei dem mit einem Hallsensor der Streufluß erfaßt wird und bei dem die der Spule zugeführte Leistung über die ermittelte magnetflu߬ proportionale Größe geregelt wird. Ein Streufluß wird eben¬ falls unter Erzeugung eines magnetischen Nebenschlusses zur Erkennung kleinster Luftspalte bei der DE 36 37 133 erfaßt. Schließlich ist aus der DE 32 46 739 ein Schaltschütz mit Flußfühler bekannt, bei der im Joch des Magnetsystems ein Hallsensor vorhanden ist, dessen Signal zur Steuerung der elektrischen Erregung des Schaltschützes auf einen vorbe- stimmten Flußwert dient .Holding coil is regulated in the closed state of the holding magnet. To reduce the holding power, is done a switching of threshold values for the current control after a predetermined time. The flow measurement via a Hall probe is used as a measure of the current control. Furthermore, from DE 41 29 265 AI an electromagnetic switching device with a hinged armature system is known, in which the leakage flux is detected with a Hall sensor and in which the power supplied to the coil is regulated via the determined quantity proportional to the magnetic flux. A leakage flux is also detected by generating a magnetic shunt to detect the smallest air gaps in DE 36 37 133. Finally, from DE 32 46 739 a contactor with a flux sensor is known, in which there is a Hall sensor in the yoke of the magnet system, the signal of which is used to control the electrical excitation of the contactor to a predetermined flux value.
Daneben werden im Tagungsband „Kontaktverhalten und Schalten" des 13. Kontaktseminars - Universität Karlsruhe, 4. bis 6.10.1995, Seiten 101 ff. unterschiedliche Prinzipien ge- regelter Schützantriebe untersucht. Insbesondere ist dort auch eine Einrichtung zur Regelung des magnetischen Flusses im Magnetsystem beschrieben, bei der der magnetische Fluß durch die Integration der Induktionsspannung in einer um einen Schenkel des Magneten gewickelten Spule ermittelt und mittels eines exakten Magnetmodells eine Sollvorgabe für den magnetischen Fluß mit der Methode der inversen Simulation berechnet wird. Damit wird speziell eine zeitabhängige Soll¬ kurve für den magnetischen Fluß vorgegeben. Der magnetische Fluß erzeugt die antreibende Kraft und ist für somit ursäch- lieh mit der mechanischen Bewegung gekoppelt.In addition, the conference volume "Contact Behavior and Switching" of the 13th Contact Seminar - University of Karlsruhe, October 4 to 6, 1995, pages 101 ff. Examines different principles of regulated contactor drives. In particular, it also describes a device for regulating the magnetic flux in the magnet system , in which the magnetic flux is determined by the integration of the induction voltage in a coil wound around one leg of the magnet and a target specification for the magnetic flux is calculated using the method of inverse simulation using an exact magnet model The magnetic flux generates the driving force and is therefore causally linked to the mechanical movement.
Aufgabe der Erfindung ist es demgegenüber, ein Ansteuergerät für Schaltgeräte der eingangs genannten Art zu vereinfachen. Angestrebt wird dabei eine reduzierte Halteleistung des Magnetsystems einerseits und eine Erhöhung der mechanischen und elektrischen Lebensdauer andererseits. Weiterhin soll das Ansteuergerät bei unterschiedlichen Schaltgeräten verwendbar sein, so daß weniger Spulenvarianten notwendig sind und sol¬ len die Magnetsysteme selbst kleiner alε bisher aufgebaut werden können.In contrast, the object of the invention is to simplify a control device for switching devices of the type mentioned at the beginning. The aim is a reduced holding power of the magnet system on the one hand and an increase in the mechanical and electrical life on the other. Furthermore, the control device should be used with different switching devices be so that fewer coil variants are necessary and the magnet systems themselves should be able to be built smaller than hitherto.
Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß mit der Regeleinrichtung der magnetische Fluß auf einen vorgegebenen Bereich geregelt wird, der zeit- und wegunabhängig ist. Dabei wird mit der Regeleinrichtung vorzugsweise der magnetische Fluß durch die Spule, d.h. es wird der Spulenfluß geregelt.The object is achieved in that the magnetic flux is controlled to a predetermined range with the control device, which is independent of time and distance. In this case, the control device preferably detects the magnetic flux through the coil, i.e. the coil flow is regulated.
Mit der Erfindung ist nunmehr ein sanftes Schließen von Schaltgeräten möglich. Insbesondere durch die damit bewirkte Reduzierung des Kontaktprellens wird eine längere Lebensdauer erreicht.With the invention, a soft closing of switching devices is now possible. A longer lifespan is achieved in particular through the reduction in contact bounce caused thereby.
Vorteilhaft ist weiterhin, daß nur ein Flußbereich für An¬ ziehen und Halten notwendig ist, der als schmaler Bereich ausgeregelt werden kann. Die Breite des Bereiches für den ausgeregelten Spulenfluß liegt insbesondere zwischen 0,01 und 10 %, vorzugsweise zwischen 0,05 und 5 %, des Magnetflusses. Die Breite des Bereiches für den Spulenfluß kann insbesondere in Abhängigkeit von der Schaltfrequenz gewählt werden.It is also advantageous that only one flow area is necessary for pulling on and holding, which can be regulated as a narrow area. The width of the region for the regulated coil flux is in particular between 0.01 and 10%, preferably between 0.05 and 5%, of the magnetic flux. The width of the area for the coil flow can be selected in particular as a function of the switching frequency.
Der Erfindung lag die nichttriviale Erkenntnis zugrunde, daß der Sollwert deε magnetiεchen Flusses in der Spule vorteil¬ hafterweise zustands- und positionsunabhängig gewählt werden kann. Messungen an einem konkreten Schütz haben nämlich er¬ geben, daß zum Erreichen der Anzugskraft im offenen Zustand und zum Erreichen der Haltekraft bei geschlosεenem Magnet- system annähernd der gleiche Wert für den magnetischenThe invention was based on the nontrivial finding that the setpoint of the magnetic flux in the coil can advantageously be selected independently of the state and position. Measurements on a specific contactor have shown that to achieve the pulling force in the open state and to achieve the holding force when the magnet system is closed, approximately the same value for the magnetic one
Spulenfluß erforderlich ist. Im geschlossenen Zustand baut bereits ein erheblich kleinerer Strom diesen Fluß auf, da eine größere Induktivität bzw. ein kleinerer magnetischer Widerstand vorliegt. Der Wert für den magnetischen Fluß ist in ein gegebenes Magnetsystem durch Anpassen der Spulen¬ windungszahlen unabhängig von der Spannungsebene. Damit ergibt sich ein entscheidender Vorteil gegenüber dem Stand der Technik, bei dem bei Vereinfachung des Aufbaus des Magnetsystems der magnetische Fluß zeitabhängig vorgewählt werden muß. Vorteilhaft ist weiterhin, daß die an einem konkreten Schütz ermittelten Verhältnisse auch auf andereCoil flow is required. In the closed state, a considerably smaller current builds up this flow, since there is a greater inductance or a smaller magnetic resistance. In a given magnet system, the value for the magnetic flux is independent of the voltage level by adapting the number of turns of the coil. This results in a decisive advantage over the prior art, in which the magnetic flux must be preselected as a function of time in order to simplify the construction of the magnet system. It is also advantageous that the conditions determined on a specific contactor also apply to others
Schützgrößen übertragbar sind. Insbesondere sind entsprechend angepaßte Verhältnisse auch durch Änderung des Zwangsluft¬ spaltes im Joch des Magnetsystems erreichbar.Contactor sizes are transferable. In particular, appropriately adapted conditions can also be achieved by changing the forced air gap in the yoke of the magnet system.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungs- beispielen in Verbindung mit weiteren Unteransprüchen. Es zeigenFurther details and advantages of the invention result from the following description of the figures of exemplary embodiments in conjunction with further subclaims. Show it
Figur 1 den prinzipiellen Aufbau eines Ansteuergerätes für ein Magnetsystem, Figur 2 ein Diagramm mit auf einen engen Bereich geregeltenFigure 1 shows the basic structure of a control device for a magnet system, Figure 2 is a diagram with regulated to a narrow range
Magnetfluß- und Stromkurven, Figur 3 das Prinzip der Erfassung des Spulenflusεeε im Magnetεystem durch eine Hilfsspule,Magnetic flux and current curves, FIG. 3 the principle of the detection of the coil flux in the magnet system by an auxiliary coil,
Figur 4 die Erfassung des Spulenflusseε durch eineFIG. 4 the detection of the coil flux by a
Magnetfeldsonde und Figur 5 den Aufbau eines Magnetsystems aus Joch und Anker, bei dem insbesondere die Bedeutung deε Zwangsluft- spaltes ersichtlich ist.Magnetic field probe and Figure 5 shows the construction of a magnet system from yoke and armature, in which in particular the importance of the forced air gap can be seen.
Gleiche bzw. gleichwirkende Einheiten der einzelnen Figuren haben gleiche Bezugszeichen. Die Figuren werden teilweise gemeinsam beschrieben.The same or equivalent units of the individual figures have the same reference numerals. Some of the figures are described together.
In den Figuren stellt jeweils 1 eine Spule dar, die Teil eines Magensystems für ein Schaltgerät ist. Speziell in FigurIn each of the figures, 1 represents a coil that is part of a gastric system for a switching device. Especially in figure
1 ist die Spule 1 als elektrische Induktivität angedeutet und über eine Gleichrichterbrücke 5 an die Anεchlußklemmen eineε Wechselstromnetzes angeschlossen. Der Spule 1 ist ein Sensor1, the coil 1 is indicated as electrical inductance and connected to the connection terminals of an AC network via a rectifier bridge 5. The coil 1 is a sensor
2 zur Flußerfassung zugeordnet. In Figur 1 bedeutet 10 die eigentliche Einrichtung zur Rege¬ lung des magnetiεchen Flusses. Sie beinhaltet eine Einheit 11 zur Schwellenerkennung und eine Einheit 12 zur Spannungsüber¬ wachung und weiterhin ein steuerbares Schaltelement 13. Über das steuerbare Schaltelement 13, das beispielsweise ein Tran¬ sistor sein kann, ist die Spule 1 an die gleichgerichtete Klemmenspannung angeschlossen.2 assigned to flow capture. In FIG. 1, 10 denotes the actual device for regulating the magnetic flux. It includes a unit 11 for threshold detection and a unit 12 for voltage monitoring, and also a controllable switching element 13. The controllable switching element 13, which can be a transistor, for example, connects the coil 1 to the rectified terminal voltage.
Die Spannungεüberwachung in der Einheit 12 sorgt dafür, daß der Einschaltvorgang erst beim Überschreiten einer definier¬ ten Einschaltschwelle, beispielsweise bei 70 % Nennspannung, freigegeben wird. Dadurch kann verhindert werden, daß das Schütz an den Hauptkontakten hängen bleibt und verschweißt.The voltage monitoring in unit 12 ensures that the switch-on process is only released when a defined switch-on threshold is exceeded, for example at 70% nominal voltage. This can prevent the contactor from sticking to the main contacts and welding.
Nach der Freigabe wird der magnetische Fluß durch die Spule 1, d.h. der Spulenfluß, nicht aber der magnetische Fluß im Arbeitsspalt des Magnetsystems beim Einschaltvorgang erfaßt und zur Regelung verwendet. Für den Spulenfluß wird eine obere und untere Schwelle festgelegt. Daε Schaltelement 13 bleibt geεchloεsen, solange der Spulenfluß unterhalb der oberen Schwelle bleibt. Beim Überschreiten der oberen Schwelle wird das Schaltelement 13 geöffnet und der Spulen¬ fluß wird wieder kleiner. Beim Unterschreiten der unteren Schwelle wird das Schaltelement 13 wieder geschlossen.After release, the magnetic flux through coil 1, i.e. the coil flux, but not the magnetic flux in the working gap of the magnet system is detected during the switch-on process and used for control. An upper and lower threshold is set for the coil flow. The switching element 13 remains closed as long as the coil flow remains below the upper threshold. When the upper threshold is exceeded, the switching element 13 is opened and the coil flow becomes smaller again. When falling below the lower threshold, the switching element 13 is closed again.
Durch diese Regelung wird erreicht, daß der magnetische Fluß durch die Spule 1 innerhalb der vorgegebenen Grenzen bleibt. Insbesondere kann damit der Spulenfluß auf einen solchen Be¬ reich geregelt werden, der zwischen 0,01 und 10 % des Spulen- flusses, insbesondere zwischen 0,05 und 5 %, liegt.This regulation ensures that the magnetic flux through the coil 1 remains within the predetermined limits. In particular, the coil flow can thus be regulated to a range which is between 0.01 and 10% of the coil flow, in particular between 0.05 and 5%.
Zur näheren Spezifizierung des Regelbereiches wurden Versuche am Siemens-Schütz 3TF56 durchgeführt, um Grundlagen für Simu¬ lationsrechnungen zu erhalten. Diese sind in Figur 2, in der der magnetische Fluß φ einerseitε und der zugehörige Strom I andererseits als Funktion der Zeit dargestellt sind, verdeut¬ licht. Beispielsweise ergibt sich, daß für einen Spulenfluß von 1,35 bis 1,4 V-s eine Schaltfrequenz von 400 Hz eine Fensterbreite von etwa 3,6 % realisiert. Da nach Möglichkeit eine Frequenz außerhalb des Höhrbereiches, d.h. oberhalb von etwa 20 kHz, erwünscht wäre, ergeben sich damit Fensterbrei- ten von Werten bis zu 0,01 %. Somit ist ein schmaler Bereich in der Weise definiert, wie er bisher nicht in Betracht ge¬ zogen wurde.For a more detailed specification of the control range, tests were carried out on the Siemens 3TF56 contactor in order to obtain the basics for simulation calculations. These are illustrated in FIG. 2, in which the magnetic flux φ on the one hand and the associated current I on the other hand are shown as a function of time. For example, it results that for a coil flow from 1.35 to 1.4 Vs, a switching frequency of 400 Hz and a window width of about 3.6%. Since a frequency outside the listening range, ie above about 20 kHz, would be desirable if possible, this results in window widths of values of up to 0.01%. A narrow area is thus defined in a way that has not previously been considered.
Aus Figur 2 ergibt sich weiterhin, daß der Spulenfluß 0(t) zeitunabhängig ist. Für die Stromkurve I{t) ergibt sich dagegen, daß der Strom entsprechend dem Kurvenverlauf I nach etwa 50 ms wieder absinkt.It also follows from FIG. 2 that the coil flux 0 (t) is independent of time. For the current curve I {t), on the other hand, it follows that the current decreases again after about 50 ms in accordance with the curve I.
Zur Regelung des Spulenflusεeε im vorgegebenen schmalen Bereich ist die Erfassung des Spulenflusses notwendig, die mit bekannten unterschiedlichen Verfahren erfolgen kann.In order to regulate the coil flux in the specified narrow range, it is necessary to record the coil flux, which can be done using known different methods.
In Figur 3 ist das Magnetsystem 20 aus der Spule 21, ent¬ sprechend Spule 1 in Figur 1, Joch 22 und Anker 23 gebildet. Am Joch 22 des Magnetsystems 20 ist eine Hilfsspule 24 ange¬ bracht, welche die induzierte Spannung erfaßt. Das zeitliche Integral dieser Spannung ist ein Maß für die Änderung des Spulenflusses . Die erreichbare Genauigkeit reicht während der Anzugsphase aus. Da in der Haltephaεe die induzierte Spannung nicht beherrεchbar ist, können bei diesem Meßverfahren Off- set-Fehler zu einem Weglaufen des Integrators führen, weshalb geeignete Ausgleichsmaßnahmen ergriffen werden müssen.In FIG. 3 the magnet system 20 is formed from the coil 21, corresponding to coil 1 in FIG. 1, yoke 22 and armature 23. An auxiliary coil 24 is attached to the yoke 22 of the magnet system 20 and detects the induced voltage. The time integral of this voltage is a measure of the change in the coil flow. The attainable accuracy is sufficient during the tightening phase. Since the induced voltage cannot be controlled in the holding phase, offset errors can lead to the integrator running away with this measuring method, which is why suitable compensation measures must be taken.
In Figur 4 ist am gleichen Magnetsystem 20 wie in Figur 3 eine Magnetfeldsonde 34 angebracht, die das B- oder H-Feld erfaßt. Dazu muß gegebenenfalls ein Schlitz 25 im Magnet¬ system 20 eingebracht werden. Das B- oder H-Feld ist ein Maß für den magnetischen Fluß durch die Spule 21. Besonders vor¬ teilhaft ist, daß in diesem Fall kein Integrator benötigt wird. Figur 5 ergibt sich im weεentlichen aus der Kombination von Figur 1 und Figur 4. Im elektrischen Ansteuerbaustein sind die Ansteuerleitungen für die Spule 1 gemäß Figur 1 bzw. 21 gemäß Figur 4 durch eine Diode überbrückt. In der Nut 25 ist eine geeignete Magnetfeldsonde 34 eingebracht.In Figure 4, a magnetic field probe 34 is attached to the same magnet system 20 as in Figure 3, which detects the B or H field. For this purpose, a slot 25 may have to be made in the magnet system 20. The B or H field is a measure of the magnetic flux through the coil 21. It is particularly advantageous that in this case no integrator is required. FIG. 5 essentially results from the combination of FIG. 1 and FIG. 4. In the electrical control module, the control lines for the coil 1 according to FIG. 1 or 21 according to FIG. 4 are bridged by a diode. A suitable magnetic field probe 34 is introduced into the groove 25.
Ausgenutzt wird in Figur 5, daß im magnetischen Joch 22 vorteilhafterweise ein Zwangsluftspalt 30 vorhanden ist. Derartige Zwangsluftspalte sind üblicherweise bereits bei der Herstellung der Joch aus laminiertem Eisen vorgesehen und mit einer Folie aus Isolationsmaterial ausgefüllt, εo daß eine εtabile Verbindung der beiden Jochteile vorliegt.In FIG. 5, use is made of the fact that a forced air gap 30 is advantageously present in the magnetic yoke 22. Such forced air gaps are usually already provided in the manufacture of the yoke from laminated iron and filled with a film of insulating material, so that there is a stable connection between the two yoke parts.
Bei der Anordnung gemäß Figur 5 ergibt εich durch die spezi- fische Geometrie von Schlitz 25 und Zwangsluftspalt 30, daß zwischen Zwangsluftεpalt 30 und Blindεpalt 25 ein magneti¬ scher Spannungsteiler realisiert wird. Durch Änderung der Geometrie lassen sich dabei die magnetischen Verhältnisse beeinflussen. Ein εchmalerer Zwangεluftεpalt reduziert den zum Halten benötigten Spulenfluß εtark. Er wirkt εich jedoch kaum auf den zum Aufbringen der Anzugεkraft im offenen Zu- εtand benötigten magnetischen Spulenfluß aus. Deshalb kann die Variation der Breite b des Zwangsluftspaltes insbesondere dazu verwendet werden, den im geschlossenen Zustand erforder- liehen magnetischen Spulenfluß so anzupassen, daß er den gleichen Wert aufweist wie der im offenen Zustand benötigte Spulenfluß. In the arrangement according to FIG. 5, the specific geometry of slot 25 and forced air gap 30 means that a magnetic voltage divider is implemented between forced air gap 30 and blind gap 25. The magnetic conditions can be influenced by changing the geometry. A narrower forced air gap greatly reduces the coil flow required for holding. However, it has hardly any effect on the magnetic coil flux required to apply the pulling force in the open state. Therefore, the variation of the width b of the forced air gap can be used in particular to adapt the magnetic coil flux required in the closed state so that it has the same value as the coil flux required in the open state.

Claims

Patentanεprüche Claims
1. Ansteuergerät für Schaltgeräte, insbesondere für Schütze oder Relais, mit einem Magnetsyεtem, das eine Spule mit Anker und Joch umfaßt, und mit einer Einrichtung zur Regelung des magnetischen Flusses im Magnetsystem, d a d u r c h g e ¬ k e n n z e i c h n e t , daß mit der Regeleinrichtung (10) der magnetische Fluß auf einen vorgegebenen Bereich geregelt wird, der zeit- und wegunabhängig ist.1. Control device for switching devices, in particular for contactors or relays, with a Magnetsyεtem, which comprises a coil with armature and yoke, and with a device for controlling the magnetic flux in the magnet system, dadurchge ¬ indicates that with the control device (10) of the magnetic Flow is regulated to a predetermined area, which is independent of time and distance.
2. Ansteuergerät nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß der magnetische Fluß beim Einschalt- und Haltevorvorgang erfaßt und zur Regelung ver¬ wendet wird.2. Control device according to claim 1, d a d u r c h g e ¬ k e n n z e i c h n e t that the magnetic flux is detected during the switch-on and holding process and used for control.
3. Ansteuergerät nach Anspruch 2, d a d u r c h g e ¬ k e n n z e i c h n e t , daß mit der Regeleinrichtung (10) der magnetische Fluß in der Spule (1, 21) (Spulenfluß) ge¬ regelt wird.3. Control device according to claim 2, so that the magnetic flux in the coil (1, 21) (coil flow) is controlled with the control device (10).
4. Ansteuergerät nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß für den magnetischen Fluß der Spule (1, 21) eine obere und eine untere Schwelle definiert ist .4. Control device according to claim 1, d a d u r c h g e ¬ k e n n z e i c h n e t that an upper and a lower threshold is defined for the magnetic flux of the coil (1, 21).
5. Ansteuergerät nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Breite des Bereiches für den geregelten Spulenfluß zwiεchen 0,01 und 10 %, vorzugε¬ weise zwischen 0,05 und 5 %, deε Magnetflusses liegt.5. Control device according to claim 1, so that the width of the area for the controlled coil flow is between 0.01 and 10%, preferably between 0.05 and 5%, of the magnetic flux.
6. Ansteuergerät nach Anspruch 5, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Breite des Bereiches für den geregelten Spulenfluß in Abhängigkeit von der gewünschten Schaltfrequenz gewählt ist.6. Control device according to claim 5, so that the width of the range for the controlled coil flow is selected as a function of the desired switching frequency.
7. Ansteuergerät nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Spule (1) über ein εteuerbares Schaltelement (15) und einen Gleichrichter (5) an die Klemmenspannung angeschlossen ist .7. Control device according to claim 1, dadurchge ¬ indicates that the coil (1) via a ε controllable switching element (15) and a rectifier (5) is connected to the terminal voltage.
8. Ansteuergerät nach Anspruch 1, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Regeleinrichtung (10) eine Einheit zur Spannungsüberwachung (12) enthält, mit der der Einschaltvorgang erst beim Überschreiten einer definier¬ ten Einschaltschwelle, beispielsweise 70 % Nennspannung, freigegeben wird.8. Control device according to claim 1, so that the control device (10) contains a unit for voltage monitoring (12) with which the switch-on process is only released when a defined switch-on threshold, for example 70% nominal voltage, is exceeded.
9. Ansteuergerät nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß zur Erfassung des magnetischen Flusses eine Hilfsεpule (24) mit Integrator (26) vorhanden ist.9. Control device according to one of the preceding claims, that a auxiliary coil (24) with integrator (26) is present for detecting the magnetic flux.
10. Ansteuergerät nach Anspruch 9, d a d u r c h g e ¬ k e n n z e i c h n e t , daß die Hilfsspule (24) am Joch (22) Magnetsyεtemε (20) angebracht ist.10. Control device according to claim 9, so that the auxiliary coil (24) is attached to the yoke (22) magnet system (20).
11. Ansteuergerät nach einem der Anεprüche 1 biε 8, d a ¬ d u r c h g e k e n n z e i c h n e t , daß zur Erfassung deε Spulenfluεses eine Magnetfeldsonde (34) vorhanden iεt.11. Control device according to one of the claims 1 to 8, that is, that a magnetic field probe (34) is present for detecting the coil flows.
12. Ansteuergerät nach Anspruch 11, d a d u r c h g e - k e n n z e i c h n e t , daß die Magnetfeldεonde (34) in einem Schlitz (25) im Joch (22) des Magnetεystemε (20) ange¬ bracht ist .12. Control device according to claim 11, so that the magnetic field probe (34) is mounted in a slot (25) in the yoke (22) of the magnet system (20).
13. Ansteuergerät nach Anspruch 12, wobei das Joch des Magnetsystems einen Zwangsluftspalt aufweist, d a d u r c h g e k e n n z e i c h n e t , daß der Schlitz (25) und der Zwangsluftspalt (30) im Joch (22) einen magnetischen Span¬ nungsteiler bilden.13. Control device according to claim 12, wherein the yoke of the magnet system has a forced air gap, so that the slot (25) and the forced air gap (30) in the yoke (22) form a magnetic voltage divider.
14. Ansteuergerät nach Anspruch 13, d a d u r c h g e ¬ k e n n z e i c h n e t , daß der Zwangsluftspalt (30) eine vorgewählte Breite (b) hat. 14. Control device according to claim 13, d a d u r c h g e ¬ k e n n e e c h n e t that the forced air gap (30) has a preselected width (b).
EP96946021A 1995-12-05 1996-11-28 Switchgear control apparatus Expired - Lifetime EP0865660B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19545512 1995-12-05
DE19545512 1995-12-05
PCT/DE1996/002283 WO1997021237A2 (en) 1995-12-05 1996-11-28 Switchgear control apparatus

Publications (2)

Publication Number Publication Date
EP0865660A2 true EP0865660A2 (en) 1998-09-23
EP0865660B1 EP0865660B1 (en) 2000-02-16

Family

ID=7779352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96946021A Expired - Lifetime EP0865660B1 (en) 1995-12-05 1996-11-28 Switchgear control apparatus

Country Status (5)

Country Link
EP (1) EP0865660B1 (en)
JP (1) JP2000501550A (en)
CN (1) CN1068968C (en)
DE (1) DE59604468D1 (en)
WO (1) WO1997021237A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217586B2 (en) 2013-12-02 2019-02-26 Siemens Aktiengesellschaft Electromagnetic actuator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300862A1 (en) * 2001-10-04 2003-04-09 Moeller GmbH Electronic apparatus for controlling a contactor
DE10332595B4 (en) * 2003-07-17 2008-02-14 Siemens Ag Device and method for driving electrical switching devices
EP1964141A1 (en) * 2005-12-22 2008-09-03 Siemens Aktiengesellschaft Method and device for operating a switching device
DE102012106922A1 (en) 2012-07-30 2014-01-30 Eaton Electrical Ip Gmbh & Co. Kg Device for controlling the electromagnetic drive of a switching device, in particular a contactor
DE102012112692A1 (en) * 2012-12-20 2014-06-26 Eaton Electrical Ip Gmbh & Co. Kg Device and method for operating an electromagnetic switching device drive
JP6248871B2 (en) 2014-09-05 2017-12-20 株式会社デンソー Electromagnetic actuator
FR3098637B1 (en) * 2019-07-08 2021-10-15 G Cartier Tech SELF-CONTROLLED ELECTROMECHANICAL ACTUATOR

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3579052A (en) * 1968-09-21 1971-05-18 Nippon Denso Co System for driving a. d. c. electromagnet
DE3047488A1 (en) * 1980-12-17 1982-07-22 Brown, Boveri & Cie Ag, 6800 Mannheim ELECTRONIC CIRCUIT ARRANGEMENT FOR AN ELECTROMAGNETIC SWITCHGEAR
GB2112213B (en) * 1981-12-21 1985-12-11 Gen Electric Electromagnetic contactor with flux sensor
US4735517A (en) * 1985-10-31 1988-04-05 Texas Instruments Incorporated Printer having flux regulator
US4608620A (en) * 1985-11-14 1986-08-26 Westinghouse Electric Corp. Magnetic sensor for armature and stator
DE4129265A1 (en) * 1991-08-30 1993-03-04 Mannesmann Ag ELECTROMAGNETIC SWITCHGEAR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9721237A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217586B2 (en) 2013-12-02 2019-02-26 Siemens Aktiengesellschaft Electromagnetic actuator

Also Published As

Publication number Publication date
EP0865660B1 (en) 2000-02-16
CN1068968C (en) 2001-07-25
CN1202269A (en) 1998-12-16
DE59604468D1 (en) 2000-03-23
JP2000501550A (en) 2000-02-08
WO1997021237A2 (en) 1997-06-12
WO1997021237A3 (en) 1997-08-21

Similar Documents

Publication Publication Date Title
EP0067185B1 (en) Electronic device for the energization of an electromagnetic element
EP2303661B1 (en) Method für monitoring the function of track brakes
DE4406250A1 (en) Electronic status display for electromagnetic contactor
WO2007079767A1 (en) Method and device for operating a switching device
WO1989002648A1 (en) Process and device for detecting the switching times of electrovalves
EP0705482B1 (en) Switching contactor driving circuitry
EP0878015A1 (en) Method of establishing the residual useful life of contacts in switchgear and associated arrangement
DE19742038A1 (en) Solenoid valve state detection method
EP1234316B1 (en) Electromagnetic switchgear comprising a controlled drive, a corresponding method and a circuit
DE2726990C3 (en) Display device
DE19742037A1 (en) Armature release detection method in solenoid valve
EP0865660B1 (en) Switchgear control apparatus
EP1008232B1 (en) Method and circuit arrangement for operating an electromagnetically actuated mechanical brake of an electric motor
DE19535211C2 (en) Method for controlling armature movement for a switching device
EP2884233B1 (en) Measuring of parameters in an electromagnetic drive of a switching device
DE2528593C3 (en) Signal transmission device
DE19522582C2 (en) Circuit arrangement for operating an electromagnet
EP0575792B1 (en) Method and device for driving an electromagnetic switch
EP1647040A1 (en) Device and method for controlling electric switching devices
DE19740016C2 (en) Circuit arrangement and method for operating an excitation coil of an electromagnetically actuable, mechanical brake of an electric motor
EP0456238B1 (en) Device for multiphase current monitoring
EP3632760A1 (en) Preventive function control for an electromagnetic spring pressure brake
DE912957C (en) Electromagnetically controlled switching device for closing a circuit
DE102012112692A1 (en) Device and method for operating an electromagnetic switching device drive
DE410551C (en) Security for trains and other vehicles running on rails

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 59604468

Country of ref document: DE

Date of ref document: 20000323

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051122

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060123

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130