EP0878015A1 - Method of establishing the residual useful life of contacts in switchgear and associated arrangement - Google Patents

Method of establishing the residual useful life of contacts in switchgear and associated arrangement

Info

Publication number
EP0878015A1
EP0878015A1 EP97907032A EP97907032A EP0878015A1 EP 0878015 A1 EP0878015 A1 EP 0878015A1 EP 97907032 A EP97907032 A EP 97907032A EP 97907032 A EP97907032 A EP 97907032A EP 0878015 A1 EP0878015 A1 EP 0878015A1
Authority
EP
European Patent Office
Prior art keywords
armature
contactor
signal
voltage
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97907032A
Other languages
German (de)
French (fr)
Other versions
EP0878015B1 (en
Inventor
Fritz Pohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0878015A1 publication Critical patent/EP0878015A1/en
Application granted granted Critical
Publication of EP0878015B1 publication Critical patent/EP0878015B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures

Definitions

  • the invention relates to a method for determining the remaining service life of contacts in switching devices, in particular contactor contacts, whereby the so-called contact pressure on the switching path is recorded as a replacement criterion for the erosion and the pressure change during determination of the erosion of the contact pieces of the switch-off process is measured and converted as the remaining service life, for which purpose the contactor drive consists of an armature with a magnetic coil and associated yoke and a time measurement of the armature path from the beginning of the armature movement to the start of the contact opening.
  • the invention also relates to the associated device with an evaluation device for determining and displaying the remaining service life.
  • the object of the invention in contrast, is to show a possibility with which the remaining service life detection can be made independent of a modification on the contactor, in particular an armature-yoke contact, and can be used with any contactors.
  • the object is achieved in a method of the type mentioned in that the time at which the armature is separated from the yoke of the contactor magnet drive is detected from the voltage on the magnet coil.
  • the increase in the magnetic resistance of the magnetic circuit when the magnet armature is lifted off is advantageously detected.
  • the voltage signal induced on the magnetic coil by the change in flow over time is used for time measurement.
  • the evaluation device has means for detecting and detecting the voltage on the magnetic coil.
  • These means are preferably units for signal rectification, for signal limitation and shaping, as well as for signal suppression and signal release.
  • the invention is based on the following physical behavior when a contactor magnet drive is switched off: To generate the necessary armature closing force, a magnetic flux of a predetermined size is built up in the iron circuit by the current of the magnet coil. When the control circuit is switched off, the magnet coil is de-energized and the magnetic flux decays in the closed iron circuit due to the remanence a few milliseconds later. The magnet armature now begins to open at the moment when the magnetic closing force sees the opening force, ie the sum of the
  • FIG. 1 shows a basic circuit diagram for recording the remaining service life of contactors during the switching-off process
  • FIGS. 2a to d show the signal curves of coil voltage and coil current as a function of time when switching off a contactor when AC or DC is actuated in several oscillograms
  • FIG. 3 shows a block diagram for evaluating the switching-off voltage 2 according to FIG.
  • FIGS. 5a and b two associated oscillograms with signal voltages at the time the anchor is opened 6 shows a variant of the circuit design of
  • FIG. 4 shows an associated oscillogram with the signal voltage occurring when the contactor coil is switched off and
  • FIG. 8 shows an oscillogram with measurement of the time difference between the beginning of the armature opening and the beginning of the contact opening when switching off an AC-operated, standard contactor with averaging.
  • FIG. 1 schematically shows the structure and arrangement of a device 100 for detecting the remaining service life of the main contacts of a contactor 1 in the three-phase network.
  • This device is arranged on the load side between the contactor 1 and a consumer 20, for example a three-phase motor. It contains a first evaluation module 101, preferably for recording the contact opening time of the first opening main contacts, or alternatively for recording the contact opening times of each main contact. It also contains a second evaluation module 102 for detecting the start of the armature movement, which is also referred to as time t A of the armature opening. From the time signals t A and t k , the contact pressure and the remaining life are determined by an evaluation unit, for example a microprocessor 105, and this is shown on a display 106 and / or output via a data bus or further evaluation.
  • an evaluation unit for example a microprocessor 105
  • the second evaluation module 102 is connected with its two measuring inputs to the connections of the contactor magnet coil and determines from the signal curve of the coil voltage during the switch-off process the time of the .Anchor movement start t A.
  • the device 100 for detecting the remaining service life of the main contacts is advantageously arranged on the load side of the monitored switching device in order to monitor the contact opening of the monitored switching device with little technical effort, as is described in detail in a parallel application.
  • the device 100 can, however, also be arranged on the infeed side of the monitored switching device and integrated in various devices (e.g. overload relays) on the infeed or load side.
  • the contact opening can be detected by measuring the contact voltages via measuring connections at the connection terminals of the individual switching poles.
  • FIG. 2 shows measurement oscillograms of the coil voltage and the coil current when the armature opens a contactor in an arrangement modified for the measurement, in which the armature and yoke close an auxiliary circuit when they come into contact with one another or separate it when the armature is lifted.
  • FIG. 3 shows a block diagram of a device for determining the armature opening time from the switch-off voltage on the solenoid 5 of a contactor 1.
  • the contactor magnet system can expediently be controlled by an auxiliary contactor 2, which connects or disconnects the control supply voltage to the contactor coil 5 with two poles . The coil voltage is then separated from the potential of the control supply voltage at the time the armature opens.
  • the evaluation module 102 consists of the connection in series of a unit 110 for signal rectification, a unit 120 for signal limitation and shaping, a unit 130 for signal suppression and a unit 140 for signal release.
  • Units 120 and 140 are placed on an AND gate 150, which precisely outputs the desired anchor opening time. In particular because of the necessary exact determination of the small time intervals, a corresponding design of the units 110 to 140 by problem-adapted components is necessary.
  • an output signal can be derived from the output pulse, for example with an optocoupler (not shown in FIG. 3), which is galvanically isolated from the supply network of the contactor magnet drive.
  • FIG 4 shows a concrete circuit example of an evaluation circuit for detecting the anchor opening time with components 111 to 136 which are self-explanatory for the construction of the units 110, 120, 130, 140.
  • the circuit connects to the measuring lines for voltage monitoring of the solenoid 6, 6 'of the contactor drive 5 of FIG 1. Both measuring connections contain the same series resistor 9 for voltage division of the measuring signal in order to obtain a free connection assignment on the contactor coil 5.
  • the measuring earth is connected to the protective earth and is practically at zero potential, so that during the switch-on state of the auxiliary contactor, only a measuring current flows from the outer conductor L into the evaluation circuit.
  • a characteristic measurement signal is generated by the signal rectification and the limiter circuit.
  • this contains short voltage pulses of, for example, 300 ⁇ s width and 10 ms time interval at 50 Hz alternating voltage, while during the switching-off process two approximately 2 ms long voltage pulses occur with a few millisecond interval, of which the first pulse is the induction drop in the iron core, while the second pulse is generated by lifting the armature from the yoke and the associated change in induction.
  • all voltage pulses are suppressed except for the latter, so that the evaluation circuit supplies only a single output pulse which coincides with the start of the armature opening.
  • FIG. 5 shows measurement oscillograms of the evaluation circuit according to FIG. 4.
  • the armature-yoke auxiliary contact of the modified contactor was used to electrically / mechanically record the time when the armature opening began and to compare it with the output signal of the evaluation circuit.
  • time signals t A and t k By signal averaging of the time signals t A and t k , time fluctuations which are caused by mechanical tolerances in the contact separation of the main contactor contacts and different magnetization states of the contactor magnet drive can be largely eliminated, so that the averaged time difference between the beginning of the armature opening movement and the beginning of the contact opening is recorded with a measuring accuracy of +/- 100 ... 200 ⁇ s.
  • FIG. 6 shows a further evaluation circuit for detecting the anchor opening time. It differs from the circuit in FIG. 4 only by the circuit part of the signal limitation and shaping, in particular by the high input resistance of the comparators 128 and 129.
  • the evaluation circuit therefore processes the measurement signal from the contactor coil in the same way, regardless of whether the ground connection of the electronics supply voltage is on Earth potential is or not. Furthermore, the detection of the armature opening time is made possible even with a single-pole interruption of the coil voltage.
  • the circuit of FIG. 6 can therefore be used for both AC and DC voltage in earthed and ungrounded networks. can be used.
  • an optocoupler is to be used to provide a galvanic separation of the output signal from the supply network of the contactor magnet drive.
  • the exact time assignment of the armature opening time t A to the 'armature opening pulse' of the evaluation circuit according to FIG. 4 and 5 can take place by taking into account a protection and circuit-specific time offset, calculated from the rising edge of the 'armature opening pulse', for example 0.7 ms for the above protection type.
  • a protection and circuit-specific time offset calculated from the rising edge of the 'armature opening pulse', for example 0.7 ms for the above protection type.
  • a protection and circuit-specific time offset calculated from the rising edge of the 'armature opening pulse', for example 0.7 ms for the above protection type.
  • a protection and circuit-specific time offset calculated from the rising edge of the 'armature opening pulse', for example 0.7 ms for the above protection type.
  • Depending dei of the contactor size and the voltage level * Steuerspeisespan ⁇ voltage can de ⁇ circuit section for signal limitation be necessary to adapt.
  • FIG. 8 shows the signal curve of the armature opening time t A of the evaluation circuit according to FIG. 6 and the contact opening time of a standard contactor, again using the averaging.
  • the mean time interval from the beginning of the armature opening t A to the beginning of the contact opening t k can be specified in the measured example as 4.6 ms ⁇ 0.2 ms.
  • the described evaluation circuit for determining the armature opening time can be part of an evaluation device for determining the remaining service life of contactor main contacts.
  • the evaluation device is located on the load side between the contactor and the electrical consumer and is contacted with the outer conductors L1, L2, L3 via a first monitoring module for detecting the opening of the contact and the change in voltage at an artificial star point.
  • a two-wire signal line in particular connects the contactor of the contactor coil with a second monitoring module for the detection of the armature opening. From the time signals of the armature opening t A and the contact opening t ⁇ supplied by the monitoring modules, the microprocessor determines the current contact pressure and from this the electrical remaining service life of the main contact pieces.

Landscapes

  • Keying Circuit Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

In order to establish the residual useful life of earth contacts, it has already been proposed to determine the so-called contact action at the breaker gap as a criterion for replacement in the event of contact erosion and to measure the change in contact action during the switching off stage in order to determine the erosion of the contact tips and convert it into the residual useful life. To that end, with a magnetic drive comprising a yoke, armature and magnet coil, the time taken for the armature to move from the beginning of its movement to the point when the contact starts to open has to be measured. According to the invention, the moment when the armature separates from the yoke of the protective magnetic drive is detected from the voltage at the magnet coil. In this respect, the increase in the magnetic resistance of the magnetic circuit when the armature lifts off is determined. The associated arrangement comprises an evaluation device for determining and displaying the residual useful life, said evaluation device (100) having means (110 - 150) for determining and detecting the voltage at the magnet coil (5).

Description

Beschreibungdescription
Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und zugehörige AnordnungMethod for determining the remaining service life of contacts in switchgear and associated arrangement
Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten, insbe¬ sondere von Schützkontakten, wobei als Ersatzkriterium für den Abbrand der sogenannte Kontaktdurchdruck an der Schalt- strecke erfaßt wird und wobei zur Bestimmung des Abbrandes der Kontaktstücke jeweils die Durchdruckänderung während des Ausschaltvorganges gemessen und als Restlebensdauer umgerech¬ net wird, wozu beim Schützantrieb aus Anker mit Magnetspule und zugehörigem Joch und eine Zeitmessung des Ankerweges vom Beginn der Ankerbewegung bis zum Beginn der Kontaktöffnung erfolgt . Daneben bezieht sich die Erfindung auch auf die zu¬ gehörige Vorrichtung mit einem Auswertegerät zur Bestimmung und Anzeige der Restlebensdauer.The invention relates to a method for determining the remaining service life of contacts in switching devices, in particular contactor contacts, whereby the so-called contact pressure on the switching path is recorded as a replacement criterion for the erosion and the pressure change during determination of the erosion of the contact pieces of the switch-off process is measured and converted as the remaining service life, for which purpose the contactor drive consists of an armature with a magnetic coil and associated yoke and a time measurement of the armature path from the beginning of the armature movement to the start of the contact opening. In addition, the invention also relates to the associated device with an evaluation device for determining and displaying the remaining service life.
In der älteren, nicht vorveröffentlichten DE 44 27 006 AO wird die Restlebensdauer eines Schützes beim Ausschaltvorgang aus der Zeitdifferenz zwischen dem Beginn der Ankeröffnungs- bewegung und dem Kontaktöffnungsbeginn abgeleitet. Aus dem Wert der Zeitdifferenz bestimmt ein Mikroprozessor nach einem Auswertealgorithmus den aktuellen Wert des sog. Kontakt- Durchdruckes, welcher durch Abbrand von seinem Neuwert (= 100 % Restlebensdauer) auf seinen Mindestwert (= 0 % Rest- lebensdauer) abnimmt.In the older, unpublished DE 44 27 006 AO, the remaining service life of a contactor during the switch-off process is derived from the time difference between the start of the armature opening movement and the start of the contact opening. From the value of the time difference, a microprocessor uses an evaluation algorithm to determine the current value of the so-called contact print, which decreases from its new value (= 100% remaining service life) to its minimum value (= 0% remaining service life).
Die hierzu notwendigen ZeitSignale werden zum einen durchThe necessary time signals are
Unterbrechung eines Hilfsstrompfades über Anker und Joch des Magnetantriebes und über die Kontaktspannung an den Haupt- schaltstücken detektiert und in definierte Spannungspulse umgeformt. Zur Vereinfachung der Kontaktspannungsmessung wird gemäß Parallelpatentanmeldung vorgeschlagen, das Kontaktöffnen speziell im Drehstromnetz durch eine Überwachung der Spannung insbesondere an einem künstlichen Sternpunkt durchzuführen. Dies erlaubt es, die Einrichtung zur Bestimmung der Rest- lebensdauer als unabhängiges Zusatzgerät in den Lastkreis zwischen dem Schütz und dem elektrischen Verbraucher zu schalten, welches lediglich mit einer Kommunikationsleitung für das Öffnen des Anker-Joch-Kontaktes mit dem Schütz ver- bunden ist.Interruption of an auxiliary current path via the armature and yoke of the magnetic drive and via the contact voltage at the main contact pieces is detected and converted into defined voltage pulses. To simplify the measurement of the contact voltage, it is proposed according to the parallel patent application to open the contact specifically in the three-phase network by monitoring the voltage, in particular at an artificial star point. This makes it possible to connect the device for determining the remaining service life as an independent additional device in the load circuit between the contactor and the electrical consumer, which is only connected to the contactor with a communication line for opening the armature-yoke contact.
Aufgabe der Erfindung ist es, demgegenüber eine Möglichkeit aufzuzeigen, mit der die Restlebensdauerkennung von einer Modifikation am Schütz, wie insbesondere einem Anker-Joch- Kontakt, unabhängig gemacht und bei beliebigen Schützen ein¬ gesetzt werden kann.The object of the invention, in contrast, is to show a possibility with which the remaining service life detection can be made independent of a modification on the contactor, in particular an armature-yoke contact, and can be used with any contactors.
Die Aufgabe ist erfindungsgemäß bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß aus der Spannung an der Magnetspule der Zeitpunkt der Trennung des Ankers vom Joch des Schützmagnetantriebes detektiert wird. Vorteilhaf¬ terweise wird dabei die Erhöhung des magnetischen Widerstan¬ des des Magnetkreises beim Abheben des Magnetankers erfaßt . Dabei wird das durch die zeitliche Flußänderung an der Magnetspule induzierte Spannungssignal zur Zeitmessung her¬ angezogen.The object is achieved in a method of the type mentioned in that the time at which the armature is separated from the yoke of the contactor magnet drive is detected from the voltage on the magnet coil. The increase in the magnetic resistance of the magnetic circuit when the magnet armature is lifted off is advantageously detected. The voltage signal induced on the magnetic coil by the change in flow over time is used for time measurement.
Bei der zugehörigen Anordnung hat das Auswertegerät Mittel zur Erfassung und Detektion der Spannung an der Magnetspule. Diese Mittel sind vorzugsweise Einheiten zur Signalgleich¬ richtung, zur Signalbegrenzung und -formung, sowie zur Signalausblendung und Signalfreigabe. Der Erfindung liegt folgendes physikalische Verhalten beim Ausschalten eines Schützmagnetantriebes zugrunde: Zur Er¬ zeugung der notwendigen Ankerschließkraft wird durch den Strom der Magnetspule im Eisenkreis ein magnetischer Fluß vorgegebener Größe aufgebaut. Beim Ausschalten des Steuer¬ stromkreises wird die Magnetspule stromlos und der magneti¬ sche Fluß klingt im geschlossenen Eisenkreis auf Grund der Remanenz einige Millisekunden später ab. Der Magnetanker beginnt nun in dem Augenblick zu öffnen, in dem die magneti- sehe Schließkraft die Öffnungskraft, d.h. die Summe derIn the associated arrangement, the evaluation device has means for detecting and detecting the voltage on the magnetic coil. These means are preferably units for signal rectification, for signal limitation and shaping, as well as for signal suppression and signal release. The invention is based on the following physical behavior when a contactor magnet drive is switched off: To generate the necessary armature closing force, a magnetic flux of a predetermined size is built up in the iron circuit by the current of the magnet coil. When the control circuit is switched off, the magnet coil is de-energized and the magnetic flux decays in the closed iron circuit due to the remanence a few milliseconds later. The magnet armature now begins to open at the moment when the magnetic closing force sees the opening force, ie the sum of the
Federkräfte von Kontakten und Brückenträger, unterschreitet. Beim Abheben des Magnetankers erhöht sich schlagartig der magnetische Widerstand des Magnetkreises, wobei der restliche Magnetfluß Φ (Kmagn - Φ2) rasch abklingt und die zeitliche Flußänderung an der Magnetspule ein Spannungssignal induziert.Spring force of contacts and bridge girders, falls below. When the magnet armature is lifted, the magnetic resistance of the magnetic circuit increases suddenly, the remaining magnetic flux Φ (Kmagn - Φ 2 ) rapidly decaying and the change in flux over time induces a voltage signal on the magnet coil.
Einzelheiten und weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungs- beispielen anhand der Zeichnung in Verbindung mit den Patent¬ ansprüchen. Es zeigenDetails and further advantages of the invention result from the following description of the figures of exemplary embodiments with reference to the drawing in conjunction with the patent claims. Show it
FIG 1 ein Prinzipschaltbild zur Erfassung der Restlebensdauer bei Schützen beim Ausschaltvorgang, FIG 2a bis d in mehreren Oszillogrammen die Signalverläufe von Spulenspannung und Spulenstrom als Funktion der Zeit beim Ausschalten eines Schützes bei Wechsel- bzw. Gleichstrombetätigung, FIG 3 ein Blockschaltbild zur Auswertung der Ausschaltspan- nung gemäß FIG 2,1 shows a basic circuit diagram for recording the remaining service life of contactors during the switching-off process, FIGS. 2a to d show the signal curves of coil voltage and coil current as a function of time when switching off a contactor when AC or DC is actuated in several oscillograms, FIG. 3 shows a block diagram for evaluating the switching-off voltage 2 according to FIG.
FIG 4 die konkrete schaltungsmäßige Realisierung der FIG 3, FIG 5a und b zwei zugehörige Oszillogramme mit Signalspan¬ nungen zum Zeitpunkt des Ankeröffnens, FIG 6 eine Variante der schaltungsmäßigen Ausführung von4 shows the specific circuit implementation of FIG. 3, FIGS. 5a and b two associated oscillograms with signal voltages at the time the anchor is opened 6 shows a variant of the circuit design of
FIG 4 , FIG 7 ein zugehöriges Oszillogramm mit der beim Ausschalten der Schützspule auftretenden Signalspannung und FIG 8 ein Oszillogramm mit Messung der Zeitdifferenz zwischen Ankeröffnungsbeginn und Kontaktöffnungsbeginn beim Aus¬ schalten eines wechselstrombetätigten, serienmäßigen Schützes mit Mittelwertbildung.4, 7 shows an associated oscillogram with the signal voltage occurring when the contactor coil is switched off and FIG. 8 shows an oscillogram with measurement of the time difference between the beginning of the armature opening and the beginning of the contact opening when switching off an AC-operated, standard contactor with averaging.
Identische bzw. gleichwirkende Teile haben in den Figuren gleiche Bezugszeichen. Die Figuren werden teilweise gemeinsam beschrieben.Identical or equivalent parts have the same reference numerals in the figures. Some of the figures are described together.
FIG 1 zeigt schematisch Aufbau und Anordnung einer Einrich- tung 100 zur Erkennung der Restlebensdauer der Hauptkontakte eineε Schützes 1 im Drehstromnetz. Diese Einrichtung ist auf der Lastseite zwischen dem Schütz 1 und einem Verbraucher 20, z.B. einem Drehstrommotor, angeordnet. Sie enthält ein erstes Auswertemodul 101 vorzugsweise zur Erfassung des Kontakt- Öffnungszeitpunktes der erstöffnenden Hauptkontakte, bzw. alternativ zur Erfassung der Kontaktδffnungszeitpunkte eines jeden Hauptkontaktes. Sie enthält weiterhin ein zweites Aus¬ wertemodul 102 zur Erfassung des Ankerbewegungsbeginns, wel¬ cher auch als Zeitpunkt tA des Ankeröffnens bezeichnet ist. Aus den Zeitsignalen tA und tk wird durch eine Auswerteein¬ heit, beispielsweise einem Mikroprozessor 105, der Kontakt¬ durchdruck und daraus die Restlebenεdauer bestimmt und diese über ein Display 106 angezeigt und/oder über einen Daten-BUS bzw. weiteren Auswertung ausgegeben.1 schematically shows the structure and arrangement of a device 100 for detecting the remaining service life of the main contacts of a contactor 1 in the three-phase network. This device is arranged on the load side between the contactor 1 and a consumer 20, for example a three-phase motor. It contains a first evaluation module 101, preferably for recording the contact opening time of the first opening main contacts, or alternatively for recording the contact opening times of each main contact. It also contains a second evaluation module 102 for detecting the start of the armature movement, which is also referred to as time t A of the armature opening. From the time signals t A and t k , the contact pressure and the remaining life are determined by an evaluation unit, for example a microprocessor 105, and this is shown on a display 106 and / or output via a data bus or further evaluation.
Das zweite Auswertemodul 102 ist mit seinen beiden Meßein¬ gängen mit den Anschlüssen der Schützmagnetspule verbunden und bestimmt aus dem Signalverlauf der Spulenspannung während des Ausschaltvorganges den Zeitpunkt des .Ankerbewegungs- beginns tA.The second evaluation module 102 is connected with its two measuring inputs to the connections of the contactor magnet coil and determines from the signal curve of the coil voltage during the switch-off process the time of the .Anchor movement start t A.
Die Einrichtung 100 zur Erkennung der Restlebensdauer der Hauptkontakte wird vorteilhafterweise auf der Lastseite des überwachten Schaltgerätes angeordnet, um mit geringem tech¬ nischem Aufwand das Kontaktöffnen des überwachten Schalt¬ gerätes zu überwachen, wie es in einer Parallelanmeldung im einzelnen beschrieben ist. Die Einrichtung 100 kann aber auch auf der Einspeiseseite des überwachten Schaltgerätes angeord¬ net und in verschiedenen Einrichtungen (z.B. Überlastrelais) auf der Einspeise- oder Lastseite integriert sein. Die Er¬ fassung des Kontaktöffnens kann durch Messung der Kontakt¬ spannungen über Meßanschlüεse an den Anschlußklemmen der einzelnen Schaltpole erfolgen.The device 100 for detecting the remaining service life of the main contacts is advantageously arranged on the load side of the monitored switching device in order to monitor the contact opening of the monitored switching device with little technical effort, as is described in detail in a parallel application. The device 100 can, however, also be arranged on the infeed side of the monitored switching device and integrated in various devices (e.g. overload relays) on the infeed or load side. The contact opening can be detected by measuring the contact voltages via measuring connections at the connection terminals of the individual switching poles.
FIG 2 zeigt Meßoszillogramme der Spulenspannung und des Spulenstroms beim Ankeröffnen eines Schützes in einer für die Messung modifizierten Anordnung, bei welcher Anker und Joch bei gegenseitiger Berührung einen Hilfsstromkreis schließen bzw. diesen beim Abheben des Ankers trennen. Nach dem Aus¬ schaltzeitpunkt taue erhält man zum Zeitpunkt tA des Anker- öffnens einen Spannungspuls von ca. 2 ms Dauer und 50 V Amplitude, da der rasch abklingende magnetische Restfluß einen Spannungsεtoß induziert.2 shows measurement oscillograms of the coil voltage and the coil current when the armature opens a contactor in an arrangement modified for the measurement, in which the armature and yoke close an auxiliary circuit when they come into contact with one another or separate it when the armature is lifted. After the switch-off instant tau, a voltage pulse of approximately 2 ms duration and 50 V amplitude is obtained at the instant t A of the armature opening, since the rapidly decaying residual magnetic flux induces a voltage surge.
Wie auε den einzelnen Oszillogrammen gemäß FIG 2a, 2b für Wechselεpannung und gemäß FIG 2c bzw. 2d für Gleichspannung hervorgeht, ist das Auftreten des charakteristischen Span- nungspulses unabhängig davon, ob als Haltestrom des Magnet- Systems ein Wechselstrom (z.B. 150 mA efJ) oder ein Gleich¬ strom (z.B. 150 mA=) vorliegt. Eε iεt üblich Schützεpulen zu beεchalten, um Schaltüber¬ spannungen beim Abriß des Bogenstromes (chopping) zu ver¬ meiden. Als Beschaltungselemente sind beispielsweise R-C- Glieder, Varistoren und im Gleichstromfall Zener-Dioden vorgesehen. Eine Erfaεεung des Ankeröffnungszeitpunktes aus der Spulenspannung bei Verwendung von R-C-Entεtörgliedern iεt nicht möglich, da beim Abεchalten deε Spulenεtromeε ein ange¬ regter R-C-L-Schwingkreiε entsteht und die Spulenεpannung alε abklingende Sinuεschwingung keinen εignifikanten Signalver- lauf für eine Zuordnung zum Ankeröffnungszeitpunkt besitzt.As can be seen from the individual oscillograms according to FIG. 2a, 2b for alternating voltage and according to FIG. 2c or 2d for direct voltage, the occurrence of the characteristic voltage pulse is independent of whether an alternating current (for example 150 mA efJ ) or as the holding current of the magnet system a direct current (eg 150 mA =) is present. It is common to switch contactor coils in order to avoid switching overvoltages when the arc current is interrupted (chopping). RC elements, varistors and, in the case of direct current, Zener diodes are provided as wiring elements. It is not possible to determine the armature opening time from the coil voltage when using RC suppressor elements, since when the coil current is switched off, an excited RCL oscillation circuit is created and the coil voltage as the decaying sinusoidal oscillation has no significant signal development time for assignment to the armature opening.
FIG 3 zeigt ein Blockschaltbid einer Einrichtung zur Bestim¬ mung des Ankeröffnungszeitpunktes aus der Ausschaltspannung an der Magnetspule 5 eines Schützes 1. Die Ansteuerung des Schützmagnetsystems kann zweckmäßigerweise durch ein Hilfs¬ schütz 2 erfolgen, welches die Steuerspeisespannung an die Schützspule 5 zweipolig zu- oder abschaltet. Die Spulenspan¬ nung ist dann zum Zeitpunkt des Ankeröffnens vom Potential der Steuerspeisespannung getrennt.3 shows a block diagram of a device for determining the armature opening time from the switch-off voltage on the solenoid 5 of a contactor 1. The contactor magnet system can expediently be controlled by an auxiliary contactor 2, which connects or disconnects the control supply voltage to the contactor coil 5 with two poles . The coil voltage is then separated from the potential of the control supply voltage at the time the armature opens.
Im Blockschaltbild der FIG 3 besteht das Auswertemodul 102 aus der Hintereinanderschaltung einer Einheit 110 zur Signal¬ gleichrichtung, einer Einheit 120 zur Signalbegrenzung und - formung, einer Einheit 130 zur Signalausblendung und einer Einheit 140 zur Signalfreigabe. Die Ausgangsεignale derIn the block diagram of FIG. 3, the evaluation module 102 consists of the connection in series of a unit 110 for signal rectification, a unit 120 for signal limitation and shaping, a unit 130 for signal suppression and a unit 140 for signal release. The output signals of
Einheiten 120 und 140 werden auf ein UND-Glied 150 gegeben, das den gewünschten Ankeröffnungszeitpunkt exakt auεgibt . Inεbeεondere wegen der notwendigen exakten Bestimmung der kleinen Zeitintervalle ist eine entsprechende Auslegung der Einheiten 110 bis 140 durch problemangepaßte Bauelemente notwendig.Units 120 and 140 are placed on an AND gate 150, which precisely outputs the desired anchor opening time. In particular because of the necessary exact determination of the small time intervals, a corresponding design of the units 110 to 140 by problem-adapted components is necessary.
Mit der nunmehr vorgeschlagenen Signalverarbeitung der Spulenspannung - d.h. Gleichrichtung, Begrenzung/Formung, Ausblendung, Freigabe- wird ein Ausgangεpulε erzeugt, der mit dem charakteristischen Spannungspuls, beispielεweiεe Puls¬ breite « 2 ms, Pulshöhe = 50 V, in FIG 2, welcher bei der Trennung deε Ankerε vom Joch entsteht, zeitlich zusammen¬ fällt. Zur weiteren Signalverarbeitung kann vom Ausgangεpuls beispielεweise mit einem in FIG 3 nicht dargestellten Opto¬ koppler ein Ausgangssignal abgeleitet werden, das vom Ver¬ sorgungsnetz des Schützmagnetantriebes galvanisch getrennt iεt.With the now proposed signal processing of the coil voltage - ie rectification, limitation / shaping, Suppression, release, an output pulse is generated which coincides in time with the characteristic voltage pulse, for example a pulse width of 2 ms, pulse height = 50 V, in FIG. 2, which arises when the armature is separated from the yoke. For further signal processing, an output signal can be derived from the output pulse, for example with an optocoupler (not shown in FIG. 3), which is galvanically isolated from the supply network of the contactor magnet drive.
FIG 4 zeigt ein konkreteε Beschaltungsbeispiel einer Aus¬ werteschaltung zur Erfasεung des Ankeröffnungszeitpunktes mit Bauteilen 111 bis 136, die zum Aufbau der Einheiten 110, 120, 130, 140 selbsterklärend sind. Die Schaltung schließt an die Meßleitungen zur Spannungsüberwachung der Magnetspule 6, 6' des Schützantriebes 5 der FIG 1 an. Beide Meßanschlüsse ent¬ halten den gleichen Vorwiderstand 9 zur Spannungεteilung des Meßsignals, um eine freie Anschlußbelegung an der Schützspule 5 zu erhalten. Die Meßerde ist mit der Schutzerde verbunden und liegt praktisch auf Null-Potential, so daß während des Einschaltzuεtandes des Hilfsschützes nur vom Außenleiter L ein Meßstrom in die Auswerteschaltung fließt.4 shows a concrete circuit example of an evaluation circuit for detecting the anchor opening time with components 111 to 136 which are self-explanatory for the construction of the units 110, 120, 130, 140. The circuit connects to the measuring lines for voltage monitoring of the solenoid 6, 6 'of the contactor drive 5 of FIG 1. Both measuring connections contain the same series resistor 9 for voltage division of the measuring signal in order to obtain a free connection assignment on the contactor coil 5. The measuring earth is connected to the protective earth and is practically at zero potential, so that during the switch-on state of the auxiliary contactor, only a measuring current flows from the outer conductor L into the evaluation circuit.
Durch die Signalgleichrichtung und die Begrenzerschaltung wird ein charakteristisches Meßsignal erzeugt. Dieses enthält im Einschaltzustand des Schützmagnetantriebes kurze Span¬ nungspulse von beispielsweise 300 με Breite und bei 50 Hz Wechselεpannung 10 mε Zeitabstand, während beim Ausschaltvor¬ gang zwei etwa 2 ms lange Spannungspulse mit wenigen Milli- Sekunden Zeitabstand entstehen, von denen der erste Puls den Induktionsabfall im Eisenkern kennzeichnet, während der zweite Puls durch das Abheben des Ankers vom Joch und der damit verbundenen Induktionsänderung erzeugt wird. Im nachfolgenden Teil der elektronischen Schaltung werden alle Spannungspulse bis auf den letztgenannten unterdrückt , so daß die Auswerteschaltung nur einen einzigen Ausgangs- impuls liefert, der mit dem Ankeröffnungsbeginn zeitlich zusammen fällt.A characteristic measurement signal is generated by the signal rectification and the limiter circuit. When the contactor magnet drive is switched on, this contains short voltage pulses of, for example, 300 μs width and 10 ms time interval at 50 Hz alternating voltage, while during the switching-off process two approximately 2 ms long voltage pulses occur with a few millisecond interval, of which the first pulse is the induction drop in the iron core, while the second pulse is generated by lifting the armature from the yoke and the associated change in induction. In the subsequent part of the electronic circuit, all voltage pulses are suppressed except for the latter, so that the evaluation circuit supplies only a single output pulse which coincides with the start of the armature opening.
FIG 5 zeigt Meßoszillogramme der Auswerteschaltung nach FIG 4. Der Anker-Joch-Hilfskontakt des modifizierten Schützes wurde dazu genutzt, den Zeitpunkt des Ankeröffnungsbeginnε elektrisch/mechanisch zu erfaεεen und mit dem Auεgangεsignal der Auswerteschaltung vergleichen zu können. Durch Signal- mittelung (sog. Averaging) der Zeitsignale tA und tk können ZeitSchwankungen, die durch mechanische Toleranzen beein¬ flußte Kontakttrennung der Schütz-Hauptkontakte und unter- schiedlichen Magnetisierungszustand des Schütz-Magnetantrie- beε verurεacht werden, weitgehend eliminiert werden, so daß die gemittelte Zeitdifferenz zwischen dem Beginn der Anker¬ öffnungsbewegung und dem Kontaktöffnungsbeginn mit einer Meßgenauigkeit von +/- 100...200 μs erfaßt wird.5 shows measurement oscillograms of the evaluation circuit according to FIG. 4. The armature-yoke auxiliary contact of the modified contactor was used to electrically / mechanically record the time when the armature opening began and to compare it with the output signal of the evaluation circuit. By signal averaging of the time signals t A and t k , time fluctuations which are caused by mechanical tolerances in the contact separation of the main contactor contacts and different magnetization states of the contactor magnet drive can be largely eliminated, so that the averaged time difference between the beginning of the armature opening movement and the beginning of the contact opening is recorded with a measuring accuracy of +/- 100 ... 200 μs.
FIG 6 zeigt eine weitere Auswerteschaltung zur Erfassung des Ankeröffnungszeitpunktes. Sie unterscheidet sich von der Schaltung in FIG. 4 nur durch den Schaltungsteil der Signal- begrenzung und -formung, insbesondere durch den hohen Ein- gangswiderstand der Komparatoren 128 und 129. Die Auswerte¬ schaltung verarbeitet daher das Meßsignal von der Schützspule in gleicher Weise, unabhängig davon, ob der Masseanschluß der Elektronikversorgungsspannung auf Erdpotential liegt, oder nicht. Des weiteren wird die Erfassung des Ankeröffnungszeit- punktes auch bei einpoliger Unterbrechung der Spulenspannung ermöglicht.6 shows a further evaluation circuit for detecting the anchor opening time. It differs from the circuit in FIG. 4 only by the circuit part of the signal limitation and shaping, in particular by the high input resistance of the comparators 128 and 129. The evaluation circuit therefore processes the measurement signal from the contactor coil in the same way, regardless of whether the ground connection of the electronics supply voltage is on Earth potential is or not. Furthermore, the detection of the armature opening time is made possible even with a single-pole interruption of the coil voltage.
Die Schaltung nach FIG. 6 kann daher bei geerdeten und unge¬ erdeten Netzen sowohl bei Wechsel- als auch bei Gleichspan- nung eingeεetzt werden. Zur Signalweiterverarbeitung ist z.B. mit einem Optokoppler eine galvanische Trennung des Ausgangs- εignalε vom Versorgungsnetz des Schützmagnetantriebes vorzu¬ sehen.The circuit of FIG. 6 can therefore be used for both AC and DC voltage in earthed and ungrounded networks. can be used. For signal processing, for example, an optocoupler is to be used to provide a galvanic separation of the output signal from the supply network of the contactor magnet drive.
FIG 7 zeigt Meßoszillogramme der Auswerteschaltung nach FIG. 6, wobei das Elektronik-Masεepotential hierbei auf Erd¬ potential gelegt war. Man erhält vergleichbare Auεgangs- signale mit gleicher Meßgenauigkeit wie bei der Schaltung nach FIG. 4.7 shows measurement oscillograms of the evaluation circuit according to FIG. 6, wherein the electronics ground potential was in this case connected to earth potential. Comparable output signals are obtained with the same measuring accuracy as in the circuit according to FIG. 4th
Die zeitlich exakte Zuordnung des Ankeröffnungszeitpunktes tA zum 'Anker-Öffnungspulε' der Auswerteschaltung gemäß FIG. 4 und 5 kann durch die Berücksichtigung eines schütz- und schaltungsεpezifischen Zeitverεatzeε, gerechnet von der ansteigenden Flanke des 'Anker-Öffnungspulses' , beispiel¬ weise 0,7 ms bei obigem Schütztyp, erfolgen. Abhängig von der Schütz-Baugröße und der Spannungshöhe dei* Steuerspeisespan¬ nung kann eine Anpassung deε Schaltungsteils für die Signal- begrenzung erforderlich sein.The exact time assignment of the armature opening time t A to the 'armature opening pulse' of the evaluation circuit according to FIG. 4 and 5 can take place by taking into account a protection and circuit-specific time offset, calculated from the rising edge of the 'armature opening pulse', for example 0.7 ms for the above protection type. Depending dei of the contactor size and the voltage level * Steuerspeisespan¬ voltage can deε circuit section for signal limitation be necessary to adapt.
FIG 8 zeigt den Signalverlauf des Ankeröffnungszeitpunktes tA der Auswerteschaltung nach FIG 6 und des Kontaktöffnungszeit¬ punktes eines serienmäßigen Schützes, wobei wiederum die Mittelwertbildung (sog. Averaging) angewandt wurde.FIG. 8 shows the signal curve of the armature opening time t A of the evaluation circuit according to FIG. 6 and the contact opening time of a standard contactor, again using the averaging.
Die Signalmittelung über 64 Schaltungen, bei denen die posi¬ tive Flanke des Anker-Öffnungspulses jeweils der TriggerZeit¬ punkt ist, zeigt eine schwache Streuung in der Breite des Anker-Öffnungspulεes und eine zeitliche Streuung des Kon¬ taktöffnungszeitpunktes von ~ 0,5 ms. Das mittlere Zeitinter¬ vall vom Ankeröffnungsbeginn tA bis zum Kontaktöffnungsbeginn tk kann in gemessenem Beispiel mit 4,6 ms ± 0,2 ms angegeben werden. Die beschriebene Auεwerteεchaltung zur Erfaεεung des Anker¬ öffnungszeitpunktes kann Teil eines Auswertegerätes zur Be¬ stimmung der Restlebensdauer von Schütz-Hauptkontakten sein. Dabei befindet sich das Auεwertegerät auf der Lastseite zwi¬ schen dem Schütz und dem elektrischen Verbraucher und ist über ein ersteε Überwachungεmodul zur Erkennung des Kontakt- öffnenε auε der Spannungsänderung an einem künstlichen Stern¬ punkt mit den Außenleitern L1,L2,L3 kontaktiert. Eine insbe- εondere zweiadrige Signalleitung verbindet die Anεchlüεεe der Schützεpule mit einem zweiten Überwachungsmodul zur Erkennung des Ankeröffnens. Aus den von den Uberwachungsmodulen gelie¬ ferten Zeitsignalen des Ankeröffnens tA und des Kontakt- öffnens tκ bestimmt der Mikroprozessor den aktuellen Kontakt- durchdruck und daraus die elektrische Restlebensdauer der Hauptschaltstücke. The signal averaging over 64 circuits, in which the positive flank of the armature opening pulse is the trigger time, shows a weak scatter in the width of the armature opening pulse and a temporal scatter of the contact opening time of ~ 0.5 ms. The mean time interval from the beginning of the armature opening t A to the beginning of the contact opening t k can be specified in the measured example as 4.6 ms ± 0.2 ms. The described evaluation circuit for determining the armature opening time can be part of an evaluation device for determining the remaining service life of contactor main contacts. The evaluation device is located on the load side between the contactor and the electrical consumer and is contacted with the outer conductors L1, L2, L3 via a first monitoring module for detecting the opening of the contact and the change in voltage at an artificial star point. A two-wire signal line in particular connects the contactor of the contactor coil with a second monitoring module for the detection of the armature opening. From the time signals of the armature opening t A and the contact opening t κ supplied by the monitoring modules, the microprocessor determines the current contact pressure and from this the electrical remaining service life of the main contact pieces.

Claims

Patentansprüche claims
1. Verfahren zur Bestimmung der Restlebenεdauer von Kontakten in Schaltgeräten, insbesondere von Schützkontakten, wobei als Ersatzkriterium für den Abbrand der sogenannte Kontaktdurch¬ druck an der Schaltstrecke erfaßt wird und wobei zur Bestim¬ mung des Abbrandes der Kontaktstücke jeweils die Durchdruck¬ änderung während des Ausεchaltvorgangeε gemeεεen und als Restlebenεdauer umgerechnet wird, wozu beim Schützmagnet- antrieb auε Joch und Anker mit Magnetspule eine Zeitmessung des Ankerweges vom Beginn der Ankerbewegung biε zum Beginn der Kontaktöffnung erfolgt, d a d u r c h g e k e n n ¬ z e i c h n e t , daß aus der Spannung an der Magnetspule der Zeitpunkt der Trennung des Ankers vom Joch des Schütz- magnetantriebes detektiert wird.1. Method for determining the remaining service life of contacts in switching devices, in particular contactor contacts, whereby the so-called contact pressure on the switching path is recorded as a replacement criterion for the erosion and the change in the pressure during the disconnection process is used to determine the erosion of the contact pieces is measured and converted as the remaining service life, for which purpose in the case of the contactor magnet drive consisting of yoke and armature with solenoid, a time measurement of the armature path from the beginning of the armature movement to the beginning of the contact opening takes place, characterized in that the time at which the armature is separated from the voltage on the solenoid coil is detected by the yoke of the contactor magnet drive.
2. Verfahren nach Anεpruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t , daß die Erhöhung des magnetiεchen Wider¬ standes des Magnetkreises beim Abheben des Magnetankers er- faßt wird.2. The method according to claim 1, so that the increase in the magnetic resistance of the magnetic circuit is detected when the magnet armature is lifted off.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n ¬ z e i c h n e t , daß das durch die zeitliche Flußänderung an der Magnetspule induzierte Spannungssignal zur Zeitmessung herangezogen wird.3. The method of claim 2, d a d u r c h g e k e n n ¬ z e i c h n e t that the voltage signal induced by the temporal flux change at the solenoid coil is used for time measurement.
4. Anordnung zur Durchführung des Verfahrens nach Anspruch 1 oder einem der Ansprüche 2 und 3, mit einem Auswertegerät zur Bestimmung und Anzeige der Reεtlebensdauer, d a d u r c h g e k e n n z e i c h n e t , daß das Auswertegerät (100) Mittel (110-150) zur Erfassung und Detektion der Spannung an der Magnetspule (5) aufweist.4. Arrangement for performing the method according to claim 1 or one of claims 2 and 3, with an evaluation device for determining and displaying the Reεtleleben, characterized in that the evaluation device (100) means (110-150) for detecting and detecting the voltage at the Magnetic coil (5).
5. Anordnung nach Anspruch 4, d a d u r c h g e k e n n - z e i c h n e t , daß die Mittel zur Detektion der Signal¬ spannung einer Einheit zur Signalgleichrichtung (110), eine Einheit zur Signalbegrenzung und -formung (120), eine Ein- heit zur Signalausblendung (130) und eine Einheit zur Signal¬ freigabe (140) sind.5. Arrangement according to claim 4, characterized in that the means for detecting the signal voltage of a unit for signal rectification (110), a unit for signal limitation and shaping (120), a one unit for signal suppression (130) and a unit for signal release (140).
6. Anordnung nach Anspruch 5, d a d u r c h g e k e n n - z e i c h n e t , daß die Einheiten (110, 120, 130, 140) aus diskreten Schaltungen zur Generierung eines Zeitεignals für den Anker-Öffnungszeitpunkt bestehen.6. Arrangement according to claim 5, so that the units (110, 120, 130, 140) consist of discrete circuits for generating a time signal for the armature opening time.
7. Anordnung nach Anspruch 5, d a d u r c h g e k e n n - z e i c h n e t , daß die Einheit (130) zur Signalausblen¬ dung des Signals für den Anker-Öffnungszeitpunkt mehrere Zeitstufen (131, 132, 133) enthält.7. Arrangement according to claim 5, d a d u r c h g e k e n n - z e i c h n e t, that the unit (130) for signal Ausblend¬ the signal for the anchor opening time contains several time stages (131, 132, 133).
8. Anordnung nach Anspruch 7, d a d u r c' h g e k e n n - z e i c h n e t , daß die Zeitstufen (131, 132, 133) über wenigstenε eine UND-Stufe (135) miteinander verbunden sind.8. Arrangement according to claim 7, dadurc ' hgekenn - records that the time stages (131, 132, 133) are connected to each other via at least one AND stage (135).
9. Anordnung nach einem der Ansprüche 4 bis 8, d a ¬ d u r c h g e k e n n z e i c h n e t , daß das Auswerte- gerät (100) als Zusatzbaustein in das zu überwachende Schütz (1) integriert ist.9. Arrangement according to one of claims 4 to 8, so that the evaluation device (100) is integrated as an additional module in the contactor (1) to be monitored.
10. Anordnung nach einem der Ansprüche 4 bis 8, d a ¬ d u r c h g e k e n n z e i c h n e t , daß das Aus- wertegerät (100) an das zu überwachende Schütz (1) ange¬ schlossen ist.10. Arrangement according to one of claims 4 to 8, so that the evaluation device (100) is connected to the contactor (1) to be monitored.
11. Anordnung nach einem der Ansprüche 4 -bis 8, d a ¬ d u r c h g e k e n n z e i c h n e t , daß das Auswerte- gerät (100) in einem Überlastrelais auf der Lastεeite des zu überwachenden Schützes (1) angeordnet ist.11. Arrangement according to one of claims 4 to 8, so that the evaluation device (100) is arranged in an overload relay on the load side of the contactor (1) to be monitored (1).
12. Anordnung nach einem der Ansprüche 4 bis 8, d a ¬ d u r c h g e k e n n z e i c h n e t , daß das Auswerte- gerät (100) als unabhängiges Zusatzgerät auf der Lastseite des zu überwachenden Schützes (1) angeordnet ist. 12. Arrangement according to one of claims 4 to 8, that the evaluation device (100) is arranged as an independent additional device on the load side of the contactor (1) to be monitored (1).
EP97907032A 1996-01-31 1997-01-29 Method of establishing the residual useful life of contacts in switchgear and associated arrangement Expired - Lifetime EP0878015B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19603319 1995-01-31
DE19603319A DE19603319A1 (en) 1996-01-31 1996-01-31 Method for determining the remaining service life of contacts in switchgear and associated arrangement
PCT/DE1997/000174 WO1997028549A1 (en) 1996-01-31 1997-01-29 Method of establishing the residual useful life of contacts in switchgear and associated arrangement

Publications (2)

Publication Number Publication Date
EP0878015A1 true EP0878015A1 (en) 1998-11-18
EP0878015B1 EP0878015B1 (en) 1999-10-20

Family

ID=7784065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97907032A Expired - Lifetime EP0878015B1 (en) 1996-01-31 1997-01-29 Method of establishing the residual useful life of contacts in switchgear and associated arrangement

Country Status (5)

Country Link
US (1) US6225807B1 (en)
EP (1) EP0878015B1 (en)
CN (1) CN1065352C (en)
DE (2) DE19603319A1 (en)
WO (1) WO1997028549A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834120A1 (en) * 2001-12-21 2003-06-27 Schneider Electric Ind Sa Power switch pole contact wear determination having electromagnet field coil activated with coil electrical signal measured finding power pole conductor status comparing wear time with initial travel time.
EP2254136A1 (en) 2009-05-18 2010-11-24 Schneider Electric Industries SAS Apparatus for the assessment of the integrity of pressed contacts by the variation in the rotation of the pole shaft and its manufacturing process
EP2320443A2 (en) 2009-11-05 2011-05-11 Schneider Electric Industries SAS Device for identifying wear in the contacts of electric switching devices
DE202017002030U1 (en) 2017-03-13 2017-06-29 Plättner Elektronik GmbH Circuit for internal and external functional testing of an electrical relay and / or contactor
DE102017003755B4 (en) 2017-03-10 2019-01-03 Plättner Elektronik GmbH Circuit for internal and external functional testing of an electrical relay and / or contactor

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466629B2 (en) * 1997-03-26 2003-11-17 シーメンス アクチエンゲゼルシヤフト Method and apparatus for selective distribution network monitoring in switchgear
DE19734224C1 (en) * 1997-08-07 1999-02-04 Siemens Ag Method and device for determining switchgear-specific data on contacts in switchgear and / or for determining company-specific data in the network connected with it
DE19947105C2 (en) * 1999-09-30 2002-01-24 Siemens Ag Method and associated arrangements for switching electrical load circuits
DE19948551C1 (en) * 1999-10-08 2001-07-05 Siemens Ag Method for equalizing total erosions of an electromagnetic switching device and the corresponding electromagnetic switching device
DE10003918C1 (en) * 2000-01-29 2001-07-05 Reinhausen Maschf Scheubeck Monitoring step switch contact burning involves deriving contact burning rates from switching currents, summing, converting to contact thickness, comparing with stored limit values
DE10028559C1 (en) * 2000-06-09 2001-11-22 Siemens Ag Electromagnetic switching device, used as contactor, comprises contact with fixed contact pieces and moving contact bridge
DE10051161C1 (en) * 2000-10-16 2002-03-07 Siemens Ag Switching device contact wear reduction method uses delay of switching command used for electromagnetic operation of main contacts
DE10260258B4 (en) * 2002-12-20 2005-02-24 Siemens Ag Method and device for determining the remaining service life of a switching device
DE10260248B4 (en) * 2002-12-20 2005-07-21 Siemens Ag Method for determining the remaining service life of a switching device and associated arrangement
DE10260249B4 (en) * 2002-12-20 2005-07-28 Siemens Ag Method and device for determining the remaining service life of a switching device
DE10352580B3 (en) * 2003-11-11 2005-04-28 Reinhausen Maschf Scheubeck Stepping switch contact wear monitoring method e.g. for transformer step voltage regulator, with different equations used for calculation of switching currents and wear rates for each switching direction
DE102005045095A1 (en) * 2005-09-21 2007-04-05 Siemens Ag A method for determining the burnup of contacts of an electromagnetic switching device and electromagnetic switching device with a device operating according to this method
FR2891392B1 (en) * 2005-09-23 2009-03-20 Schneider Electric Ind Sas DEVICE FOR NEUTRALIZING AN ELECTRICAL DEVICE SWITCH
DE102008048828A1 (en) * 2008-09-22 2010-04-08 Siemens Aktiengesellschaft Method for determining stroke of two actuating elements driven by drive element, involves determining position of drive element, when actuating element is arranged in predetermined position
FR2940509B1 (en) * 2008-12-19 2010-12-10 Schneider Electric Ind Sas OPERATING ELECTRICAL SWITCH OPTIMIZED
US20110062960A1 (en) * 2009-09-15 2011-03-17 Lenin Prakash Device and method to monitor electrical contact status
DE102010011394A1 (en) * 2010-03-12 2011-09-15 Franz-Josef Rapp Method for testing mechanical condition of electromechanical bistable relay arrangement, involves evaluating measurement of excess strokes of movable contact element indicating voltage pulse of measured signal
DE102010041449A1 (en) * 2010-09-27 2012-03-29 Siemens Aktiengesellschaft Method for testing the functionality of the electromagnetic tripping of a switch, in particular a circuit breaker for low voltages
CN102183728B (en) * 2011-02-23 2013-10-09 国家电网公司 Method for detecting electrical state of high-voltage circuit breaker
FR2981787B1 (en) * 2011-10-21 2014-08-01 Schneider Electric Ind Sas METHOD FOR DIAGNOSING AN OPERATING STATE OF A CONTACTOR AND CONTACTOR FOR CARRYING OUT SAID METHOD
RU2486474C1 (en) * 2012-02-06 2013-06-27 Сергей Владимирович Карпенко Non-metal monitoring sensor
CN102590741B (en) * 2012-02-29 2014-03-12 温州奔龙自动化科技有限公司 Alternating current contactor automation test equipment
FR3011673B1 (en) * 2013-10-08 2015-12-11 Schneider Electric Ind Sas SWITCHING DEVICE AND METHOD FOR DETECTING A FAULT IN SUCH A SWITCHING DEVICE
CN104406786A (en) * 2014-12-06 2015-03-11 无锡高卓流体设备有限公司 Mechanical life testing device for electromagnetic relay
PL3309529T3 (en) * 2016-10-11 2022-06-13 Abb Schweiz Ag Prediction of remaining useful lifetime for bearings
LU93350B1 (en) 2016-12-12 2018-07-03 Phoenix Contact Gmbh & Co Kg Intellectual Property Licenses & Standards Method for monitoring an electromechanical component of an automation system
CN106842013A (en) * 2017-02-10 2017-06-13 云南电网有限责任公司电力科学研究院 The live detection method and device of the contact of breaker ablation degree based on electromagnetic wave
US10340640B2 (en) 2017-05-04 2019-07-02 Schneider Electric USA, Inc. System and method for determining the current condition of power contacts
KR102295771B1 (en) 2017-10-12 2021-08-31 주식회사 엘지에너지솔루션 System and method for diagnosing contactor life using contactor coil current
US10763659B2 (en) 2019-01-29 2020-09-01 Arc Suppression Technologies Power contact fault clearing device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988664A (en) * 1975-02-18 1976-10-26 Burroughs Corporation System for predicting or detecting a fault in a solenoid utilization system
CH668669A5 (en) * 1985-10-08 1989-01-13 Sprecher Energie Ag METHOD FOR DETERMINING the erosion of the KONTAKTSTUECKE AN IN AN ENCAPSULATED SWITCHGEAR INSTALLED switchgear.
DE3608572A1 (en) * 1986-03-14 1987-09-17 Krupp Gmbh METHOD AND DEVICE FOR CONTACTLESS BREAKAGE AND WEAR MONITORING OF TOOLS
FR2602610B1 (en) * 1986-08-08 1994-05-20 Merlin Et Gerin STATIC TRIGGER OF AN ELECTRIC CIRCUIT BREAKER WITH CONTACT WEAR INDICATOR
DE3714802A1 (en) * 1987-05-04 1988-11-17 Siemens Ag Electrical switch
US5270900A (en) * 1989-06-01 1993-12-14 Allied-Signal Inc. Solenoid response detector
DE4028721C2 (en) * 1990-09-10 1995-05-11 Siemens Ag Method and arrangement for determining the remaining service life of switching devices
US5204633A (en) * 1992-02-25 1993-04-20 International Business Machines Corporation Electromagnetic contactor with closure fault indicator
DE4309177A1 (en) * 1993-03-22 1994-09-29 Siemens Ag Switchgear, especially contactor or circuit breakers
US5629869A (en) * 1994-04-11 1997-05-13 Abb Power T&D Company Intelligent circuit breaker providing synchronous switching and condition monitoring
DE4417694A1 (en) * 1994-05-20 1995-11-23 Licentia Gmbh Measuring switching time of switching device contg. electromagnetic trigger
DE4427006A1 (en) * 1994-07-29 1996-02-01 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
DE4433209C2 (en) * 1994-09-17 2000-02-03 Mtu Friedrichshafen Gmbh Device for the detection of the armature impact time when a solenoid valve is de-energized
DE19603310A1 (en) 1996-01-31 1997-08-07 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
US5668693A (en) * 1996-06-25 1997-09-16 Eaton Corporation Method of monitoring a contactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9728549A1 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834120A1 (en) * 2001-12-21 2003-06-27 Schneider Electric Ind Sa Power switch pole contact wear determination having electromagnet field coil activated with coil electrical signal measured finding power pole conductor status comparing wear time with initial travel time.
WO2003054895A1 (en) * 2001-12-21 2003-07-03 Schneider Electric Industries Sas Method for determining wear of a switchgear contacts
EP2254136A1 (en) 2009-05-18 2010-11-24 Schneider Electric Industries SAS Apparatus for the assessment of the integrity of pressed contacts by the variation in the rotation of the pole shaft and its manufacturing process
US8264232B2 (en) 2009-05-18 2012-09-11 Schneider Electric Industries Sas Evaluation of the integrity of depressed contacts by variation of the rotation of the pole-shaft
EP2320443A2 (en) 2009-11-05 2011-05-11 Schneider Electric Industries SAS Device for identifying wear in the contacts of electric switching devices
DE102017003755B4 (en) 2017-03-10 2019-01-03 Plättner Elektronik GmbH Circuit for internal and external functional testing of an electrical relay and / or contactor
DE202017002030U1 (en) 2017-03-13 2017-06-29 Plättner Elektronik GmbH Circuit for internal and external functional testing of an electrical relay and / or contactor

Also Published As

Publication number Publication date
DE19603319A1 (en) 1997-08-07
CN1207200A (en) 1999-02-03
EP0878015B1 (en) 1999-10-20
WO1997028549A1 (en) 1997-08-07
DE59700585D1 (en) 1999-11-25
CN1065352C (en) 2001-05-02
US6225807B1 (en) 2001-05-01

Similar Documents

Publication Publication Date Title
EP0878015B1 (en) Method of establishing the residual useful life of contacts in switchgear and associated arrangement
DE19734224C1 (en) Method and device for determining switchgear-specific data on contacts in switchgear and / or for determining company-specific data in the network connected with it
DE602004003403T2 (en) Method and device for controlling the modular asynchronous contactors
DE19603310A1 (en) Method for determining the remaining service life of contacts in switchgear and associated arrangement
EP0694937B1 (en) Method and apparatus for determining the residual life of contacts in switching devices
WO2006069962A1 (en) Method and device for the secure operation of a switching device
EP1089308B1 (en) Device for switching-on and switching-off of a power circuit
EP1234316A1 (en) Electromagnetic switchgear comprising a controlled drive, a corresponding method and a circuit
DE19702116C2 (en) Protection against incorrect polarity in the electrical system of a vehicle
WO1997000525A1 (en) Circuit arrangement for operating an electromagnet
DE3633787A1 (en) Residual current interruption circuit
WO2002033716A1 (en) Method and device for reducing the contact erosion of a switchgear
EP0140093B1 (en) Contactor with a control stage and excess current releaser
DE102017217040B4 (en) Residual current circuit breaker
DE102011077363A1 (en) Electrical device for e.g. hybrid car, has evaluation unit for evaluating evaluation signal in predetermined evaluation time space, and contactor including response time and bounce time when switching on and fall time when switching off
DE4313532B4 (en) Method for checking an output stage
DE19733268C2 (en) Method and device for detecting overcurrents in a switchgear
DE19707729C2 (en) Electromechanical switching device
EP0785610A2 (en) Monitoring apparatus with self-diagnosis
EP0638812A2 (en) Device for monitoring electrical faults in a tripping device of an electrical installation
EP1051786B1 (en) Protective circuit breaking circuitry
EP1053555A1 (en) Method and device for operating a circuit breaker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981211

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 59700585

Country of ref document: DE

Date of ref document: 19991125

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110120

Year of fee payment: 15

Ref country code: DE

Payment date: 20110321

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59700585

Country of ref document: DE

Effective date: 20120801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131