EP0694937B1 - Method and apparatus for determining the residual life of contacts in switching devices - Google Patents

Method and apparatus for determining the residual life of contacts in switching devices Download PDF

Info

Publication number
EP0694937B1
EP0694937B1 EP95111202A EP95111202A EP0694937B1 EP 0694937 B1 EP0694937 B1 EP 0694937B1 EP 95111202 A EP95111202 A EP 95111202A EP 95111202 A EP95111202 A EP 95111202A EP 0694937 B1 EP0694937 B1 EP 0694937B1
Authority
EP
European Patent Office
Prior art keywords
contact
contacts
armature
rld
residual life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95111202A
Other languages
German (de)
French (fr)
Other versions
EP0694937A3 (en
EP0694937A2 (en
Inventor
Fritz Pohl
Norbert Elsner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0694937A2 publication Critical patent/EP0694937A2/en
Publication of EP0694937A3 publication Critical patent/EP0694937A3/en
Application granted granted Critical
Publication of EP0694937B1 publication Critical patent/EP0694937B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/001Means for preventing or breaking contact-welding

Definitions

  • the invention relates to a method for determination the remaining life of contacts in switchgear, in particular of contactor contacts, in which the contact pieces with the Switch subject to a burn, being a replacement criterion is recorded and evaluated for the erosion.
  • a switching device is known in which by the contact erosion caused change in length of the switching stroke is detected.
  • a reliable display of the contact erosion achieve, however, is a relatively complex mechanical Construction required.
  • an electrical switch known in which at least an optical fiber is assigned to one of the contact pieces, whose external transmission properties by means of suitable optical auxiliary devices can be measured. Appropriate arrangement of the light guide leads to an impermissible advanced contact erosion to destroy the Optical fiber and thus to change the optical transmission properties.
  • the object of the invention is a simplified one Specify methods and an associated arrangement with which a reliable determination of the remaining service life can be determined.
  • the object is achieved in that the so-called contact pressure of the switching bridge is selected as a replacement criterion in a method of the type mentioned above and that the pressure change during the switching-off process is determined and the remaining service life is calculated to determine the erosion of the contact pieces.
  • the change in through-pressure is determined from the time measurement of the armature path from the beginning of the armature opening movement to the beginning of the contact opening.
  • Rld [%] 100 * [((t i -t 0 ) / (t i, new -t 0 )) 2nd -c] / (1-c), where t 0 is the time of the armature movement and t i is the time of the opening of the main contacts and c is a constructively determined constant.
  • the method according to the invention is advantageous exploited that the change in contact pressure in principle on measuring time differences from turning off the Magnet system, i.e. exactly from the beginning of the anchor opening until based on opening the bridge contacts, which is simple can be done.
  • the measured variables that arise can therefore be used, also the switching status of the contactor clearly display.
  • the switch-on state can be checked in detail the contact of the pole faces of the armature and yoke is clear mark.
  • This touch can be an electrical contact be measured between anchor and yoke, including anchor and yoke connected to an auxiliary circuit via spring contacts are.
  • the contactor is in the regular switch-off state the anchor in its open position and the electrical contact between the pole faces of anchor and Yoke is interrupted.
  • Figures 1 and 2 each show parts of a contactor with the associated measuring device.
  • 1 shows the magnetic drive and
  • FIG. 2 shows the contact arrangement of the associated contactor.
  • 1 means a switching bridge with two contact pieces 2 arranged thereon at the ends and 3 U-shaped cranked contact carriers with mating contacts 4 arranged thereon for the contacts 2 of the switching bridge 1.
  • the associated drive essentially consists of a magnetic yoke 10 with coils 11 attached to it and one Associated magnet armature 12.
  • the magnet armature is connected to a receiving device, the bridge support, for receiving the switching bridges, which is not shown in FIG. 1 or FIG. 2.
  • the times t 0 and t i can be determined using associated electrical switching elements.
  • the magnet armature 12 and the magnet yoke 11 are connected to the direct voltage U 0 of an auxiliary circuit via resilient contacts 15 and a measuring resistor 21 with resistor R meas .
  • the magnetic yoke 11 can also be connected to the auxiliary circuit via a flexible or rigid electrical line instead of via a resilient contact 15. If the armature 12 touches the yoke 10, the auxiliary circuit is closed and the voltage U 0 drops across the measuring resistor 21. When the armature 12 is lifted from the yoke 10, the current path through the pole faces is interrupted and the voltage across the measuring resistor changes from U 0 to zero. The voltage edge U 0 ⁇ 0 is further processed in an evaluation device as time t 0 .
  • the determination of the contact opening times t i can be derived from FIG. It is assumed that the main contacts 2 and 4 of the contactor open under current load and arcing arises.
  • the switching voltage which arises when a main contact is opened that is to say the arc voltage of short arcs, is rectified in a rectifier circuit 22 and fed to the control input of an optocoupler 28 via a limiting circuit comprising resistors 23 and 24 and capacitor 25 and associated zener diode 26.
  • the switching output of the optocoupler 28 switches on an auxiliary circuit which consists of a measuring resistor 29 and a direct voltage source U 0 .
  • the contactor is switched off when there is no current, for example when switching three-phase asynchronous motors without interruption or when starting three-phase asynchronous motors automatically via three-pole resistors with time relays, instead of an arrangement according to FIG. 2, an arrangement corresponding to FIG use.
  • the contact opening times when the main contacts to be monitored are opened without current can be determined by the inductance measurement, for example if the mains voltage is interrupted or if there are parallel current paths to the main contacts.
  • Figure 3 has a motor as a load, which is electrically connected in series to a parallel connection of a main contact S1 of a contactor 31 with a main contact S2 of a contactor 32, the switching paths connected in parallel capacitively to capacitors 33 and 34 with capacitance C o Auxiliary circuit with generator 35 and resistor 36 are connected. Parallel connections of this type are used in particular for a transition contactor.
  • a damped resonant circuit is therefore connected to the main contact to be monitored, which is fed via the higher-frequency generator 35 at a frequency of, for example, 1 to 10 MHz.
  • the generator frequency, the capacitance and the inductance of the resonant circuit are set approximately to resonance.
  • the measuring voltage across the resistor decreases approximately when the main contact S 1 opens and the main contact S 2 closes 1/2 to 1/3 of the initial value. Without the parallel current path, ie with the main contact S 2 open, the measuring voltage at the measuring resistor R would drop to zero when the main contact S 1 was opened .
  • the determined times t 0 and t i are used to determine the remaining service life.
  • the following considerations can be made to derive a suitable relationship:
  • the contact forces of the switching bridges add up with the spring force of the armature springs to the total opening force F A of the magnet armature 10.
  • this force F A delivers a practically constant armature acceleration until the opening process of the bridge contacts begins.
  • the switching load of the contactor main contacts 2 or 4 is different, for example in a 3-phase network, the main contacts 2, 4 of each phase burn to different extents and the contact opening in the three phases takes place in chronological order, starting with the most burned-out contacts.
  • the time average of the armature acceleration for the later opening, ie less burned main contacts, is therefore somewhat less than for the main contact opening first.
  • the constant c is given by design.
  • the equation means that the time difference t i, new -t 0 must be determined for each main contact when new, after which only the time differences t i -t 0 have to be determined during operation, which has been illustrated with reference to FIGS. 1 to 3. The latter can advantageously be carried out digitally, which is illustrated in FIGS. 4 and 5.
  • 40 means a controller to which the time signals t 0 and t i , ie their voltage edges from FIGS. 1 and 2, are supplied.
  • the controller determines the number of operations N and, for example, the accumulated operating time T with an internal clock.
  • the controller 40 can determine the number of operations N 0 accumulated over several electrical life cycles.
  • the controller 40 contains the geometry variable c as a constant input variable.
  • the controller 40 determines the time difference t i -t 0 from the time signals t 0 , t i , wherein the reference variable t i, new -t 0 characterizing the new state can be defined as the mean value of the time difference t i -t 0 of a given number of switching cycles . For example, the average of the first ten switching cycles of a service life cycle can be used.
  • the current measurement data and evaluation variables are stored in non-volatile data memory 41 and are thus saved.
  • the formulas (2) and (3) can be evaluated as soon as the a residual life determined according to formula (1) (Rld) ⁇ 100% has assumed.
  • controller 40 Remaining life data on one attached to the switchgear itself Display element to be displayed optically. Besides the digitized evaluation sizes can be obtained from the controller 40 via a data bus to a central, not shown Monitoring unit are transmitted.
  • the measuring and evaluation device for determining the remaining service life of contacts in switchgear and monitoring allow on contact welding, under certain circumstances if additional means are used, extended switchgear monitoring regarding serious malfunctions, such as breakage of contact carriers and / or spring clips, unsoldering of contact pieces, impermissible contact resistances, excessive Contact temperature and the like.
  • the switching bridge would only give uncontrolled electrical contact when the contactor drive was switched on, so that a serious change in the time sequence of the measured variables t o (start of armature movement) and t i (start of contact opening) can be expected.
  • the electrical power loss by multiplying the measured Contact voltage with e.g. with a current transformer, measured switch current, power limits are given, to those when their amount and duration are exceeded an error message is issued.
  • a switching device diagnosis e.g. via a display element on the switching device or via data bus a central evaluation device at any time and without gaps perform.
  • the described method thus enables a clear one Statement about the welded condition or the burn-up of the Main contacts and a necessary exchange of the contact pieces.

Landscapes

  • Keying Circuit Devices (AREA)
  • Manufacture Of Switches (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten, insbesondere von Schützkontakten, bei denen die Kontaktstücke mit dem Schalten einem Abbrand unterliegen, wobei ein Ersatzkriterium für den Abbrand erfaßt und ausgewertet wird.The invention relates to a method for determination the remaining life of contacts in switchgear, in particular of contactor contacts, in which the contact pieces with the Switch subject to a burn, being a replacement criterion is recorded and evaluated for the erosion.

In Schaltgeräten tritt bei jedem Schalten ein Abbrand an den Kontaktstücken auf. Dieser Abbrand führt je nach Beanspruchung durch den Strom bzw. die Spannung letztlich zum Versagen des Schaltgerätes, so daß dadurch dessen Lebensdauer begrenzt wird. Unter bestimmten Betriebsbedingungen werden derzeit nach einer routinemäßig bestimmten Schaltzahl die Kontaktstücke oder auch das gesamte Schaltgerät ausgetauscht, unabhängig davon, ob an den Kontaktstücken tatsächlich ein weitgehender Abbrand aufgetreten ist oder nicht.In switchgear, there is a burn-up with every switching Contacts. This erosion leads depending on the stress through the current or the voltage ultimately to failure of the switching device, so that its lifespan is limited. Under certain operating conditions currently after a routinely determined number of operations Contacts or the entire switching device replaced, regardless of whether the contact pieces actually a extensive burning has occurred or not.

Häufig wird gefordert, das Funktionieren der vorhandenen elektrischen Schaltgeräte unmittelbar zu überwachen, um einen sicheren Betrieb elektrischer Verteilungen und/oder Einrichtungen zu gewährleisten. Dies gilt insbesondere für häufig betätigte Schaltgeräte wie den Schützen, da speziell dort im Schaltbetrieb ein fortschreitender Verschleiß der Schaltkontakte vorliegt. Hier ist es bekannt, daß nach einer bestimmten Anzahl von Schaltspielen, die - wie oben erwähnt - abhängig von der elektrischen Belastung ist, das Lebensdauerende der Kontaktstücke unterstellt wird.It is often required that the existing ones work to directly monitor electrical switching devices to a safe operation of electrical distributions and / or facilities to ensure. This is especially true for frequent actuated switching devices such as the contactors, because there especially in the Switching operation a progressive wear of the switch contacts is present. Here it is known that after a certain Number of switching cycles, which - as mentioned above - depend of the electrical load is the end of life the contact pieces is assumed.

Für eine automatisierte Überwachung der elektrischen Einrichtungen wäre es allerdings wünschenswert, die Restlebensdauer der Kontakte, insbesondere von Kontaktstücken für Schütze, auch während des Betriebes des Schützes unmittelbar zu erfassen und die Meßdaten einer Überwachungs- und Meldeeinrichtung zuzuführen.For automated monitoring of electrical equipment it would be desirable, however, the remaining life the contacts, in particular contact pieces for contactors, also to be recorded directly during the operation of the contactor and the measurement data of a monitoring and reporting device feed.

Vom Stand der Technik sind bereits Vorschläge bekannt, bei denen mehr oder weniger die Restlebensdauer von Schützen aus der Betriebsdauer und/oder aus der Zahl der Schaltspiele abgeleitet wird. Dabei ist die elektrische Lebensdauer durch Erfahrungswerte definiert und vom Gerätetyp, der elektrischen Belastung und z.B. vom Kontaktwerkstoff abhängig. Bei Änderung einer oder mehreren Einflußgrößen muß daher ein neuer Erfahrungswert für die elektrische Lebensdauer des Schaltgerätes bestimmt werden.Proposals are already known from the prior art at which more or less determine the remaining lifespan of shooters the operating time and / or derived from the number of switching cycles becomes. The electrical life is through Empirical values defined and by the device type, the electrical Load and e.g. depending on the contact material. In the event of a change One or more influencing variables must therefore be replaced by a new one Experience based on the electrical life of the switchgear be determined.

Im allgemeinen werden für die Bestimmung der Restlebensdauer von Kontaktstücken Ersatzkriterien für den Abbrand ausgewählt und ausgewertet. Beispielsweise ist aus der DE-AS 23 05 149 ein Schaltgerät bekannt, bei dem die durch den Kontaktabbrand verursachte Längenänderung des Schalthubes erfaßt wird. Um auf diesem Wege eine sichere Anzeige des Kontaktabbrandes zu erreichen, ist jedoch eine relativ aufwendige mechanische Konstruktion erforderlich. Weiterhin ist aus der DE-OS 37 14 802 ein elektrischer Schalter bekannt, bei dem wenigstens einem der Kontaktstücke ein Lichtleiter zugeordnet ist, dessen Transmissionseigenschaften von außen mittels geeigneter optischer Hilfseinrichtungen gemessen werden können. Durch entsprechende Anordnung des Lichtleiters führt ein unzulässig fortgeschrittener Kontaktabbrand zur Zerstörung des Lichtleiters und damit zur Änderung der optischen Transmissionseigenschaften. Schließlich wurde mit der älteren deutschen Patentanmeldung P 43 07 177.6 ein Schaltgerät vorgeschlagen, bei dem der Kontaktträger geteilt ist und die Kontaktstücke rückseitig geschlitzt auf dem geteilten Kontaktträger aufgebracht sind. Bei diesem Schaltgerät wird das Schwingungsverhalten des Kontaktträgers als Ersatzkriterium und damit als Maß für den Abbrand der Kontaktstücke verwendet. Generally used for determining the remaining life Replacement criteria selected for the erosion of contact pieces and evaluated. For example, DE-AS 23 05 149 a switching device is known in which by the contact erosion caused change in length of the switching stroke is detected. Around In this way, a reliable display of the contact erosion achieve, however, is a relatively complex mechanical Construction required. Furthermore, from DE-OS 37 14 802 an electrical switch known in which at least an optical fiber is assigned to one of the contact pieces, whose external transmission properties by means of suitable optical auxiliary devices can be measured. Appropriate arrangement of the light guide leads to an impermissible advanced contact erosion to destroy the Optical fiber and thus to change the optical transmission properties. Eventually, the older German Patent application P 43 07 177.6 proposed a switching device, in which the contact carrier is divided and the contact pieces slit on the back on the divided contact carrier are upset. With this switchgear it will Vibration behavior of the contact carrier as a replacement criterion and thus used as a measure of the erosion of the contact pieces.

Aufgabe der Erfindung ist es demgegenüber, ein vereinfachtes Verfahren und eine zugehörige Anordnung anzugeben, mit denen eine sichere Bestimmung der Restlebensdauer ermittelbar ist.In contrast, the object of the invention is a simplified one Specify methods and an associated arrangement with which a reliable determination of the remaining service life can be determined.

Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß bei einem Verfahren der eingangs genannten Art als Ersatzkriterium der sogenannte Kontaktdurchdruck der Schaltbrücke gewählt wird und daß zur Bestimmung jeweils des Abbrandes der Kontaktstücke die Durchdruckänderung während des Ausschaltvorganges bestimmt und als Restlebensdauer umgerechnet wird. Die Ermittlung der Durchdruckänderung erfolgt hierbei aus der Zeitmessung des Ankerweges vom Beginn der Ankeröffnungsbewegung bis zum Beginn der Kontaktöffnung. Dabei erfolgt die Umrechnung entsprechend der Beziehung (1)   Rld[%]= 100* [((ti-t0)/(ti,neu-t0))2-c]/(1-c), wobei t0 die Zeit der Ankerbewegung und ti die Zeit des Öffnungsbeginns der Hauptkontakte sowie c eine konstruktiv bestimmte Konstante bedeuten.The object is achieved in that the so-called contact pressure of the switching bridge is selected as a replacement criterion in a method of the type mentioned above and that the pressure change during the switching-off process is determined and the remaining service life is calculated to determine the erosion of the contact pieces. The change in through-pressure is determined from the time measurement of the armature path from the beginning of the armature opening movement to the beginning of the contact opening. The conversion is done according to the relationship (1) Rld [%] = 100 * [((t i -t 0 ) / (t i, new -t 0 )) 2nd -c] / (1-c), where t 0 is the time of the armature movement and t i is the time of the opening of the main contacts and c is a constructively determined constant.

Im Rahmen der Erfindung kann die Bestimmung der Restlebensdauer gemäß der angegebenen Gleichung softwaremäßig erfolgen. In gleicher Weise können aus entsprechend abgeleiteten Gleichungen die Restbetriebsdauer und/oder die Restschaltzahl des Schaltgerätes berechnet werden. Dafür ist vorteilhafterweise eine Anordnung durch eine Prozessoreinheit mit Speichern und einem Controller und einem zugehörigen Display gekennzeichnet. Gegebenenfalls können am Schaltgerät selbst entsprechende Anzeigemittel vorhanden sein.In the context of the invention, the determination of the remaining service life done in software according to the given equation. In the same way can be derived from equations derived accordingly the remaining operating time and / or the remaining number of operations Switchgear can be calculated. This is advantageous an arrangement by a processor unit with memory and a controller and an associated display. If necessary, corresponding ones can be found on the switching device itself Display means are available.

Beim erfindungsgemäßen Verfahren wird in vorteilhafter Weise ausgenutzt, daß die Änderung des Kontaktdurchdruckes im Prinzip auf der Messung von Zeitdifferenzen vom Ausschalten des Magnetsystems, d.h. genau vom Beginn der Ankeröffnung, bis zum Öffnen der Brückenkontakte beruht, was in einfacher Weise erfolgen kann. Die dabei anfallenden Meßgrößen können also genutzt werden, auch den Schaltzustand des Schützes eindeutig anzuzeigen. Im einzelnen läßt sich der Einschaltzustand durch die Berührung der Polflächen von Anker und Joch eindeutig kennzeichnen. Diese Berührung kann als elektrischer Kontakt zwischen Anker und Joch gemessen werden, wozu Anker und Joch über federnde Kontakte an einem Hilfsstromkreis angeschlossen sind. Im regulären Ausschaltzustand des Schützes befindet sich dagegen der Anker in seiner Öffnungsstellung und der elektrische Kontakt zwischen den Polflächen von Anker und Joch ist unterbrochen. Auch im Falle von Kontaktverschweißungen, wobei Brückenkontakte einseitig oder zweiseitig verschweißt sein können, entfernt sich im Ausschaltzustand des Schützes der Anker wenigstens um einen Bruchteil des Kontaktdurchdruckes vom Joch. Der elektrische Kontakt zwischen den Polflächen von Anker und Joch ist auch hierbei unterbrochen.The method according to the invention is advantageous exploited that the change in contact pressure in principle on measuring time differences from turning off the Magnet system, i.e. exactly from the beginning of the anchor opening until based on opening the bridge contacts, which is simple can be done. The measured variables that arise can therefore be used, also the switching status of the contactor clearly display. The switch-on state can be checked in detail the contact of the pole faces of the armature and yoke is clear mark. This touch can be an electrical contact be measured between anchor and yoke, including anchor and yoke connected to an auxiliary circuit via spring contacts are. The contactor is in the regular switch-off state the anchor in its open position and the electrical contact between the pole faces of anchor and Yoke is interrupted. Even in the case of contact welding, where bridge contacts one-sided or two-sided can be welded away in the off state the contactor of the anchor by at least a fraction of the Contact pressure from the yoke. The electrical contact between the pole faces of anchor and yoke is also here interrupted.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen. Es zeigen

Figur 1
die wesentliche Anordnung eines Antriebes für ein Schütz und die daraus abgeleitete Messung des Ankerbewegungsbeginns,
Figur 2
die Kontaktanordnung des Schützes und die daraus abgeleitete Messung des Kontaktöffnungsbeginns,
Figur 3
ein alternatives Prinzip der Bestimmung der Kontaktöffnungszeitpunkte bei stromlosem Öffnen der Hauptkontakte,
Figur 4
eine blockschaltbildmäßig dargestellte Anordnung zur softwaremäßigen Bestimmung und Anzeige der Restlebensdauer eines Schützes und
Figur 5
ein zugehöriges Ablaufdiagramm.
Further details and advantages of the invention result from the following description of exemplary embodiments. Show it
Figure 1
the essential arrangement of a drive for a contactor and the derived measurement of the armature start of movement,
Figure 2
the contact arrangement of the contactor and the measurement of the opening of the contact derived from it,
Figure 3
an alternative principle of determining the contact opening times when the main contacts open without current,
Figure 4
a block diagram arrangement shown for software determination and display of the remaining life of a contactor and
Figure 5
an associated flow chart.

In den Figuren 1 und 2 sind jeweils Teile eines Schützes mit der zugehörigen Meßeinrichtung dargestellt. Im einzelnen zeigt Figur 1 den Magnetantrieb und Figur 2 die Kontaktanordnung des zugehörigen Schützes. Dabei bedeuten 1 eine Schaltbrücke mit zwei darauf endseitig angeordneten Kontaktstücken 2 sowie 3 jeweils U-förmig abgekröpfte Kontaktträger mit darauf angeordneten Gegenkontakten 4 für die Kontakte 2 der Schaltbrücke 1. Der zugehörige Antrieb besteht im wesentlichen aus einem Magnetjoch 10 mit darauf aufgesteckten Spulen 11 und einem zugehörigen Magnetanker 12. Der Magnetanker ist mit einer Aufnahmevorrichtung, dem Brückenträger, zur Aufnahme der Schaltbrücken, was in Figur 1 bzw. Figur 2 nicht dargestellt ist, verbunden. Weiterhin sind federnd angeordnete Kontakte 15 vorhanden. Mit zugehörigen elektrischen Schaltelementen lassen sich die Zeiten t0 und ti bestimmen.Figures 1 and 2 each show parts of a contactor with the associated measuring device. 1 shows the magnetic drive and FIG. 2 shows the contact arrangement of the associated contactor. 1 means a switching bridge with two contact pieces 2 arranged thereon at the ends and 3 U-shaped cranked contact carriers with mating contacts 4 arranged thereon for the contacts 2 of the switching bridge 1. The associated drive essentially consists of a magnetic yoke 10 with coils 11 attached to it and one Associated magnet armature 12. The magnet armature is connected to a receiving device, the bridge support, for receiving the switching bridges, which is not shown in FIG. 1 or FIG. 2. Furthermore there are resiliently arranged contacts 15. The times t 0 and t i can be determined using associated electrical switching elements.

In Figur 1 sind der Magnetanker 12 und das Magnetjoch 11 über federnde Kontakte 15 und über einen Meßwiderstand 21 mit Widerstand Rmeß an die Gleichspannung U0 eines Hilfsstromkreises angeschlossen. Alternativ kann das Magnetjoch 11 statt über einen federnden Kontakt 15 auch über eine flexible oder starre elektrische Leitung an den Hilfsstromkreis angeschlossen sein. Berührt der Anker 12 das Joch 10, so ist der Hilfsstromkreis geschlossen und am Meßwiderstand 21 fällt die Spannung U0 ab. Beim Abheben des Ankers 12 vom Joch 10 wird der Strompfad über die Polflächen unterbrochen und die Spannung am Meßwiderstand wechselt von U0 nach Null. Die Spannungsflanke U0 → 0 wird in einer Auswerteeinrichtung als Zeitpunkt t0 weiterverarbeitet.In FIG. 1, the magnet armature 12 and the magnet yoke 11 are connected to the direct voltage U 0 of an auxiliary circuit via resilient contacts 15 and a measuring resistor 21 with resistor R meas . Alternatively, the magnetic yoke 11 can also be connected to the auxiliary circuit via a flexible or rigid electrical line instead of via a resilient contact 15. If the armature 12 touches the yoke 10, the auxiliary circuit is closed and the voltage U 0 drops across the measuring resistor 21. When the armature 12 is lifted from the yoke 10, the current path through the pole faces is interrupted and the voltage across the measuring resistor changes from U 0 to zero. The voltage edge U 0 → 0 is further processed in an evaluation device as time t 0 .

Aus Figur 2 läßt sich die Bestimmung der Kontaktöffnungszeitpunkte ti ableiten. Dabei wird vorausgesetzt, daß die Hauptkontakte 2 bzw. 4 des Schützes unter Strombelastung öffnen und Schaltlichtbögen entstehen. Zur Messung der Kontaktöffnungszeitpunkte wird die beim Öffnen eines Hauptkontaktes entstehende Schaltspannung, d.h. die Bogenspannung kurzer Lichtbögen, in einer Gleichrichterschaltung 22 gleichgerichtet und über eine Begrenzungsschaltung aus Widerständen 23 und 24 und Kondensator 25 und zugehöriger Zenerdiode 26 dem Steuereingang eines Optokopplers 28 zugeführt. Der Schaltausgang des Optokopplers 28 schaltet einen Hilfsstromkreis, der aus einem Meßwiderstand 29 und einer Gleichspannungsquelle U0 besteht, ein. Die Spannung am Meßwiderstand wechselt dabei von Null nach U0 und die Spannungsflanke 0 → U0 wird in einer Auswerteeinrichtung als Zeitpunkt ti (i = 1, 2, 3) weiterverarbeitet.The determination of the contact opening times t i can be derived from FIG. It is assumed that the main contacts 2 and 4 of the contactor open under current load and arcing arises. To measure the contact opening times, the switching voltage which arises when a main contact is opened, that is to say the arc voltage of short arcs, is rectified in a rectifier circuit 22 and fed to the control input of an optocoupler 28 via a limiting circuit comprising resistors 23 and 24 and capacitor 25 and associated zener diode 26. The switching output of the optocoupler 28 switches on an auxiliary circuit which consists of a measuring resistor 29 and a direct voltage source U 0 . The voltage across the measuring resistor changes from zero to U 0 and the voltage edge 0 → U 0 is further processed in an evaluation device as time t i (i = 1, 2, 3).

Bei der Voraussetzung, daß das Ausschalten des Schützes stromlos erfolgt, beispielsweise beim unterbrechungslosen Umschalten von Drehstrom-Asynchronmotoren oder beim selbsttätigen Anlassen von Drehstrom-Asynchronmotoren über dreipolige Widerstände mit Zeitrelais, ist statt einer Anordnung gemäß Figur 2 eine Anordnung entsprechend Figur 3 mit einer Induktivitätsbestimmung zu verwenden. Hier können die Kontaktöffnungszeitpunkte beim stromlosen Öffnen der zu überwachenden Hauptkontakte durch die Induktivitätsmessung bestimmt werden, beispielsweise wenn die Netzspannung unterbrochen ist oder wenn zu den Hauptkontakten Parallelstrompfade bestehen. Dazu weist Figur 3 einen Motor als Last auf, welcher elektrisch in Reihe geschaltet ist zu einer Parallelschaltung eines Hauptkontaktes S1 eines Schützes 31 mit einem Hauptkontakt S2 eines Schützes 32, wobei die parallel geschalteten Schaltstrecken über Kondensatoren 33 und 34 mit Kapazität Co kapazitiv an einen Hilfsstromkreis mit Generator 35 und Widerstand 36 angeschlossen sind. Parallelschaltungen dieser Art werden insbesondere für ein Transitionsschütz verwendet.Provided that the contactor is switched off when there is no current, for example when switching three-phase asynchronous motors without interruption or when starting three-phase asynchronous motors automatically via three-pole resistors with time relays, instead of an arrangement according to FIG. 2, an arrangement corresponding to FIG use. Here, the contact opening times when the main contacts to be monitored are opened without current can be determined by the inductance measurement, for example if the mains voltage is interrupted or if there are parallel current paths to the main contacts. For this purpose, Figure 3 has a motor as a load, which is electrically connected in series to a parallel connection of a main contact S1 of a contactor 31 with a main contact S2 of a contactor 32, the switching paths connected in parallel capacitively to capacitors 33 and 34 with capacitance C o Auxiliary circuit with generator 35 and resistor 36 are connected. Parallel connections of this type are used in particular for a transition contactor.

Gemäß Figur 3 wird also an dem zu überwachenden Hauptkontakt ein gedämpfter Schwingkreis angeschlossen, der über den höherfrequenten Generator 35 mit einer Frequenz von beispielsweise 1 bis 10 MHz gespeist wird. Bei geschlossenem Hauptkontakt S1 sind die Generatorfrequenz, die Kapazität und die Induktivität des Schwingkreises annähernd auf Resonanz eingestellt. Beispielsweise erhält man für der Realität angepaßte Geometrieverhältnisse der Parallelstromkreise für den überwachten Strompfad eine Induktivität von L1 = 0,3 µH, für den überwachten Parallelstrompfad L2 = 0,8 µH und für die resultierende Induktivität beider geschlossenen Strompfade Lres = 0,2 µH. Mit Werten für die Kondensatoren 33 und 34 und dem Meßwiderstand 36 von beispielsweise Co = 10 nF, R = 5 Ω und einer Generatorfrequenz von 5 mHz ergibt sich bei öffnendem Hauptkontakt S1 und geschlossenem Hauptkontakt S2 eine Abnahme der Meßspannung am Widerstand auf etwa 1/2 bis 1/3 des Ausgangswertes. Ohne Parallelstrombahn, d.h. bei geöffnetem Hauptkontakt S2, würde die Meßspannung am Meßwiderstand R beim Öffnen des Hauptkontaktes S1 auf Null absinken.According to FIG. 3, a damped resonant circuit is therefore connected to the main contact to be monitored, which is fed via the higher-frequency generator 35 at a frequency of, for example, 1 to 10 MHz. When the main contact S 1 is closed, the generator frequency, the capacitance and the inductance of the resonant circuit are set approximately to resonance. For example, for the geometry relationships of the parallel circuits that are adapted to reality, an inductance of L 1 = 0.3 μH is obtained for the monitored current path, L 2 = 0.8 μH for the monitored parallel current path and L res = 0.2 for the resulting inductance of both closed current paths µH. With values for the capacitors 33 and 34 and the measuring resistor 36 of, for example, C o = 10 nF, R = 5 Ω and a generator frequency of 5 mHz, the measuring voltage across the resistor decreases approximately when the main contact S 1 opens and the main contact S 2 closes 1/2 to 1/3 of the initial value. Without the parallel current path, ie with the main contact S 2 open, the measuring voltage at the measuring resistor R would drop to zero when the main contact S 1 was opened .

Während die Methode der Induktivitätsmessung gemäß Figur 3 beim stromlosen Öffnen der Kontakte eindeutige Ergebnisse liefert, erfolgt beim Kontaktöffnen eines stromführenden Hauptkontaktes keine signifikante Induktivitätsänderung. Allerdings erzeugt die sprungartige Änderung der Kontaktspannung von Null auf beispielsweise 20 V beim Kontaktöffnen des stromführenden Hauptkontaktes am Meßwiderstand 36 der Figur 3 einen sehr kurzen Spannungsimpuls mit einer Impulsbreite kleiner einer Mikrosekunde, der zur Bestimmung des Kontaktöffnungszeitpunktes herangezogen werden könnte.While the method of inductance measurement according to FIG. 3 clear results when the contacts are opened without current supplies, takes place when a live contact is opened Main contact no significant change in inductance. However, the sudden change in contact voltage creates from zero to, for example, 20 V when the contact is opened current-carrying main contact on measuring resistor 36 of FIG. 3 a very short voltage pulse with a pulse width less than one microsecond, which is used to determine the contact opening time could be used.

Die ermittelten Zeitpunkte t0 und ti werden zur Bestimmung der Restlebensdauer herangezogen. Dazu lassen sich zur Ableitung einer geeigneten Beziehung folgende Überlegungen anstellen:The determined times t 0 and t i are used to determine the remaining service life. The following considerations can be made to derive a suitable relationship:

Im Einschaltzustand summieren sich die Kontaktkräfte der Schaltbrücken mit der Federkraft der Ankerfedern zur Gesamtöffnungskraft FA des Magnetankers 10. Während der Anfangsbewegung des Ankers 10 liefert diese Kraft FA eine praktisch konstante Ankerbeschleunigung, bis der Öffnungsvorgang der Brückenkontakte einsetzt. Bei ungleicher Schaltbelastung der Schützhauptkontakte 2 bzw. 4, beispielsweise in einem 3-phasigen Netz, brennen die Hauptkontakte 2, 4 jeder Phase unterschiedlich stark ab und das Kontaktöffnen in den drei Phasen erfolgt in zeitlicher Reihenfolge, beginnend mit den am stärksten abgebrannten Kontakten. Das zeitliche Mittel der Ankerbeschleunigung ist für die später öffnenden, d.h. geringer abgebrannten Hauptkontakte, daher etwas kleiner als für den zuerst öffnenden Hauptkontakt.In the switched-on state, the contact forces of the switching bridges add up with the spring force of the armature springs to the total opening force F A of the magnet armature 10. During the initial movement of the armature 10, this force F A delivers a practically constant armature acceleration until the opening process of the bridge contacts begins. If the switching load of the contactor main contacts 2 or 4 is different, for example in a 3-phase network, the main contacts 2, 4 of each phase burn to different extents and the contact opening in the three phases takes place in chronological order, starting with the most burned-out contacts. The time average of the armature acceleration for the later opening, ie less burned main contacts, is therefore somewhat less than for the main contact opening first.

Aus der Zeitmessung des Ankerbewegungsbeginns t0 und des Öffnungsbeginns der Hauptkontakte 2, 4 mit den Zeiten ti (Phasenindex i = 1, 2, 3) sowie der Ankerbeschleunigung b erhält man den sogenannten Durchdruck si = 1/2 b(ti-t0)2. Bezogen auf den Durchdruck s im Neuzustand ergibt sich die einfache Relation si/si,neu = ((ti-t0)/(ti,neu -t0))2. Ist für einen sicheren Einschaltzustand ein Mindestdurchdruck smin vorgegeben, so läßt sich daraus mit einer Konstante c = smin/sneu die Restlebensdauer definieren (1)   Rld[%]= 100* [((ti-t0)/(ti,neu-t0))2-c]/(1-c). The so-called pressure s i = 1/2 b (t i -t.) Is obtained from the time measurement of the beginning of the armature movement t 0 and the beginning of the opening of the main contacts 2, 4 with the times ti (phase index i = 1, 2, 3) and the armature acceleration b 0 ) 2 . The simple relation s i / s i, new = ((t i -t 0 ) / (t i, new -t 0 )) 2 results from the printing s when new. Is a secure power-a minimum pressure s min is specified, the remaining lifetime can be from it by a constant C = S min / s redefine (1) Rld [%] = 100 * [((t i -t 0 ) / (t i, new -t 0 )) 2nd -c] / (1-c).

Bei der Gleichung (1) ist die Konstante c konstruktiv vorgegeben. Die Gleichung bedeutet, daß für jeden Hauptkontakt im Neuzustand die Zeitdifferenz ti,neu -t0 bestimmt werden muß, wonach während des Betriebes lediglich noch die Zeitdifferenzen ti-t0 bestimmt werden müssen, was anhand der Figuren 1 bis 3 verdeutlicht wurde. Letzteres läßt sich vorteilhafterweise digital ausführen, was in den Figuren 4 und 5 verdeutlicht wird. In Figur 4 bedeutet 40 ein Controller, dem die Zeitsignale t0 und ti, d.h. deren Spannungsflanken aus Figur 1 bzw. 2, zugeführt werden. Als weitere Größen bestimmt der Controller die Schaltzahl N und beispielsweise mit einer internen Uhr die aufgelaufene Betriebszeit T. Zur Überwachung des mechanischen Verschleißzustandes kann der Controller 40 die über mehrere elektrische Lebensdauerzyklen akkumulierte Schaltzahl N0 bestimmen. Als konstante Eingabegröße enthält der Controller 40 die Geometriegröße c. Aus den Zeitsignalen t0, ti bestimmt der Controller 40 die Zeitdifferenz ti-t0, wobei die den Neuzustand charakterisierende Bezugsgröße ti,neu-t0 als Mittelwert der Zeitdifferenz ti-t0 einer gegebenen Anzahl von Schaltspielen definiert sein kann. Beispielsweise kommt dafür der Mittelwert aus den ersten zehn Schaltspielen eines Lebensdauerzyklus in Frage. Um einen Datenverlust durch abgeschaltete Versorgungsspannung od. dgl. auszuschließen, werden die aktuellen Meßdaten und Auswertegrößen in nicht flüchtigen Datenspeicher 41 gespeichert und somit gesichert. Es sind weiterhin Ein- und Ausgabeeinheiten 42 bis 44 sowie ein Display zur Anzeige der Ergebnisse vorhanden.In the equation (1), the constant c is given by design. The equation means that the time difference t i, new -t 0 must be determined for each main contact when new, after which only the time differences t i -t 0 have to be determined during operation, which has been illustrated with reference to FIGS. 1 to 3. The latter can advantageously be carried out digitally, which is illustrated in FIGS. 4 and 5. In FIG. 4, 40 means a controller to which the time signals t 0 and t i , ie their voltage edges from FIGS. 1 and 2, are supplied. As further variables, the controller determines the number of operations N and, for example, the accumulated operating time T with an internal clock. To monitor the mechanical state of wear, the controller 40 can determine the number of operations N 0 accumulated over several electrical life cycles. The controller 40 contains the geometry variable c as a constant input variable. The controller 40 determines the time difference t i -t 0 from the time signals t 0 , t i , wherein the reference variable t i, new -t 0 characterizing the new state can be defined as the mean value of the time difference t i -t 0 of a given number of switching cycles . For example, the average of the first ten switching cycles of a service life cycle can be used. In order to rule out data loss due to the supply voltage or the like being switched off, the current measurement data and evaluation variables are stored in non-volatile data memory 41 and are thus saved. There are also input and output units 42 to 44 and a display for displaying the results.

Zur Bestimmung der Restlebensdauer kann nunmehr der Controller 40 die Formel 1 mittels eines Auswerteprogramms berechnen. In gleicher Weise können weitere, den Verschleißzustand des Schützes charakterisierende Größen berechnet werden, wie eine Restbetriebsdauer oder eine Restschaltzahl. Aus der aufgelaufenen Betriebsdauer T folgt dabei für die Restbetriebsdauer (2)   Rbd (days) = T (days) * RLD [%]/(100-RLD)[%]. To determine the remaining service life, controller 40 can now calculate Formula 1 using an evaluation program. In the same way, further quantities characterizing the state of wear of the contactor can be calculated, such as a remaining operating time or a remaining number of operations. From the accumulated operating time T follows for the remaining operating time (2) Rbd (days) = T (days) * RLD [%] / (100-RLD) [%].

In gleicher Weise kann die Restschaltzahl aus der aufgelaufenen Schaltzahl N bestimmt werden (3)   Rsz = N*Rld[%]/(100-Rld) [%] In the same way, the remaining number of operations can be determined from the number of operations N accumulated (3) Rsz = N * Rld [%] / (100-Rld) [%]

Die Formeln (2) und (3) können ausgewertet werden, sobald die nach Formel (1) ermittelte Restlebensdauer (Rld) einen Wert < 100 % angenommen hat. The formulas (2) and (3) can be evaluated as soon as the a residual life determined according to formula (1) (Rld) <100% has assumed.

Besonders günstig ist, wenn die vom Controller 40 bestimmten Daten der Restlebensdauer auf einem am Schaltgerät selbst angebrachten Anzeigeelement optisch angezeigt werden. Daneben können die digitalisierten Auswertegrößen vom Controller 40 über einen Datenbus an eine zentrale, nicht dargestellte Überwachungseinheit übertragen werden.It is particularly favorable if those determined by controller 40 Remaining life data on one attached to the switchgear itself Display element to be displayed optically. Besides the digitized evaluation sizes can be obtained from the controller 40 via a data bus to a central, not shown Monitoring unit are transmitted.

Anhand des Flußdiagramms gemäß Figur 5 ergibt sich der programmmäßige Ablauf der Berechnung. In das Flußdiagramm mit üblicher, selbsterklärender Entscheidungsstruktur sind die entsprechenden Stationen 100 bis 110 jeweils eingetragen. Entsprechend den Gleichungen (1) bis (3) läßt sich daraus eine Aussage ableiten, ob ein Kontakt erneuert werden muß oder nicht.Based on the flow chart according to FIG. 5, the program results Calculation process. In the flow chart with The usual, self-explanatory decision-making structure is that corresponding stations 100 to 110 each entered. According to equations (1) to (3), this can be used derive a statement as to whether a contact needs to be renewed or not.

Die Meß- und Auswerteeinrichtung zur Bestimmung der Restlebensdauer von Kontakten in Schaltgeräten und der Überwachung auf Kontaktverschweißungen erlauben, unter Umständen bei Einsatz zusätzlicher Mittel, eine erweiterte Schaltgeräteüberwachung hinsichtlich gravierender Funktionsstörungen, wie Bruch von Kontaktträgern und/oder Federbügeln, Ablötungen von Kontaktstücken, unzulässiger Kontaktwiderstände, überhöhter Kontakttemperatur und dergleichen.The measuring and evaluation device for determining the remaining service life of contacts in switchgear and monitoring allow on contact welding, under certain circumstances if additional means are used, extended switchgear monitoring regarding serious malfunctions, such as breakage of contact carriers and / or spring clips, unsoldering of contact pieces, impermissible contact resistances, excessive Contact temperature and the like.

Zum Beispiel würde beim Bruch des Federbügels die Schaltbrücke beim Einschalten des Schützantriebs nur noch unkontrollierten elektrischen Kontakt geben, so daß mit einer gravierenden Veränderung in der Zeitfolge der Meßgrößen to (Ankerbewegungsbeginn) und ti (Kontaktöffnungsbeginn) zu rechnen ist.For example, if the spring clip breaks, the switching bridge would only give uncontrolled electrical contact when the contactor drive was switched on, so that a serious change in the time sequence of the measured variables t o (start of armature movement) and t i (start of contact opening) can be expected.

Gleiches folgt bei einem Bruch des Brückenkontaktträgers oder des Festkontaktträgers.The same follows if the bridge contact carrier breaks or of the fixed contact carrier.

Andere Störungen betreffen die mangelhafte Kontaktgabe der Kontaktstücke unter dem Einfluß von Verschmutzung, von Materialniederschlägen und Korrosion. Dadurch wird der Kontaktwiderstand erhöht und der Kontaktspannungsabfall bzw. die Kontakttemperatur erreicht unzulässig hohe Werte.Other faults concern the poor contact with the Contact pieces under the influence of dirt, material precipitation and corrosion. This will make the contact resistance increased and the contact voltage drop or Contact temperature reaches impermissibly high values.

Zur Überprüfung der Kontaktübertemperatur können aus der elektrischen Verlustleistung, durch Multiplikation der gemessenen Kontaktspannung mit dem, z.B. mit einem Stromwandler, gemessenen Schalterstrom, Leistungsgrenzwerte angegeben werden, zu denen bei Überschreitung ihrer Höhe und Zeitdauer eine Störmeldung erfolgt.To check the contact overtemperature, the electrical power loss, by multiplying the measured Contact voltage with e.g. with a current transformer, measured switch current, power limits are given, to those when their amount and duration are exceeded an error message is issued.

Durch elektronische Speicherung der Betriebs- und Stördaten mittels des Controllers ist eine Schaltgerätediagnose, z.B. über ein Anzeigeelement am Schaltgerät, oder über Datenbus an einer zentralen Auswerteeinrichtung jederzeit und lückenlos durchzuführen.Through electronic storage of operating and fault data A switching device diagnosis, e.g. via a display element on the switching device or via data bus a central evaluation device at any time and without gaps perform.

Die anhand der Beispiele abgeleiteten Aussagen können auch erfolgen, wenn es zu Verschweißungen bzw. Teilverschweißungen der Kontakte kommt. Um festzustellen, ob Brückenkontakte beidseitig oder einseitig verschweißt sind und daher kein regulärer Ausschaltzustand erreicht wird, ist es möglich, die Ankeröffnung über einen zweiten, federnden Kontakt zu kontrollieren. In gleicher Weise wie in Figur 1 wird daher ein Hilfsstromkreis geschlossen, wenn beide federnde Kontakte den Anker 10 berühren. Durch einen Vorlaufweg der beiden federnden Kontakte von etwa der Hälfte der vollen Ankeröffnung läßt sich erfahrungsgemäß sicher unterscheiden, ob der reguläre Ausschaltzustand vorliegt, oder ob aufgrund von Kontaktverschweißungen nur ein kleiner Bruchteil der vollen Ankeröffnung erreicht wird.The statements derived from the examples can also take place if there are welds or partial welds of contacts is coming. To determine if bridge contacts are welded on both sides or on one side and therefore none regular off state is reached, it is possible to Check the armature opening via a second, springy contact. In the same way as in Figure 1, therefore Auxiliary circuit closed when both spring contacts the Touch anchor 10. Through a lead of the two resilient Leaves contacts from about half of the full anchor opening experience has shown that there are certain differences between the regular Switched off state, or whether due to contact welding only a small fraction of the full anchor opening is achieved.

Das beschriebene Verfahren ermöglicht also eine eindeutige Aussage über den Verschweißzustand bzw. den Abbrand der Hauptkontakte und einen notwendigen Austausch der Kontaktstücke.The described method thus enables a clear one Statement about the welded condition or the burn-up of the Main contacts and a necessary exchange of the contact pieces.

Claims (17)

  1. Method for determining the residual life of contacts (2, 4) in switching devices, in particular of earthing contacts, in which the contacts (2, 4) are, with the switching, subject to an erosion, wherein equivalent criteria for the erosion are evaluated, characterised in that there is chosen as an equivalent criterion the so-called contact spring action at the contact gap, and in that in order to determine the erosion of the contacts (2, 4), the change in spring action during the breaking operation is determined in each case and converted as residual life of the switching device.
  2. Method according to claim 1, characterised in that the change in spring action is established by a time measurement of the armature travel from the start of the armature movement to the start of the contact opening.
  3. Method according to one of the preceding claims, characterised in that the determining of the residual life takes place in accordance with equation (1)   Rld[%]= 100 * [((ti-t0)/(ti,neu-t0))2-c]/(1-c) where t0 is the time of the start of the armature movement and ti is the time of the start of opening of the main contacts and c is a structurally determined constant.
  4. Method according to claim 3, characterised in that from the residual life (Rld), the residual running time of the switching device is calculated in accordance with equation (2)   Rbd (days) = T (days) * Rld[%]/(100-Rld) [%].
  5. Method according to claim 3, characterised in that from the residual life (Rld), the residual number of operations of the switching device with respect to its number of operations N is calculated in accordance with equation (3)   Rsz = N*Rld[%]/(100-Rld) [%].
  6. Method according to one of claims 3 to 5, characterised in that in accordance with the given equations (1, 2, 3), the residual life (Rld), residual running time (Rbd) and/or residual number of operations (Rsz) are software-calculated.
  7. Method according to claim 2, characterised in that in order to determine the start of movement of the armature (12), the two states "pole faces of armature (12) and yoke (10) are touching" and "pole faces of armature (12) and yoke (10) are separated", the armature (12), by means of a spring-mounted first auxiliary contact (15), is connected to a first auxiliary circuit by way of one terminal, and the yoke is connected to said first auxiliary circuit by way of the other terminal.
  8. Method according to claim 7 characterised in that in order to check for contact welding, the armature (12), by means of a spring-mounted first and second auxiliary contact (15), is connected to a second auxiliary circuit if the armature air gap falls below a predetermined value.
  9. Method according to claim 8, characterised in that the pre-travel of the first and second auxiliary contact (15) is greater than the contact spring action in the new state, and in that the pre-travel preferably corresponds to half the complete armature opening.
  10. Method according to claim 2, characterised in that the start of the contact opening is determined from the step-by-step change in the contact potential.
  11. Method according to claim 2, characterised in that the start of the contact opening is determined from the change in inductance of an auxiliary circuit, which is connected to the main circuit in parallel with the main contact to be monitored.
  12. Method according to claim 2, characterised in that if predetermined limits of the change in the residual life between two successive circuits, or between two successive mean values from a plurality of circuits, are exceeded, malfunctions are detected and displayed, such as breakage of contact carrier, spring clip, un-soldering of contacts and suchlike.
  13. Method according to claim 12, characterised in that from the contact potential before the start of the contact opening, a disturbance of the contact closure is derived and displayed if the contact potential exceeds a predetermined limiting value during a predetermined duration.
  14. Method according to claim 13, characterised in that in order to monitor the contact excess temperature, the power loss is determined by multiplying the values of the contact potential and the switch current, which can be measured by a current transformer, for example, and in the event of the exceeding of a predetermined limiting value during a predetermined duration, a disturbance of the contact closure is displayed.
  15. Arrangement having means for determining the residual life of contacts (2, 4) in switching devices, in particular of earthing contacts, in which the contacts (2, 4) are, with the switching, subject to an erosion, wherein equivalent criteria for the erosion are evaluated, characterised in that the equivalent criterion is the so-called contact spring action at the contact gap, and in that the means for determining the residual life determine the erosion of the contacts (2, 4) by detecting the change in spring action during the breaking operation and comprise a processor unit, a controller (40) and memory (41) and an associated display (45) for display of at least the residual life (Rld).
  16. Arrangement according to claim 15,
    characterised in that there are present on the switching device display means for the residual life (Rld), residual running time (Rbd) and/or residual number of operations (Rsz) and possibly further display variables.
  17. Arrangement according to claim 15 for carrying out the method according to claim 11,
    characterised in that the auxiliary circuit is a damped oscillating circuit which is supplied by a generator, the frequency of which corresponds by approximation to the resonant frequency of the auxiliary circuit in the case of a closed main contact to be monitored.
EP95111202A 1994-07-29 1995-07-17 Method and apparatus for determining the residual life of contacts in switching devices Expired - Lifetime EP0694937B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4427006A DE4427006A1 (en) 1994-07-29 1994-07-29 Method for determining the remaining service life of contacts in switchgear and associated arrangement
DE4427006 1994-07-29

Publications (3)

Publication Number Publication Date
EP0694937A2 EP0694937A2 (en) 1996-01-31
EP0694937A3 EP0694937A3 (en) 1997-08-13
EP0694937B1 true EP0694937B1 (en) 2000-03-29

Family

ID=6524513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95111202A Expired - Lifetime EP0694937B1 (en) 1994-07-29 1995-07-17 Method and apparatus for determining the residual life of contacts in switching devices

Country Status (3)

Country Link
EP (1) EP0694937B1 (en)
DE (2) DE4427006A1 (en)
ES (1) ES2145185T3 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225807B1 (en) 1995-01-31 2001-05-01 Siemens Ag Method of establishing the residual useful life of contacts in switchgear and associated arrangement
US6359440B2 (en) 1996-01-31 2002-03-19 Siemens Aktiengesellschaft Method of establishing the residual useful life of contacts in switchgear and associated arrangement
WO2004057634A1 (en) * 2002-12-20 2004-07-08 Siemens Aktiengesellschaft Method and device for determining the remaining service life of a switchgear
WO2004057635A1 (en) * 2002-12-20 2004-07-08 Siemens Aktiengesellschaft Method and device for determining the remaining service life of a switchgear
DE10260248A1 (en) * 2002-12-20 2004-07-22 Siemens Ag Method for determining the remaining service life of a switching device and associated arrangement
DE102005045095A1 (en) * 2005-09-21 2007-04-05 Siemens Ag A method for determining the burnup of contacts of an electromagnetic switching device and electromagnetic switching device with a device operating according to this method
US7692522B2 (en) 2004-12-23 2010-04-06 Siemens Aktiengesellschaft Method and device for the safe operation of a switching device
EP2200055A1 (en) 2008-12-19 2010-06-23 Schneider Electric Industries SAS Electrical switching apparatus with optimized operation
US7812696B2 (en) 2004-12-23 2010-10-12 Siemens Aktiengesellschaft Method and device for securely operating a switching device
US7872552B2 (en) 2004-12-23 2011-01-18 Siemens Aktiengesellschaft Method and device for the secure operation of a switching device
US7978036B2 (en) 2004-12-23 2011-07-12 Siemens Aktiengesellschaft Method and device for the secure operation of a switching device
EP2383758A1 (en) 2010-04-30 2011-11-02 Schneider Electric Industries SAS Electromagnetic actuator with optimised operation and electric switchgear comprising such an actuator
EP2975622A1 (en) 2014-07-17 2016-01-20 Schneider Electric Industries SAS Method for determining the wear electrical contacts of a switching apparatus

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727986C2 (en) * 1997-07-01 2001-10-11 Moeller Gmbh Circuit arrangement for determining the contact erosion of an electrical switching device
DE19734224C1 (en) * 1997-08-07 1999-02-04 Siemens Ag Method and device for determining switchgear-specific data on contacts in switchgear and / or for determining company-specific data in the network connected with it
DE19915978A1 (en) * 1999-04-09 2000-10-12 Abb Patent Gmbh Method for measuring contact wear of power switch of medium or high voltage by comparing of distance S1 to contact point of movable contact piece with initial contact of current and target time diagram
DE19947105C2 (en) * 1999-09-30 2002-01-24 Siemens Ag Method and associated arrangements for switching electrical load circuits
DE19948551C1 (en) * 1999-10-08 2001-07-05 Siemens Ag Method for equalizing total erosions of an electromagnetic switching device and the corresponding electromagnetic switching device
DE10003918C1 (en) 2000-01-29 2001-07-05 Reinhausen Maschf Scheubeck Monitoring step switch contact burning involves deriving contact burning rates from switching currents, summing, converting to contact thickness, comparing with stored limit values
DE10028559C1 (en) * 2000-06-09 2001-11-22 Siemens Ag Electromagnetic switching device, used as contactor, comprises contact with fixed contact pieces and moving contact bridge
DE10051161C1 (en) * 2000-10-16 2002-03-07 Siemens Ag Switching device contact wear reduction method uses delay of switching command used for electromagnetic operation of main contacts
DE102004062269A1 (en) * 2004-12-23 2006-07-13 Siemens Ag Method and device for safe operation of a switching device
CN201302605Y (en) 2006-06-26 2009-09-02 Abb技术有限公司 High-power switch capable of determining and displaying burning loss of contact part
EP2182537A1 (en) * 2008-10-31 2010-05-05 Siemens AG Relay circuits
EP2993679B1 (en) 2014-09-03 2019-08-14 Electrolux Appliances Aktiebolag Apparatus-, method-, appliance and computer program product for operating a relay
DE102015121264A1 (en) * 2015-12-07 2017-06-08 Epcos Ag Contactor and method for functional testing of a contactor
CN105632840B (en) * 2016-01-07 2018-07-24 温州大学 A kind of intelligent AC contactor and its operating method based on disjunction phase controlling
US10340640B2 (en) 2017-05-04 2019-07-02 Schneider Electric USA, Inc. System and method for determining the current condition of power contacts
US10763659B2 (en) 2019-01-29 2020-09-01 Arc Suppression Technologies Power contact fault clearing device
CN114600216A (en) * 2019-09-11 2022-06-07 电弧抑制技术公司 Electric contact health assessment device
CN114600212A (en) * 2019-09-11 2022-06-07 电弧抑制技术公司 Electric contact electrode surface plasma treatment
WO2021050460A1 (en) * 2019-09-11 2021-03-18 Arc Suppression Technologies Power contact end-of-life predictor apparatus
EP3971927A1 (en) * 2020-09-16 2022-03-23 ABB Schweiz AG Contactor control

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1092101B (en) * 1955-08-29 1960-11-03 Siemens Ag Arrangement for monitoring switching piece wear
DE1174877B (en) * 1963-08-14 1964-07-30 Siemens Ag Circuit breaker
DE1515546B1 (en) * 1965-03-11 1970-08-20 Calor-Emag Elektrizitaets-Ag Electric switch
BE794726A (en) * 1972-02-04 1973-05-16 Jungbunzlauer Spiritus PROCESS FOR PREPARING TRISODIUM OR TRIPOTASIC CITRATE
GB2158253B (en) * 1984-04-26 1987-06-17 Ferranti Plc Transformer tap changing switch wear monitor
CH668669A5 (en) * 1985-10-08 1989-01-13 Sprecher Energie Ag METHOD FOR DETERMINING the erosion of the KONTAKTSTUECKE AN IN AN ENCAPSULATED SWITCHGEAR INSTALLED switchgear.
DE3714802A1 (en) * 1987-05-04 1988-11-17 Siemens Ag Electrical switch
JPH01206531A (en) * 1988-02-12 1989-08-18 Fuji Electric Co Ltd Contact consumption detecting device for electromagnetic contactor
DE4028721C2 (en) * 1990-09-10 1995-05-11 Siemens Ag Method and arrangement for determining the remaining service life of switching devices
DE4307177C2 (en) * 1993-03-08 1996-02-08 Lueder Ernst Circuit arrangement as part of a shift register for controlling chain or matrix-shaped switching elements

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225807B1 (en) 1995-01-31 2001-05-01 Siemens Ag Method of establishing the residual useful life of contacts in switchgear and associated arrangement
US6359440B2 (en) 1996-01-31 2002-03-19 Siemens Aktiengesellschaft Method of establishing the residual useful life of contacts in switchgear and associated arrangement
DE10260248B4 (en) * 2002-12-20 2005-07-21 Siemens Ag Method for determining the remaining service life of a switching device and associated arrangement
DE10260249B4 (en) * 2002-12-20 2005-07-28 Siemens Ag Method and device for determining the remaining service life of a switching device
DE10260258A1 (en) * 2002-12-20 2004-07-22 Siemens Ag Method and device for determining the remaining service life of a switching device
DE10260248A1 (en) * 2002-12-20 2004-07-22 Siemens Ag Method for determining the remaining service life of a switching device and associated arrangement
DE10260249A1 (en) * 2002-12-20 2004-08-12 Siemens Ag Method and device for determining the remaining service life of a switching device
DE10260258B4 (en) * 2002-12-20 2005-02-24 Siemens Ag Method and device for determining the remaining service life of a switching device
WO2004057634A1 (en) * 2002-12-20 2004-07-08 Siemens Aktiengesellschaft Method and device for determining the remaining service life of a switchgear
WO2004057635A1 (en) * 2002-12-20 2004-07-08 Siemens Aktiengesellschaft Method and device for determining the remaining service life of a switchgear
US7692522B2 (en) 2004-12-23 2010-04-06 Siemens Aktiengesellschaft Method and device for the safe operation of a switching device
US7812696B2 (en) 2004-12-23 2010-10-12 Siemens Aktiengesellschaft Method and device for securely operating a switching device
US7872552B2 (en) 2004-12-23 2011-01-18 Siemens Aktiengesellschaft Method and device for the secure operation of a switching device
US7978036B2 (en) 2004-12-23 2011-07-12 Siemens Aktiengesellschaft Method and device for the secure operation of a switching device
DE102005045095A1 (en) * 2005-09-21 2007-04-05 Siemens Ag A method for determining the burnup of contacts of an electromagnetic switching device and electromagnetic switching device with a device operating according to this method
EP2200055A1 (en) 2008-12-19 2010-06-23 Schneider Electric Industries SAS Electrical switching apparatus with optimized operation
EP2383758A1 (en) 2010-04-30 2011-11-02 Schneider Electric Industries SAS Electromagnetic actuator with optimised operation and electric switchgear comprising such an actuator
EP2975622A1 (en) 2014-07-17 2016-01-20 Schneider Electric Industries SAS Method for determining the wear electrical contacts of a switching apparatus

Also Published As

Publication number Publication date
DE59508081D1 (en) 2000-05-04
EP0694937A3 (en) 1997-08-13
DE4427006A1 (en) 1996-02-01
EP0694937A2 (en) 1996-01-31
ES2145185T3 (en) 2000-07-01

Similar Documents

Publication Publication Date Title
EP0694937B1 (en) Method and apparatus for determining the residual life of contacts in switching devices
EP1002325B1 (en) Method for determining switchgear-related data in switchgear contacts and/or operation-related data in a connected network
EP0878015B1 (en) Method of establishing the residual useful life of contacts in switchgear and associated arrangement
EP1475813B1 (en) Method and apparatus for controlling switching devices in electrical switchgear
WO2006069962A1 (en) Method and device for the secure operation of a switching device
DE202007018709U1 (en) Determination and display of the contact abrasion on a high-power switch
DE19603310A1 (en) Method for determining the remaining service life of contacts in switchgear and associated arrangement
WO2013091746A1 (en) Device and method for switching electrical load circuits
WO2015086666A1 (en) Apparatus for tripping a switch disconnector for vehicles
EP1555683A1 (en) Method for inspecting a circuit breaker
EP4154026B1 (en) Method for determining the state of an electrical switchgear, monitoring unit for an electrical switchgear, and electrical switchgear
DE102004020045A1 (en) Method for determining a residual shift play value indicating wear of switch contacts of a circuit breaker
EP0691028B1 (en) Switching component, especially safety or power switch
EP1402616A1 (en) Synchronous machine
EP0609261B1 (en) Device for testing an electrical drive unit
WO2002033716A1 (en) Method and device for reducing the contact erosion of a switchgear
EP0013860A1 (en) Device for section testing
DE102021203192B4 (en) Determining the aging condition of an auxiliary switch in a switchgear
DE102019206267B3 (en) Circuit breaker
WO2022135788A1 (en) Circuit breaker and method
EP0638812A2 (en) Device for monitoring electrical faults in a tripping device of an electrical installation
DE3419752C2 (en)
DE871184C (en) Device for monitoring the transition resistance and for maintaining the electrical conductivity between electrically conductive parts
BE1030869B1 (en) Method for controlling an electromechanical switching element
DE4136532C2 (en) Method for determining the selectivity limit of a series connection of circuit breakers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR IT LI SE

17P Request for examination filed

Effective date: 19970902

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990423

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59508081

Country of ref document: DE

Date of ref document: 20000504

ITF It: translation for a ep patent filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2145185

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060809

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20061012

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: FRITZ POHL

Free format text: SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE) -TRANSFER TO- FRITZ POHL#AHORNWEG 8#91334 HEMHOFEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060707

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120906

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130724

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130727

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59508081

Country of ref document: DE

Effective date: 20140201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731